説明

マイクロチップ

【課題】増幅反応を行うことにより特定の目的物資の存在を検出するとともに、増幅阻害の影響を精度良く検出可能なマイクロチップを得る。
【解決手段】検体収容部stEから微細流路内を送液された検体液を第1流路と第2流路に分割する検体分割部SPを有し、
前記微細流路は、
第1流路を送液された検体液とポジティブコントロール収容部stPからのポジティブコントロールと試薬収容部stからの試薬とを合流させて第1の混合液を形成し、
第2流路を送液された検体液とネガティブコントロール収容部stNからのネガティブコントロールと試薬収容部stからの試薬とを合流させて第2の混合液を形成し、
第1の混合液と第2の混合液をそれぞれ核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成したマイクロチップとする。

【発明の詳細な説明】
【技術分野】
【0001】
本願発明は、遺伝子検査用のマイクロチップに関する。
【背景技術】
【0002】
近年、マイクロマシン技術及び超微細加工技術を駆使することにより、従来の試料調製、化学分析、化学合成などを行うための装置、手段(例えばポンプ、バルブ、流路、センサーなど)を微細化して1チップ上に集積化したシステムが注目されている。これは、μ−TAS(Micro Total Analysis System)とも呼ばれ、マイクロチップといわれる部材に、試薬と検体(例えば、検査を受ける被験者の尿、唾液、血液を処理して抽出したDNA処理した抽出溶液など)を合流させ、その反応を検出することにより検体の特性を調べる方法である。
【0003】
マイクロチップは、樹脂材料やガラス材料からなる基体に、フォトリソプロセス(パターン像を薬品によってエッチングして溝を作成する方法)や、レーザ光を利用して溝加工を行い、試薬や検体を流すことができる微細な流路と試薬を蓄える液溜部を設けており、さまざまなパターンが提案されている。
【0004】
そして、これらマイクロチップを用いて検体の特性を調べる際は、マイクロポンプなどでマイクロチップ内に収容されている試薬や検体を送液することにより、試薬と検体とを増幅反応させて検出部に導き、検出を行う。検出部では、例えば光学的な検出方法などによって目的物質の検出が行われる。
【0005】
マイクロチップは少量の検体であっても増幅反応させることにより検出可能とさせている。このような増幅反応を行う場合に、コンタミネーションあるいは、反応阻害物質の混入あるいは、試薬の不活性化、不適切な反応条件、等による増幅不調の障害、による検査エラーが生じる場合がある。そのような検査エラーが発生したことを検知するためにコントロールを平行して分析することが通例である。
【0006】
特許文献1では、コントロールとしてポジティブコントロールとネガティブコントロールを用い、検体と試薬の混合液(1)ポジティブコントロールと試薬の混合液(2)
ネガティブコントロールと試薬との混合液(3)、を得る。そして次に、
(a)混合液(1)と混合液(2)の混合物、
(b)混合液(1)のみ、
(c)混合液(2)のみ、
(d)混合液(3)のみ、
の各流体を増幅部で増幅反応させ、当該増産物質を検出するマイクロリアクタが開示されている。
【特許文献1】国際公開第07/058077号パンフレット
【発明の開示】
【発明が解決しようとする課題】
【0007】
しかし、特許文献1に開示されているマイクロリアクタでは流体(a)、流体(b)とでは検体から持ち込まれる阻害物質の割合が異なるために、増幅阻害の影響を精度良く検出できないという問題があった。
【0008】
本願発明は上記問題に鑑み、増幅反応を行うことにより特定の目的物資の存在を検出するとともに、増幅阻害の影響を精度良く検出可能なマイクロチップを得ることを目的とする。
【課題を解決するための手段】
【0009】
上記の目的は、下記に記載する発明により達成される。
【0010】
(1)検体もしくは検体から抽出したDNAを含む検体液が注入される検体収容部と、
核酸増幅反応に用いる試薬が収容される試薬収容部と、
