説明

ミリメートルスケールのパルスジェットエンジン

ミリメートルスケールのパルスジェットエンジンは、燃焼チャンバと、燃料入口と、吸気口と、排気口とを規定しているエンジン本体を備えている。燃料入口は、燃焼チャンバ内に燃料を直接噴射するように配設されている。吸気口と排気口とは、燃焼チャンバと流通し、この燃焼チャンバは、吸気口からの空気と燃料入口からの燃料とが燃焼チャンバ内で周期的に燃焼して、排気ガスを発生させるように、構成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ミリメートルスケールのパルスジェットエンジンに関する。より詳細には、本発明は、ミリメートルスケールのパルスジェットエンジンに関する。このようなエンジンは、化学若しくはプラズマのエッチングのような微細機械加工技術を使用して構成されることができる。
【背景技術】
【0002】
ミリメートルスケールのガスタービンは、例えば、文書"Millimeter-Scale, MEMS Gas Turbine Engines", by Alan H Epstein, published in Proceedings of ASME Turbo Expo 2003 Power for Land, Sea, and Air (June 16-19 2003)から、知られている。Epsteinは、微細加工された複数のガスタービンエンジンと、これを製造する方法とを開示している。ディメンションが1ないし10,000μmのこれらエンジンは、航空機若しくは他の乗り物の推力、若しくは、コンパクトな動力供給の分野に応用されるように期待されている。炭化水素燃料のエネルギー密度は、空気中で燃焼されたとき、リチウムをベースにした最先端のバッテリーのエネルギー密度の約20ないし30倍であり、従って、微細加工されたガスタービンエンジンは、発電機として機能するように適用されたとき、通常のバッテリーと競争することができる。
【0003】
残念なことに、これらエンジンは、非常に複雑である。これらエンジンは、4ミクロンのオーダーのクリアランスで自由に回転しなければならないロータを含む複数の可動部分を収容している。また、製造プロセスも複雑であり、Epsteinにより開示されている比較的簡単な一例でさえ、17の製造工程を必要としている。これらエンジンは、正確にアライメントされたウェハのスタックを使用して製造されなければならない。さらに、いずれの可動部分も、炭素の堆積をもたらす不完全燃焼の危険性のために、ミリメートルスケールの燃焼機関に問題を引き起こすことは、判っている。このような堆積は、可動部分間にミクロンスケールのクリアランスを与えるという危険性の高い故障モードを表している。
【0004】
Epsteinは、このようなエンジンに含まれる複雑性を要することなく、ラムジェットエンジン、若しくは、パルスデトネーション(pulse detonation)エンジンのような他のタイプのエンジンを微細加工する可能性に一時言及している。ラムジェットエンジンは、非常に速い空気速度でのみ機能し、従って、小型の動力源若しくはバッテリーの代替として使用するには、実用的でない。また、パルスデトネーションエンジンは、爆発を生じさせるために、正確なタイミングサイクル(timing cycle)と、エンジン内での燃料と空気との割合の細心の管理とを必要とする。正確な管理メカニズムが組み合わされたマイクロ機械バルブが、このタイミングを達成するために必要とされる。
【0005】
このようなパルスジェットエンジンは、1世紀以上もの間、マクロスケールにおいて知られてきた。このような既知のパルスジェットエンジンは、最も簡素なもので、一端部にバルブを備えたチューブを有している。このようなエンジンは、連続的な共振サイクルで動作する。サイクルの開始時に、点火行程において、バルブは閉成され、混合気が、チューブ内で点火される。混合気は、燃焼行程全体に渡って燃焼し続け、燃焼するに従って膨張し、チューブ内に過度の圧力を発生させる。この過度の圧力は、バルブが閉成したままの状態を確実にし、チューブのバルブとは反対の端部で、排気ガスを排気口を介してチューブの外に出す。燃料が燃焼した後のチューブ内のガスの過度の膨張は、チューブ内に減じられた圧力をもたらす。この減じられた圧力により、バルブは開成し、かくして、新たな混合気が、バルブ内に入れられる。この吸気行程の間に、チューブの排気口端部にまだあった幾らかの熱い排気ガスが、チューブのバルブ端部に向けて吸引されるだろう。チューブ内への混合気と排気ガスとの吸引は、チューブの一端部に圧縮をもたらす。この圧縮の後、混合気の十分な圧力が十分な高温で存在していれば、点火行程が、再び開始される。
【0006】
バルブがないパルスジェットエンジンが、また、知られており、それは、例えば、US3,462,955により開示されているLockwood-Hillerのエンジンである。比較的最近、超音波パルスジェットエンジンが、国際特許出願番号 PCT/GB2005/001681、国際公開番号 WO2005/106234に開示されているが、残念なことに、このようなエンジンがどのように製造され得るかの説明は与えられていない。ここに開示されているパルスジェットエンジンは、外部の気化器内で燃料と空気とを予め混合する必要があり、20kHzないし30kHzの周波数で動作する。このような周波数は、人間の耳が感知する範囲ではなく、WO2005/106234により開示されているエンジンは、エンジンが引き起こすノイズが、人間に聞こえないという効果を有している。WO2005/106234により開示されているエンジンは、ほぼ円錐形状であるか、ここに開示されている一実施形態で、一端の先端部に向けて小さくなる断面を有する環状の形態である。
【発明の開示】
【発明が解決しようとする課題】
【0007】
かくして、製造するのが簡単で信頼性のあるミリメートルスケールのエンジンの必要性がある。従って、本発明の目的は、このようなエンジンを提供することである。本発明の更なる目的は、上述された問題の幾つかを解決、若しくは、少なくとも軽減するミリメートルスケールのエンジンを提供することである。
【課題を解決するための手段】
【0008】
この背景に対して、本発明は、燃焼チャンバと、この燃焼チャンバ中に燃料を直接射するように配設された燃料入口と、吸気口と、排気口とを規定しているエンジン本体を有し、前記吸気口と排気口とは、燃焼チャンバにそれぞれ流通し、この燃焼チャンバは、吸気口からの空気と燃料入口からの燃料とが、燃焼チャンバ中で周期的に燃焼して、排気ガスを発生するように構成されている、ミリメートルスケールのパルスジェットエンジンの一態様を与えている。かくして、本発明により提案されているエンジンは、ミリメートルスケールであり、このスケールにより、このようなエンジンのディメンションは、数ミリメートル、若しくは、数十ミリメートルのオーダーであることを意味している。例えば、以下に詳細に説明される一実施形態は、25mm×16mm×2mmの外形のディメンションを有するエンジンであり、このエンジンは、20mmの容積を有する燃焼チャンバを備えている。
