説明

マルチビーム露光走査方法及び装置並びに印刷版の製造方法

【課題】マルチビーム露光において、安定して急峻化した凸小点形状を形成する。
【解決手段】複数の光ビームを同時に照射し、同一走査線を複数回露光することにより記録媒体の表面を彫刻するマルチビーム露光走査方法において、前記記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域について少なくとも4回の走査を行い、それぞれ1回の走査において少なくとも前記四辺のうちの一辺に隣接する領域を露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻するマルチビーム露光走査方法により上記課題を解決する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明はマルチビーム露光走査方法及び装置並びに印刷版の製造方法に係り、特にフレキソ版などの印刷版の製造に好適なマルチビーム露光技術及びこれを適用した印刷版の製造技術に関する。
【背景技術】
【0002】
従来、複数のレーザビームを同時に照射し得るマルチビームヘッドを用いて版材の表面に凹形状を彫刻する技術が開示されている(特許文献1)。このようなマルチビーム露光によって版を彫刻する場合、隣接ビームの熱の影響により、小点や細線などの微細形状を安定に形成することは大変困難である。
【0003】
かかる課題に対して、特許文献1では、版材の表面に形成されるビームスポット列における隣接ビームスポット間での相互の熱的影響を軽減するために、いわゆるインターレース露光を行う構成を提案している。即ち、特許文献1では、彫刻密度に対応する彫刻ピッチの2倍以上の間隔で版材表面に複数のレーザスポットを形成し、1回の露光走査で形成する走査線の間隔をあけ、各走査線間の走査線を2回目以降の走査で露光する方法を採用している。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平09−85927号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
フレキソ印刷では、特に印圧による凸小点の形状歪みで生じる印刷面上でのドット径の増加が著しく、これによるハイライト画質が問題となっている。この問題を軽減する策の一つとして凸小点のエッジ形状急峻化が上げられる。しかし、凸小点のエッジ形状をマルチビーム露光で安定に急峻化させることは大変難しい。
【0006】
図17は、1ch露光による凸小点の彫刻を示した模式図である。同図に示すように、彫刻前の平面部を露光して彫っていくと、そこで発生した大量の熱の一部はまだ彫られていない表面部を伝って流れる。例えば、小点表面近傍まで大量の光パワーで照射すると、この小点表面に前後で熱が一度に流入してくるため、小点表面近傍に熱溜まりができ、結果的に表面にダメージ(融解)を与え、凸小点のエッジ形状になまりが発生してしまう。
【0007】
したがって、大量の光パワーをエッジ近傍に照射することはできない。また、このような課題は、特許文献1に記載のインターレース露光を用いても発生する。
【0008】
本発明はこのような事情に鑑みてなされたもので、マルチビーム露光において、安定して急峻化した凸小点形状を形成するマルチビーム露光走査方法及び装置並びにこれを適用した印刷版の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0009】
前記目的を達成するために請求項1に記載のマルチビーム露光走査方法は、複数の光ビームを同時に照射し、同一走査線を複数回露光することにより記録媒体の表面を彫刻するマルチビーム露光走査方法において、前記記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域について少なくとも4回の走査を行い、それぞれ1回の走査において少なくとも前記四辺のうちの一辺に隣接する領域を露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻することを特徴とする。
【0010】
請求項1に記載の発明によれば、記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域について少なくとも4回の走査を行い、それぞれ1回の走査において第1の領域のうち四辺のうちの一辺に隣接する領域等だけを露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻するようにしたので、目的の平面形状のそれぞれの辺に隣接する領域を一辺ずつ露光することができ、急峻化した凸小点形状を形成することができる。
【0011】
請求項2に示すように請求項1に記載のマルチビーム露光走査方法において、前記4回の走査において、前記第1の領域の周囲の領域である第2の領域については4回とも露光することを特徴とする。
【0012】
これにより、凸小点を急峻な形状とすることができる。
【0013】
請求項3に示すように請求項1又は2に記載のマルチビーム露光走査方法において、前記第1の領域は、前記目的の平面形状の周囲1画素又は2画素の領域であることを特徴とする。