ポジティブコントロールが収容されるポジティブコントロール収容部と、
ネガティブコントロールが収容されるネガティブコントロール収容部と、
これらの各収容部に連通する微細流路と、
増幅反応を検出する検出部と、
を有するマイクロチップであって、
前記検体収容部から前記微細流路内を送液された検体液を第1流路と第2流路に分割する検体分割部を有し、
前記微細流路は、
前記第1流路を送液された検体液と前記ポジティブコントロール収容部からのポジティブコントロールと前記試薬収容部からの試薬とを合流させて第1の混合液を形成し、
前記第2流路を送液された検体液と前記ネガティブコントロール収容部からのネガティブコントロールと前記試薬収容部からの試薬とを合流させて第2の混合液を形成し、
第1の混合液と第2の混合液をそれぞれ核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成されていることを特徴とするマイクロチップ。
【0011】
(2)プローブ収容部を有し、前記増幅の有無を増幅させた検出対象の核酸と、前記プローブ収容部からのプローブとのハイブリダイゼーションにより検出するよう構成されていることを特徴とする(1)に記載のマイクロチップ。
【0012】
(3)プローブ収容部を有し、前記増幅の有無を増幅させた検出対象の核酸と、前記プローブ収容部からのプローブとのハイブリダイゼーション反応時の乖離温度により検出するよう構成されていることを特徴とする(1)に記載のマイクロチップ。
【0013】
(4)プローブ収容部を有し、前記増幅の有無を増幅中の検出対象の核酸と、前記プローブ収容部からのプローブとのハイブリダイゼーションにより検出するよう構成されていることを特徴とする(1)に記載のマイクロチップ。
【発明の効果】
【0014】
本発明によれば、増幅反応を行うことにより特定の目的物資の存在を検出するとともに、増幅阻害の影響を精度良く検出可能なマイクロチップを得ることが可能となる。
【発明を実施するための最良の形態】
【0015】
本発明を実施の形態に基づいて説明するが、本発明は該実施の形態に限られない。
【0016】
[分析システムの装置構成]
図1は、本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の外観図である。マイクロチップ分析システム8は、マイクロチップ1に予め注入された検体と試薬とを自動的に反応させ、反応結果を自動的に出力する装置である。
【0017】
マイクロチップ分析システム8の筐体82には、マイクロチップ1を装置内部に挿入するための挿入口83、表示部84、メモリカードスロット85、プリント出力口86、操作パネル87、外部入出力端子88が設けられている。
【0018】
検査担当者は、図1の矢印方向にマイクロチップ1を挿入し、操作パネル87を操作して検査を開始させる。マイクロチップ分析システム8の内部では、マイクロチップ1内の反応の検査が自動的に行われ、検査が終了すると表示部84に結果が表示される。検査結果は操作パネル87の操作により、プリント出力口86よりプリントを出力したり、メモリカードスロット85に挿入されたメモリカードに記憶したりすることができる。また、外部入出力端子88から例えばLANケーブルを使って、パソコンなどにデータを保存することができる。検査終了後、検査担当者はマイクロチップ1を挿入口83から取り出す。
【0019】
図2は、本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の概略斜視図であり、図3は構成図である。図2及び図3においては、マイクロチップが図1に示す挿入口83から挿入され、セットが完了している状態を示している。
【0020】