【0009】
このようなエンジンは、マイクロ・エアビークルの推力と、携帯可能な動力源の分野とにおいて有用であると期待されている。これは、エンジンが燃料とする可燃燃料(例えば、液体水素燃料、若しくは、炭化水素燃料)のエネルギー密度が、リチウムをベースにした最先端のバッテリーのエネルギー密度よりもかなり大きいからである。さらに、本発明に従ったパルスジェットエンジンは、Epsteinにより提案されたガスタービンエンジン、パルスデトネーションエンジン、並びに、ラムジェットエンジンよりも、製造するのが非常に簡単である。ガスタービンエンジンとは異なり、マイクロスケールのパルスジェットエンジンにあるような可動部分はほとんどなく、多くの場合、バルブがあり得る。しかし、好ましい実施形態において、このエンジンは、バルブを持たず、可動部分を有していない。燃料と空気とが予め混合される必要はなく、かくして、WO2005/106234により開示されているエンジンによって必要とされるような外部の気化器はない。代わって、燃料が、例えば燃料タンクからエンジン中に直接噴射される。
【0010】
便宜的に、前記燃焼チャンバは、排気ガスを排気口へと優先的に向けるように成形されている。燃焼チャンバをこのように成形することにより、排気ガスが、排気口から外方へと自動的に向けられるので、バルブが、吸気口のところに必要とされることはない。好ましくは、これは、エンジンの構造を簡単にし、信頼性を向上させる。なぜなら、バルブは、このような小さなスケールに製造されるには複雑であり、燃料の不完全燃焼によりもたらされるすす粒子により閉塞されやすいからである。さらに、排気ガスが排気口へと優先的に向けられることを確実にすることにより、エンジンが推力を発生することが、確実にされる。
【0011】
前記排気口と、吸気口と、燃焼チャンバとは、少なくとも幾らかの排気ガスが、燃焼サイクルの一部の間に燃焼チャンバへと逆流するように構成されることができる。前の燃焼サイクルの後の排気口に存在する排気ガスは、エンジンの残りの部分と比較して、上昇された温度である。従って、燃焼チャンバ中への排気ガスの幾らかの逆流は、燃焼チャンバ中の温度を上げるのを助け、次のサイクルのための再点火を助ける。さらに、排気ガスの幾らかの逆流は、また、混合気を圧縮するのを助け、従って、エンジンのための圧縮比、従って燃焼効率を上げる。
【0012】
このような逆流は、燃焼サイクルの排気行程の後に燃焼チャンバ内に存在する減圧のために、容易に達成される。当業者によって良く理解されるように、燃焼チャンバ内に入る排気ガスの割合が、燃料と空気との量に比べて比較的小さく維持されることを確実にすることが、重要である。この割合が高すぎると、燃焼チャンバ内の排気ガスの存在により、更なる燃焼が抑制されるだろう。好ましい実施形態において、燃焼チャンバ中への吸気の約10%が、排気ガスである。
【0013】
好ましくは、このエンジンは、自己共振するように構成されている。好ましくは、自己共振式のエンジンは、パルスデトネーションエンジンに必要とされる正確なタイミングサイクルを必要としない。これによって、パルスジェットエンジンのデザインと構造とをシンプルに保つことができる。
【0014】
このエンジンは、オプションとして、8kHzないし16kHzの間の範囲の周波数で周期的に燃焼するように構成されることができる。本発明の実施形態がこのような周波数で動作することは、実験とシミュレーションとを通して判っている。この動作周波数は、このエンジンの構造の成果であり、本発明に従ったエンジンが、健康な人の聴覚の範囲外の周波数で動作するのを制限するので、比較的シンプルなエンジンのデザインが、使用されることができる。
【0015】
好ましくは、このエンジンは、自己共振を開始させる点火手段を更に有している。オプションとして、この点火手段は、加熱素子を有している。この加熱素子の存在により、エンジンの開始プロセスを簡単にしている。
【0016】
好ましくは、前記燃焼チャンバと、吸気口と、排気口との組み合わせは、一平面での配置形態である。このような配置が、本発明に従ったエンジンにおける比較的簡単な構造プロセスを可能にすることは、便利である。燃焼チャンバと、吸気口と、排気口とは、いわゆる2.5次元の構造体として製造されている。当業者により理解されるように、2.5次元の構造体は、張出し部分を有しておらず、基体の規定された部分から材料を除去するエッチングのような技術を使用して容易に形成されることができる。本発明に従ったエンジンは、上側の構成部分と下側の構成部分とを形成することにより製造される。各構成部分は、基体の規定されたエリアから材料を除去することにより、燃焼チャンバと吸気口と排気口との上半分若しくは下半分をそれぞれ規定している。上側部分と下側部分とは、一緒に結合される。このようなプロセスは、例えば、Epsteinにより開示されているエンジンを製造するのに使用されるプロセスよりもかなり簡単であり、エンジンの特徴である平面的な配置構造のために可能である。
【0017】
オプションとして、前記燃料入口は、燃焼チャンバの壁部に形成されたホールのアレイの所で終端している。燃料入口のところにアレイをなしたホールを使用することにより、燃焼チャンバ内での燃料と空気との混合は良好に改善され、かくして、燃焼状態が向上される。これは、小さなスケールの燃焼チャンバが大きな層流状態をもたらすので、ミリメートルスケールのエンジンにとって特に重要である。対照的に、大きなスケールのエンジンでは、乱流状態が優位であり、燃料と空気との混合は、乱流のために達成される。混合は、乱流状態においては効果的でない。燃料入口のところのホールのアレイを使用することは、燃焼チャンバ中で、燃料入口からの燃料の流入と、吸気口からの空気の流入との間の接触エリアを大きくすることによって、拡散による混合を向上させる。
【0018】
前記燃料入口は、また、燃焼サイクルの燃焼行程と排気行程との間に燃料入口を通る燃料の流れを閉塞させるように構成された流体バルブを有することができる。このような流体バルブは、いずれの可動部分も有しておらず、従って、エンジンは、機械的なバルブが存在していないという意味では、未だに「バルブがない」。このエンジンは、例えば、燃焼チャンバ内の圧力が、燃焼サイクルの燃焼行程若しくは排気行程を示す閾値を越えたとき、燃料入口を通る流れを防止する構造で構成されることができる。排気行程の間に燃料が燃焼チャンバへと流入するのを防止することにより、サイクルのこの行程で噴射された燃料が、排気ガスと一緒にエンジンから排出され、従って排気されるので、エンジンの効率が改善される。
【0019】
