説明

リチウム遷移金属系化合物粉体、その製造方法、及びその焼成前躯体となる噴霧乾燥体、並びにそれを用いたリチウム二次電池用正極及びリチウム二次電池

【課題】レート・出力特性といった負荷特性の向上、低コスト化、耐高電圧化及び高安全性化との両立が可能なリチウム二次電池正極材料用リチウム遷移金属系化合物粉体を提供する。
【解決手段】リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されてなるリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。このリチウム遷移金属系化合物粉体を、リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥し、得られた噴霧乾燥粉体を焼成することにより製造する方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、リチウム二次電池正極材料として用いられるリチウム遷移金属系化合物粉体、その製造方法、およびその焼成前駆体である噴霧乾燥体と、このリチウム遷移金属系化合物粉体を用いたリチウム二次電池用正極、並びにこのリチウム二次電池用正極を備えるリチウム二次電池に関する。
【背景技術】
【0002】
リチウム二次電池は、エネルギー密度及び出力密度等に優れ、小型、軽量化に有効であるため、ノート型パソコン、携帯電話及びハンディビデオカメラ等の携帯機器の電源としてその需要は急激な伸びを示している。リチウム二次電池はまた、電気自動車や電力のロードレベリング等の電源としても注目されており、近年ではハイブリッド電気自動車用電源としての需要が急速に拡大しつつある。特に電気自動車用途においては、低コスト、安全性、寿命(特に高温下)、負荷特性に優れることが必要であり、材料面での改良が望まれている。
【0003】
リチウム二次電池を構成する材料のうち、正極活物質材料としては、リチウムイオンを脱離・挿入可能な機能を有する物質が使用可能である。これら正極活物質材料は種々あり、それぞれ特徴を持っている。また、性能改善に向けた共通の課題として負荷特性向上が挙げられ、材料面での改良が強く望まれている。
さらに、低コスト、安全性、寿命(特に高温下)にも優れた、性能バランスの良い材料が求められている。
【0004】
現在、リチウム二次電池用の正極活物質材料としては、スピネル構造を有するリチウムマンガン系複合酸化物、層状リチウムニッケル系複合酸化物、層状リチウムコバルト系複合酸化物などが実用化されている。これらのリチウム含有複合酸化物を用いたリチウム二次電池は、いずれも特性面で利点と欠点を有する。即ち、スピネル構造を有するリチウムマンガン系複合酸化物は、安価かつ合成が比較的容易であり、電池とした時の安全性に優れる一方、容量が低く、高温特性(サイクル、保存)が劣る。層状リチウムニッケル系複合酸化物は、容量が高く、高温特性に優れる反面、合成が難しく、電池とした時の安全性に劣り、保管にも注意を要する等の欠点を抱えている。層状リチウムコバルト系複合酸化物は、合成が容易かつ電池性能バランスが優れているため、携帯機器用の電源として広く用いられているが、安全性が不十分な点や高コストである点が大きな欠点となっている。
【0005】
こうした現状において、これらの正極活物質材料が抱えている欠点が克服ないしは極力低減され、かつ電池性能バランスに優れる活物質材料の有力候補として、層状構造を有するリチウムニッケルマンガンコバルト系複合酸化物が提案されている。特に近年における低コスト化要求、高電圧化要求、安全化要求の高まりの中で、いずれの要求にも応え得る正極活物質材料として有望視されている。
【0006】
ただし、その低コスト化、高電圧化、及び安全性の程度は、組成比によって変化するため、更なる低コスト化、より高い上限電圧を設定しての使用、より高い安全性の要求に対しては、マンガン/ニッケル原子比を大きくしたり、コバルト比率を低減させたりするなど、限られた組成範囲のものを選択して使用する必要がある。しかしながら、このような組成範囲のリチウムニッケルマンガンコバルト系複合酸化物を正極材料として使用したリチウム二次電池は、レートや出力特性等の負荷特性が低下するため、実用化に際しては、更なる改良が必要であった。
【0007】
従来、マンガン/ニッケル原子比及びコバルト比率が、本発明の規定する値に相当する組成範囲のリチウムニッケルマンガンコバルト系複合酸化物については、特許文献1〜32、非特許文献1〜73に開示されている。
【0008】
しかし、特許文献1〜32、非特許文献1〜73では、本発明が規定するところの組成領域において、焼成時における活物質粒子の成長及び焼結を抑制する添加剤に着目した記載はなく、本発明における電池性能の改善を図るための必要条件を満たしておらず、これらの技術だけでは本発明が示すところの電池性能の改善を図ることは極めて困難である。
【0009】
また、本発明が示すところの「焼成時における活物質粒子の成長及び焼結を抑制する」ことを記載した文献はないが、正極活物質材料の改良を目的として、リチウムニッケルマンガンコバルト系複合酸化物に、W,Mo,Nb,Ta,Reを含む化合物等を添加処理又は置換処理した公知の文献として、以下の特許文献33〜41及び非特許文献74が開示されている。
【0010】
特許文献33、特許文献34には、層状構造を有するリチウムニッケル系複合酸化物において、遷移金属サイトへの置換元素としてW,Mo,Ta,Nbを用いることが開示されており、これにより、充電状態における熱安定性が向上すると記載されている。しかしながら、ここで開示される複合酸化物は、LiとNiを主成分とした組成であるため依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0011】
特許文献35には、リチウムニッケルマンガンコバルトニオブ系複合酸化物を用いることが開示されている。しかしながら、遷移金属サイト中のMnモル比率が0.1以下と少なく、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0012】
特許文献36には、リチウムニッケルマンガンコバルト系複合酸化物において、W,Moを含んだものを用いることが開示されており、これにより、LiCoOより安価かつ高容量で充電状態での熱安定性に優れたものとなることが記載されている。しかしながら、実施例における添加金属元素(W,Mo)の含有量が多すぎる結果、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0013】
特許文献37には、層状構造を有するリチウムニッケルマンガンコバルト系酸化物において、遷移金属サイトへの置換元素としてTa,Nbを用いることが開示されており、これにより、使用可能な電圧範囲が広く、充放電サイクル耐久性が良好であるとともに、容量が高く安全性の高いものとなることが記載されている。しかしながら、実施例における焼成温度が900℃と低いため、結晶が十分に発達せず、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0014】
特許文献38には、リチウムニッケルマンガンコバルト系複合酸化物において、遷移金属サイトにWを置換した実施例が開示されている。しかしながら、遷移金属サイト中のMnモル比率が0.01と極めて少なく、Niモル比率が0.8と極めて多い組成であるため、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0015】
特許文献39には、単斜晶構造のリチウムマンガンニッケル系複合酸化物において、その遷移金属サイトにNb,Mo,Wが置換されたものを正極活物質とすることが開示されており、これにより、高エネルギー密度、高電圧で、信頼性の高いリチウム二次電池を提供することができると記載されている。しかしながら、実施例によれば、焼成温度が950℃と低いため、結晶が十分に発達せず、さらに該元素のモル比率が5モル%と高すぎるため、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0016】
特許文献40には、層状構造のリチウム遷移金属酸化物粒子の少なくとも表面にモリブデン、タングステンを有する化合物を有することが開示されており、これにより、より一層厳しい使用環境下においても優れた電池特性を有することが記載されている。しかしながら、実施例によれば、Co/(Ni+Co+Mn)モル比率が0.33と多すぎることに加え、焼成温度が900℃と低いために結晶が十分に発達せず、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0017】
特許文献41には、層状構造を有するリチウムニッケルマンガンコバルトモリブデン系複合酸化物を用いることが開示されている。しかしながら、実施例組成は、Co/(Ni+Mn+Co)モル比が0.34とCo比率が高く、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【0018】
非特許文献74には、層状構造を有するLiNi1/3Mn1/3Mo1/3複合酸化物が開示されている。しかしながら、Moの含有量が高すぎるため、依然として種々電池特性バランスに優れた活物質を得ることができないという問題があった。
【先行技術文献】
【特許文献】
【0019】
【特許文献1】特許第3110728号
【特許文献2】特許第3571671号
【特許文献3】US6,680,143B2号
【特許文献4】特開平11−307094号
【特許文献5】特開2000−294242号
【特許文献6】特開2000−133262号
【特許文献7】WO2002−040404号
【特許文献8】WO2002−073718号
【特許文献9】WO2002−086993号
【特許文献10】特開2002−145623号
【特許文献11】WO2003−044881号
【特許文献12】WO2003−044882号
【特許文献13】特開2003−031219号
【特許文献14】特開2003−081639号
【特許文献15】特開2003−178756号
【特許文献16】特開2003−203633号
【特許文献17】特開2003−221236号
【特許文献18】特開2003−238165号
【特許文献19】特開2003−297354号
【特許文献20】特開2004−031091号
【特許文献21】特開2004−006267号
【特許文献22】特開2004−139853号
【特許文献23】特開2004−265849号
【特許文献24】特開2004−281253号
【特許文献25】特開2004−311427号
【特許文献26】特表2004−528691号
【特許文献27】特開2005−150057号
【特許文献28】特開2005−150093号
【特許文献29】特開2005−150102号
【特許文献30】特開2005−187282号
【特許文献31】特開2003−051308号
【特許文献32】特開2005−123179号
【特許文献33】特許第3088716号
【特許文献34】特許第3362025号
【特許文献35】特開2002−151071号
【特許文献36】WO2002−041419号
【特許文献37】特開2003−68298号
【特許文献38】特開2004−303673号
【特許文献39】特開2005−235628号
【特許文献40】特開2005−251716号
【特許文献41】特開2006−164934号0
【非特許文献】
【0020】
【非特許文献1】J.Mater.Chem.,6(1996)1149.