【0014】
これにより、適切に凸小点形状を形成することができる。
【0015】
前記目的を達成するために請求項4に記載のマルチビーム露光走査装置は、複数の光ビームを同時に照射し、同一走査線を複数回露光することにより記録媒体の表面を彫刻するマルチビーム露光走査装置において、前記光ビームが出射される複数の出射口を有する露光ヘッドと、前記露光ヘッドを前記記録媒体に対して主走査方向に相対的に主走査させる主走査手段と、前記記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域ついて少なくとも4回の走査を行い、それぞれ1回の走査において少なくとも前記四辺のうちの一辺に隣接する領域を露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻する露光走査制御手段とを備えたことを特徴とする。
【0016】
請求項4に記載の発明によれば、記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域ついて少なくとも4回の走査を行い、それぞれ1回の走査において前記四辺のうちの一辺に隣接する領域を露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻するようにしたので、目的の平面形状のそれぞれの辺に隣接する領域を一辺ずつ露光することができ、急峻化した凸小点形状を形成することができる。
【0017】
請求項5に示すように請求項4に記載のマルチビーム露光走査装置は、前記露光手段は、前記少なくとも4回の主走査において、前記第1の領域の周囲の領域である第2の領域については少なくとも4回露光することを特徴とする。
【0018】
これにより、凸小点を急峻な形状とすることができる。
【0019】
請求項6に示すように請求項4又は5に記載のマルチビーム露光走査装置において、前記第1の領域は、前記目的の平面形状の周囲1画素又は2画素の領域であることを特徴とする。
【0020】
これにより、適切に凸小点形状を形成することができる。
【0021】
請求項7に示すように請求項4から6のいずれかに記載のマルチビーム露光走査装置において、前記露光ヘッドを前記記録媒体に対して前記主走査方向と直交する副走査方向に相対的に副走査させる副走査手段を備え、前記副走査手段は、前記主走査手段が少なくとも4回主走査させた後に前記露光ヘッドを所定量だけ副走査させることを特徴とする。
【0022】
これにより、第1の領域について4回の主走査を行うことができ、記録媒体の全面を彫刻することができる。
【0023】
請求項8に示すように請求項4から6のいずれかに記載のマルチビーム露光走査装置において、前記露光ヘッドを前記記録媒体に対して前記主走査方向と直交する副走査方向に相対的に副走査させる副走査手段を備え、同一走査線を露光する回数をN(Nは4以上の整数)、前記出射口の数をTとすると、前記副走査手段は、前記主走査手段による1回の主走査に対して前記露光ヘッドと前記記録媒体とがT/N走査線分だけ相対的に移動するように一定速度で副走査させることを特徴とする。
【0024】
これにより、第1の領域について4回の主走査を行うことができ、記録媒体の全面を彫刻することができる。
【0025】
請求項9に示すように請求項4から8のいずれかに記載のマルチビーム露光走査装置において、前記複数の射出口は、前記第1の方向に対して所定の角度を持つ直線上に配置され、前記露光手段は、第1の射出口に隣接する第2の射出口であって、前記主走査に対して上流側に位置する第2の射出口において露光をしていない場合に前記第1の射出口において所定の光量で露光を行い、前記第2の射出口において露光をしている場合は前記第1の射出口において前記所定の光量より小さい光量で露光を行うことを特徴とする。
【0026】
これにより、先に露光された主走査線上の熱の影響があっても、適切に彫刻することができる。
【0027】
前記目的を達成するために請求項10に記載の印刷版の製造方法は、請求項1から3のいずれかに記載のマルチビーム露光走査方法によって、前記記録媒体に相当する版材の表面を彫刻することによって印刷版を得ることを特徴とする。
【0028】
請求項10に記載の発明によれば、安定して急峻化した凸小点形状を形成した印刷版を得ることができる。
【発明の効果】
【0029】
本発明によれば、マルチビーム露光において、安定して急峻化した凸小点形状を形成することができる。
【図面の簡単な説明】
【0030】
【図1】本発明の実施形態に係るマルチビーム露光走査装置を適用した製版装置の構成図
【図2】露光ヘッド内に配置される光ファイバーアレイ部の構成図
【図3】光ファイバーアレイ部の光出射部の拡大図
【図4】光ファイバーアレイ部の結像光学系の概要図
【図5】光ファイバーアレイ部における光ファイバーの配置例と走査線の関係を示す説明図
【図6】本例の製版装置における走査露光系の概要を示す平面図
【図7】本例の製版装置における制御系の構成を示すブロック図
【図8】版材の彫刻について示す図
【図9】本実施形態による彫刻後の版材の上面及び断面を示す図
【図10】本実施形態による光ビームのパワー制御例を示すグラフ
