説明

プラズマ反応方法及びプラズマ反応装置

【課題】プラズマ反応方法及びプラズマ反応装置を提供する。
【解決手段】密閉空間内に、少なくとも一対の導電ループを内設させ、密閉空間内には反応流体を充填させて、少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事で、密閉空間内の導電ループの表面の粒子を磁場或いは電場により高エネルギー電子、高エネルギーイオン及び高エネルギー中性原子等に分離させるプラズマ反応を起こさせて、密閉空間内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を更に効率化させる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラズマ反応方法及びプラズマ反応装置に関する。
【背景技術】
【0002】
長い紐状の導線を利用して螺旋化される均質な螺旋状のソレノイド(Solenoid)が通電される場合、アンペールの法則(Ampere's circuital law)によればソレノイド内に均質な磁場が発生する。ソレノイド内に軟鉄芯(強磁性材料)が差し込まれると、軟鉄芯(強磁性材料)が差し込まれたソレノイド内の磁束は、中空のソレノイドの磁束と比較し大幅に増加するが、差し込まれた軟鉄芯(強磁性材料)内部に渦電流(Eddy Current)現象が発生するのを回避出来ず、これにより発生する熱量により磁気エネルギーが損耗或いは干渉されてしまう。
【発明の概要】
【発明が解決しようとする課題】
【0003】
前述した従来の技術では、鉄芯(強磁性材料)を薄い多積層のシリコンシート(Silicon sheet steel)に変え、磁路飽和を低減させ、各シリコンシート層内に発生する渦電流現象と、渦電流現象が発生させる熱量並びにそれによるエネルギーの損耗を減少させ、上述の問題を適切に解決させる。しかしながら、前述の渦電流現象と、渦電流現象が引き起こす熱量及びエネルギーの損耗を完全には解決出来ない。その原因は、空気が磁気抵抗の高い媒質であるため、ソレノイド内部の磁束を終始上昇し難くさせるためである。
【0004】
このほか、ソレノイド内部に強磁性材料或いはシリコンシートのみを差し込んだ場合、電磁場と強磁性材料或いはシリコンシート間には、避けられない「磁力干渉」問題が終始存在し、解決を見ないでいる。
【0005】
プラズマ(Plasma)は一種の高エネルギー電子と、高エネルギーイオン及び高エネルギー中性原子が主要成分の物質形態であり、プラズモイドと呼ばれる。プラズマは高い導電率を有する。プラズマはウィリアム・クックス(Sir William Crookes)が西暦1879年に発見した、高い位置エネルギーと高い運動エネルギーを有する気体であり、その電量は中性を呈し、電場或いは/及び磁場の高い運動エネルギーにより外層の電子を放出させ、電子は原子核に束縛されない、高い位置エネルギーと高運動エネルギーの自由電子となる。
【0006】
プラズマの応用は広範にわたり、例えばプラズマを利用して製造されたディスプレイでは、イオン沈積技術と塗膜制御技術を利用して塗膜の組織構造を改善し化学反応を促進させる過程で、化合物の塗膜の形成を有利にさせる。
【0007】
但し上述のプラズマ反応は大部分が「二つの電極板の間」で行われ、螺旋コイルを利用してプラズマを発生させる方法もあるが、現在プラズマを発生させる方法は皆、生成されたプラズマを「別に取り出して移動させる」他の指定の用途では、発生されたプラズマを本来プラズマが発生した場所内に留めて置くことはない。例えば上述の沈積技術、塗膜制御技術、ディスプレイ技術等は皆この種に属する。
【0008】
空気が磁気抵抗の高い媒質であるため、ソレノイド内部の磁束が上昇し難く、鉄芯(強磁性材料)を薄い多積層のシリコンシートに変えて磁路飽和を低減させ、各シリコンシート層内で発生する渦電流現象が発生させる熱量及びこれにより引き起こされるエネルギー損耗を減少させるが、体積と重量を増大させてしまう上、最も重大なのは前述の渦電流現象等の問題を解決出来ない事であり、これらの問題が存在するため電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の転換効率も終始向上し得ない問題があった。
【0009】
本発明は、このような従来の問題に鑑みてなされたものである。上記課題解決のため、本発明は、上述の諸問題を効果的に解決させるプラズマ反応方法及びプラズマ反応装置を提供することを主目的とする。
【課題を解決するための手段】
【0010】