このエンジンは、エンジン内に熱を保たせる絶縁手段を更に有することができる。効果的な熱管理機構が、このような小さなエンジンの正常な動作には不可欠である。エンジンが小さくなるにつれて、エンジンの容積に対するエンジンの表面積の割合は、大きくなる。これは、エンジンからの比較的有効な熱のロスをもたらす。燃焼サイクルを維持するために、燃焼チャンバ内の温度は、混合気が点火するのに十分でなければならない。エンジンに絶縁手段を与えることにより、熱は、エンジン内に効果的に保持されることができ、連続的な自己共振が、可能である。
【0020】
前記絶縁手段は、オプションとして、エンジン本体内に閉ざされたチャネルを有している。これらチャネルは、エンジンの製造プロセスに比較的容易に組み込まれることができる。これらチャネルをエンジンのコア近くに設けることにより、エンジンの本体内の熱の放散は、減じられることができる。好ましくは、絶縁チャネルは真空にされ、これによって、熱絶縁性がさらに改善される。エンジンの上側並びに下側の構成部分の結合が、真空状態で行われると考えられるので、真空にされた絶縁チャネルを形成することは、容易である。これら絶縁チャネルは、前記排気口近くに設けられることができる。この構成において、これらチャネルは、排気ガスからの熱の放散を防止する役割を果たし、かくして、燃焼チャンバに戻った排気ガスは、改善された火力を与え、さらに、再点火を助ける。これら絶縁チャネルは、排気口近くと、燃焼チャンバ近くとの両方に与えられることができる。このような配置は、チャネルにより与えられた絶縁性をさらに改善し、特に、燃焼チャンバの壁部を上昇された温度に維持するのを助ける。
【0021】
一実施形態において、このエンジンは、排気口と吸気口とをリンクさせるダクトを更に有し、燃焼チャンバは、吸気用の第1の開口部と、排気用の第2の開口部とを有している。第1の開口部には、この第1の開口部から排出された排気ガスをダクトに沿って排気口へと案内するように成形された面が設けられている。これは、バルブがないエンジンを可能にする1つの便宜的な方法を示している。即ち、コアンダ効果が、排気ガスを、吸気口に沿って逆流させるのではなく、排気口へと方向付けるのに使用されている。
【0022】
前記吸気口には、空気を吸気口から第1の開口部中に向ける傾斜部が設けられ得る。かくして、この傾斜部は、吸気口から、吸気口を排気口にリンクさせているダクトに沿って排気口の外へと直接移動する実質的な流れを防止している。
【0023】
前記第1の開口部は、吸気口から燃焼チャンバへと延びているチャネルの終端部に設けられることができる。このチャネルは、第1の開口部を通って排出される排気ガスを排気口へと方向付ける。かくして、第1の開口部を通って排出された排気ガスは、吸気口へと逆流するのではなく、排気口へと向けられる。排気口を通って排出される排気ガスの割合が高いほど、エンジンにより発生されるスラスト力は、大きい。明らかに、吸気口を通って排出される幾らかの排気ガスは、エンジンにより発生されるスラスト力の量を減じるだろう。
【0024】
前記排気口は、第1並びに第2の排気口を有することができ、この第1の排気口は、前記ダクトから延び、第2の排気口は、前記第2の開口部から直接延びている。
【0025】
判っている。本発明に従った開発中のエンジンのコースにおいて、排気口を第1並びに第2の排気口に分けることにより、排気の流れが、両開口部を通って燃焼チャンバ内に効果的に保持され得ることは、判っている。両開口部が単一の排気口に通じているとき、一方の開口部を通る流れが、他方の開口部を通る流れを閉塞し得ることは、可能である。
【0026】
前記燃焼チャンバは、第1並びに第2の開口部を有することができ、排気口は、第1並びに第2のダクトを有し、第1の開口部は、第1のダクトと流通し、第2の開口部は、第2のダクトと流通している。以上のように、このような配置は、排気ガスの流れが、両開口部を同時に通って燃焼チャンバ内に維持されることを効果的に可能にしている。
【0027】
別の実施形態において、前記吸気口は、第1並びに第2の吸気チャネルを有することができる。これら第1並びに第2の吸気チャネルは、燃焼チャンバに対する開口部のところで交わっており、この開口部は、排気口の方向に面している。燃焼チャンバにたった1つの開口部が形成されているこのような実施形態において、排気ガスは、排気口へと比較的容易に向けられルことができる。好ましくは、排気口は、排気ダクトを有し、この排気ダクトは、排気ガスを排気ダクトの壁部に従って案内するように成形されている。この排気ダクトは、燃焼チャンバから離れる方向へと広くなることができる。
【0028】
本発明は、上述されたようなエンジンを有する航空機と、上述されたようなエンジンを有する動力源とに適用される。これに関しては、本発明が、無人航空機(UAVs)用の推力手段としての、若しくは、携帯可能な発電器用の熱源としての有用性を見つけることが期待されていることに注意すべきである。
【0029】
本発明の上記並びに更なる特徴は、添付の請求項に記載され、添付図面に示されている様々な例示的な実施形態を参照して以下に説明される。
【発明を実施するための最良の形態】
【0030】
以下の説明において、記載されている本発明の実施形態が、20×20×2mmの一般的なおおよそのサイズを共有していることを、忘れてはならない。このディメンションは、もちろん、特有の各実施形態のために変更可能であるが、このようなスケールのエンジンは、マイクロスケールのパルスジェットエンジンとは本質的に異なり、デザインが、これらスケールで使用されるのに適していることに、注意すべきである。多くの特有な違いが、以下に特定並びに説明される。
【0031】
第1に、以下で説明されるマイクロスケールのパルスジェットエンジンの動作周波数は、既知のマイクロスケールのパルスジェットエンジンの動作周波数よりもかなり高い8ないし16kHzのオーダーである。このことは、エンジンの燃焼チャンバ内での混合気の滞留時間が、燃焼反応を生じさせるための化学作用時間に相当し得ることを、意味している。従って、化学反応の速度は、温度の上昇に伴って上がるので、燃焼チャンバ内を高温に維持すること、特に、燃焼チャンバの壁部をできるだけ熱く保つことが、重要である。かくして、燃焼反応を生じさせる化学作用時間は、燃焼チャンバの温度が上昇するにつれて短くなるだろう。
【0032】
第2に、燃焼チャンバの小さなディメンションは、フレーム・フロントのクェンチ距離(quenching distance)に相当し得る。再び、従って、燃焼チャンバの壁部と、燃焼チャンバ内のガスとをできるだけ熱く保つことが、極めて重要である。これによって、化学反応の速度が速くなり、クェンチ距離が減じられるからである。しかし、エンジンのサイズが小さくなるのに従って、容積に対する表面積の割合が増加し、エンジンは、比較的簡単に熱を放散してしまうだろう。かくして、熱管理システムが、小さなスケールのエンジンにおいて重要である。さらに、必要な高温に耐えることのできる材料を使用することが、重要である。かくして、本発明の実施形態は、例えば、ケイ素、炭化ケイ素、若しくは、窒化ケイ素で製造されている。
【0033】
