説明

モータ磁極位相の調整方法

【課題】
ロータの位相調整を行う場合に、ロータの安定点に対するCW及びCCW両方向からの寄り付き動作の駆動開始点を、CW及びCCW両方向のそれぞれ機械角180゜以内の所定角度から行うようにすると共に、寄り付き動作の駆動開始点を安定点の正逆位相を回避する準備駆動を行うことにより、ロータの正確な安定点を求めるようにしたモータ磁極位相の調整方法を提供する。
【解決手段】
ロータを安定点に対するCW方向の機械角180゜以内の所定角度からCCW方向の安定点へ回転駆動する工程A1と、工程A1における駆動距離B1を計測する工程A2と、ロータを安定点に対するCCW方向の機械角180゜以内の所定角度からCW方向の安定点へ回転駆動する工程A3と、工程A3における駆動距離B2を計測する工程A4と、駆動距離B1及びB2に基づいて励磁原点を求める工程A5とによりモータ磁極位相の調整を行う。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ブラシレスDCモータやACサーボモータの各相に巻回されているコイルと磁極の関係により、ロータの位相を調整するモータ磁極位相の調整方法に関し、特に各相のコイルに電流を流してロータに基づくトルクが発生しなくなる位置を励磁原点とし、励磁原点を調整するための寄り付き動作において、正逆位相の駆動指令を順次与えることによって、正確な励磁原点を設定できるようにしたモータ磁極位相の調整方法に関する。
【背景技術】
【0002】
ブラシレスDCモータやACサーボモータは、ロータの電気的な位相を検出し、電気角原点(励磁原点)を基準として、ロータの位相に合わせて各相コイルに電流を同期させて流す(転流)ことで、最も効率良くトルクを出力することができる。このため、位置検出器とロータの位相差を検出する必要がある。
【0003】
ここで、ブラシレスDCモータの構造と動作について説明する。図5はアウターロータ型の3相ブラシレスDCモータ10の断面構造を示しており、ステータ11にはU相、V相、W相のスター結線されたコイル13、14、15がそれぞれ120°ずつ位相をずらして巻回され、ロータ12は永久磁石4極(N、S、N、S)で形成されている。そして、各相コイル13〜15に電流を流すことにより、各相コイル13〜15に発生する磁界と永久磁石4極との電磁吸引力でロータ12は回転され、更にロータ12の位相に合わせて3相のコイル13〜15の電流を転流制御することにより、ロータ12を連続的に回転駆動する。正弦波駆動の場合のU相コイル13、V相コイル14、W相コイル15の転流の位相関係を図6に示す。即ち、コイル13〜15に120°ずつずれた正弦波の電流を流すことにより、ロータ12を回転する。
【0004】
このように、ブラシレスDCモータ10を転流制御を行って回転駆動する場合、ロータ12の電気角原点を基準として3相の電流を流すことで最も効率良くトルクを生じさせることができるので、レゾルバ等の位置検出器とロータ12の位相差を正確に知る必要がある。
【0005】
ここにおいて、ロータ12の位相を検出する位相検出器とロータ12の位相差は機械的には変わらないため、ロータ12の位相を調整して正確なパラメータを設定することにより、再度位相調整を行う必要はない。即ち、現在位置の取得は通常絶対位置レゾルバ(粗)と相対位置レゾルバ(精)の2つの位置信号から計算されると共に、ロータ12の位相は絶対位置レゾルバの原点からどれだけの距離にあるかのパラメータとして定義される。絶対位置レゾルバとロータ12の位相の位置を検出すれば、再度ロータ12の位相位置を検出する必要はない。また、インクリメンタル方式のエンコーダからのパルス信号を読み取り、ロータ12を制御する場合においても同様に、ロータ12の位相を調整して設定することで、再度位相調整を行う必要はない。
【0006】
このように、電源投入時や制御開始時におけるロータ12の位相調整、或いはマニュアルでのロータ12の位相調整は、その後の回転駆動制御の電流付与の基準となるため特に重要である。また、絶対位置レゾルバがない場合や故障した場合、絶対位置レゾルバと相対位置レゾルバとの間に誤差が生じた場合、或いは電流付与のパラメータを失ってしまった場合も、ロータ12の位相調整が必要となる。