【図11】非露光領域と実際に形成される凸小点との関係を示す図
【図12】インターレース露光の場合のパワー制御例を示すグラフ
【図13】光ファイバーアレイ光源の変形例を示す模式図
【図14】図13の光ファイバーアレイ光源による版材の彫刻について示す図
【図15】図13の光ファイバーアレイ光源による光ビームのパワー制御例を示すグラフ
【図16】フレキソ版の製版工程の概要を示す説明図
【図17】凸小点の彫刻を示した模式図
【発明を実施するための形態】
【0031】
以下、添付図面に従って本発明の実施形態について詳細に説明する。
【0032】
<マルチビーム露光走査装置の構成例>
図1は、本発明の実施形態に係るマルチビーム露光走査装置を適用した製版装置の構成図である。図示の製版装置11は、円筒形を有するドラム50の外周面にシート状の版材F(「記録媒体」に相当)を固定し、該ドラム50を図1中の矢印R方向(主走査方向)に回転させると共に、版材Fに向けてレーザ記録装置10の露光ヘッド30から、該版材Fに彫刻(記録)すべき画像の画像データに応じた複数のレーザビームを射出し、露光ヘッド30を主走査方向と直交する副走査方向(図1矢印S方向)に所定ピッチで走査させることで、版材Fの表面に2次元画像を高速で彫刻(記録)するものである。ここでは、フレキソ印刷用のゴム版又は樹脂版を彫刻する場合を例に説明する。
【0033】
本例の製版装置11に用いられるレーザ記録装置10は、複数のレーザビームを生成する光源ユニット20と、光源ユニット20で生成された複数のレーザビームを版材Fに照射する露光ヘッド30と、露光ヘッド30を副走査方向に沿って移動させる露光ヘッド移動部40と、を含んで構成されている。
【0034】
光源ユニット20は、複数の半導体レーザ21(ここでは合計32個)を備えており、各半導体レーザ21の光は、それぞれ個別に光ファイバー22、70を介して露光ヘッド30の光ファイバーアレイ部300へと伝送される。
【0035】
本例では、半導体レーザ21としてブロードエリア半導体レーザ(波長:915nm)が用いられ、これら半導体レーザ21は光源基板24上に並んで配置されている。各半導体レーザ21は、それぞれ個別に光ファイバー22の一端部にカップリングされ、光ファイバー22の他端はそれぞれFC型光コネクタ25のアダプタに接続されている。
【0036】
FC型光コネクタ25を支持するアダプタ基板23は、光源基板24の一方の端部に垂直に取り付けられている。また、光源基板24の他方の端部には、半導体レーザ21を駆動するLDドライバー回路(図1中不図示、図7の符号26)を搭載したLDドライバー基板27が取り付けられている。各半導体レーザ21は、それぞれ個別の配線部材29を介して、対応するLDドライバー回路に接続されており、各々の半導体レーザ21は個別に駆動制御される。
【0037】
なお、本実施の形態では、レーザビームを高出力とするために、コア径の比較的大きな、多モード光ファイバーを光ファイバー70に適用している。具体的には、本実施形態においては、コア径が105μmの光ファイバーが用いられている。また、半導体レーザ21には、最大出力が10W程度のものを使用している。具体的には、例えば、JDSユニフェーズ社から販売されているコア径105μmで出力10W(6398-L4)のものなどを採用することができる。
【0038】
一方、露光ヘッド30には、複数の半導体レーザ21から射出された各レーザビームを取り纏めて射出する光ファイバーアレイ部300が備えられている。光ファイバーアレイ部300の光出射部(図1中不図示、図2の符号280)は、各半導体レーザ21から導かれた32本の光ファイバー70の出射端が1列に並んで配置された構造となっている(図3参照)。
【0039】
また、露光ヘッド30内には、光ファイバーアレイ部300の光出射部側より、コリメータレンズ32、開口部材33、及び結像レンズ34が、順番に並んで配設されている。コリメータレンズ32と結像レンズ34の組合せによって結像光学系が構成されている。開口部材33は、光ファイバーアレイ部300側から見て、その開口がファーフィールド(Far Field)の位置となるように配置されている。これによって、光ファイバーアレイ部300から射出された全てのレーザビームに対して同等の光量制限効果を与えることができる。
【0040】
露光ヘッド移動部40には、長手方向が副走査方向に沿うように配置されたボールネジ41及び2本のレール42が備えられており、ボールネジ41を回転駆動する副走査モータ(図1中不図示、図7の符号43)を作動させることによってボールネジ41上に配置された露光ヘッド30をレール42に案内された状態で副走査方向に移動させることができる。また、ドラム50は主走査モータ(図1中不図示、図7の符号51)を作動させることによって、図1の矢印R方向に回転駆動させることができ、これによって主走査がなされる。
【0041】
図2は光ファイバーアレイ部300の構成図であり、図3はその光出射部280の拡大図(図2のA矢視図)である。図3に示すように、光ファイバーアレイ部300の光出射部280は、等間隔に32個の光を出射するコア径105μmの光ファイバー70が直線状の1列に並んで配置されている。
【0042】