マイクロチップ分析システム8は、マイクロチップ1に予め注入された検体及び試薬を送液するための駆動液L0を貯留する駆動液タンク70、マイクロチップ1に駆動液L0を供給するためのマイクロポンプ5、マイクロポンプ5とマイクロチップ1とを駆動液L0が漏れないように接続するポンプ接続部6、マイクロチップ1の必要部分を温調する温度調節ユニット3、マイクロチップ1をずれないように温度調節ユニット3及びポンプ接続部6に密着させるためのチップ押圧板2、チップ押圧板2を昇降させるための押圧板駆動部21、マイクロチップ1をマイクロポンプ5に対して精度良位置決めする規制部材22、マイクロチップ1内の検体と試薬との反応状態等を検出する光検出部4(4a及び4b)、等を備えている。
【0021】
チップ押圧板2は、初期状態においては、図3に示す位置より上方に退避している。これにより、マイクロチップ1は矢印X方向に挿抜可能であり、検査担当者は挿入口83(図1参照)から規制部材22に当接するまでマイクロチップ1を挿入する。その後、チップ押圧板2は、押圧板駆動部21により下降してマイクロチップ1に当接し、マイクロチップ1の下面が温度調節ユニット3及びポンプ接続部6に密着される。
【0022】
温度調節ユニット3は、マイクロチップ1と対向する面にペルチェ素子31及びヒータ32を備え、マイクロチップ1がマイクロチップ分析システム8にセットされたときに、ペルチェ素子31及びヒータ32がマイクロチップ1に密着するようになっている。試薬が収容されている部分をペルチェ素子31で冷却して試薬が変性しないようにしたり、検体と試薬とが反応する反応部139をヒータ32で加熱して反応を促進させたりする。
【0023】
反応部139での加熱時の制御温度は適宜変更することが可能であり、制御温度を切り換えることにより、検出対象の核酸が含まれているか否かをハイブリダイゼーション反応による増幅の有無により検出するようにしても良い。
【0024】
発光部4a及び受光部4bから構成される光検出部4では、発光部4aからの光をマイクロチップ1に照射し、マイクロチップ1を透過した光を受光部4bにより検出する。受光部4bはチップ押圧板2の内部に一体的に設けられている。発光部4a及び受光部4bは、図3に示すマイクロチップ1の検出部148に対向するように設けられている。
【0025】
マイクロポンプ5は、ポンプ室52、ポンプ室52の容積を変化させる圧電素子51、ポンプ室52のマイクロチップ1側に位置する第1絞り流路53、ポンプ室の駆動液タンク70側に位置する第2絞り流路54、等から構成されている。第1絞り流路53及び第2絞り流路54は絞られた狭い流路となっており、また、第1絞り流路53は第2絞り流路54よりも長い流路となっている。
【0026】
駆動液L0を順方向(マイクロチップ1に向かう方向)に送液する場合には、まず、ポンプ室52の容積を急激に減少させるように圧電素子51を駆動する。そうすると、短い絞り流路である第2絞り流路54において乱流が発生し、第2絞り流路54における流路抵抗が長い絞り流路である第1絞り流路53に比べて相対的に大きくなる。これにより、ポンプ室52内の駆動液L0は、第1絞り流路53の方に支配的に押し出され送液される。次に、ポンプ室52の容積を緩やかに増加させるように圧電素子51を駆動する。そうすると、ポンプ室52内の容積増加に伴って駆動液L0が第1絞り流路53及び第2絞り流路54から流れ込む。このとき、第2絞り流路54の方が第1絞り流路53と比べて長さが短いので、第2絞り流路54の方が第1絞り流路53と比べて流路抵抗が小さくなり、ポンプ室52内には第2絞り流路54の方から支配的に駆動液L0が流入する。以上の動作を圧電素子51が繰り返すことにより、駆動液L0が順方向に送液されることになる。また圧電素子51への駆動電圧を変更することにより駆動液L0の送液圧力を変更することが可能である。
【0027】
一方、駆動液L0を逆方向(駆動液タンク70に向かう方向)に送液する場合には、まず、ポンプ室52の容積を緩やかに減少させるように圧電素子51を駆動する。そうすると、第2絞り流路54の方が第1絞り流路53と比べて長さが短いので、第2絞り流路54の方が第1絞り流路53と比べて流路抵抗が小さくなる。これにより、ポンプ室52内の駆動液L0は、第2絞り流路54の方に支配的に押し出され送液される。次に、ポンプ室52の容積を急激に増加させるように圧電素子51を駆動する。そうすると、ポンプ室52内の容積増加に伴って駆動液L0が第1絞り流路53及び第2絞り流路54から流れ込む。このとき、短い絞り流路である第2絞り流路54において乱流が発生し、第2絞り流路54における流路抵抗が長い絞り流路である第1絞り流路53に比べて相対的に大きくなる。これにより、ポンプ室52内には第1絞り流路53の方から支配的に駆動液L0が流入する。以上の動作を圧電素子51が繰り返すことにより、駆動液L0が逆方向に送液されることになる。