【0007】
このように、位置検出器とロータの位相差を検出して調整する装置として、図7に示すようなドライブユニット20がある。ドライブユニット20は全体の制御を行うCPU21を主として構成され、駆動制御部22は設定部23に設定されたパラメータを基にしてモータ10を駆動制御し、駆動制御部22により3相コイル13〜15に流す電流を転流制御してモータ10を駆動する。モータ10のロータ12の位相はモータ10に取り付けられたレゾルバ(絶対位置レゾルバ、相対位置レゾルバ)18で検出され、レゾルバ18からの位置信号により計測部24で位相が計測される。また、ロータ12の位相調整時には、計測部24で計測された計測値を記憶部25に記憶し、記憶部25の記憶データに基づいて計算部26で位相差が計算され、計算された結果は設定部23にパラメータとして設定される。
【0008】
次に、ドライブユニット20を用いてロータ12の位相調整を行う従来の動作を説明する。
【0009】
図8は、ドライブユニット20の駆動制御部22により、例えばU相のコイル13に電流を流してロータ12を回転駆動し、ロータ12の発生するトルクがゼロとなる位置をロータ12の励磁原点として定める様子を示している。図9は、図8のU相コイル13に電流を流したときに、コイル14及び15に電流が分流して流れる様子を示している。このようにU相のコイル13に電流を流すとロータ12の磁極真中の励磁原点で寄り付くはずであるが、ロータ12の摩擦や回転方向等の影響により、実際には図8に示すように励磁原点付近までしか寄り付くことができない。
【0010】
このため、ロータ12の摩擦や回転方向等の影響を考慮し、ロータ12をCW及びCCW方向の両方から寄り付き動作を駆動制御部22により行い、各方向の駆動距離を計測部24により計測して、記憶部25に記憶する。計算部26はCW及びCCW両方向からの各駆動距離を記憶部25より読出し、中点を励磁原点として設定部23に設定して位相調整を終了する。
【0011】
上述の寄り付き動作によってロータ12の位相調整を行う様子を、図10のフローチャート及び図11の模式図を参照して詳細に説明する。
【0012】
図10及び図11の例は、寄り付き動作の駆動範囲を設定部23により励磁原点を対称に電気角120°と設定した場合である。図11に示すようにロータ12の初期位置が電気角20°付近にあるとし(ステップS50)、CW方向に電気角120°位置に回転駆動し(ステップS51)、電気角120°位置からCCW方向に回転駆動して励磁原点に寄り付かせる(ステップS52)。このときの駆動距離D5を計測部24により計測し(ステップS53)、記憶部25に記憶し、更に励磁原点からCCW方向に電気角240°位置に回転駆動し(ステップS54)、回転駆動された電気角240°位置からCW方向の励磁原点に寄り付かせる(ステップS55)。このときの駆動距離D6を計測部24により計測し(ステップS56)、記憶部25に記憶する。計算部26は、CW及びCCW両方向からの駆動距離D5及びD6を記憶部25から読出して中点を計算し(ステップS57)、算出された励磁原点の中点を設定部23に設定し(ステップS58)、ロータ12の位相調整を終了する。
【発明の概要】
【発明が解決しようとする課題】
【0013】
しかしながら、上述のような永久磁石で構成されたブラシレスDCモータ10やACサーボモータでは、ロータ12の磁極に対して逆位相への駆動指令(例えば電気角0°から電気角180°)を行った場合に電気角0°と電気角180°では、いずれもトルクが0になるため回転駆動できないか、或いは回転駆動しにくいという問題がある。電源投入時や制御開始時或いはマニュアルで行う位相調整において、CW及びCCW両方向からの寄り付き動作に逆位相への駆動指令が含まれることもあり、寄り付き動作に不具合が発生してしまう場合がある。その様子を、図12のフローチャート及び図13の模式図を参照して説明する。
【0014】