第3に、小さなスケールのエンジンは、エンジン内の流れの状態に影響を与える。非常に小さなスケールでは、層流が優位であり、一方、比較的大きなスケールでは、乱流が優位である。乱流の形態において、燃料と空気との間の混合は、乱流混合によって達成される。この形態は、マイクロスケールのパルスジェットエンジンにおいて優位である。計算は、本発明の実施形態に従ったミリメートルスケールのエンジンが、層流と乱流との形態の間の移行性を有する流れを生じさせるようになる。燃焼チャンバ内の混合気の滞留時間が、ミリメートルスケールのエンジンにとって短いという事実から、燃焼の効率を改善するように、燃焼チャンバ内での燃料と空気との混合を向上させる手段を有することが、好ましい。
【0034】
以下で説明されるエンジンの全ては、燃料と空気とが共通の流入口を通って取り入れられるマイクロスケールのパルスジェットエンジンとは対照的に、燃料を燃焼チャンバ中に直接噴射するように動作可能な燃料入口を有している。この燃料入口は、燃焼チャンバの底に形成された直径20μmの36個のホールの四角いシャワーヘッド構造体である。これらホールは、40μmのピッチであり、加圧された燃料タンクのような外部の燃料供給源に接続されることができ、エンジンの本体を通ってダクト中に通じている。燃焼チャンバへと燃料入口を位置させることにより、燃料の信頼性のある吐出を確実としている。さらに、燃料入口のシャワーヘッドの配列構造体は、燃焼チャンバ内での燃料と空気との間の接触面積を増加させ、かくして、拡散的な混合を向上させる。これは、燃焼チャンバ内での限定された乱流によりもたらされる混合効率の低下を緩和する。加圧された燃料供給部の使用は、また、混合効率を向上させるのを助けるだろう。
【0035】
幾つかの実施形態において、電気スプレイ手段が、燃料液滴のサイズを減じるために、燃料入口内に組み込まれている。このように液滴のサイズを減じることは、比較的複雑な炭化水素燃料が、エンジン(例えば、ディーゼル若しくはJP8ジェットの燃料)に使用される場合に、特に望ましい。液滴のサイズの縮小により、燃料と空気との間のインターフェースの面積が減じられ、この結果、燃焼効率が上がる。前記電気スプレイは、燃焼器でのこのような使用において知られている。例えば、文書、"Mesoscale Power Generation by a Catalytic Combustor using Electrosprayed Liquid Hydrocarbons," by Kyritsis, D. C., Guerrero-Arias, I., Roychoudhury, S. and Gomez, A., Publisher in Proceedings of the Twenty-Ninth Symposium (International) on Combustion, 2002, at page 965を見よ。電気スプレイは、キャピラリー中を流れる液体に電荷を与えることにより機能する。クローン反発力は、液体を霧化し、この結果、1μmオーダーとなり得るサイズの液滴をもたらす。当業者が理解するように、電気スプレイは、ここで説明されているパルスジェットエンジンの燃料入口と一体的になるように容易に適応されることができる。
【0036】
ディメンションが100μm×10μmの加熱素子を有する点火デバイスが、また、以下に説明される実施形態に共通し、燃焼チャンバ内に位置されている。これら点火デバイスは、共振燃焼プロセス(resonant combustion process)を開始させるのに使用される。
【0037】
図1a,1bは、本発明の第1の実施形態に従ったエンジン100を示している。このエンジン100は、本体110と、燃焼チャンバ120と、吸気チャネル142,144と、排気口160とを有している。これら吸気チャネル142,144は、エンジンの本体110と燃焼チャンバ120の壁部124とにより規定されている。また、これらチャネル142,144は、燃焼チャンバ120の両側部をそれぞれ囲むように延びた後に燃焼チャンバの開口部122のところで互いに交わる、エンジン100の図で左側からのパスをそれぞれ規定している。吸気チャネル142,144は、また、開口部122のところで排気口160の先端部と連通している。この排気口160は、ノズル形状であり、燃焼チャンバ120の開口部122から離れる方向に広がっている。
【0038】
前記本体110には、排気口160の側面に沿って延びている絶縁チャネル114,116が設けられている。これらチャネル114,116は、真空にされるか空気が充填され得る、閉ざされたスペースをエンジン100内に形成し、排気口160を絶縁する役割を果たしている。これは、排気口160の壁部が、エンジン100の動作中、上昇された温度を維持することを、確実にしている。エンジン100は、小さく一体的に(once)構成されているのでディメンションは25×16×2mmであり、容積に対する表面積の割合は高く、従って、熱を急速に失い易い。動作中の燃焼チャンバ内での混合気の点火は、前の燃焼サイクルの後の上昇された温度に保たれたエンジン100内の温度により決定され、最初だけは、更なる点火のシステムを必要とする。前記絶縁チャネル114,116は、上昇された温度を維持するのを助けている。また、前記吸気チャネル142,144も、燃焼チャンバ120に対する幾らかの絶縁を与えている。さらに、エンジン100は、動作中の上昇された温度を維持するために、エーロゲル(Aerogel)のような絶縁部材(図示されず)中に入れられることができる。
【0039】
図1aの矢印151,152は、燃焼サイクルの吸気行程の間のエンジン100の周りの流体の流れを示している。動作中のエンジン100は、ノズルの広がる方向とは異なる方向、即ち、図1aの右側から左側に延びる水平ラインの方向に、ノズル形状の排気口の軸線に沿ってスラスト力を発生させる。吸気行程の間、燃焼チャンバ120内は減圧状態であり、この減圧状態によって、空気が、吸気チャネル142,144を通り開口部122を介して燃焼チャンバ内に吸引される。チャネル142を通って吸引される空気は、最初、燃焼チャンバの壁部124の外周を通って吸引される前にスラスト方向とは逆の方向に移動し、そして、スラスト方向に沿って燃焼チャンバの開口部122を通って移動する。前の燃焼サイクルで残された高温の排気ガスが、排気口160から燃焼チャンバ中に吸引される。燃料が、燃焼チャンバの開口部122近くに位置された燃料入口(前に説明されたが、図には示されていない)から燃焼チャンバ中に直接吐出される。混合気の十分な圧力が、燃焼チャンバ内で達せられると、吸気行程で燃焼チャンバ120中に吸引された排気ガスの上昇された温度と、前の燃焼サイクルからもたらされた燃焼チャンバ120の壁部の上昇された温度とにより、点火が、図1bにサークル154で示されているように生じる。連続的な燃焼により、排気ガスが発生される。これら排気ガスは、燃焼プロセスの結果として燃焼チャンバ内に発生された上昇圧力によって、図1bで矢印153により示されているように排気口160へと排出される。