光ファイバーアレイ部300は、基台(V溝基板)302を有し、該基台302には片面に半導体レーザ21と同数、すなわち32個のV字溝282が所定の間隔で隣接するように形成されている。基台302の各V字溝282には、光ファイバー70の他端部の光ファイバー端部71が1本ずつ嵌め込まれている。これにより、直線状に並んで配置された光ファイバー端部群301が構成されている。したがって、光ファイバーアレイ部300の光出射部280からこれら複数本(32本)のレーザビームが同時に射出される。
【0043】
図4は、光ファイバーアレイ部300の結像系の概要図である。図4に示すように、コリメータレンズ32及び結像レンズ34で構成される結像手段によって、光ファイバーアレイ部300の光出射部280を所定の結像倍率で版材Fの露光面(表面)FAの近傍に結像させる。本実施形態では、結像倍率は1/3倍とされており、これにより、コア径105μmの光ファイバー端部71から出射されたレーザビームLAのスポット径は、φ35μmとなる。
【0044】
このような結像系を有する露光ヘッド30において、図3で説明した光ファイバーアレイ部300の隣接ファイバー間隔(図3中のL1)及び光ファイバーアレイ部300を固定するときの光ファイバー端部群301の配列方向(アレイ方向)の傾斜角度(図5中の角度θ)を適宜設計することにより、図5に示すように、隣り合う位置に配置される光ファイバーから射出されるレーザビームで露光する走査線(主走査ライン)Kの間隔P1を10.58μm(副走査方向の解像度2400dpi相当)に設定することができる。
【0045】
上記構成の露光ヘッド30を用いることにより、32ラインの範囲(1スワス分)を同時に走査して露光することができる。
【0046】
図6は、図1に示した製版装置11における走査露光系の概要を示す平面図である。露光ヘッド30は、ピント位置変更機構60と、副走査方向への間欠送り機構90を備えている。
【0047】
ピント位置変更機構60は、露光ヘッド30をドラム50面に対して前後移動させるモータ61とボールネジ62を有し、モータ61の制御により、ピント位置を約0.1秒で約339μm移動させることができる。間欠送り機構90は、図1で説明した露光ヘッド移動部40を構成するものであり、図6に示すように、ボールネジ41とこれを回転させる副走査モータ43を有する。露光ヘッド30は、ボールネジ41上のステージ44に固定されており、副走査モータ43の制御により、露光ヘッド30をドラム50の軸線52方向に、約0.1秒で1スワス分(2400dpiの場合、10.58μm×64ch=677.3μm)の間欠送りができる。
【0048】
なお、図6において、符号46、47は、ボールネジ41を回動自在に支持するベアリングである。符号55はドラム50上で版材Fをチャックするチャック部材である。このチャック部材55の位置は、露光ヘッド30による露光(記録)を行わない非記録領域である。ドラム50を回転させながら、この回転するドラム50上の版材Fに対し、露光ヘッド30から32チャンネルのレーザビームを照射することで、32チャンネル分(1スワス分)の露光範囲92を隙間なく露光し、版材Fの表面に1スワス幅の彫刻(画像記録)を行う。そして、ドラム50の回転により、露光ヘッド30の前をチャック部材55が通過するときに(版材Fの非記録領域のところで)、副走査方向に間欠送りを行い、次の1スワス分を露光する。このような副走査方向の間欠送りによる露光走査を繰り返すことにより、版材Fの全面に所望の画像を形成する。
【0049】
本例では、シート状の版材F(記録媒体)を用いているが、円筒状記録媒体(スリーブタイプ)を用いることも可能である。
【0050】
<制御系の構成>
図7は、製版装置11の制御系の構成を示すブロック図である。図7に示すように、製版装置11は、彫刻すべき2次元の画像データに応じて各半導体レーザ21を駆動するLDドライバー回路26と、ドラム50を回転させる主走査モータ51と、主走査モータ51を駆動する主走査モータ駆動回路81と、副走査モータ43を駆動する副走査モータ駆動回路82と、制御回路80と、を備えている。制御回路80は、LDドライバー回路26、及び各モータ駆動回路(81、82)を制御する。
【0051】
制御回路80には、版材Fに彫刻(記録)する画像を示す画像データが供給される。制御回路80は、この画像データに基づき、主走査モータ51及び副走査モータ43の駆動を制御するとともに、各半導体レーザ21について個別にその出力(オン・オフの制御並びにレーザビームのパワー制御)を制御する。
【0052】
このように構成された製版装置11において、版材F(記録媒体)を彫刻することができる。彫刻は、図8に示すように、版材Fの露光領域202に対して露光することにより行い、非露光領域201に対しては露光は行わない。露光領域に対しては、左端のチャンネルch1(第1ビーム)が最初に発光して彫刻し、次に、右隣のチャンネルch2(第2ビーム)が発光して彫刻し、以後順次隣り合うチャンネルch3〜ch32のビームが発光してスワス幅分を彫刻する。1スワス幅の彫刻を終えたら副走査方向にスワス幅分移動して順次同様の彫刻を行う。
【0053】
<凸小点の形成方法>