上述した課題を解決し、目的を達成するために、本発明に係るプラズマ反応方法及びプラズマ反応装置は密閉空間内で、少なくとも一対の導電ループを内設させると共に、密閉空間内には反応流体を充填させ(「流体」は気体、液体を指す)、少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事により、密閉空間内の導電ループと反応流体とに相互作用を起こさせて密閉空間内にプラズマ反応を発生させることを特徴とする。
つまり、本発明は、密閉空間内に、少なくとも一対の導電ループを内設させ、密閉空間内には反応流体を充填させて、少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事で、プラズマ反応を発生させ、密閉空間内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を更に効率化させる。
【0011】
本発明に係るプラズマ反応方法及びプラズマ反応装置は、導電ループを単数対或いは複数対有する。ここでは複数対の導電ループは更に互いに対応するよう設置されることを特徴とする。
【0012】
本発明に係るプラズマ反応方法及びプラズマ反応装置は、導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内から外へ向けて突出する少なくとも一本の端子を有し、伝導方式により導電ループに対し電場或いは/及び磁場を発生させることを特徴とする。
【0013】
本発明に係るプラズマ反応方法及びプラズマ反応装置の、導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内で完全密閉されて、密閉空間外とは接触されない少なくとも一本の端子を有し、感応方式により導電ループに対し磁場を発生させることを特徴とする。
【0014】
本発明に係るプラズマ反応装置は、
密閉空間と、
密閉空間内に内設される少なくとも一対の導電ループと、を備え、密閉空間内には反応流体を充填させ、少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事により、密閉空間内の導電ループと反応流体とに相互作用を起こさせて密閉空間内にプラズマ反応を発生させることを特徴とする。
【0015】
本発明に係るプラズマ反応装置は、導電ループを単数対或いは複数対有する。ここでは複数対の導電ループは更に互いに対応するよう設置されることを特徴とする。
【0016】
本発明に係るプラズマ反応装置の、導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内から外へ向けて突出する少なくとも一本の端子を有し、伝導方式により導電ループに対し電場或いは/及び磁場を発生させることを特徴とする。
【0017】
本発明に係るプラズマ反応装置の、導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内で完全密閉されて、密閉空間外とは接触されない少なくとも一本の端子を有し、感応方式により導電ループに対し磁場を発生させることを特徴とする。
【発明の効果】
【0018】
(従来の技術と比較しての効果)
本発明に係るプラズマ反応方法及びプラズマ反応装置は、密閉空間内で、少なくとも一対の導電ループを内設させると共に、密閉空間内には反応流体を充填させ、少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事により、密閉空間内の粒子を磁場或いは電場により高エネルギー電子、高エネルギーイオン及び高エネルギー中性原子等に分離させるプラズマ反応を発生させ、密閉空間内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を更に効率化させる。
【0019】
本発明では導電ループに強磁性材料やシリコンシートを差し込む必要がなく、従来の技術の磁場と強磁性材料或いはシリコンシート間との磁力干渉問題が、本発明では完全に発生しなくなる。
【図面の簡単な説明】
【0020】
【図1】本発明に係る第1実施形態の概略図である。
【図2】本発明に係る第2実施形態の概略図である。
【図3】本発明に係る第3実施形態の概略図である。
【図4】本発明に係る第4実施形態の概略図である。
【図5】本発明に係る第5実施形態の概略図である。
【図6】本発明に係る第6実施形態の概略図である。
【図7】図6の7−7線断面図である。
【図8】本発明に係る第7実施形態の分解図である。
【図9】本発明に係る第7実施形態の傾斜図である。
【図10】図9の10−10線断面図である。
【発明を実施するための形態】
【0021】
以下に図面を参照して、本発明を実施するための形態について、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。
【0022】