【非特許文献2】Chem.Lett.,(2001)744.
【非特許文献3】Electrochem.Solid-State Lett.,4(2001)A191.
【非特許文献4】Electrochem.Solid-State Lett.,4(2001)A200.
【非特許文献5】Electrochem.Solid-State Lett.,5(2002)A145.
【非特許文献6】Electrochem.Solid-State Lett.,5(2002)A263.
【非特許文献7】J.Electrochem.Soc.,149(2002)A778.
【非特許文献8】J.Electrochem.Soc.,149(2002)A815.
【非特許文献9】J.Electrochem.Soc.,149(2002)A1332.
【非特許文献10】J.Power sources,112(2002)41.
【非特許文献11】J.Power sources,112(2002)634.
【非特許文献12】Electrochemistry,71(2003)1214.
【非特許文献13】Electrochim.Acta,48(2003)1505.
【非特許文献14】Electrochim.Acta,48(2003)2589.
【非特許文献15】J.Electrochem.Soc.,150(2003)A1299.
【非特許文献16】J.Power sources,119-121(2003)139.
【非特許文献17】J.Power sources,119-121(2003)150.
【非特許文献18】J.Power sources,119-121(2003)156.
【非特許文献19】J.Power sources,119-121(2003)161.
【非特許文献20】J.Power sources,119-121(2003)166.
【非特許文献21】J.Power sources,124(2003)170.
【非特許文献22】J.Power sources,124(2003)533.
【非特許文献23】Solid State Ionics,164(2003)43.
【非特許文献24】Chem.Mater.,16(2004)1996.
【非特許文献25】Electrochem.Com.,6(2004)1085.
【非特許文献26】Electrochem.Solid-State Lett.,7(2004)A155.
【非特許文献27】Electrochem.Solid-State Lett.,7(2004)A167.
【非特許文献28】Electrochem.Solid-State Lett.,7(2004)A290.
【非特許文献29】Electrochem.Solid-State Lett.,7(2004)A294.
【非特許文献30】Electrochim.Acta,49(2004)803.
【非特許文献31】Electrochim.Acta,49(2004)1565.
【非特許文献32】Electrochim.Acta,49(2004)4425.
【非特許文献33】Electrochim.Acta,50(2004)427.
【非特許文献34】Electrochim.Acta,50(2004)449.
【非特許文献35】J.Electrochem.Soc.,151(2004)A246.
【非特許文献36】J.Electrochem.Soc.,151(2004)A504.
【非特許文献37】J.Electrochem.Soc.,151(2004)A1789.
【非特許文献38】J.Mater.Chem.,14(2004)1424.
【非特許文献39】J.Power sources,129(2004)288.
【非特許文献40】J.Power sources,135(2004)262.
【非特許文献41】Adv.Mater.,17(2005)2834.
【非特許文献42】Chem.Mater.,17(2005)3695.
【非特許文献43】Electrochem.Solid-State Lett.,8(2005)A637.
【非特許文献44】Electrochim.Acta,50(2005)4778.
【非特許文献45】Electrochim.Acta,50(2005)5349.
【非特許文献46】J.Electrochem.Soc.,152(2005)A566.
【非特許文献47】J.Electrochem.Soc.,152(2005)A746.
【非特許文献48】J.Electrochem.Soc.,152(2005)A1879.
【非特許文献49】J.Mater.Chem.,15(2005)2257.
【非特許文献50】J.Power sources,146(2005)598.
【非特許文献51】J.Power sources,146(2005)617.
【非特許文献52】J.Power sources,146(2005)626.
【非特許文献53】J.Power sources,146(2005)630.
【非特許文献54】J.Power sources,146(2005)645.
【非特許文献55】J.Power sources,146(2005)650.
【非特許文献56】J.Power sources,146(2005)654.
【非特許文献57】J.Power sources,146(2005)658.
【非特許文献58】J.Power sources,148(2005)85.)
【非特許文献59】Mater.Lett.,59(2005)2693.
【非特許文献60】Mater.Res.Soc.Symp.Proc.,835(2005)K10.8.1.
【非特許文献61】Mater.Res.Soc.Symp.Proc.,835(2005)K11.3.1.
【非特許文献62】Solid State Ionics,176(2005)1035.
【非特許文献63】Solid State Ionics,176(2005)2577.
【非特許文献64】Trans.Nonferrous Met.Soc.China,15(2005)1185.
【非特許文献65】Chem.Mater.,18(2006)1658.
【非特許文献66】Electrochem.Solid-State Lett.,9(2006)A27.
【非特許文献67】Electrochim.Acta,51(2006)3413.
【非特許文献68】J.Am.Chem.Soc.,128(2006)8694.
【非特許文献69】J.Appl.Phys.,99(2006)06371.
【非特許文献70】J.Electrochem.Soc.,153(2006)A261.
【非特許文献71】J.Electrochem.Soc.,153(2006)A390.
【非特許文献72】J.Mater.Chem.,16(2006)359.
【非特許文献73】J.Power sources,158(2006)524.
【非特許文献74】Microelectronics Journal,36(2005)491.
【発明の概要】
【発明が解決しようとする課題】
【0021】
即ち、本発明の目的は、リチウム二次電池正極材料としての使用において、レート・出力特性といった負荷特性の向上が図られ、さらに好ましくは低コスト化、耐高電圧化及び高安全性化との両立が可能なリチウム二次電池正極材料用リチウム遷移金属系化合物粉体、その製造方法、およびその焼成前駆体である噴霧乾燥体、このリチウム遷移金属系化合物粉体を用いたリチウム二次電池用正極、並びにこのリチウム二次電池用正極を備えるリチウム二次電池を提供することにある。
【課題を解決するための手段】
【0022】
本発明者らは、レート・出力特性といった負荷特性向上という課題を解決するためには、活物質を焼成する段階において十分に結晶性の高いものとしつつも粒成長及び焼結を抑えて微細な粒子を得ることが重要と考え、鋭意検討した結果、とりわけ層状リチウムニッケルマンガンコバルト系複合酸化物において、主成分原料に焼成時の粒成長を抑制する化合物を添加後に焼成することにより、リチウム二次電池正極材料として、低コスト化、耐高電圧化、高安全化に加え、レートや出力特性といった負荷特性の向上との両立が可能なリチウム遷移金属系化合物粉体を得ることができることを見出し、本発明を完成するに至った。
【0023】
即ち、本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されたものであることを特徴とする(請求項1)。
【0024】
ここで、焼成時の粒成長や焼結を抑制する添加剤は、Mo、W、Nb、Ta、及びReから選ばれる少なくとも1種以上の元素を含有する酸化物であることが好ましい。(請求項2)。
【0025】
また、本発明のリチウム遷移金属系化合物粉体は、一次粒子の表面部分のLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比が、粒子全体の該原子比の5倍以上であることが好ましい(請求項3)。
【0026】
また、本発明のリチウム遷移金属系化合物粉体は、添加剤が金属元素(以下「添加元素」と称す。)を含有し、粒子最表面におけるLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比Rと、粒子表面から深さ10nmにおける原子比R10との割合R/R10が、3倍以上であることが好ましい(請求項4)。
【0027】
また、本発明のリチウム遷移金属系化合物粉体は、添加剤が金属元素(以下「添加元素」と称す。)を含有し、該添加元素が、粒子表面から深さ方向に非直線的な濃度勾配を持って存在する連続的組成傾斜構造を有することが好ましい(請求項5)。
【0028】
また、本発明のリチウム遷移金属系化合物粉体は、レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定されたメジアン径が0.1μm以上、5μm未満であることが好ましい(請求項6)。
【0029】
また、本発明のリチウム遷移金属系化合物粉体は、一次粒子の平均径が0.1〜0.9μmであることが好ましい(請求項7)。
【0030】
また、本発明のリチウム遷移金属系化合物粉体は、BET比表面積が1.5〜5m/gであることが好ましい(請求項8)。
【0031】
また、本発明のリチウム遷移金属系化合物粉体は、水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が、0.7cm/g以上、1.5cm/g以下であることを特徴とする(請求項9)。
【0032】
また、本発明のリチウム遷移金属系化合物粉体は、水銀圧入法による細孔分布曲線が、細孔半径300nm以上、1000nm以下にピークトップが存在するメインピークを少なくとも一つ以上有し、かつ細孔半径80nm以上、300nm未満にピークトップが存在するサブピークを有さないことが好ましい(請求項10)。
【0033】