図12及び図13の例は、寄り付き動作の駆動範囲を設定部23により励磁原点を対称に120°と設定した場合である。図13に示すようにロータ12の初期位置が電気角300°にあると(ステップS60)、CW方向から逆位相である電気角120°に回転駆動することができない(ステップS61)。そのため、電気角300°の位置で励磁原点にCW方向から寄り付かせ(ステップS62)、このときの駆動距離D7を計測部24により計測して記憶部25に記憶し(ステップS63)、更に励磁原点から電気角240°位置にCCW方向に回転駆動し(ステップS64)、回転駆動された電気角240°位置からCW方向の励磁原点に寄り付かせる(ステップS65)。このときの駆動距離D8を計測部24により計測して記憶部25に記憶するが(ステップS66)、計算部26はCW方向のみの駆動距離D7及びD8のためエラーとする(ステップS67)。
【0015】
このように従来の位相調整方法では初期位置によって、電気角0°と計算された中点が一致しない場合がある。
【0016】
また、電気角検出方式によるロータ12の位相調整では、軸受などの要因から回転摩擦の大きいモータにおいて、期待通りに励磁原点に寄り付かない場合がある。これは、通常の回転駆動時に、ロータ12を安定させるような電流パターン(正弦波状)で励磁しているため、ロータ12が励磁原点に近づくほど、励磁原点へ回転駆動するためのトルクが低下するためである。
【0017】
そこで、前述した図8に示すように例えばコイル13のU相に電流を固定的に流し、コイル13に発生するN極に対してロータ12を安定する位置まで回転させる。この機械角の安定点を励磁原点とする。しかしながら、機械角での安定点(励磁原点)を用いて位相調整する場合においても、ロータ12の回転摩擦の影響には問題がある。
【0018】
機械角検出方式による位相調整でロータ12に発生するトルクTを図14を参照して説明する。Aをコイル13、Bをロータ12の任意の極とし、AとBが対向するような地点Cを安定点(励磁原点)とした場合。Bが地点Sで発生するトルクをTs、AとBとの角度θとした場合、トルクTは下記(1)式で表される。

T=Ts・Sinθ ・・・(1)

上記(1)式より、ロータ12は安定点へ近づくほど、回転駆動するためのトルクが低下し、トルクT=モータ摩擦が成り立つ状態になると、寄り付き動作を終了してしまう。つまり、ロータ12の任意の極は、安定点に近づくほど安定点に寄り付くトルクが小さくなり、図8のように摩擦の影響によるずれを生じる。
【0019】
本発明は上述のような事情によりなされたものであり、本発明の目的は、モータのロータの位相調整を行う場合に、ロータの安定点に対するCW及びCCW両方向からの寄り付き動作の駆動開始点を、CW及びCCW両方向のそれぞれ機械角180゜以内の所定角度から行うようにすると共に、ロータの初期位置が、励磁原点の正逆位相にある場合を考慮して、寄り付き動作の駆動開始点を安定点の正逆位相を回避する準備駆動を行うことにより、ロータの正確な安定点を求めるようにしたモータ磁極位相の調整方法を提供することにある。
【0020】
また、その調整は従来のハードウェアをそのまま用い、ソフトウェアを変更するだけで容易に行うようにする。
【課題を解決するための手段】
【0021】
本発明は、複数の磁極を有するロータを備えたモータのコイルに電流を流して前記ロータの位相を調整するモータ磁極位相の調整方法に関し、本発明の上記目的は、前記ロータを安定点に対するCW方向の機械角180゜以内の所定角度からCCW方向の前記安定点へ回転駆動する工程A1と、前記工程A1における駆動距離B1を計測する工程A2と、前記ロータを前記安定点に対するCCW方向の機械角180゜以内の所定角度からCW方向の前記安定点へ回転駆動する工程A3と、前記工程A3における駆動距離B2を計測する工程A4と、前記駆動距離B1及びB2に基づいて励磁原点を求める工程A5とを具備することにより達成される。
【0022】
また、前記励磁原点を前記駆動距離B1及びB2の中点とすることにより、或いは前記モータがブラシレスDCモータ又はACサーボモータであることにより、より効果的に達成される。