【0040】
図1bで矢印153により示されているように、前記排気ガスは、吸気チャネル142,144へと逆流するのではなく、排気口160へと優先的に向けられる。これは、排気口160と、燃焼チャンバの開口部122と、吸気チャネル142,144との以下の配置によりもたらされる。燃焼チャンバの開口部122は、スラスト方向にわずかに長く、かくして、スラスト方向に沿って燃焼チャンバ120中に突出した短いダクトを形成している。さらに、吸気チャネル142,144は、燃焼チャンバの開口部により形成されたダクトに対して直角の方向に延び、開口部の排出端部のところのダクトからの出口のコーナは、鋭くなっており、かくして、開口部122を通って燃焼チャンバ120から出た流体は、吸気チャネルに沿って逆流する可能性はない。これら組み合わせの要因が、矢印153により示されているように、燃焼チャンバから外方に向けられる排気ガス「ジェット」の形成を促進している。
【0041】
吸気並びに排気行程での流体の流れは、図2a並びに2bに詳細に示されている。これら略図は、計算した流体力学のソフトウェアからの出力を示している。エンジン100の平面図の半分のみが示されており、これは、エンジンが、スラスト方向に平行な中央線に対してミラー対称を示しているからである。このエンジン100の部分は、図1a並びに1bで使用されたのと同じ参照符号を使用して図2a並びに2bに符号が付されており、かくして、さらに説明されない。図2aは、吸気行程の間の流れを示し、ガスが、排気口160と吸気チャネル142との両方から燃焼チャンバ120中に入ることを示している(これら流れは、全体が、202,204でそれぞれ示されている)。実際に、計算は、吸気行程の間の燃焼チャンバ中への質量流の約50%が、吸気チャネルから入り、残りの50%が、排気口を通って入ることを示している。これら計算は、エンジンを囲む層流を想定しているが、実際には、この流れに対するかなりの乱流成分が存在すると考えられる。しかし、エンジン100が、吸気チャネル142,144から燃焼チャンバ中への流入の割合を増加させることにより改良され得ることは、明らかである。燃焼チャンバ120内の排気ガスの濃度が高すぎると、燃焼は、十分な量の燃料若しくは空気が無いので、不可能であろう。
【0042】
図2bは、排気行程の間のエンジン100内の流体の流れを示している。図示されているように、全体が206で示されている流体のジェットは、排気ノズルで広がることなく、燃焼チャンバを出て、排気口160を通ってエンジンから出る。これら結果を与えるために実行された計算が、エンジン100内での層流を想定していることに、再び注意すべきである。排気行程において、この流れに対するかなりの乱流成分が、排気「ジェット」を排気口の壁部にある程度付着させると考えられる。しかし、層流の計算は、排気行程の間に燃焼チャンバから流出する質量流の100%が、排気口160を通って出ることを示している。
【0043】
図3は、エンジン100の4つの同一な構成部品300の写真である。これら構成部品300は、単一のシリコンウェハ中にエッチングされている。エンジン100を製造するために、このような構成部品の2つが、一方が他方の上に位置された状態で、一緒にしっかりと結合されている。図3から理解されるように、構造体300は、2.5Dの構造体である。即ち、これら構造体は、平面上での突出により規定されることができる。これら構造体300は、明らかに、二次元ではなく、幾らかの奥行きを有しているが、いかなる張出し部分も有していない。これに加えて、構造体300に機械加工が施された特徴部分(例えば、320の燃焼チャンバと、360の排気口)は、燃料入口を唯一除いて、図3では明瞭に見られない均一な奥行きを有している。このような特性により、構成部品300の製造は、非常に簡単になる。実際に、図3は、1つのシリコンウェハ350にエッチングされたこのような4つの構成部品を示している。生産は、容易に拡大されることができる。各構成部品300は、16mm×25mmのディメンションを有し、350のために1mmの厚さを有している。エッチングされた特徴部分は、800μmの奥行きを有している。従って、エンジン全体が、このような2つの構成部品300を一緒に取着することにより構成されると、燃焼チャンバの奥行きは、1.6mmになる。このディメンションが、化学量論的状態において水素のクェンチ距離の2倍を越え(0.64mm)、かくして、フレーム・フロントの冷却に関連した問題が、水素が燃料として使用されたときに回避されるべきであることに注意すべきである。燃焼チャンバの全容積は、20mmのオーダーである。
【0044】
本発明の第1の実施形態のエンジン100の写真が、図4a並びに4bに示されている。図4aは、前から撮ったエンジン100の写真であり、エンジンに取着された燃料ライン(KOVARで形成されている)450を示している。この燃料ライン450は、燃焼チャンバのシャワーヘッド式の燃料入口を介して、燃焼チャンバに燃料を供給する。図4bは、横から撮ったエンジン100の写真であり、吸気チャネル142,144を示している。また図4bには、エンジン100のおおよそのスケールを示すために写真に含まれたコイン405(英国の5ペンスのコイン)が、示されている。
【0045】
図5は、本発明の第2の実施形態に従ったエンジン500を示している。このエンジン500は、2つの燃焼チャンバ520,530と、吸気口540と、排気口560とを有している。ダクト580が、燃焼チャンバ520,530間でエンジン500の中央線に沿って延び、吸気口540と排気口530とを接続している。チャネル522,532が、ダクト580を燃焼チャンバ520,530にそれぞれ接続し、また吸気口540に接続している。燃焼チャンバ520,530は、壁部524,534により、チャネル522,532とダクト580とから分離されている。傾斜部590が、吸気口540と、チャネル522,532と、ダクト580との間の接続点に設けられている。この傾斜部590は、燃焼チャンバの壁部524,534の形状と組み合わされて、吸気口540を通ってエンジン内に取り入れられる空気が、ダクト580に沿うのではなく、燃焼チャンバ520,530中に優先的に向けられ、また、チャネル522,532を通って出る排気ガスが、吸気口540へと逆流するのではなく、ダクト580へと優先的に向けられるように、前記接続点のところで流体の流れを適切に方向付けるように意図されている。第2の出口が、各燃焼チャンバ520,530内にそれぞれ設けられており、これら出口を通って、排気ガスが、また、逃がされ得る。図5に526,536で示されているこれら出口は、燃焼チャンバから排気口560中に直接通じている。エンジン100と同様に、閉ざされた絶縁チャネル514,516が、連続的な燃焼サイクルの再点火を助けるようにエンジン500内に熱を保持するために、エンジンの本体510内に設けられている。しかし、エンジン500では、これらチャネル514,516は、排気口560に沿い、燃焼チャンバ520,530を囲み、そして吸気口540に沿って延びている。かくして、これら絶縁チャネルは、また、燃焼チャンバのために、壁の上昇された温度を維持するのを助けている。再び、エンジン100と同様に、エンジン500は、エンジンの熱保持を改良するために、エーロゲルのような断熱材料内に組み込まれることができる。