また、本発明のリチウム遷移金属系化合物粉体は、水銀圧入法による細孔分布曲線において、細孔半径300nm以上、1000nm以下にピークトップが存在するピークに係る細孔容量が0.4cm/g以上、1cm/g以下であることが好ましい(請求項11)。
【0034】
また、本発明のリチウム遷移金属系化合物粉体は、その嵩密度が0.5g/cm以上、1.7g/cm以下であることが好ましい(請求項12)。
【0035】
また、本発明のリチウム遷移金属系化合物粉体は、40MPaの圧力で圧密した時の体積抵抗率が1×10Ω・cm以上、1×10Ω・cm以下であることが好ましい(請求項13)。
【0036】
また、本発明のリチウム遷移金属系化合物粉体は、層状構造に帰属される結晶構造を含んで構成されるリチウムニッケルマンガンコバルト系複合酸化物を主成分としたものであることが好ましい(請求項14)。
【0037】
さらに、前記リチウム遷移金属系化合物粉体は、組成が下記組成式(I)で示されるものが好ましい(請求項15)。
LiMO …(I)
(ただし、上記式(I)中、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は0.3以上、5以下、Co/(Mn+Ni+Co)モル比は0以上、0.30以下、M中のLiモル比は0.001以上、0.2以下である。)
【0038】
また、組成が前記組成式(I)で示される本発明のリチウム遷移金属系化合物粉体は、酸素含有ガス雰囲気下において、焼成温度900℃以上で焼成されたものであることが好ましい(請求項16)。
【0039】
また、組成が前記組成式(I)で示される本発明のリチウム遷移金属系化合物粉体は、その含有炭素濃度をC(重量%)とした時、C値が0.005重量%以上、0.25重量%以下であることが好ましい(請求項17)。
【0040】
さらに組成が前記式(I)で示される本発明のリチウム遷移金属系化合物粉体は、Mが、下記式(II)で表される組成であることが好ましい(請求項18)。
M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/21−xCo2/(2+z) …(II)
(ただし、上記式(II)中、
0≦x≦0.1
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。)
【0041】
また、前記組成式(I)のMが、前記(II)式で示されるリチウムニッケルマンガンコバルト系複合酸化物粉体について、CuKα線を使用した粉末X線回折測定を行った際、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅をFWHM(110)とした時に、0.01≦FWHM(110)≦0.2であることが好ましい(請求項19)。
【0042】
また、前記組成式(I)のMが、前記(II)式で示されるリチウムニッケルマンガンコバルト系複合酸化物粉体を、CuKα線を使用した粉末X線回折測定を行った際、回折角2θが64°付近に存在する(018)回折ピーク、64.5°付近に存在する(110)回折ピーク、及び68°付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異相由来の回折ピークを持たないか、或いは異相由来の回折ピークを有する場合、本来の結晶相の回折ピークに対する異相ピークの積分強度比が、各々、以下の範囲内にあることが好ましい。
0≦I018/I018≦0.30
0≦I110/I110≦0.25
0≦I113/I113≦0.30
(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。)(請求項20)。
【0043】
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法は、このような本発明のリチウム遷移金属系化合物粉体を製造する方法であって、リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する焼成工程とを含むことを特徴とする(請求項21)。
【0044】
本発明のリチウム遷移金属系化合物粉体の製造方法においては、スラリー調製工程において、リチウム化合物と、前記遷移金属化合物と、前記添加剤とを、液体媒体中で、レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定するメジアン径が0.4μm以下になるまで粉砕し、噴霧乾燥工程において、噴霧乾燥時のスラリー粘度をV(cp)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、50cp≦V≦4000cp、500≦G/S≦10000となる条件で噴霧乾燥を行うことが好ましい(請求項22)。
【0045】
また、本発明のリチウム遷移金属系化合物粉体の製造方法において、前記遷移金属化合物として少なくともニッケル化合物、マンガン化合物及びコバルト化合物を含み、前記焼成工程において、前記噴霧乾燥粉体を、酸素含有ガス雰囲気下、970℃以上で焼成することが好ましい(請求項23)。
【0046】
また、本発明のリチウム遷移金属系化合物粉体の製造方法において、使用するリチウム化合物原料は炭酸リチウムであることが好ましい(請求項24)。
【0047】
さらに、本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の前駆体である噴霧乾燥体は、リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、Cuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長や焼結抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体であって、レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定された該噴霧乾燥体のメジアン径が0.1μm以上、4μm以下であることを特徴とする(請求項25)。
【0048】
また、本発明のリチウム遷移金属系化合物の噴霧乾燥体は、BET比表面積が10m/g以上、100m/g以下であることが好ましい(請求項26)。
【0049】
本発明のリチウム二次電池用正極は、前記のリチウム遷移金属系化合物粉体と結着剤とを含有する正極活物質層を集電体上に有することを特徴とする(請求項27)。
【0050】
本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な負極、リチウム塩を含有する非水電解質、及びリチウムを吸蔵・放出可能な正極を備えたリチウム二次電池であって、正極としてこのような本発明のリチウム二次電池用正極を用いたことを特徴とする(請求項28)。
【発明の効果】
【0051】
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、リチウム二次電池正極材料として用いた場合、低コスト化及び高安全性化と負荷特性の向上との両立を図ることができる。このため、本発明によれば、安価で安全性が高く、しかも高い充電電圧で使用しても、性能の優れたリチウム二次電池が提供される。
【図面の簡単な説明】
【0052】
【図1】実施例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図2】実施例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図3】実施例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図4】実施例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図5】実施例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物の粉体の細孔分布曲線を示すグラフである。
【図6】実施例6において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図7】実施例7において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図8】実施例8において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図9】比較例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図10】比較例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図11】比較例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図12】比較例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図13】比較例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を示すグラフである。
【図14】実施例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図15】実施例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図16】実施例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図17】実施例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図18】実施例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図19】実施例6において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図20】実施例7において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図21】実施例8において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図22】比較例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図23】比較例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図24】比較例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図25】比較例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図26】比較例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のSEM画像(写真)(倍率×10,000)である。