【0023】
また、本発明は、複数の磁極を有するロータを備えたモータのコイルに電流を流して前記ロータの位相を調整するモータ磁極位相の調整方法に関し、本発明の上記目的は、前記ロータを安定点に対して正逆位相を除くCW方向の機械角180゜以内の所定角度へ予め回転駆動する工程C1と、前記工程C1により回転駆動した前記ロータをCCW方向の前記安定点へ回転駆動する工程C2と、前記工程C2における駆動距離D1を計測する工程C3と、前記ロータを安定点に対して正逆位相を除くCCW方向の機械角180゜以内の所定角度へ予め回転駆動する工程C4と、前記工程C4により回転駆動した前記ロータをCW方向の前記安定点へ回転駆動する工程C5と、前記工程C5における駆動距離D2を計測する工程C6と、前記駆動距離D1及びD2に基づいて励磁原点を求める工程C7とを具備することにより達成される。
【0024】
また、前記励磁原点を前記駆動距離D1及びD2の中点とすることにより、或いは前記モータがブラシレスDCモータ又はACサーボモータであることより、より効果的に達成される。
【発明の効果】
【0025】
本発明のモータ磁極位相の調整方法によれば、ロータの位相調整のための寄り付き動作を行う場合に、CW及びCCW両方向からの寄り付き動作の駆動開始点を、それぞれ機械角180゜以内から行うようにしているので、常に正確な安定点(励磁原点)を求めることができる。また、ロータが安定点に対して、正逆位相に回転駆動できない場合があることを考慮して、寄り付き動作の駆動開始点を安定点の正逆位相を回避するための準備駆動を行うようにしているので、常に正確な安定点を求めることができる。更に、その位相調整は、従来のハードウェアをそのまま用いることができ、ソフトウェアを変更するだけで容易に行うことができる。
【図面の簡単な説明】
【0026】
【図1】本発明に係るモータ磁極位相の調整方法の例を示すフローチャートである。
【図2】本発明に係るモータ磁極位相の調整方法の例を示す模式図である。
【図3】本発明に係るモータ磁極位相の調整方法の他の例を示すフローチャートである。
【図4】本発明に係るモータ磁極位相の調整方法の他の例を示す模式図である。
【図5】3相ブラシレスDCモータの軸方向の断面図である。
【図6】3相ブラシレスDCモータの各相の位相差を示す図である。
【図7】ドライブユニットの構成例を示す図である。
【図8】3相ブラシレスDCモータに生じる誤差を示す軸方向の断面図である。
【図9】3相ブラシレスDCモータの等価回路図である。
【図10】従来の寄り付き動作による位相調整方法の一例を示すフローチャートである。
【図11】従来の寄り付き動作による位相調整の様子を示す模式図である。
【図12】従来の寄り付き動作による位相調整方法の他の例を示すフローチャートである。
【図13】従来の寄り付き動作による位相調整の様子の他の例を示す模式図である。
【図14】安定点とロータとの角度により出力されるトルクの様子を示す図である。
【符号の説明】
【0027】
10 3相ブラシレスDCモータ
11 ステータ
12 ロータ
13 U相コイル
14 V相コイル
15 W相コイル
18 レゾルバ
20 ドライブユニット
21 CPU
22 駆動制御部
23 設定部
24 計測部
25 記憶部
26 計算部
【発明を実施するための形態】
【0028】
本発明に係るモータ磁極位相の調整方法は、ロータの位相調整によって寄り付き動作を行う場合に、モータの任意のコイルに電流を流して発生する磁力により、ロータが寄り付く位置をロータの安定点(励磁原点)とし、その安定点に対してCW及びCCW両方向からの寄り付き動作の駆動開始点をそれぞれ機械角180゜以内の所定角度とし、その駆動開始点から寄り付き動作を行い、各寄り付き動作の駆動距離を計測し、各駆動距離の計測値から中点を求めることにより正確な安定点を求める。
【0029】