本発明の第1〜7実施形態に係るプラズマ反応方法及びプラズマ反応装置を図1乃至図10に示す。本発明のプラズマ反応方法は、密閉空間(21)内に、少なくとも一対の導電ループ(22)を内設させ、密閉空間(21)内には反応流体(23)(「流体」とは気体、液体を指す)を充填させて、少なくとも一対の導電ループ(22)に対し電場或いは/及び磁場が発生する事で、密閉空間(21)内の導電ループ(22)の表面の粒子を磁場或いは電場により高エネルギー電子、高エネルギーイオン及び高エネルギー中性原子に分離させて、密閉空間(21)内の導電ループ(22)と反応流体(23)とに相互作用を起こさせて密閉空間(21)内にプラズマ反応を発生させ、密閉空間(21)内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギー磁気エネルギー、及び物質間の電子の相互転換効果を更に効率化させる。
【0023】
図1乃至図10に示すように、プラズマ反応方法は、導電ループ(22)を単数対或いは複数対(「複数対」とは二対或いは二対以上をさす)有する。それら複数対の導電ループ(22)は更に互いに対応するよう設置される。
【0024】
図1(第1実施形態)、図2(第2実施形態)、図4(第4実施形態)、図5(第5実施形態)、図6(第6実施形態)並びに図7のプラズマ反応方法の、導電ループ或いはこれらの導電ループ(22)の少なくとも一対の導電ループ(22)は、密閉空間(21)内から外へ向けて突出する少なくとも一本の端子(221)(或いは(222))を有し、外界へ接続させて電流を密閉空間(21)に内設される導電ループ(22)へ進入させ、伝導方式により導電ループ(22)に対し電場或いは/及び磁場を発生させる。
【0025】
図2(第2実施形態)、図3(第3実施形態)、図5(第5実施形態)、図8(第7実施形態)、図9並びに図10のプラズマ反応方法の、導電ループ或いはこれらの導電ループの(22)の少なくとも一対の導電ループ(22)は、密閉空間(21)内に完全に密閉される少なくとも一本の端子(222)(或いは(221))を有し、密閉空間(21)外とは接触されず、感応方式により導電ループ(22)に対し磁場を発生させる。
【0026】
図1乃至図10に示すように、プラズマ反応装置(20)は、密閉空間(21)と、少なくとも一対の導電ループ(22)を含む。導電ループ(22)は密閉空間(21)内に内設され、密閉空間(21)内には反応流体(23)を充填させて、少なくとも一対の導電ループ(22)に対し電場或いは/及び磁場が発生する事で、密閉空間(21)内の導電ループ(22)の表面の粒子を磁場或いは電場により高エネルギー電子、高エネルギーイオン及び高エネルギー中性原子に分離させ、密閉空間(21)内の導電ループ(22)と反応流体(23)とに相互作用を起こさせて密閉空間(21)内にプラズマ反応を発生させ、密閉空間(21)内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を更に効率化させる。
【0027】
図1乃至図10に示すように、プラズマ反応装置(20)は、導電ループ(22)を単数対或いは複数対有する。図4と図5によると、複数対の導電ループ(22)は更に互いに対応するよう設置される。
【0028】
図1(第1実施形態)、図2(第2実施形態)、図4(第4実施形態)、図5(第5実施形態)、図6(第6実施形態)並びに図7のプラズマ反応装置(20)の、導電ループ或いはこれらの導電ループ(22)の少なくとも一対の導電ループ(22)は、密閉空間(21)内から外へ向けて突出する少なくとも一本の端子(222)(或いは(221))を有し、伝導方式により導電ループ(22)に対し電場或いは/及び磁場を発生させる。
【0029】
図2(第2実施形態)、図3(第3実施形態)、図5(第5実施形態)、図8(第7実施形態)、図9並びに図10のプラズマ反応装置(20)の、導電ループ或いはこれらの導電ループ(22)の少なくとも一対の導電ループ(22)は、密閉空間(21)内に完全に密閉される少なくとも一本の端子(222)(或いは(221))を有し、密閉空間(21)外には接触されず、感応方式により導電ループ(22)に対し磁場を発生させる。
【0030】
本発明の導電ループ(22)は一部露出し、反応流体(23)に接触する事でプラズマ反応を発生させ、露出する部位は互いに接触しないためショートを起こさない。このため、導電ループ(22)は導電裸線(図1乃至図7に図示する)、撚線(図示せず)、導電フィルム(一面は裸面であり、他面は絶縁面)(図8と図10に図示する)等であるが、本発明はこれらに制限されない。
【0031】
以下に本発明のプラズマ反応方法及びプラズマ反応装置が生み出す効果及び特徴を列挙する。