【図27】実施例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図28】実施例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図29】実施例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図30】実施例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図31】実施例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図32】実施例6において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図33】実施例7において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図34】実施例8において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図35】比較例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図36】比較例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図37】比較例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図38】比較例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図39】比較例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体のXRDパターンを示すグラフである。
【図40】実施例1において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのW濃度分布を示すグラフである。
【図41】実施例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのMo濃度分布を示すグラフである。
【図42】実施例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのW濃度分布を示すグラフである。
【図43】実施例5において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのNb濃度分布を示すグラフである。
【図44】実施例6において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのW濃度分布を示すグラフである。
【図45】実施例7において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのW濃度分布を示すグラフである。
【図46】実施例8において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのW濃度分布を示すグラフである。
【図47】比較例2において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのW濃度分布を示すグラフである。
【図48】比較例3において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのB濃度分布を示すグラフである。
【図49】比較例4において、製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向へのSn濃度分布を示すグラフである。
【発明を実施するための形態】
【0053】
以下、本発明の実施の形態について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの内容に特定はされない。
【0054】
[リチウム遷移金属系化合物粉体]
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体(以下「正極活物質」と称す場合がある。)は、リチウムイオンの挿入・脱離が可能な機能を有する遷移金属化合物を主成分とし、該主成分原料に焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されたものであることを特徴とする。
【0055】
〈リチウム遷移金属系化合物〉
本発明において、「リチウム遷移金属系化合物」とは、Liイオンを脱離、挿入することが可能な構造を有する化合物であり、例えば、硫化物やリン酸塩化合物、リチウム遷移金属複合酸化物などが挙げられる。硫化物としては、TiSやMoSなどの二次元層状構造をもつ化合物や、一般式MeMo(MeはPb,Ag,Cuをはじめとする各種遷移金属)で表される強固な三次元骨格構造を有するシュブレル化合物などが挙げられる。リン酸塩化合物としては、オリビン構造に属するものが挙げられ、一般的にはLiMePO(Meは少なくとも1種以上の遷移金属)で表され、具体的にはLiFePO、LiCoPO、LiNiPO、LiMnPOなどが挙げられる。リチウム遷移金属複合酸化物としては、三次元的拡散が可能なスピネル構造や、リチウムイオンの二次元的拡散を可能にする層状構造に属するものが挙げられる。スピネル構造を有するものは、一般的にLiMe(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiMn、LiCoMnO、LiNi0.5Mn1.5、CoLiVOなどが挙げられる。層状構造を有するものは、一般的にLiMeO(Meは少なくとも1種以上の遷移金属)と表され、具体的にはLiCoO、LiNiO、LiNi1−xCo、LiNi1−x−yCoMn、LiNi0.5Mn0.5、Li1.2Cr0.4Mn0.4、Li1.2Cr0.4Ti0.4、LiMnOなどが挙げられる。
【0056】
本発明のリチウム遷移金属系化合物粉体は、リチウムイオン拡散の点からオリビン構造、スピネル構造、層状構造に帰属する結晶構造を含んで構成されるものが好ましい。中でも層状構造に帰属する結晶構造を含んで構成されるものが特に好ましい。
【0057】
また、本発明のリチウム遷移金属系化合物粉体は、異元素が導入されてもよい。異元素としては、B,Na,Mg,Al,Si,K,Ca,Ti,V,Cr,Fe,Mn,Co,Ni,Cu,Zn,Ga,Ge,Sr,Y,Zr,Nb,Mo,Ru,Rh,Pd,Ag,In,Sn,Sb,Te,Ba,Ta,W,Re,Os,Ir,Pt,Au,Pb,Bi,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu,N,F,P,S,Cl,Br,Iの何れか1種以上の中から選択される。これらの異元素は、リチウム遷移金属系化合物の結晶構造内に取り込まれていてもよく、或いは、リチウム遷移金属系化合物の結晶構造内に取り込まれず、その粒子表面や結晶粒界などに単体もしくは化合物として偏在していてもよい。
【0058】
〈焼成時の粒成長や焼結を抑制する添加剤〉
本発明において、「焼成時の粒成長や焼結を抑制する添加剤」とは、高温焼成時における正極活物質の一次粒子間又は二次粒子間の焼結を抑制するなどして、活物質粒子の成長を抑制し、高結晶化を図りつつ、微細で多数空隙を有する粉体性状を得る効果があるものをいう。
【0059】
例えば、本発明に好適な後述の組成式(I)で規定する組成領域のリチウムニッケルマンガンコバルト系複合酸化物粉体を製造する場合、固体粉末原料の集合体を970℃以上の温度で焼成することにより、結晶性が高度に発達し、電池性能にとって好ましい結晶構造の正極活物質を得ることができる。しかし、一方では粒成長、焼結も著しく進行しやすくなるため、電池性能にとって好ましくない粉体性状となってしまう。つまり、双方を両立して改善することが極めて困難な状況となるが、「焼成時の粒成長や焼結を抑制する添加剤」を添加して焼成することにより、このトレードオフの関係を克服することが可能となる。
【0060】
本発明において、焼成時の粒成長や焼結を抑制する添加剤として添加する特定の化合物が、焼成時の粒成長や焼結を抑制する効果を発現する機構は明らかではないが、実施例として原子価が5価又は6価をとり得る金属元素から構成される化合物が共通して効果を発現することから、これらが、リチウム遷移金属系化合物を構成するカチオン元素のいずれとも異なる、5〜7価といった高価数状態を安定にとり得るものであり、固相反応によって殆ど固溶しない結果、リチウム遷移金属系化合物粒子の表面又は粒界に偏在することになる。そのため、正極材活物質粒子同士の接触による物質移動が阻害され、粒子の成長や焼結が抑制されたものと推察している。
【0061】
添加剤の種類としては、前記効果を発現するものであればその種類に格別の制限はないが、高価数状態が安定なMo、W、Nb、Ta、Reといった元素から選ばれる元素を含有する化合物が好ましく、これらの元素を適宜2種以上組合せて用いても良い。通常これらの元素を含有する添加剤は酸化物材料が用いられる。
【0062】
添加剤としての例示化合物としては、MoO、MoO、MoO、MoO、Mo、Mo、LiMoO、WO、WO、WO、WO、W、W、W1849、W2058、W2470,W2573、W40118、LiWO、NbO、NbO、NbO、Nb、NbO、NbO、LiNbO、TaO、TaO、Ta、LiTaO、ReO、ReO、Reなどが挙げられ、好ましくはMoO、LiMoO、WO、LiWO、LiNbO、Ta、LiTaO、ReOが挙げられ、特に好ましくはWO、LiWO、ReOが挙げられる。
【0063】
これらの添加剤の添加量の範囲としては、主成分原料を構成する遷移金属元素の合計モル量に対して、通常0.01モル%以上、好ましくは0.03モル%以上、より好ましくは0.04モル%以上、特に好ましくは0.05モル%以上、通常2モル%未満、好ましくは1.8モル%以下、さらに好ましくは1.5モル%以下、特に好ましくは1.3モル%以下である。この下限を下回ると、前記効果が得られなくなる可能性があり、上限を超えると電池性能の低下を招く可能性がある。
【0064】
本発明のリチウム遷移金属系化合物粉体は、その一次粒子の表面部分に、添加剤由来の元素(添加元素)、即ち、好ましくはMo、W、Nb、Ta及びReから選ばれる少なくとも1種以上の元素が濃化して存在していることが特徴である。具体的には、一次粒子の表面部分のLi及び添加元素以外の金属元素(即ち、Liと添加元素、以外の金属元素)の合計に対する添加元素の合計のモル比が、通常、粒子全体の該原子比の5倍以上である。この比率の下限は7倍以上であることが好ましく、8倍以上であることがより好ましく、9倍以上であることが特に好ましい。上限は通常、特に制限されないが、150倍以下であることが好ましく、100倍以下であることがより好ましく、50倍以下であることが特に好ましく、30倍以下であることが最も好ましい。この比率が小さすぎると電池性能の改善効果が小さく、反対に大きすぎると電池性能の悪化を招く場合がある。