また、ロータに対して正逆位相(例えば機械角0゜から機械角180゜)への駆動指令を与えることにより発生する不具合を考慮し、CW及びCCW両方向からの寄り付き動作の駆動開始点が、安定点に対して正逆位相にならないように、予め回避する準備駆動を行うことにより常に正確な安定点を求めるようにしている。
【0030】
以下に、本発明の方法を図面を参照して説明する。また、本発明を実施する装置の構成は従来装置(図7)と同様であり、その説明を省略する。
【0031】
本発明の位相調整方法は、図1のフローチャート及び図2(a)〜(c)の模式図の通りであり、図1及び図2(a)〜(c)の例は寄り付き動作の駆動開始点を、安定点を対称にCW及びCCW両方向にそれぞれ機械角90°に設定し、その駆動開始点からの寄り付き動作を示している。
【0032】
先ず、設定通りにロータ12の任意の磁極を、安定点からCW方向に機械角90゜の位置に回転駆動する(ステップS10)。そして、図2(a)に示すようにロータ12の任意の磁極Bは、安定点AからCW方向に機械角90°の位置にあり、その状態から寄り付き動作を行う。任意の磁極BをCCW方向の安定点に寄り付かせ(ステップS11)、図2(a)に示すように任意の磁極Bが回転駆動した駆動距離B1を計測部24により計測して記憶部25に記憶する(ステップS12)。次に、任意の磁極Bを安定点からCCW方向へ機械角90°回転駆動し(ステップS13)、機械角90°回転駆動された位置からCW方向の安定点Aに寄り付かせ(ステップS14)、図2(b)に示すように任意の磁極Bが回転駆した駆動距離B2を計測部24により計測して記憶部25に記憶する(ステップS15)。計算部26は、駆動距離B1及びB2を記憶部25から読出して中点を算出し(ステップS16)、図2(c)に示すように、算出された中点を安定点Aとして設定部23に設定し(ステップS17)、ロータ12の位相調整を終了する。
【0033】
次に、本発明の別の方法を、図3のフローチャート及び図4(a)〜(e)の模式図を参照して説明する。また、本発明を実施する装置の構成は従来(図7)と同様であり、その説明を省略する。
【0034】
図3及び図4(a)〜(e)の例は、準備駆動を安定点を対称にCW及びCCW両方向にそれぞれ機械角120゜とし、寄り付き動作の駆動開始点を、安定点を対称にCW及びCCW両方向にそれぞれ機械角180°以内に設定し、その駆動開始点からの寄り付き動作を示している。
【0035】
先ず、初期位置が機械角180°付近にある状態から、ロータ12の任意の磁極Bの準備駆動を行う(ステップS20)。準備駆動の設定は、安定点Aを対称にしてそれぞれ機械角120゜であり、図4(a)に示すように任意の磁極Bを、CCW方向に60゜回転駆動する(ステップS21)。そして、図4(b)に示すように任意の磁極Bは、準備駆動されたCW方向の機械角120゜からCCW方向の安定点Aに寄り付かせ(ステップS22)、このときの駆動距離D1を計測部24により計測して記憶部25に記憶する(ステップS23)。次に、図4(c)に示すように任意の磁極Bを、設定された安定点AからCCW方向の機械角120゜の位置に回転駆動し(ステップS24)、図4(d)に示すようにCCW方向の機械角120゜からCW方向の安定点Aに寄り付かせ(ステップS25)、このときの駆動距離D2を計測部24により計測して記憶部25に記憶する(ステップS26)。計算部26は駆動距離D1及びD2を記憶部25から読出して中点を算出し(ステップS27)、図4(e)に示すように算出された中点を安定点Aとして設定部23に設定し(ステップS28)、ロータ12の位相調整を終了する。
【0036】
以上のように本発明によれば、ロータを準備駆動により安定点及び安定点の逆位相を除いた位置に回転駆動した後に、CW及びCCW両方向からそれぞれ寄り付き動作を行い、駆動距離の中点を安定点(励磁原点)に設定しているので、常にロータの正確な位相調整を行うことができる。
【0037】