次に、このように構成された製版装置11において、急峻な形状を持つ凸小点を形成する露光走査工程について説明する。本実施形態においては、同一の副走査位置において4回の主走査(露光走査)を行うことで、熱溜まりの影響を排除しつつ急峻な形状を形成する。
【0054】
図9は、版材Fの凸小点として形成されるべき領域を含む非露光領域221と、非露光領域221以外の露光領域222の、上面と主走査方向及び副走査方向の断面を示した図である。
【0055】
非露光領域221は、凸小点として形成されるべき領域である第1の非露光領域221aと、その周辺領域である第2の非露光領域221bとからなる。第2の非露光領域221bは、四辺を有する第1の露光領域のうち一辺の周辺領域を除いた周辺1ドット又は2ドットの領域であり、除いた辺に応じて221b1〜221b4の4種類の領域に変形される。
【0056】
まず、露光領域212について1回目の露光走査を行う。1回目においては、第2の非露光領域221bは、図9(a)に示すように第1の非露光領域221aの上辺(図では、主走査方向下流側)を除く周辺領域となっている。
【0057】
すなわち、1回目の露光走査では、第1の非露光領域221aの境界に対してはその上辺のみを彫刻し、下辺及び左右辺の境界については第2の非露光領域221bとして彫刻を行わない。したがって、第1の非露光領域221aの上辺の境界について、熱溜まりの影響を排除して彫刻することができる。
【0058】
次に、露光領域212について2回目の露光走査を行う。2回目においては、第2の非露光領域221bは、図9(b)に示すように第1の非露光領域221aの下辺(主走査方向上流側)を除く周辺領域となっている。したがって、2回目の露光走査では、第1の非露光領域221aの下辺の境界について、熱溜まりの影響を排除して彫刻することができる。
【0059】
さらに、露光領域212について3回目の露光走査を行う。3回目の第2の非露光領域221bは、図9(c)に示すように第1の非露光領域221aの右辺(副走査方向下流側)を除く周辺領域となっている。したがって、3回目の露光走査では、第1の非露光領域221aの右辺の境界について、熱溜まりの影響を排除して彫刻することができる。
【0060】
最後に、露光領域212について4回目の露光走査を行う。4回目の第2の非露光領域221bは、図9(d)に示すように第1の非露光領域221aの左辺(副走査方向上流側)を除く周辺領域となっている。したがって、4回目の露光走査では、第1の非露光領域221aの左辺の境界について、熱溜まりの影響を排除して彫刻することができる。
【0061】
このように、同一副走査位置において4回の主走査を行い、それぞれの主走査において矩形状の凸小点の4辺を1辺ずつ順に彫刻することで、凸小点表面近傍の熱溜まりの発生を防止して凸小点の各辺のエッジ形状のなまりの発生を抑制するとともに、露光領域については4回の露光により深く彫刻して、急峻な凸小点を形成することができる。
【0062】
なお、本実施形態においては、凸小点として形成されるべき領域の境界について、上辺(主走査方向下流側)、下辺(主走査方向上流側)、右辺(副走査方向下流側)、左辺(副走査方向上流側)の順に彫刻を行ったが、この順序に限定されるものではない。
【0063】
また、本実施形態においては、図9(a)に示した露光領域222に対して、均一の光パワーで露光を行っているが、非露光領域221に近いほど光パワーを小さくする等、各領域内で光量の分布を持たせてもよい。
【0064】
<光ビームの各チャンネル間のパワー制御>
図8において、各チャンネルch1〜ch32の光パワーを同等に設定して露光走査したとすると、露光領域202は、第1ビーム(ch1)でまず先に彫刻され、その余熱によって版材Fが暖められる。そこに次の隣のラインを彫刻する第2ビーム(ch2)が照射されて彫刻されることになるため、ch1の彫刻による余熱の影響で版材Fの温度高い状態でch2のエネルギーが加えられることになる。このように先行する隣接ビームの彫刻による熱の影響を受けて、後続のビームによる彫刻が過度に進んでしまうという現象が発生する。
【0065】
この彫刻が過度の進んでしまう現象は、露光領域202において常に発生するが、特に非露光領域201と露光領域202の境界において問題となる。
【0066】
例えば、図8(b)の非露光領域201の左辺外周はch4により彫刻されるが、ch1〜ch3の彫刻による熱の影響を受けてch4による彫刻が過度に進んでしまうと、非露光領域201が所望の形状に彫刻されないことが考えられる。
【0067】
なお、図8(a)の非露光領域201の左辺外周においては、このような問題は発生しない。図8(a)の場合は、非露光領域201の左辺外周はch1により彫刻されるが、1スワス内にはch1に先行する走査ビームが存在しないため、余熱の影響がないからである。このように、形成する凸小点と各ビームのチャンネルの位置関係によって熱の影響も異なってくる。
【0068】