【0065】
リチウム遷移金属系化合物粉体の一次粒子の表面部分の組成の分析は、X線光電子分光法(XPS)により、X線源として単色光AlKαを用い、分析面積0.8mm径、取り出し角65°の条件で行う。一次粒子の組成により、分析可能な範囲(深さ)は異なるが、通常0.1nm以上50nm以下、特に正極活物質においては通常1nm以上10nm以下となる。従って、本発明において、リチウム遷移金属系化合物粉体の一次粒子の表面部分とは、この条件において測定可能な範囲を示す。
【0066】
〈添加元素の存在形態〉
本発明のリチウム遷移金属系化合物粉体は、前記添加元素が粒子表面から深さ方向に濃度勾配を持って存在する連続的組成傾斜構造を有していることが好ましい。
【0067】
リチウム遷移金属系化合物粉体の粒子表面からの深さ方向に対する組成は、Arイオン銃スパッタリングと上記と同様のXPS測定とを交互に行うことで分析することができる。スパッタリングによって表面付近の原子が取り除かれるため、その後のXPS測定はスパッタリング前より粒子内部の組成を反映したものとなる。ここで、スパッタリングによって除去される表面層の厚さを正確に知ることは困難であるため、同条件でSiO薄膜のスパッタリングを行って除去されるSiO表面層の厚さをもって代用する。従って、本発明において、リチウム遷移金属系化合物の粒子表面からの深さとは、この方法によって推測された深さを示す。
【0068】
本発明のリチウム遷移金属系化合物粉体の粒子最表面におけるLi及び前記添加元素以外の金属元素(即ち、Liと添加元素、以外の金属元素)の合計に対する該添加元素の合計の原子比Rと、粒子表面から深さ10nmにおけるLi及び前記添加元素以外の金属元素(即ち、Liと添加元素、以外の金属元素)の合計に対する該添加元素の合計の原子比R10との割合R/R10は、通常3倍以上、好ましくは3.2倍以上であり、通常50倍以下、好ましくは30倍以下、より好ましくは10倍以下、さらに好ましくは8倍以下、最も好ましくは6倍以下である。
【0069】
〈メジアン径及び90%積算径(D90)〉
本発明のリチウム遷移金属系化合物粉体のメジアン径は通常0.1μm以上、好ましくは0.3μm以上、より好ましくは0.6μm以上、更に好ましくは0.8μm以上、最も好ましくは1.2μm以上で、通常5μm以下、好ましくは4μm以下、より好ましくは3μm以下、更に好ましくは2.8μm以下、最も好ましくは2.5μm以下である。メジアン径がこの下限を下回ると、正極活物質層形成時の塗布性に問題を生ずる可能性があり、上限を超えると電池性能の低下を来たす可能性がある。
【0070】
また、本発明のリチウム遷移金属系化合物粉体の二次粒子の90%積算径(D90)は通常10μm以下、好ましくは8μm以下、より好ましくは6μm以下、最も好ましくは5μm以下で、通常0.5μm以上、好ましくは0.8μm以上、より好ましくは1μm以上、最も好ましくは1.5μm以上である。90%積算径(D90)が上記上限を超えると電池性能の低下を来たす可能性があり、下限を下回ると正極活物質層形成時の塗布性に問題を生ずる可能性がある。
【0071】
なお、本発明において、平均粒子径としてのメジアン径及び90%積算径(D90)は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.24を設定し、粒子径基準を体積基準として測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
【0072】
〈平均一次粒子径〉
本発明のリチウム遷移金属系化合物粉体の一次粒子の平均径(平均一次粒子径)としては、特に限定されないが、下限としては、好ましくは0.1μm以上、より好ましくは0.15μm以上、更に好ましくは0.2μm以上、最も好ましくは0.25μm以上、また、上限としては、好ましくは0.9μm以下、より好ましくは0.8μm以下、さらに好ましくは0.7μm以下、最も好ましくは0.5μm以下である。平均一次粒子径が、上記上限を超えると、粉体充填性に悪影響を及ぼしたり、比表面積が低下したりするために、レート特性や出力特性等の電池性能が低下する可能性が高くなる可能性がある。上記下限を下回ると結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる可能性がある。
【0073】
なお、本発明における平均一次粒子径は、走査型電子顕微鏡(SEM)で観察した平均径であり、30,000倍のSEM画像を用いて、10〜30個程度の一次粒子の粒子径の平均値として求めることができる。
【0074】
〈BET比表面積〉
本発明のリチウムリチウム遷移金属系化合物粉体はまた、BET比表面積が、通常1.5m/g以上、好ましくは1.6m/g以上、更に好ましくは1.7m/g以上、最も好ましくは1.8m/g以上で、通常5m/g以下、好ましくは4m/g以下、更に好ましくは3.5m/g以下、最も好ましくは3m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいと嵩密度が上がりにくくなり、正極活物質形成時の塗布性に問題が発生しやすくなる可能性がある。
【0075】
なお、BET比表面積は、公知のBET式粉体比表面積測定装置によって測定できる。本発明では、大倉理研製:AMS8000型全自動粉体比表面積測定装置を用い、吸着ガスに窒素、キャリアガスにヘリウムを使用し、連続流動法によるBET1点式法測定を行った。具体的には粉体試料を混合ガスにより150℃の温度で加熱脱気し、次いで液体窒素温度まで冷却して混合ガスを吸着させた後、これを水により室温まで加温して吸着された窒素ガスを脱着させ、その量を熱伝導検出器によって検出し、これから試料の比表面積を算出した。
【0076】
〈水銀圧入法による細孔特性〉
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、好ましくは水銀圧入法による測定において、特定の条件を満たす。
【0077】
本発明のリチウム遷移金属系化合物粉体の評価で採用する水銀圧入法について以下に説明する。
水銀圧入法は、多孔質粒子等の試料について、圧力を加えながらその細孔に水銀を浸入させ、圧力と圧入された水銀量との関係から、比表面積や細孔径分布などの情報を得る手法である。
【0078】
具体的には、まず、試料の入った容器内を真空排気した上で、容器内に水銀を満たす。水銀は表面張力が高く、そのままでは試料表面の細孔には水銀は浸入しないが、水銀に圧力をかけ、徐々に昇圧していくと、径の大きい細孔から順に径の小さい孔へと、徐々に細孔の中に水銀が浸入していく。圧力を連続的に増加させながら水銀液面の変化(つまり細孔への水銀圧入量)を検出していけば、水銀に加えた圧力と水銀圧入量との関係を表す水銀圧入曲線が得られる。
【0079】
ここで、細孔の形状を円筒状と仮定し、その半径をr、水銀の表面張力をδ、接触角をθとすると、細孔から水銀を押し出す方向への大きさは−2πrδ(cosθ)で表される(θ>90°なら、この値は正となる)。また、圧力P下で細孔へ水銀を押し込む方向への力の大きさはπrPで表されることから、これらの力の釣り合いから以下の数式(1)、数式(2)が導かれることになる。
【0080】
−2πrδ(cosθ)=πrP …(1)
Pr=−2δ(cosθ) …(2)
【0081】
水銀の場合、表面張力δ=480dyn/cm程度、接触角θ=140°程度の値が一般的に良く用いられる。これらの値を用いた場合、圧力P下で水銀が圧入される細孔の半径は以下の数式(3)で表される。
【0082】
【数1】

【0083】
すなわち、水銀に加えた圧力Pと水銀が浸入する細孔の半径rとの間には相関があることから、得られた水銀圧入曲線に基づいて、試料の細孔半径の大きさとその体積との関係を表す細孔分布曲線を得ることができる。例えば、圧力Pを0.1MPaから100MPaまで変化させると、7500nm程度から7.5nm程度までの範囲の細孔について測定が行えることになる。
【0084】
なお、水銀圧入法による細孔半径のおおよその測定限界は、下限が約2nm以上、上限が約200μm以下であり、後述する窒素吸着法に比べて、細孔半径が比較的大きな範囲における細孔分布の解析に向いていると言える。
水銀圧入法による測定は、水銀ポロシメータ等の装置を用いて行うことができる。水銀ポロシメータの具体例としては、Micromeritics社製オートポア、Quantachrome社製ポアマスター等が挙げられる。
【0085】
本発明のリチウム遷移金属系化合物粉体は、この水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が0.7cm/g以上、1.5cm/g以下であることが好ましい。水銀圧入量はより好ましくは0.74cm/g以上、更に好ましくは0.8cm/g以上、最も好ましくは0.9cm/g以上であり、より好ましくは1.4cm/g以下、更に好ましくは1.3cm/g以下、最も好ましくは1.2cm/g以下である。この範囲の上限を超えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板(正極の集電体)への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう。一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、粒子間のリチウム拡散が阻害され、負荷特性が低下する。
【0086】
また、本発明のリチウム遷移金属系化合物粉体は、上述の水銀圧入法によって細孔分布曲線を測定した場合に、通常、以下に説明する特定のメインピークが現れる。
なお、本明細書において「細孔分布曲線」とは、細孔の半径を横軸に、その半径以上の半径を有する細孔の単位重量(通常は1g)当たりの細孔体積の合計を、細孔半径の対数で微分した値を縦軸にプロットしたものであり、通常はプロットした点を結んだグラフとして表す。特に本発明のリチウム遷移金属系化合物粉体を水銀圧入法により測定して得られた細孔分布曲線を、以下の記載では適宜「本発明にかかる細孔分布曲線」という。
【0087】
また、本明細書において「メインピーク」とは、細孔分布曲線が有するピークの内で最も大きいピークをいい、「サブピーク」とは、細孔分布曲線が有するメインピーク以外のピークを表す。
また、本明細書において「ピークトップ」とは、細孔分布曲線が有する各ピークにおいて縦軸の座標値が最も大きい値をとる点をいう。