1.本発明は、密閉空間(21)内に、少なくとも一対の導電ループ(22)を内設させ、密閉空間(21)内には反応流体(23)を充填させて、少なくとも一対の導電ループ(22)に対し電場或いは/及び磁場が発生する事で、密閉空間(21)内の粒子を磁場或いは電場により高エネルギー電子、高エネルギーイオン及び高エネルギー中性原子等に分離させるプラズマ反応を発生させて、密閉空間(21)内の電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を更に効率化させる。
2.本発明は、発生するプラズマは密閉空間(21)内に終始留まり反応し続け、「別に取り出して移動させる」のではない他の指定の用途では、電気エネルギーと電気エネルギー間、電気エネルギーと磁気エネルギー間、磁気エネルギーと磁気エネルギー、及び物質間の電子等の相互転換効果を高めるプラズマ反応方法及びプラズマ反応装置を提供する。この点が従来のものとは完全に異なる特徴である。
3. 本発明は、導電ループに強磁性材料或いはシリコンシートを差し込む必要がなく、従来の技術の磁場と強磁性材料或いはシリコンシートとの間の磁力干渉問題は、本発明では完全に発生しなくなる。
【0032】
上述の実施形態は本発明の技術思想及び特徴を説明するためのものにすぎず、当技術分野を熟知する者に本発明の内容を理解させると共にこれをもって実施させることを目的とし、本発明の特許請求の範囲を限定するものではない。従って、本発明の精神を逸脱せずに行う各種の同様の効果をもつ改良又は変更は、後述の請求項に含まれるものとする。
【符号の説明】
【0033】
20 ・・・・プラズマ反応装置
21 ・・・・密閉空間
22 ・・・・導電ループ
221 ・・・端子
222 ・・・端子
23 ・・・・反応流体

【特許請求の範囲】
【請求項1】
密閉空間内で、少なくとも一対の導電ループを内設させると共に、前記密閉空間内には反応流体を充填させ、前記少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事により、前記密閉空間内の導電ループと反応流体とに相互作用を起こさせて前記密閉空間内にプラズマ反応を発生させることを特徴とするプラズマ反応方法。
【請求項2】
前記導電ループを単数対有することを特徴とする請求項1に記載のプラズマ反応方法。
【請求項3】
前記導電ループを複数対有することを特徴とする請求項1に記載のプラズマ反応方法。
【請求項4】
前記複数対の導電ループは、更に互いに対応するよう設置されることを特徴とする請求項3に記載のプラズマ反応方法。
【請求項5】
前記導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内から外へ向けて突出する少なくとも一本の端子を有することを特徴とする請求項1に記載のプラズマ反応方法。
【請求項6】
前記導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内で完全密閉されて、密閉空間外とは接触しない少なくとも一本の端子を有することを特徴とする請求項1に記載のプラズマ反応方法。
【請求項7】
密閉空間と、
前記密閉空間内に内設される少なくとも一対の導電ループと、を備え、
前記密閉空間内には反応流体を充填させ、前記少なくとも一対の導電ループに対し電場或いは/及び磁場が発生する事により、前記密閉空間内の導電ループと反応流体とに相互作用を起こさせて前記密閉空間内にプラズマ反応を発生させることを特徴とするプラズマ反応装置。
【請求項8】
前記導電ループを単数対有することを特徴とする請求項7に記載のプラズマ反応装置。
【請求項9】
前記導電ループを複数対有することを特徴とする請求項7に記載のプラズマ反応装置。
【請求項10】
前記複数対の導電ループは更に互いに対応するよう設置されることを特徴とする請求項9に記載のプラズマ反応装置。
【請求項11】
前記導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内から外へ向けて突出する少なくとも一本の端子を有することを特徴とする請求項7に記載のプラズマ反応装置。
【請求項12】
前記導電ループ或いはこれらの導電ループの少なくとも一対の導電ループは、密閉空間内で完全密閉されて、密閉空間外とは接触しない少なくとも一本の端子を有することを特徴とする請求項7に記載のプラズマ反応装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−152732(P2012−152732A)
【公開日】平成24年8月16日(2012.8.16)
【国際特許分類】
【出願番号】特願2012−1978(P2012−1978)
【出願日】平成24年1月10日(2012.1.10)
【出願人】(511222227)
【氏名又は名称原語表記】LAI,Ping−Li
【Fターム(参考)】