【0028】
ポンプ接続部6は、必要なシール性を確保して駆動液の漏出を防止するために、ポリテトラフルオロエチレン、シリコン樹脂などの柔軟性(弾性、形状追随性)をもつ樹脂によって密着面が形成されることが好ましい。このような柔軟性を有する密着面は、例えばマイクロチップの構成基材自体によるものであっても良く、また、ポンプ接続部6における流路開口の周囲に貼着された柔軟性を有する別途の部材によるものであっても良い。
【0029】
[マイクロチップ1の構成]
次に図4、図5に基づいて、本実施形態に係るマイクロチップ1の構成について説明する。図4はマイクロチップ1の各流路エレメントの関係を表す構成概略図であり、図5は、マイクロチップ1の流路構成の一例を示す模式図である。
【0030】
図4に示すように本実施形態に係るマイクロチップ1においては、検体を検体分割部SPで2分割し、分割した一方の検体を第1流路131を送液して、ポジティブコントロール、試薬と合流させて第1の混合液を作成する。分割したうちの他方の検体は第2流路132を送液させて、ネガティブコントロール、試薬と合流させて第2の混合液を作成する。
【0031】
そして第1の混合液及び第2の混合液はそれぞれの増幅部139で増幅反応させてから、検出部148でプローブDNA(あるいは単にプローブとも称す)とハイブリダイゼーションさせ、この反応生成物に基づいて増幅反応を前記検出部で検出する。以上が全体の概略である。
【0032】
ここで「プローブDNA」とは、DNAの相補性を利用して、検出対象の遺伝子と相補関係となるDNA断片のことである。ハイブリダイゼーションにより検出対象の遺伝子と結合させる。
【0033】
「ポジティブコントロール」は、単独でも、検出対象の遺伝子と同様の核酸増幅反応とプローブDNAとのハイブリダイゼーション反応及び、後述の蛍光物質との生成反応を起こす。その配列は、検体を検出する特異的な配列で、プライマーがハイブリダイズする部分とその間の配列が検体と同じものである。コントロールに使用する核酸(DNA,RNA)は、公知技術文献に記載されているものを使用すれば良い。
【0034】
「ネガティブコントロール」は、単独では蛍光物質との生成反応を起こさない。核酸(DNA,RNA)以外の試薬などをすべて含み、コンタミネーションの有無のチェック、バックグラウンド補正用に用いる。
【0035】
また「乖離温度」とは、2本鎖構造の核酸が壊れてそれぞれ一本鎖に乖離する温度のことであり、変性温度とも称される。乖離温度は、相同性の高い二本鎖においては高く、相同性の低い二本鎖では低い傾向を示す。
【0036】
図5は、本実施形態に係るマイクロチップ1の一例を示すものである。同図においては被覆基板が取り外された状態での微細流路及び流路エレメントの配置を模式的に示している。
【0037】
マイクロチップ1には、疎水性の基材を用いて、液状の試薬と同じく液状の検体(試料)をマイクロチップ1上で混合・反応させるための微細流路及び流路エレメントが配設されている。微細流路はマイクロメーターオーダーで形成されており、例えば幅wは数十〜数百μm、好ましくは50〜300μmで、高さhは25〜1000μm程度、好ましくは50〜300μmである。
【0038】
以下、マイクロチップにおける反応及び検出の工程について説明する。図5に示すマイクロチップ1は、2つの反応検出流路がほぼ左右対称的(図中、左半分と右半分)に配置されている。図4で示した概略図と同様に、左半分の反応検出流路は、検体とポジティブコントロールと試薬との反応検出に用いられ、右半分の反応検出流路は、検体とネガティブコントロールと試薬との反応検出に用いられる。2つの反応検出を比較することにより増幅阻害の影響を精度良く検知することができる。また2つの反応検出流路は対称的に配置され基本的に同様の流路構成であるので、以下では、主に左半分での反応検出流路のみについて説明する。