【0088】
(メインピーク)
本発明に係る細孔分布曲線が有するメインピークは、そのピークトップが、細孔半径が通常300nm以上、好ましくは350nm以上、最も好ましくは400nm以上、また、通常1000nm以下、好ましくは980nm以下、より好ましくは970nm以下、更に好ましくは960nm以下、最も好ましくは950nm以下の範囲に存在する。この範囲の上限を超えると、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作成した場合に、正極材料内でのリチウム拡散が阻害され、又は導電パスが不足して、負荷特性が低下する可能性がある。一方、この範囲の下限を下回ると、本発明のリチウム遷移金属系化合物粉体を用いて正極を作製した場合に、導電材や結着剤の必要量が増加し、正極板(正極の集電体)への正極活物質の充填率が制約され、電池容量が制約される可能性がある。また、微粒子化に伴い、塗料化時の塗膜の機械的性質が硬く、又は脆くなり、電池組立て時の捲回工程で塗膜の剥離が生じ易くなる可能性がある。
【0089】
また、本発明に係る細孔分布曲線が有する、細孔半径300nm以上、1000nm以下にピークトップが存在するピークの細孔容量は、好適には、通常0.4cm/g以上、好ましくは0.41cm/g以上、より好ましくは0.42cm/g以上、最も好ましくは0.43cm/g以上、また、通常1cm/g以下、好ましくは0.8cm/g以下、より好ましくは0.7cm/g以下、最も好ましくは0.6cm/g以下である。この範囲の上限を超えると空隙が過大となり、本発明のリチウム遷移金属系化合物粉体を正極材料として用いる際に、正極板への正極活物質の充填率が低くなってしまい、電池容量が制約されてしまう可能性がある。一方、この範囲の下限を下回ると、粒子間の空隙が過小となってしまうため、本発明のリチウム遷移金属系化合物粉体を正極材料として電池を作製した場合に、二次粒子間のリチウム拡散が阻害され、負荷特性が低下する可能性がある。
【0090】
(サブピーク)
本発明に係る細孔分布曲線は、上述のメインピークに加えて、複数のサブピークを有していてもよいが、80nm以上、300nm以下の細孔半径の範囲内には存在しないことが好ましい。
【0091】
〈嵩密度〉
本発明のリチウム遷移金属系化合物粉体の嵩密度は通常0.5g/cc以上、好ましくは0.6g/cc以上、より好ましくは0.7g/cc以上、最も好ましくは0.8g/cc以上で、通常1.7g/cc以下、好ましくは1.6g/cc以下、より好ましくは1.5g/cc以下、最も好ましくは1.3g/cc以下である。嵩密度がこの上限を上回ることは、粉体充填性や電極密度向上にとって好ましい一方、比表面積が低くなり過ぎる可能性があり、電池性能が低下する可能性がある。嵩密度がこの下限を下回ると粉体充填性や電極調製に悪影響を及ぼす可能性がある。
なお、本発明では、嵩密度は、リチウム遷移金属系化合物粉体5〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/ccとして求める。
【0092】
〈体積抵抗率〉
本発明のリチウム遷移金属系化合物粉体を40MPaの圧力で圧密した時の体積抵抗率の値は、下限としては、1×10Ω・cm以上が好ましく、5×10Ω・cm以上がより好ましく、1×10Ω・cm以上がさらに好ましい。上限としては、1×10Ω・cm以下が好ましく、5×10Ω・cm以下がより好ましく、1×10Ω・cm以下がさらに好ましい。この体積抵抗率がこの上限を超えると電池とした時の負荷特性が低下する可能性がある。一方、体積抵抗率がこの下限を下回ると、電池とした時の安全性などが低下する可能性がある。
【0093】
なお、本発明において、リチウム遷移金属系化合物粉体の体積抵抗率は、四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mmで、印加電圧リミッタを90Vとして、リチウム遷移金属系化合物粉体を40MPaの圧力で圧密した状態で測定した体積抵抗率である。体積抵抗率の測定は、例えば、粉体抵抗測定装置(例えば、ダイアインスツルメンツ社製、ロレスターGP粉体抵抗測定システム)を用い、粉体用プローブユニットにより、所定の加圧下の粉体に対して行うことができる。
【0094】
〈結晶構造〉
本発明のリチウム遷移金属系化合物粉体は、層状構造に帰属する結晶構造を含んで構成されるリチウムニッケルマンガンコバルト系複合酸化物を主成分としたものが好ましい。
ここで、層状構造に関してさらに詳しく述べる。層状構造を有するものの代表的な結晶系としては、LiCoO、LiNiOのようなα−NaFeO型に属するものがあり、これらは六方晶系であり、その対称性から空間群
【数2】

(以下「層状R(−3)m構造」と表記することがある。)に帰属される。
【0095】
ただし、層状LiMeOとは、層状R(−3)m構造に限るものではない。これ以外にもいわゆる層状Mnと呼ばれるLiMnOは斜方晶系で空間群Pm2mの層状化合物であり、また、いわゆる213相と呼ばれるLiMnOは、Li[Li1/3Mn2/3]Oとも表記でき、単斜晶系の空間群C2/m構造であるが、やはりLi層と[Li1/3Mn2/3]層および酸素層が積層した層状化合物である。
【0096】
〈組成〉
また、本発明のリチウム遷移金属系化合物粉体は、下記組成式(I)で表されるリチウム遷移金属系化合物粉体であることが好ましい。
LiMO …(I)
ただし、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は、通常0.3以上、好ましくは0.5以上、より好ましくは0.6以上、更に好ましくは0.7以上、より一層好ましくは0.8以上、最も好ましくは0.9以上、通常5以下、好ましくは4以下、より好ましくは3以下、更に好ましくは2.5以下、最も好ましくは1.5以下である。Co/(Mn+Ni+Co)モル比は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.05以上、通常0.30以下、好ましくは0.20以下、より好ましくは0.15以下、更に好ましくは0.10以下、最も好ましくは0.099以下である。M中のLiモル比は0.001以上、好ましくは0.01以上、より好ましくは0.02以上、さらに好ましくは0.03以上、最も好ましくは0.05以上、通常0.2以下、好ましくは0.19以下、より好ましくは0.18以下、さらに好ましくは0.17以下、最も好ましくは0.15以下である。
【0097】
なお、上記組成式(I)においては、酸素量の原子比は便宜上2と記載しているが、多少の不定比性があってもよい。不定比性がある場合、酸素の原子比は通常2±0.2の範囲、好ましくは2±0.15の範囲、より好ましくは2±0.12の範囲、さらに好ましくは2±0.10の範囲、特に好ましくは2±0.05の範囲である。
【0098】
また、本発明のリチウム遷移金属系化合物粉体は、正極活物質の結晶性を高めるために酸素含有ガス雰囲気下で高温焼成を行って焼成されたものであることが好ましい。特に、上記組成式(I)で示される組成を持つリチウムニッケルマンガンコバルト系複合酸化物においては、焼成温度の下限は通常900℃以上、好ましくは925℃以上、より好ましくは950℃以上、更に好ましくは975℃以上、最も好ましくは990℃以上であり、上限は通常1200℃以下、好ましくは1175℃以下、更に好ましくは1150℃以下、最も好ましくは1125℃以下である。焼成温度が低すぎると異相が混在し、また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎるものとなる。逆に焼成温度が高すぎると一次粒子が過度に成長し、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。
【0099】
〈含有炭素濃度C〉
本発明のリチウム遷移金属系化合物粉体の含有炭素濃度C(重量%)値は、通常0.005重量%以上、好ましくは0.01重量%以上、更に好ましくは0.015重量%以上、最も好ましくは0.02重量%以上であり、通常0.25重量%以下、好ましくは0.2重量%以下、より好ましくは0.15重量%以下、一層好ましくは0.1重量%以下、最も好ましくは0.07重量%以下である。この下限を下回ると電池性能が低下する可能性があり、上限を超えると電池とした時のガス発生による膨れが増大したり電池性能が低下したりする可能性がある。
【0100】
本発明において、リチウム遷移金属系化合物粉体の含有炭素濃度Cは、後述の実施例の項で示すように、酸素気流中燃焼(高周波加熱炉式)赤外吸収法による測定で求められる。
なお、後述の炭素分析により求めたリチウム遷移金属系化合物粉体の含有炭素成分は、炭酸化合物、特に炭酸リチウムの付着量についての情報を示すものとみなすことができる。これは、炭素分析により求めた炭素量を、全て炭酸イオン由来と仮定した数値と、イオンクロマトグラフィーにより分析した炭酸イオン濃度が概ね一致することによる。
【0101】
一方、電子伝導性を高めるための手法として導電性カーボンと複合化処理をしたりする場合には、前記規定範囲を超えるC量が検出されることがあるが、そのような処理が施された場合におけるC値は、前記規定範囲に限定されるものではない。
【0102】
〈好適組成〉
本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体は、前記組成式(I)におけるMサイト中の原子構成が下記式(II)で示されるものが特に好ましい。
M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/21−xCo2/(2+z) …(II)
(ただし、上記式(II)中、
0≦x≦0.1
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。)
【0103】
上記(II)式において、xの値は通常0以上、好ましくは0.01以上、より好ましくは0.02以上、更に好ましくは0.03以上、最も好ましくは0.04以上、通常0.1以下、好ましくは0.099以下、より好ましくは0.098以下、更に好ましくは0.08以下、一層好ましくは0.06以下、最も好ましくは0.05以下である。
【0104】
yの値は通常−0.1以上、好ましくは−0.05以上、より好ましくは−0.03以上、最も好ましくは−0.02以上、通常0.1以下、好ましくは0.05以下、より好ましくは0.03以下、最も好ましくは0.02以下である。
【0105】