この現象を回避するために、本実施形態における製版装置11では、どのチャンネルでどの位置を露光するかという情報に基づいて、各ビームのチャンネル間の光パワーを制御する。図10にその例を示す。図10の横軸はチャンネル番号(ch)であり、縦軸はビームの光パワーを相対値で示している(ch1のパワーを1に規格化)。図10に示すとおり、彫刻を始める書き出し部分に対応するチャンネルch1、ch2、ch3の光パワーをch1>ch2>ch3のように設定し、ch3以降(中間部)の光パワーを略一定にする。そして、当該スワス内における最後(書き終わり)のチャンネル(ch32)の光パワーを上げる(例えば、ch32=ch2)。
【0069】
図8で説明したように、斜めに並ぶチャンネル群のビーム配列によって凸小点を形成する場合、各チャンネルの発光タイミング(画素を露光するタイミング)に時間差が発生する。最初にch1のビームが発光し、露光走査しているところに、次のch2のビームが発光される。このとき、先行するch1のビームによる熱の影響によってch2のビーム位置に対応する版材Fの表面温度が上昇しているため、この隣接ビームによる熱の影響を考慮してch2の光パワーをch1よりも下げる。
【0070】
図10では、ch1の光パワー(規格化により1とする。)に対してch2の光パワーを0.7に設定しているが、最初に走査するビームに対して隣接するビームの光量比は、0.4〜0.9の範囲で適宜設定される。
【0071】
ch3についても同様に、先行するch2、ch1のビームによる熱の蓄積を考慮して、ch3の光パワーをch2よりもさらに下げる(図10では、0.5に設定している)。
【0072】
ただし、ch3以降は、熱の条件が飽和して概ね同じ条件になるため、線の中間部では略一定の光パワーとする。このように制御することにより、凸小点と各ビームのチャンネルの位置関係にかかわらず、適切に彫刻することが可能となる。
【0073】
なお、図10はビームのスポット径φ35μm、解像度2400dpi(走査線間隔=
10.6μm)の場合の一例に過ぎず、スポット径、スポット配置、走査速度、版材等の
条件によりch間の光パワーを最適化する必要がある。例えば、条件によっては、ビーム
間の光パワーの関係をch1≧ch2≒ch3≒ch4・・・としてもよいし、ch1>
ch2>ch3>ch4(≒ch5≒ch6・・・)のようにしてもよい。
【0074】
書き出しの数画素(2〜4画素程度)の範囲でこのような光パワーの制御を行うことが
効果的であり、少なくとも隣接する2画素(ch1とch2)についてビーム間の光パワー制御を行うことが効果的である。
【0075】
また、最後のチャンネル(ここでは、ch32)については、次の隣接ビームから熱の
寄与が無い点で他の中間部のチャンネル(ch4〜ch31)と異なるため、光パワーを
上げてもよいし、条件によっては一つ前のチャンネル(ch31)と同じであってもよい

【0076】
上記例示のとおり、マルチビーム露光系により記録媒体(版材F)の表面近傍をレーザ
で彫刻して所望の形状を形成する場合において、レーザ発光する画素周辺のビームの発光
状態をもとに、当該発光する光量を制御するものとする。その光量制御は、発光するビー
ムを中心に副走査方向に数画素、他のビームが先に発光していない場合を光量aとし、こ
の光量aによるビーム(第1ビーム)により画素Aを露光した後、ある時間をおいてその
隣のビーム(第2ビーム)が画素Aに隣接する画素Bを露光する場合を光量bとした場合
に、a>bに設定する。
【0077】
<非露光領域と実際に形成される凸小点との関係>
凸小点を形成するためには、非露光領域の境界が彫刻された場合に、その余熱によって非露光領域の周辺領域が彫刻されてしまうことを考慮して、実際には凸小点よりも大きい範囲において露光を行わない場合もある。例えば、図11に示すように、スポット径φ35μm、走査線間隔=10.6μmの条件下で2×2ドットの凸小点を形成する場合に、非露光領域211を凸小点の周辺1ドットの範囲とすることにより、最終的な2×2ドットの凸小点214を形成してもよい。
【0078】
したがって、このような条件下で本実施形態を適用する場合は、この4×4ドットの範囲を図9における非露光領域221とし、その1ドット外側の領域を露光領域222として彫刻を行う必要がある。
【0079】
このように、非露光領域と実際に形成される凸小点との関係は、光ビームや版材の各種条件によって異なってくるが、実際に露光しない領域を非露光領域として本実施形態を適用すればよい。
【0080】
<インターレース露光の場合>
図10は露光走査時に画素の間隔を空けずに、1スワス内の全画素を一斉に露光するノンインターレース露光を行う例を説明したが、副走査方向に1画素間を空けるインターレース露光の場合にも同様に適用できる。
【0081】
スポット径φ35μm、解像度2400dpi(走査線間隔=10.6μm)の条件下で1ch間を空けるインターレース露光を行う場合のチャンネル間の光パワーの制御例を図12に示す。
【0082】
インターレース露光においても隣接ビームの熱の影響を受けるため、ch1の光パワー(規格化により1とする。)に対して、ch2以降の光パワーを下げる。同図ではch2の光パワーを「0.7」に設定しているが、これに限定されず、最初に走査するビームに対して隣接するビームの光量比は0.5〜0.9の範囲で適宜設定される。
【0083】