【0039】
g(g1、g2、g6乃至g8)は、マイクロチップ1の一方の面から外部へ解放された上流開口部である。これらの上流開口部gは、ポンプ接続部6を介してマイクロチップ1をマイクロポンプ5に重ね合わせて接続した際に、マイクロポンプ5の接続面に設けられた流路開口と位置合わせされてマイクロポンプ5に連通される。そして当該上流開口部から送液を行うための駆動液L0が注入される。
【0040】
iは試薬あるいは検体等の液体(以下、単に試薬液ともいう)を注入する注入孔であり、マイクロチップ1の上方の面から外部へ解放された開口となっている。各注入孔iそれぞれの近傍の上流開口部gを開口した状態で試薬液を注入する。注入された液体は、近傍の上流開口部gに向かって微細流路を送られることになる。本実施形態においては当該液体を蓄えておく微細流路の一部を試薬収容部st(st1乃至st8)として用いている。
【0041】
ポジティブコントロール収容部stPにはポジティブコントロールが収容されており、ネガティブコントロール収容部stNにはネガティブコントロールが収容されている。そして検体収容部stEには検体もしくは検体から抽出したDNAを含む検体液が収容されている。また後述するが、試薬収容部st6にはプローブDNAが収容されている。なお本実施形態において試薬収容部st6を「プローブ収容部」として用いている。
【0042】
試薬液注入時には、上流開口部g及び注入孔iのみが開いており、試薬注入後に注入孔iのみを封止する。そして試薬収容部st、上流開口部gに連通するマイクロポンプ5から送り込まれる駆動液L0により、空気を間に介して試薬あるいは検体等の液体は送液される。
【0043】
130は混合液収容部であり、上流側で合流した試薬収容部st1〜st3からの試薬液が混合される。
【0044】
j(j1乃至j6)は合流部であり、SPは検体分割部である。合流部jでは上流側の微細流路から送液された試薬液を合流させる。検体分割部SPでは、上流側の検体収容部stEから送液された検体液を2分割する。分割された一方は、第1流路131を送液されて合流部j5で、ポジティブコントロール収容部stPから送液されたポジティブコントロールと試薬収容部st41、st42等からの試薬と合流して「第1の混合液」が作成される。同様に、検体分割部SPで分割された他方の検体は、第2流路132を送液されて合流部j6で、ネガティブコントロール収容部stNから送液されたネガティブコントロールと試薬収容部st42、st43等からの試薬と合流して「第2の混合液」が作成される。
【0045】
合流部j5、j6の下流側には、第1の混合液と第2の混合液とを十分に分子拡散させて混合するための混合流路138が設けられている。混合流路138の下流には、反応部139が設けられている。
【0046】
反応部139は、混合流路138で十分混合された検体と試薬との混合液を加熱反応させる部位で、マイクロチップ1をマイクロチップ分析システム8にセットした際に、反応部139にマイクロチップ分析システム8のヒータ32が対向するようになっている。反応部139をヒータ32により加熱することにより、核酸増幅反応が行われる。当該核酸増幅反応により反応部139で増幅された増幅産物は、検出部148(148a、148b)へ送液され、光検出部4により検出が行われる。
【0047】
検出部148において、増幅産物を検出する手段について説明する。検出部148では増幅産物をそのまま光検出することはできず、一般には、増幅産物を検出部148の流路壁に担持されている反応物質と反応させることにより増幅産物を検出部148にトラップさせ、さらに増幅産物に蛍光標識したプローブDNAを結合させて光学的に検出できるようにしている。検出部148の少なくともその検出部分は、光学的測定を可能とするために透明な材質、好ましくは透明なプラスチックとなっている。