zの値は通常(1−x)(0.05−0.98y)以上、好ましくは(1−x)(0.06−0.98y)以上、より好ましくは(1−x)(0.07−0.98y)以上、さらに好ましくは(1−x)(0.08−0.98y)以上、最も好ましくは(1−x)(0.10−0.98y)以上、通常(1−x)(0.20−0.88y)以下、好ましくは(1−x)(0.18−0.88y)以下、より好ましくは(1−x)(0.17−0.88y)、最も好ましくは(1−x)(0.16−0.88y)以下である。zがこの下限を下回ると導電性が低下し、上限を超えると遷移金属サイトに置換する量が多くなり過ぎて電池容量が低くなる等、これを使用したリチウム二次電池の性能低下を招く可能性がある。また、zが大きすぎると、活物質粉体の炭酸ガス吸収性が増大するため、大気中の炭酸ガスを吸収しやすくなる。その結果、含有炭素濃度が大きくなると推定される。
【0106】
上記(II)式の組成範囲において、z値が定比である下限に近い程、電池とした時のレート特性や出力特性が低くなる傾向が見られ、逆にz値が上限に近い程、電池とした時のレート特性や出力特性が高くなるが、一方で容量が低下するという傾向が見られる。また、y値が下限、つまりマンガン/ニッケル原子比が小さい程、低い充電電圧で容量が出るが、高い充電電圧を設定した電池のサイクル特性や安全性が低下する傾向が見られ、逆にy値が上限に近い程、高い充電電圧で設定した電池のサイクル特性や安全性が向上する一方で、放電容量やレート特性、出力特性が低下する傾向が見られる。また、x値が下限に近い程、電池とした時のレート特性や出力特性といった負荷特性が低くなるという傾向が見られ、逆に、x値が上限に近い程、電池とした時のレート特性や出力特性が高くなるが、この上限を超えると、高い充電電圧で設定した場合のサイクル特性や安全性が低下し、また原料コストが高くなる。前記組成パラメータx、y、zを規定範囲とすることは、本発明の重要な構成要素である。
【0107】
ここで本発明のリチウム遷移金属系化合物粉体の好適組成であるリチウムニッケルマンガンコバルト系複合酸化物におけるLi組成(zおよびx)の化学的な意味について、以下により詳細に説明する。
前述のように層状構造は必ずしもR(−3)m構造に限られるものではないが、R(−3)m構造に帰属しうるものであることが電気化学的な性能面から好ましい。
上記リチウムニッケルマンガンコバルト系複合酸化物の組成式のx、y、zを求めるには、各遷移金属とLiを誘導結合プラズマ発光分光分析装置(ICP−AES)で分析して、Li/Ni/Mn/Coの比を求める事で計算される。
【0108】
構造的視点では、zに係るLiは、同じ遷移金属サイトに置換されて入っていると考えられる。ここで、zに係るLiによって、電荷中性の原理によりNiの平均価数が2価より大きくなる(3価のNiが生成する)。zはNi平均価数を上昇させるため、Ni価数(Ni(III)の割合)の指標となる。
【0109】
なお、上記組成式から、zの変化に伴うNi価数(m)を計算すると、Co価数は3価、Mn価数は4価であるとの前提で、
【数3】

となる。この計算結果は、Ni価数はzのみで決まるのではなく、x及びyの関数となっていることを意味している。z=0かつy=0であれば、xの値に関係なくNi価数は2価のままである。zが負の値になる場合は、活物質中に含まれるLi量が化学量論量より不足していることを意味し、あまり大きな負の値を有するものは本発明の効果が出ない可能性がある。一方、同じz値であっても、Niリッチ(y値が大きい)及び/又はCoリッチ(x値が大きい)な組成ほどNi価数は高くなるということを意味し、電池に用いた場合、レート特性や出力特性が高くなるが、反面、容量低下しやすくなる結果となる。このことから、z値の上限と下限はx及びyの関数として規定するのがより好ましいと言える。
【0110】
また、x値が0≦x≦0.1と、Co量が少ない範囲にあると、コストが低減されることに加え、高い充電電位で充電するように設計されたリチウム二次電池として使用した場合において、充放電容量やサイクル特性、安全性が向上する。
【0111】
〈粉末X線回折ピーク〉
本発明において、前記組成式(I)及び(II)を満たす組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体は、CuKα線を使用した粉末X線回折パターンにおいて、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅をFWHM(110)とした時に、0.01≦FWHM(110)≦0.2の範囲にあることを特徴とする。
一般に、結晶性の尺度としてX線回折ピークの半価幅が用いられることから、本発明者らは、結晶性と電池性能の相関について鋭意検討を行った。その結果、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅の値が、規定した範囲内にあるものが良好な電池性能を発現することを見出した。
【0112】
本発明において、FWHM(110)は通常0.01以上、好ましくは0.05以上、より好ましくは0.10以上、更に好ましくは0.12以上、最も好ましくは0.14以上、0.2以下、より好ましくは0.198以下、更に好ましくは0.196以下、最も好ましくは0.194以下である。
【0113】
また、本発明において、前記組成式(I)及び(II)を満たす組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体は、CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)回折ピーク、64.5°付近に存在する(110)回折ピーク、及び68°付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異相由来の回折ピークを持たないか、或いは異相由来の回折ピークを有する場合、本来の結晶相の回折ピークに対する異相ピークの積分強度比が、各々、以下の範囲内にあることが好ましい。
0≦I018/I018≦0.30
0≦I110/I110≦0.25
0≦I113/I113≦0.30
(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。)
【0114】
ところで、この異相由来の回折ピークの原因物質の詳細は明らかではないが、異相が含まれると、電池とした時の容量やレート特性、サイクル特性等が低下する。このため、回折ピークは本発明の電池性能に悪影響を与えない程度の回折ピークを有していてもよいが、前記範囲の割合であることが好ましく、それぞれの回折ピークに対する異相由来の回折ピークの積分強度比は、通常I018/I018≦0.30、I110/I110≦0.25、I113/I113≦0.30、好ましくはI018/I018≦0.25、I110/I110≦0.20、I113/I113≦0.25、より好ましくはI018/I018≦0.20、I110/I110≦0.15、I113/I113≦0.20、更に好ましくはI018/I018≦0.15、I110/I110≦0.10、I113/I113≦0.15であり、最も好ましくは異相由来の回折ピークが無いことが特に好ましい。
【0115】
〈本発明のリチウム遷移金属系化合物粉体が上述の効果をもたらす理由〉
本発明のリチウム遷移金属系化合物粉体が上述の効果をもたらす理由としては、次のように考えられる。
即ち、本発明のリチウム遷移金属系化合物粉体は、結晶粒子が微細化しており、水銀圧入曲線における昇圧時の水銀圧入量が多く、結晶粒子間の細孔容量が大きいために、これを用いて電池を作製した場合に正極活物質表面と電解液との接触面積を増加させることが可能となることに加え、結晶性が高度に発達し、また異相の存在比率が極めて少なく抑えられた結果、正極活物質として必要な負荷特性が実用レベルまで改良されたものと推定される。
【0116】
[リチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法]
本発明のリチウム遷移金属系化合物粉体を製造する方法は、特定の製法に限定されるものではないが、リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する焼成工程とを含む本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法により、好適に製造される。
【0117】
例えば、リチウムニッケルマンガンコバルト系複合酸化物粉体を例にあげて説明すると、リチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物、及び焼成時の粒成長や焼結を抑制する添加剤を液体媒体中に分散させたスラリーを噴霧乾燥して得られた噴霧乾燥体を、酸素含有ガス雰囲気中で焼成して製造することができる。
【0118】
以下に、本発明の好適態様であるリチウムニッケルマンガンコバルト系複合酸化物粉体の製造方法を例にあげて、本発明のリチウム遷移金属系化合物粉体の製造方法について詳細に説明する。
【0119】
<スラリー調製工程>
本発明の方法により、リチウム遷移金属系化合物粉体を製造するに当たり、スラリーの調製に用いる原料化合物のうち、リチウム化合物としては、LiCO、LiNO、LiNO、LiOH、LiOH・HO、LiH、LiF、LiCl、LiBr、LiI、CHOOLi、LiO、LiSO、ジカルボン酸Li、クエン酸Li、脂肪酸Li、アルキルリチウム等が挙げられる。これらリチウム化合物の中で好ましいのは、焼成処理の際にSO、NO等の有害物質を発生させない点で、窒素原子や硫黄原子、ハロゲン原子を含有しないリチウム化合物であり、また、焼成時に分解ガスを発生することなどから、噴霧乾燥粉体の二次粒子内に分解ガスを発生するなどして空隙を形成しやすい化合物であり、これらの点を勘案すると、とりわけLiCO、LiOH、LiOH・HOが、なかでも取り扱い易く、比較的安価であることからLiCOが好ましい。これらのリチウム化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
【0120】
また、ニッケル化合物としては、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HO、Ni(NO・6HO、NiSO、NiSO・6HO、脂肪酸ニッケル、ニッケルハロゲン化物等が挙げられる。この中でも、焼成処理の際にSO、NO等の有害物質を発生させない点で、Ni(OH)、NiO、NiOOH、NiCO、2NiCO・3Ni(OH)・4HO、NiC・2HOのようなニッケル化合物が好ましい。また、更に工業原料として安価に入手できる観点、及び反応性が高い、という観点からNi(OH)、NiO、NiOOH、NiCO、さらに焼成時に分解ガスを発生することなどから、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはNi(OH)、NiOOH、NiCOである。これらのニッケル化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