なお、予備駆動及び寄り付き動作を行う場合に電流を流す相は、1つでも複数でも良く、ロータの特定の磁極に対して作用し、ロータのトルクをゼロにすることができれば良い。また、正位相を安定点としたが逆位相を原点とすることとしても、ロータのトルクをゼロにすることができるので同等の効果が得られ、モータコイルも3相を例に挙げたが、多相であれば同等の効果が得られ、U相のみに限らずV相やW相でも検出することができ、ロータの磁極数についても4極を例に挙げたが、多極であれば同等の効果が得られる。また、ブラシレスDCモータやACサーボモータの例としてアウターロータ型の説明をしたが、インナーロータ型でも同等の効果が得られる。更に、本発明に係るモータ磁極位相の調整方法をダイレクトドライブモータ(DDモータ)に適用することもできる。
【0038】
以上のように、本発明では、モータの電気角原点を予めアブソリュートエンコーダなどによって知ることが出来ない場合に、固定磁界を発生させることでロータを安定点に移動させ、このときの座標(位置)から電気角原点を推定するようにしている。そして、このとき、軸受けやシールなどの摩擦の影響を受けるため、ロータを安定点に移動させる動作をCW及びCCW両方向から実施し、電気角原点の推定精度を向上させるようにしている。
【0039】
なお、本発明では、固定磁界を発生させる手法として、モータのコイルに一定電流を一定時間流す方法(即ち、矩形波状の電流を励磁電流とする方法)に加え、電流目標値に対して一定の傾きを持たせて電流を徐々に増やしていくように、モータのコイルに電流を流す方法(即ち、台形波状または正弦波状の電流を励磁電流とする方法)を利用することができる。矩形波状の励磁電流をモータのコイルに流すと、負荷慣性モーメントを加振してしまう場合があるため、電流目標値に対して一定の傾きを持たせて電流を徐々に増やしていくように、モータのコイルに励磁電流を流すことにより、搭載している負荷慣性モーメントが大きい場合や、低剛性の場合の振動を抑制することができ、より安定的に電気角原点の推定が可能となる。

【特許請求の範囲】
【請求項1】
複数の磁極を有するロータを備えたモータのコイルに電流を流して前記ロータの位相を調整するモータ磁極位相の調整方法において、
前記ロータを安定点に対するCW方向の機械角180゜以内の所定角度からCCW方向の前記安定点へ回転駆動する工程A1と、
前記工程A1における駆動距離B1を計測する工程A2と、
前記ロータを前記安定点に対するCCW方向の機械角180゜以内の所定角度からCW方向の前記安定点へ回転駆動する工程A3と、
前記工程A3における駆動距離B2を計測する工程A4と、
前記駆動距離B1及びB2の中点を励磁原点とする工程A5と、
を具備したことを特徴とするモータ磁極位相の調整方法。
【請求項2】
複数の磁極を有するロータを備えたモータのコイルに電流を流して前記ロータの位相を調整するモータ磁極位相の調整方法において、
前記ロータを安定点に対して正逆位相を除くCW方向の機械角180゜以内の所定角度へ予め回転駆動する工程C1と、
前記工程C1により回転駆動した前記ロータをCCW方向の前記安定点へ回転駆動する工程C2と、
前記工程C2における駆動距離D1を計測する工程C3と、
前記ロータを安定点に対して正逆位相を除くCCW方向の機械角180゜以内の所定角度へ予め回転駆動する工程C4と、
前記工程C4により回転駆動した前記ロータをCW方向の前記安定点へ回転駆動する工程C5と、
前記工程C5における駆動距離D2を計測する工程C6と、
前記駆動距離D1及びD2の中点を励磁原点とする工程C7と、
を具備したことを特徴とするモータ磁極位相の調整方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate


【公開番号】特開2013−42662(P2013−42662A)
【公開日】平成25年2月28日(2013.2.28)
【国際特許分類】
【出願番号】特願2012−258835(P2012−258835)
【出願日】平成24年11月27日(2012.11.27)
【分割の表示】特願2006−337840(P2006−337840)の分割
【原出願日】平成18年12月15日(2006.12.15)
【出願人】(000004204)日本精工株式会社 (8,378)
【Fターム(参考)】