【0048】
ここで具体的に遺伝子検査を例にして説明する。
【0049】
(1)試薬はビオチン修飾したプライマーであり、反応部139において検体の核酸増幅を行い、増幅された遺伝子を変性処理により一本鎖にした反応後の検体を検出部148に送る。検出部148の流路壁には予めストレプトアビジン等のビオチン親和性タンパク質(アビジン、ストレプトアビジン、エクストラアビジン、好ましくはストレプトアビジン)が反応物質として担持されて固定化されている。反応部139で反応後の検体が検出部148に流入すると、ビオチン親和性タンパク質と、プローブDNAに標識されたビオチンと、の結合反応によって検体の遺伝子が検出部148の流路壁に固定化(トラップ)される。前述したビオチン親和性タンパク質とビオチンとの結合反応は、公知のアビチン−ビオチン反応である。
【0050】
さらに、増幅産物(この例では増幅遺伝子)をトラップする工程を経て、増幅遺伝子をトラップした検出部148に、末端にFITC(Fluorescein isothiocyanate)で蛍光標識したプローブDNAを流し、これを検出部148の流路壁に固定化した遺伝子にハイブリダイズさせる。(予め増幅遺伝子と蛍光標識したプローブDNAとをハイブリダイズさせたものを検出部でトラップしも良い。)
(2)微細流路内にFITCに特異的に結合する抗FITC抗体で表面を修飾した金コロイド液を流し、これにより遺伝子にハイブリダイズしたFITC修飾プローブに、その金コロイドを吸着させる。
【0051】
(3)上記微細流路の金コロイドの濃度を光学的に測定する。
【0052】
なお蛍光色素FITCの蛍光を測定することも可能である。しかしながら、蛍光色素の光褪色、バックグラウンドノイズなどを考慮する必要がある。このため本実施形態においては、前述のとおり最終的に可視光により、高感度で測定できる方式を採用している。
【0053】
以上のように、検出部148では、微細流路に収容される各試薬が順に送液され検出部148に固定化されている反応物質と反応を行うが、この順序は予め決まっている。
【0054】
反応部139から検出部148に送液された増幅産物は、当該検出部148にて反応物質と反応を開始する(例えばアビチン−ビオチン反応)。
【0055】
次に、上流開口部g6から駆動液L0の送り込みを開始し、試薬収容部st6に収容されているプローブDNAを下流側の検出部148に送液することにより検出部148の反応物質とハイブリダイゼーション反応が行われる。
【0056】
その後、上流開口部g7から駆動液L0の送り込みを開始し、試薬収容部st7の色素液(例えばPEG化金コロイド)を検出部148に送液することにより検出部148にて抗原抗体反応が開始される。金コロイドが増幅産物と反応した後、検出部148にて検出する際、余分な金コロイドが存在する。この余剰な金コロイドを洗い流すため、上流開口部g8から駆動液L0を送液することにより試薬収容部st8の洗浄液が、検出部148に送液される。
【0057】
検出部148に送液され検出のための反応が行われた増幅産物は、光検出部4により検出が行われる。検出後の増幅産物は、廃液部160に送液される。
【0058】
第1の混合液から生成された増幅生産物を検出する検出部148aと第2の混合液から生成された増幅生産物を検出する検出部148bでの検出結果を比較することにより、検査は正常に行われたか否かを判断することができる。
【0059】
つまり、陽性すなわち検体に標的遺伝子が含まれる場合、検体とポジティブコントロールとの「第1の混合液」、及び検体とネガティブコントロールとの「第2の混合液」のいずれの混合液による反応生成物からも蛍光発光が生じる。陰性すなわち検体に標的遺伝子が含まれない場合、「第1の混合液」は、ポジティブコントロールの反応による蛍光発光が生じるが、「第2の混合液」は、反応が生じず蛍光発光は生じない。これら2つのケースは、正常な反応が行われた検査結果として扱うことができる。
【0060】