【0046】
エンジン500の燃焼サイクルが、説明される。燃焼行程の間、排気ガスが、空気と燃料との燃焼により、燃焼チャンバ520,530内に発生される。この燃焼は、燃焼チャンバ520,530内に加熱と圧力上昇とをもたらす。かくして、排気ガスが、燃焼チャンバ520,530から出口526,536並びにチャネル522,532へと排出される。出口526,536へと排出されたガスは、排気口560中に直接流れ、かくして、エンジンから出る。また、チャネル522,532へと排出されたガスは、コアンダ効果により壁部524,534に従って流され、ダクト580を通って排気口560へと流れて、エンジン500から出る。従って、これら壁部524,534の適切な成形が、必要である。
【0047】
前記燃焼チャンバ520,530内の過剰な膨張は、燃焼チャンバ内の圧力を減じ、かくして、空気と排気ガスとの混合物を燃焼チャンバ520,530中に吸引される。排気ガスは、出口526,536、若しくは、チャネル522,532を通って燃焼チャンバ中に再び入ることができる。吸気口540へと流れる空気は、2つのパスに分けられる。これらパスは、傾斜部590により、チャネル522,532を介して燃焼チャンバ520,530中に通じている。燃焼チャンバ520,530内に入った空気と排気ガスとは、混合物が、燃焼チャンバ520,530内で燃料に点火するまで、圧力を上昇させる。
【0048】
燃焼サイクルの吸気と排気との行程の間にエンジン500を通って流れる流体が、図6a並びに6bに示されている。これら図は、図2a並びに2bに類似しており、計算した流体力学のソフトウェアを使用して実行された計算から得られた結果を示している。図2a並びに2bのように、エンジン500の半分のみが、図6a並びに6bに示され、図5に使用されたのと同じ符号が、図6a並びに6bにも示されているエンジンの部分を称するのに使用されている。図6aは、エンジン500における燃焼サイクルの吸気行程の間の流体の流れを示している。図6aに示されているように、燃焼チャンバ中への吸気は、(604で示されている流れの)排気ガスと、吸気口からの(602で示されている流れの)空気との両方で構成される。エンジン500において、排気ガスは、出口526と、ダクト580を介したチャネル522とを通って、燃焼チャンバ520中に入る。また、吸気口540からの空気は、チャネル522を通って燃焼チャンバ520中に入る。計算は、エンジン500における燃焼サイクルの吸気行程の間に、流入量の68%が、吸気口540を通ることを示している。
【0049】
図6bは、燃焼サイクルの排気行程の間のエンジン500の周りの流体の流れを示している。排気口560への2つの別々の流路が存在し、606で示されている一方の流路は、出口526を通って排気口560へと直接延び、610,614で示されている他方の流路は、チャネル522とダクト580とを通って延びている。チャネル522を通る流れ610の部分614は、コアンダ効果のために燃焼チャンバの壁部524により流され、排気口560を通って出る。一方、部分612は、傾斜部519により主流610から分離され、吸気口540を通ってエンジン500から出る。計算は、排気行程の間に、流出量の49%のみが、排気口560を通ってエンジン500を出て、流出量の51%が、吸気口540を通って出ることを示している。
【0050】
かくして、吸気行程の間に、流入量の68%が吸気口を通り、排気行程の間に、流出量の49%が排気口を通る。これらの数字は、ある程度の誤差を受ける可能性があるが、エンジン500の設計が改良され得ることは明らかであることに、注意すべきである。良質なエンジンの設計では、流入量の90%が吸気口を通り、流出量の100%が排出口を通る。排気ガスのある程度の吸気は、排気ガスの上昇された温度が、燃焼チャンバ内の再点火の助けにより、来るべき燃料と空気とを熱するので、望ましい。しかし、吸気の多くの割合が排気ガスである場合、燃焼が生じる可能性は全くない。しかし、流出量が、ほとんど若しくは全て排気口へと向けら、この結果、エンジンにより発生されるスラスト力を最大にすることが重要である。
【0051】
図7aは、上述されたエンジン500の改良型であるエンジン700を概略的に示している。このエンジン700は、エンジン500と機能的に類似しており、従って、同じ部分は、エンジン500の対応した部分と同じ符号に200を足した符号により示されている。このエンジン700における燃料サイクルは、エンジン500における燃焼サイクルと同じであり、更に説明されない。また、エンジン500のチャネル514,516と類似の絶縁チャネルがエンジン700にも存在するが、これらチャネルは明瞭のために図7に示されていないことに、注意すべきである。エンジン700とエンジン500との間の主な違いは、燃焼チャンバ720,750の形状と、傾斜部790の位置と、排気口760が別々の排気ダクト762,764に分かれていることである。これら変更は、かなり向上された機能をもたらす。エンジン700における吸気行程の間に、流入量の92%が、吸気口を通り、また、排気行程の間に、排出量の79%が、排出口を通る。個々の変更の効果が、以下に説明される。
【0052】
前記傾斜部790の位置は、エンジン500の傾斜部590の位置のわずか「下流」にあり、即ちエンジンの排気口に比較的近い。エンジン500を通る流れのシミュレーションは、傾斜部590が、チャネル522,532内への流入を方向付ける機能を適切に果たしていないことを明示している。エンジン700において、傾斜部790は、チャネル722,732の入口近くに位置されている。特に、傾斜部790のコーナ792,793は、これら入口近くに位置され、これらコーナで、流れが傾斜部の表面から分かれる。このような別の位置付けは、吸気口740から燃焼チャンバ720,730中に移動するガスの流れの割合を改善する。
【0053】