なお、インターレース露光の場合、ノンインターレース露光に比べてビームの副走査方向の密度が低い(疎)ため、隣接ビーム間の熱の影響はノンインターレース露光の場合よりも小さくなる。このため、ノンインターレース露光(図10)の場合と比較して、インターレース露光(図12)におけるch2以降の光パワーの低減量は少ないものとなっている。
【0084】
<その他のビーム配列による場合>
上記の実施形態では、図3で説明した1列の光ファイバーアレイ配置を持つ露光ヘッド30によって、32ライン(1スワス)のビームが斜め方向に1列に並ぶビーム配置を例示したが、本発明の実施に際して、ビーム配置はかかる1列の配置形態に限定されない。
【0085】
図13に、他の光ファイバーアレイユニット光源の例を示す。図示の光ファイバーアレイユニット光源500は、4段に組み合わされた光ファイバーアレイユニット501、502、503、504で構成されている。各段のアレイには、コア径105μmの光ファイバー70がそれぞれ16個、直線状に一列に配置されており、4段合計で64個の光ファイバー70が斜めのマトリクス状に配置される構造となっている。
【0086】
図13のように、最上段(第1段)の光ファイバーアレイユニット501に属するチャンネルの番号を右端から4M+1(M=0,1,2・・・)、第2段(符号502)に属するチャンネルの番号を右端から4M+2、第3段(符号503)に属するチャンネルの番号を右端から4M+3、最下段の第4段(符号503)に属するチャンネルの番号を右端から4M+4とするとき、Mの値を共通にする4つのチャンネルからなるブロックが16列並んだ構成となっている。
【0087】
各段の光ファイバーアレイユニット501、502、503、504の列内における隣接ファイバー間隔(図13中のL1)及び各段の間隔(L2)、及び列方向の相対位置(図13中のL3)、更にアレイユニットの傾斜角度を適宜設計することにより、図14に示すように、隣り合うチャンネルの光ファイバーで露光する走査線(主走査ライン)Kの間隔P1と、4チャンネルからなるブロックの右端のチャンネル(アレイ上段に属するチャンネル)と、これに隣接するブロックの左端のチャンネル(アレイ下段に属するチャンネル)とで露光する走査線の間隔P2をそれぞれ等しく10.58μm(副走査方向の解像度2400dpi相当)に設定することができる。
【0088】
このようなビーム配置によって、副走査方向に沿った細線を彫刻する場合、各ビームのチャンネル間の光パワーを例えば図15に示すように制御する。
【0089】
図15の横軸はチャンネル番号、縦軸は光パワー(ch1を1に規格化したもの)を示している。図示のように、4ライン単位のスワスブロックの繰り返しに対応して、この繰り返し単位内で各チャンネル間の光パワーをch(4M+1)>ch(4M+2)>ch(4M+3)>ch(4M+4)のように設定する。
【0090】
上記の構成を用いて、図14に示すように版材Fに対して彫刻を行うことができる。このとき、同一副走査位置において4回の露光走査を行い、かつ上記のレーザビームの光パワー制御を行うことで、図9(d)に示すように急峻な形状を持つ凸小点を形成することができる。
【0091】
なお、光ファイバーアレイユニット光源の形態は図13で説明した例に限らず、図13と同様の方法で任意のアレイ段数、スワスブロックの繰り返し数を実現でき、適宜の二次元配列を実現できる。
【0092】
<スパイラル露光方式>
図6で説明した副走査方向の間欠送りによる走査露光方式に限らず、ドラム回転中に副走査方向に一定速度で露光ヘッド30を移動させて版材Fの表面をスパイラル(らせん)状に走査するスパイラル露光方式を採用してもよい。
【0093】
例えば、露光ヘッド30の1スワス分が32チャンネルであり、1主走査ラインにつき4回の走査が必要な場合であれば、ドラム50が1回転する間に、32÷4=8チャンネル分だけヘッド30が副走査方向に移動するように制御すればよい。このように副走査を行うことで、各主走査ラインを所望の回数(この場合であれば4回)だけ露光走査することができるとともに、版材Fの全面を露光走査することができる。
【0094】
間欠送りの方式は、ドラムの回転速度が比較的遅い場合に有効である。一方、スパイラル露光方式は、ドラムの回転速度が比較的速い場合に有効である。
【0095】
<フレキソ版の製造工程について>
次に、マルチビーム露光系によって印刷版を製造する際の露光走査工程について説明する。
【0096】
図16に製版工程の概要を示す。レーザ彫刻による製版に用いる生版700は、基板702の上に彫刻層704(ゴム層又は樹脂層)を有し、該彫刻層704の上に保護用のカバーフィルム706が貼着されている。製版加工時には、図9(a)に示すように、カバーフィルム706を剥離して彫刻層704を露出させ、該彫刻層704にレーザ光を照射することにより、彫刻層704の一部を除去して所望の3次元形状を形成する(図16(b)参照)。具体的なレーザ彫刻の方法については、図1〜図15で説明したとおりである。なお、レーザ彫刻中に発生するダストは、不図示の吸引装置によって吸引して回収する。
【0097】
彫刻工程が終了した後は、図9(c)に示すように、洗浄装置710による水洗浄を行い(洗浄工程)、その後、乾燥工程(不図示)を経てフレキソ版が完成する。