その一方で、例えば、検体に増幅阻害物質が混入した場合は、「第1の混合液」及び「第2の混合液」のいずれの混合液による反応生成物からも蛍光発光は生じない、偽陰性となる。また、「第1の混合液」による反応生成物では蛍光発光無し、「第2の混合液」による反応生成物では蛍光発光有りの場合は、マイクロチップ1に収容した試薬の失活などの異常が考えられる。これら2つのケースは、異常な反応を行った検査結果として、再検査を促すことが可能となる。
【0061】
そして本実施形態においては、「第2の混合液」は検体をネガティブコントロールで希釈していることにより、「第1の混合液」との比較において、増幅阻害の影響による検査異常を精度良検知することが可能となる。
【図面の簡単な説明】
【0062】
【図1】本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の外観図である。
【図2】本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の概略斜視図である。
【図3】本実施形態に係るマイクロチップを用いるマイクロチップ分析システム8の構成図である。
【図4】マイクロチップ1の各流路エレメントの関係を表す構成概略図である。
【図5】マイクロチップ1の流路構成の一例を示す模式図である。
【符号の説明】
【0063】
1 マイクロチップ
6 ポンプ接続部
g 上流開口部
st1〜st8 試薬収容部
stE 検体収容部
stP ポジティブコントロール収容部
stN ネガティブコントロール収容部
i 注入孔
j 合流部
SP 検体分割部
130 混合液収容部
138 混合流路
139 反応部
148 検出部
160 廃液部
70 駆動液タンク

【特許請求の範囲】
【請求項1】
検体もしくは検体から抽出したDNAを含む検体液が注入される検体収容部と、
核酸増幅反応に用いる試薬が収容される試薬収容部と、
ポジティブコントロールが収容されるポジティブコントロール収容部と、
ネガティブコントロールが収容されるネガティブコントロール収容部と、
これらの各収容部に連通する微細流路と、
増幅反応を検出する検出部と、
を有するマイクロチップであって、
前記検体収容部から前記微細流路内を送液された検体液を第1流路と第2流路に分割する検体分割部を有し、
前記微細流路は、
前記第1流路を送液された検体液と前記ポジティブコントロール収容部からのポジティブコントロールと前記試薬収容部からの試薬とを合流させて第1の混合液を形成し、
前記第2流路を送液された検体液と前記ネガティブコントロール収容部からのネガティブコントロールと前記試薬収容部からの試薬とを合流させて第2の混合液を形成し、
第1の混合液と第2の混合液をそれぞれ核酸増幅反応により増幅させ、増幅の有無に基づいて増幅反応を前記検出部で検出するよう構成されていることを特徴とするマイクロチップ。
【請求項2】
プローブ収容部を有し、
前記増幅の有無を増幅させた検出対象の核酸と、前記プローブ収容部からのプローブとのハイブリダイゼーションにより検出するよう構成されていることを特徴とする請求項1に記載のマイクロチップ。
【請求項3】
プローブ収容部を有し、
前記増幅の有無を増幅させた検出対象の核酸と、前記プローブ収容部からのプローブとのハイブリダイゼーション反応時の乖離温度により検出するよう構成されていることを特徴とする請求項1に記載のマイクロチップ。
【請求項4】
プローブ収容部を有し、
前記増幅の有無を増幅中の検出対象の核酸と、前記プローブ収容部からのプローブとのハイブリダイゼーションにより検出するよう構成されていることを特徴とする請求項1に記載のマイクロチップ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−150809(P2009−150809A)
【公開日】平成21年7月9日(2009.7.9)
【国際特許分類】
【出願番号】特願2007−329847(P2007−329847)
【出願日】平成19年12月21日(2007.12.21)
【出願人】(303000420)コニカミノルタエムジー株式会社 (2,950)
【Fターム(参考)】