エンジン700の燃焼チャンバ720,730の形状の多くの態様は、エンジン500の燃焼チャンバ520,530と比較して、変更されている。燃焼チャンバ720,730の外壁は、比較的緩やかに湾曲されている。これが、壁部724,734へと燃焼チャンバ720,730を出るガスの流れを案内する程度を改善することは、シミュレーションによって判っている。これは、排気口760を通って流れる排気ガスの割合を上げ、吸気口740から流出する排気ガスの割合を下げる。チャネル722,723は、また、ノズル形状に形成されている。これは、吸気行程の間の、吸気口740から燃焼チャンバ720,730中への質量流を増加させる。さらに、チャネル722,732は、ダクト780に向けて狭くなっており、このため、燃焼チャンバ720,730を出る流れは、チャネル722,732に沿って加速される。これは、流れが、ダクト780に向けて方向付けられたジェットの形態で(壁部724,734により形成された)コアンダ効果を有する面を離れるのを促している。さらに、チャネル722,732の吸気口740とダクト780との接続部のところで、チャネル722,732は、燃焼チャンバ720,730から出る流れが、吸気口740中ではなく、排気口760へと優先的に向けられるように、排気口760へとわずかに方向付けられている。
【0054】
エンジン700の排気口760は、3つの別々のダクト762,764,766に分けられている。ダクト762は、吸気口740を排気口760にリンクさせているダクト780の延出部である。ダクト764,766は、燃焼チャンバ720,730の出口726,736から延びている。シミュレーションの動作は、これが、ダクト780を通る質量流量を拡大させたことを示した。これは、例えばエンジン500のように別々のダクトなしには、出口526,536からの流れが、排気口全体を充填するように拡大し、従って、ダクト580からの流れを阻止してしまうためである。排気口760と同様に排気口を分けることにより、この問題は、ダクト780と出口726,736とを通る流れが分離し続けるので、回避される。
【0055】
本発明の第3の実施形態の様々な構成部品のディメンションが、図7bに示されている。この図7bは、図7aと7bとの間の類似点から明らかであるように、第3の実施形態の半分の断面の平面図である。明瞭のために、参照符号は、第3の実施形態の特徴と部品とが、図7aに参照符号で付されているので、図7bに含まれていない。代わりに、エンジン700のディメンション(mm単位)が、図7bに与えられている。「R」が前に付された数字は、曲率半径である。曲率半径が示されていない曲線は、図示されているような点に適合されたスプライン曲線である。エンジン700は、ミリメートルスケールのエンジン内の流れのパターンを決定するように、計算した流体力学の技術を使用してモデル設計された多くのエンジンの1つである。このようにしてテストされたデザインのうち、エンジン700が、最良のパフォーマンスを示すことが判った。
【0056】
上記の実施形態の全ての製造は、フライス削り、レーザードリル穴あけ、若しくは、エッチングのような既知のマイクロ機械加工技術を使用して実行される。特に、反応性イオンエッチング、ディープ(deep)反応性イオンエッチング、若しくは、放電機械加工が、図3に示されている構成部品300のような部品を形成するのに使用されることができる。図3に示されているように、このような複数の構成部品は、1つのウェハ上に形成されることができる。レーザードリル若しくはエッチングの技術は、燃焼チャンバに燃料入口を形成するようにホールを形成するのに使用されることができる。融着、反応結合、若しくは、KiON社のCeraset(登録商標)のようなプリセラミック(pre-ceramic)ポリマーの熱分解を使用して、2つの部品を一緒に結合することにより、エンジンのコアが形成される。例えばKOVARで製造された燃料パイプが互いに装着され、エンジンが、必要に応じて、上述されたようなエーロゲル若しくは他の適切な絶縁材料で適切に絶縁される。
【0057】
以上の実施形態は、燃焼プロセスにより発生される高温と、燃焼の間に発生される圧力の上昇とに耐えることができる材料で製造されている。特に、ケイ素と炭化ケイ素が、本発明の実施形態に従ったエンジンを製造するのに使用されることができる。ケイ素と炭化ケイ素との両方は、上述された既知の技術を使用して機械加工されることができる。炭化ケイ素によりライニングが施されたケイ素の構造体を形成するように、ケイ素でエンジン全体を製造して、エンジンの構成部品の部分の表面を炭化させる(carborise)ことも可能である。代わって、本発明の実施形態を耐火セラミックで製造することも可能であり得る。
【0058】
本発明の実施形態は、マイクロ・エアビークル(micro air-vehicles)、即ちUAVの推進のため、若しくは、コンパクトな動力源として使用されることができる。動力は、熱電対を適切に装着することにより、熱エネルギーと運動エネルギーとの両方を有する排気ジェット、若しくはエンジンコア自体から得ることができる。代わって、排気ジェットから運動エネルギーを得るためにガスタービンを使用することも可能であり得るが、特に、これは、動力源システム中に可動部分を組み込む必要があるだろう。
【0059】
当業者にとって明らかであろう、上述の実施形態に対する様々な相当物並びに変更が、添付の請求項に規定されている本発明の範囲から逸脱することなく可能である。例えば、点火を助けるために燃焼チャンバ内に加熱素子を使用することが上述されているが、他の適切な点火補助材が、当業者にとって直ちに明らかであろう。例えば、スパークプラグ、若しくは、触媒点火手段が、点火を助けるために燃焼チャンバ中に組み込まれ得ることは、当業者にとって明らかであろう。白金が、水素が燃焼する際に触媒の働きをするのに使用され得る触媒として知られている。当業者に知られる他の触媒は、本発明に従ったエンジンに組み合わされて使用され得る他の炭化水素燃料として適切であり得る。
【0060】
上述された例示的な実施形態に加えて、更なる実施形態が想定されることは理解される。また、いずれか1つの実施形態に関係した上述の特徴が、単独で、若しくは、記載の他の特徴と組み合わされて使用されることができ、また、他の実施形態の1つ以上の特徴と組み合わせて、若しくは他の実施形態のいずれかの組み合わせで使用されることができることは、明らかに理解される。
【図面の簡単な説明】
【0061】
【図1a】エンジンの燃焼サイクルの行程を示している、本発明の第1の実施形態に従ったエンジンの断面の平面図である。
【図1b】エンジンの燃焼サイクルの行程を示している、本発明の第1の実施形態に従ったエンジンの断面の平面図である。
【図2a】図1に示されているエンジンを通る流体の流れを示している。
【図2b】図1に示されているエンジンを通る流体の流れを示している。
【図3】図1に示されているエンジンの複数の部品の写真である。
【図4a】本発明の第1の実施形態の写真である。
【図4b】本発明の第1の実施形態の写真である。
【図5】本発明の第2の実施形態に従ったエンジンの断面の平面図である。
【図6a】図5に示されているエンジンを通る流体の流れを示している。
【図6b】図5に示されているエンジンを通る流体の流れを示している。
【図7a】本発明の第3の実施形態に従ったエンジンの断面の平面図である。
【図7b】本発明の第3の実施形態に従ったエンジンの断面の平面図である。