【0098】
このように、版自体を直接にレーザ彫刻する製版方式をダイレクト彫刻方式という。本実施形態に係るマルチビーム露光走査装置を適用した製版装置は、CO2レーザを用いるレーザ彫刻機に比べて低価格を実現できる。また、マルチビーム化によって、加工速度の向上を達成でき、印刷版の生産性が向上する。
【0099】
<他の応用例>
フレキソ版の製造に限らず、他の凸印刷版、或いは、凹印刷版の製造についても本発明を適用することができる。また、印刷版の製造に限らず、他の様々な用途の描画記録装置、彫刻装置について本発明を適用することができる。
【符号の説明】
【0100】
10…レーザ記録装置、11…製版装置、20…光源ユニット、21A,21B,21C,21D…半導体レーザ、22A,22B,22C,22D,70A,70B,70C,70D…光ファイバー、30…露光ヘッド、40…露光ヘッド移動部、50…ドラム、80…制御回路、201、221…非露光領域、202、222…露光領域、F…版材、K…走査線

【特許請求の範囲】
【請求項1】
複数の光ビームを同時に照射し、同一走査線を複数回露光することにより記録媒体の表面を彫刻するマルチビーム露光走査方法において、
前記記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域について少なくとも4回の走査を行い、それぞれ1回の走査において少なくとも前記四辺のうちの一辺に隣接する領域を露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻することを特徴とするマルチビーム露光走査方法。
【請求項2】
前記4回の走査において、前記第1の領域の周囲の領域である第2の領域については4回とも露光することを特徴とする請求項1に記載のマルチビーム露光走査方法。
【請求項3】
前記第1の領域は、前記目的の平面形状の周囲1画素又は2画素の領域であることを特徴とする請求項1又は2に記載のマルチビーム露光走査方法。
【請求項4】
複数の光ビームを同時に照射し、同一走査線を複数回露光することにより記録媒体の表面を彫刻するマルチビーム露光走査装置において、
前記光ビームが出射される複数の出射口を有する露光ヘッドと、
前記露光ヘッドを前記記録媒体に対して主走査方向に相対的に主走査させる主走査手段と、
前記記録媒体の露光表面に残すべき目的の平面形状であって、四辺を有する矩形の平面形状の周囲の領域である第1の領域ついて少なくとも4回の走査を行い、それぞれ1回の走査において少なくとも前記四辺のうちの一辺に隣接する領域を露光するとともに前記一辺を順に変更することで前記第1の領域を全て彫刻する露光走査制御手段と、
を備えた
ことを特徴とするマルチビーム露光走査装置。
【請求項5】
前記露光手段は、前記少なくとも4回の主走査において、前記第1の領域の周囲の領域である第2の領域については少なくとも4回露光することを特徴とする請求項4に記載のマルチビーム露光走査装置。
【請求項6】
前記第1の領域は、前記目的の平面形状の周囲1画素又は2画素の領域であることを特徴とする請求項4又は5に記載のマルチビーム露光走査装置。
【請求項7】
前記露光ヘッドを前記記録媒体に対して前記主走査方向と直交する副走査方向に相対的に副走査させる副走査手段を備え、
前記副走査手段は、前記主走査手段が少なくとも4回主走査させた後に前記露光ヘッドを所定量だけ副走査させることを特徴とする請求項4から6のいずれかに記載のマルチビーム露光走査装置。
【請求項8】
前記露光ヘッドを前記記録媒体に対して前記主走査方向と直交する副走査方向に相対的に副走査させる副走査手段を備え、
同一走査線を露光する回数をN(Nは4以上の整数)、前記出射口の数をTとすると、前記副走査手段は、前記主走査手段による1回の主走査に対して前記露光ヘッドと前記記録媒体とがT/N走査線分だけ相対的に移動するように一定速度で副走査させることを特徴とする請求項4から6のいずれかに記載のマルチビーム露光走査装置。
【請求項9】
前記複数の射出口は、前記第1の方向に対して所定の角度を持つ直線上に配置され、
前記露光手段は、第1の射出口に隣接する第2の射出口であって、前記主走査に対して上流側に位置する第2の射出口において露光をしていない場合に前記第1の射出口において所定の光量で露光を行い、前記第2の射出口において露光をしている場合は前記第1の射出口において前記所定の光量より小さい光量で露光を行うことを特徴とする請求項4から8のいずれかに記載のマルチビーム露光走査装置。
【請求項10】
請求項1から3のいずれかに記載のマルチビーム露光走査方法によって、前記記録媒体に相当する版材の表面を彫刻することによって印刷版を得ることを特徴とする印刷版の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2011−215275(P2011−215275A)
【公開日】平成23年10月27日(2011.10.27)
【国際特許分類】
【出願番号】特願2010−81890(P2010−81890)
【出願日】平成22年3月31日(2010.3.31)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】