【特許請求の範囲】
【請求項1】
燃焼チャンバと、
この燃焼チャンバ内に燃料を直接噴射するように配設された燃料入口と、
吸気口と、
排気口と、を規定しているエンジン本体を具備し、
前記吸気口と排気口とは、前記燃焼チャンバと流通しており、この燃焼チャンバは、前記吸気口からの空気と、前記燃料入口からの燃料とが、燃焼チャンバ内で周期的に燃焼して、排気ガスを発生させるように構成されているミリメートルスケールのパルスジェットエンジン。
【請求項2】
前記燃焼チャンバは、前記排気ガスを前記排気口へと優先的に向けるように成形されている請求項1のパルスジェットエンジン。
【請求項3】
前記排気口と、前記吸気口と、前記燃焼チャンバとは、前記排気ガスの少なくとも一部が、燃焼サイクル中の一期間に、燃焼チャンバに向けて逆流するように構成されている請求項2のパルスジェットエンジン。
【請求項4】
自己共振するように構成されている前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項5】
8kHzないし16kHzの範囲の周波数で周期的に燃焼するように構成されている前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項6】
自己共振を開始させる点火手段を更に具備している前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項7】
前記点火手段は、加熱素子を有している請求項6のパルスジェットエンジン。
【請求項8】
前記燃焼チャンバと、前記吸気口と、前記排気口との組み合わせは、一平面での配置形態である前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項9】
前記燃料入口は、前記燃焼チャンバの壁部に形成されたホールのアレイのところで終端している前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項10】
前記燃料入口は、燃焼サイクルの燃焼行程と排気行程との間、燃料入口を通る燃料の流れを閉塞させるように構成された流体バルブを有している前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項11】
エンジン内に熱を保たせる絶縁手段を更に具備している前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項12】
前記絶縁手段は、前記エンジン本体内に閉ざされた複数の絶縁チャネルを有している請求項11のパルスジェットエンジン。
【請求項13】
前記絶縁チャネルは、真空にされている請求項12のパルスジェットエンジン。
【請求項14】
前記絶縁チャネルは、前記排気口近くに設けられている請求項12又は13のパルスジェットエンジン。
【請求項15】
前記排気口を前記吸気口にリンクさせているダクトを更に具備し、前記燃焼チャンバは、吸気用の第1の開口部と、排気用の第2の開口部とを有し、前記第1の開口部には、この第1の開口部から排出された排気ガスを前記ダクトに沿って前記排気口に向けて案内するように成形された面が設けられている前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項16】
前記吸気口には、この吸気口から前記第1の開口部中に空気を方向付ける傾斜部が設けられている請求項15のパルスジェットエンジン。
【請求項17】
前記第1の開口部は、前記吸気口から前記燃焼チャンバへと延びているチャネルの終端部に設けられ、このチャネルは、前記第1の開口部を通って排出された排気ガスを前記排気口へと方向付ける請求項15又は16のパルスジェットエンジン。
【請求項18】
前記排気口は、第1の排気口と第2の排気口とを有し、第1の排気口は、前記ダクトから延び、第2の排気口は、前記第2の開口部から直接延びている請求項15ないし17のいずれか1のパルスジェットエンジン。
【請求項19】
前記絶縁チャネルは、前記排気口近くと、前記燃焼チャンバ近くとの両方に設けられている、請求項12ないし14のいずれか1に従属する請求項15ないし18のいずれか1のパルスジェットエンジン。
【請求項20】
前記燃焼チャンバは、第1並びに第2の開口部を有し、前記排気口は、第1並びに第2のダクトを有し、前記第1の開口部は、前記第1のダクトと流通し、また、前記第2の開口部は、前記第2のダクトと流通している請求項1ないし14のいずれか1のパルスジェットエンジン。
【請求項21】
前記吸気口は、第1並びに第2の吸気チャネルを有し、これら第1並びに第2の吸気チャネルは、前記燃焼チャンバの開口部のところで交わり、この開口部は、前記排気口の方向に面している請求項21のパルスジェットエンジン。
【請求項22】
前記排気口は、排気ダクトを有し、この排気ダクトは、排気ダクトの壁部に従うように排気ガスを案内するように成形されている請求項21のパルスジェットエンジン。
【請求項23】
前記排気ダクトは、前記燃焼チャンバから離れる方向に広がっている請求項22のパルスジェットエンジン。
【請求項24】
バルブを有していない前記全ての請求項のいずれか1のパルスジェットエンジン。
【請求項25】
前記全ての請求項のいずれか1のパルスジェットエンジンを具備する航空機。
【請求項26】
請求項1ないし24のいずれか1のパルスジェットエンジンを具備する動力源。
【請求項27】
添付図面を参照して実質的に説明されているようなミリメートルスケールのパルスジェットエンジン。

【図1a】
image rotate

【図1b】
image rotate

【図2a】
image rotate

【図2b】
image rotate

【図3】
image rotate

【図4a】
image rotate

【図4b】
image rotate

【図5】
image rotate

【図6a】
image rotate

【図6b】
image rotate

【図7a】
image rotate

【図7b】
image rotate


【公表番号】特表2008−530450(P2008−530450A)
【公表日】平成20年8月7日(2008.8.7)
【国際特許分類】
【出願番号】特願2008−516420(P2008−516420)
【出願日】平成19年5月9日(2007.5.9)
【国際出願番号】PCT/GB2007/050243
【国際公開番号】WO2007/135455
【国際公開日】平成19年11月29日(2007.11.29)
【出願人】(390038014)ビ−エイイ− システムズ パブリック リミテッド カンパニ− (74)
【氏名又は名称原語表記】BAE SYSTEMS plc