【0121】
また、マンガン化合物としてはMn、MnO、Mn等のマンガン酸化物、MnCO、Mn(NO、MnSO、酢酸マンガン、ジカルボン酸マンガン、クエン酸マンガン、脂肪酸マンガン等のマンガン塩、オキシ水酸化物、塩化マンガン等のハロゲン化物等が挙げられる。これらのマンガン化合物の中でも、MnO、Mn、Mn、MnCOは、焼成処理の際にSO、NO等のガスを発生せず、更に工業原料として安価に入手できるため好ましい。これらのマンガン化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
【0122】
また、コバルト化合物としては、Co(OH)、CoOOH、CoO、Co、Co、Co(OCOCH・4HO、CoCl、Co(NO・6HO、Co(SO・7HO、CoCO等が挙げられる。中でも、焼成工程の際にSO、NO等の有害物質を発生させない点で、Co(OH)、CoOOH、CoO、Co、Co、CoCOが好ましく、更に好ましくは、工業的に安価に入手できる点及び反応性が高い点でCo(OH)、CoOOHである。加えて焼成時に分解ガスを発生する等して、噴霧乾燥粉体の二次粒子内に空隙を形成しやすい、という観点から、特に好ましいのはCo(OH)、CoOOH、CoCOである。これらのコバルト化合物は1種を単独で使用しても良く、2種以上を併用しても良い。
【0123】
また、上記のLi、Ni、Mn、Co原料化合物以外にも他元素置換を行って前述の異元素を導入したり、後述する噴霧乾燥にて形成される二次粒子内の空隙を効率よく形成させたりすることを目的とした化合物群を使用することが可能である。なお、ここで使用する、二次粒子の空隙を効率よく形成させることを目的として使用する化合物の添加段階は、その性質に応じて、原料混合前又は混合後の何れかを選択することが可能である。特に、混合工程によって機械的剪断応力が加わるなどして分解しやすい化合物は混合工程後に添加することが好ましい。
【0124】
焼成時の粒成長や焼結を抑制する添加剤としては、前述の如く、目的とする効果を発現するものであればその種類に格別の制限はないが、高価数状態が安定なMo、W、Nb、Ta、Reといった元素から選ばれる元素を含有する化合物が好ましく、通常は酸化物材料が用いられる。
【0125】
焼成時の粒成長や焼結を抑制する添加剤の例示化合物としては、MoO、MoO、MoO、MoO、Mo、Mo、LiMoO、WO、WO、WO、WO、W、W、W1849、W2058、W2470,W2573、W40118、LiWO、NbO、NbO、NbO、Nb、NbO、NbO、LiNbO、TaO、TaO、Ta、LiTaO、ReO、ReO、Reなどが挙げられ、好ましくはMoO、LiMoO、WO、LiWO、LiNbO、Ta、LiTaO、ReOが挙げられ、特に好ましくはWO、LiWO、ReOが挙げられる。これらの添加剤は1種を単独で使用しても良く、2種以上を併用しても良い。
【0126】
原料の混合方法は特に限定されるものではなく、湿式でも乾式でも良い。例えば、ボールミル、振動ミル、ビーズミル等の装置を使用する方法が挙げられる。原料化合物を水、アルコール等の液体媒体中で混合する湿式混合は、より均一な混合が可能であり、かつ焼成工程において混合物の反応性を高めることができるので好ましい。
混合の時間は、混合方法により異なるが、原料が粒子レベルで均一に混合されていれば良く、例えばボールミル(湿式又は乾式)では通常1時間から2日間程度、ビーズミル(湿式連続法)では滞留時間が通常0.1時間から6時間程度である。
【0127】
なお、原料の混合段階においてはそれと並行して原料の粉砕が為されていることが好ましい。粉砕の程度としては、粉砕後の原料粒子の粒径が指標となるが、平均粒子径(メジアン径)として通常0.4μm以下、好ましくは0.3μm以下、より好ましくは0.25μm以下、最も好ましくは0.2μm以下とする。粉砕後の原料粒子の平均粒子径が大きすぎると、焼成工程における反応性が低下するのに加え、組成が均一化し難くなる。ただし、必要以上に小粒子化することは、粉砕のコストアップに繋がるので、平均粒子径が通常0.01μm以上、好ましくは0.02μm以上、さらに好ましくは0.05μm以上となるように粉砕すれば良い。このような粉砕程度を実現するための手段としては特に限定されるものではないが、湿式粉砕法が好ましい。具体的にはダイノーミル等を挙げることができる。
【0128】
なお、本発明においてスラリー中の粉砕粒子のメジアン径は、公知のレーザー回折/散乱式粒度分布測定装置によって、屈折率1.24を設定し、粒子径基準を体積基準に設定して測定されたものである。本発明では、測定の際に用いる分散媒として、0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。後述の噴霧乾燥粉体のメジアン径については、それぞれ0、1、3、5分間の超音波分散後に測定を行った他は同様の条件である。
【0129】
<噴霧乾燥工程>
湿式混合後は、次いで通常乾燥工程に供される。乾燥方法は特に限定されないが、生成する粒子状物の均一性や粉体流動性、粉体ハンドリング性能、乾燥粒子を効率よく製造できる等の観点から噴霧乾燥が好ましい。その際、噴霧方法は特に限定されないが、例えば、ノズル型アトマイザー(二流体ノズル、三流体ノズル、四流体ノズル)、回転円盤形アトマイザーなどを用いた方法を挙げることができる。
【0130】
(噴霧乾燥粉体)
本発明のリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の製造方法においては、原料化合物と添加剤とを湿式粉砕して得られたスラリーを噴霧乾燥することにより、一次粒子が凝集して二次粒子を形成してなる粉体を得る。一次粒子が凝集して二次粒子を形成してなる噴霧乾燥粉体は、本発明の噴霧乾燥粉体の形状的特徴である。形状の確認方法としては、例えば、SEM観察、断面SEM観察が挙げられる。
【0131】
本発明のリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の焼成前駆体でもある噴霧乾燥により得られる粉体のメジアン径(ここでは超音波分散をかけずに測定した値)は通常15μm以下、より好ましくは12μm以下、更に好ましくは9μm以下、最も好ましくは7μm以下となるようにする。ただし、あまりに小さな粒径は得にくい傾向にあるので、通常は3μm以上、好ましくは5μm以上、より好ましくは6μm以上である。噴霧乾燥法で粒子状物を製造する場合、その粒子径は、噴霧形式、加圧気体流供給速度、スラリー供給速度、乾燥温度等を適宜選定することによって制御することができる。
【0132】
即ち、例えば、リチウム化合物、ニッケル化合物、マンガン化合物、コバルト化合物、及び焼成時の粒成長や焼結を抑制する添加剤を液体媒体中に分散させたスラリーを噴霧乾燥後、得られた粉体を焼成してリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体を製造するに当たり、噴霧乾燥時のスラリー粘度をV(cp)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、スラリー粘度Vが、50cp≦V≦4000cpであって、かつ、気液比G/Sが、500≦G/S≦10000となる条件で噴霧乾燥を行う。
【0133】
スラリー粘度V(cp)が低すぎると一次粒子が凝集して二次粒子を形成してなる粉体を得にくくなる虞があり、高過ぎると供給ポンプが故障したり、ノズルが閉塞する虞がある。従って、スラリー粘度V(cp)は、下限値として通常50cp以上、好ましくは100cp以上、更に好ましくは300cp以上、最も好ましくは500cpであり、上限値としては通常4000cp以下、好ましくは3500cp以下、更に好ましくは3000cp以下、最も好ましくは2500cp以下である。
【0134】
また、気液比G/Sが上記下限を下回ると二次粒子サイズが粗大化したり乾燥性が低下しやすく、上限を超えると生産性が低下する虞がある。従って、気液比G/Sは、下限値として通常500以上、好ましくは800以上、更に好ましくは1000以上、最も好ましくは1500以上であり、上限値としては通常10000以下、好ましくは9000以下、更に好ましくは8000以下、最も好ましくは7500以下である。
【0135】
スラリー供給量Sやガス供給量Gは、噴霧乾燥に供するスラリーの粘度や用いる噴霧乾燥装置の仕様等によって適宜設定される。
【0136】
本発明の方法においては、前述のスラリー粘度V(cp)を満たし、かつ用いる噴霧乾燥装置の仕様に適したスラリー供給量とガス供給量を制御して、前述の気液比G/Sを満たす範囲で噴霧乾燥を行えばよく、その他の条件については、用いる装置の種類等に応じて適宜設定されるが、更に次のような条件を選択することが好ましい。
【0137】
即ち、スラリーの噴霧乾燥は、通常、50℃以上、好ましくは70℃以上、更に好ましくは120℃以上、最も好ましくは140℃以上で、通常300℃以下、好ましくは250℃以下、更に好ましくは200℃以下、最も好ましくは180℃以下の温度で行うことが好ましい。この温度が高すぎると得られた造粒粒子が中空構造の多いものとなる可能性があり、粉体の充填密度が低下する虞がある。一方、低すぎると粉体出口部分での水分結露による粉体固着・閉塞等の問題が生じる可能性がある。
【0138】
また、本発明に係るリチウムニッケルマンガンコバルト系複合酸化物粉体等のリチウム遷移金属系化合物粉体の噴霧乾燥粉体は、一次粒子間の凝集力が弱いのが特徴であり、これは超音波分散に伴うメジアン径の変化を調べることによって確認できる。ここで5分間の超音波分散“Ultra Sonic”(出力30W、周波数22.5kHz)をかけた後で測定したときの噴霧乾燥粒子のメジアン径の上限は、通常4μm以下、好ましくは3.5μm以下、より好ましくは3μm以下、更に好ましくは2.5μm以下、最も好ましくは2μm以下であり、下限は、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、最も好ましくは0.2μm以上である。この超音波分散後のメジアン径が上記の値より大きい噴霧乾燥粒子を用いて焼成されたリチウム遷移金属系化合物粒子は、粒子間の空隙が少なく、負荷特性が改善されない。一方、超音波分散後のメジアン径が上記の値より小さい噴霧乾燥粒子を用いて焼成されたリチウム遷移金属系化合物粒子は、粒子間の空隙が多くなりすぎ、嵩密度が低下したり、塗布特性が悪くなったりするなどの問題が生じやすくなる可能性がある。
【0139】
また、本発明のリチウムニッケルマンガンコバルト複合酸化物粉体等のリチウム遷移金属系化合物粉体の噴霧乾燥粉体の嵩密度は通常0.1g/cc以上、好ましくは0.3g/cc以上、より好ましくは0.5g/cc以上、最も好ましくは0.7g/cc以上である。この下限を下回ると粉体充填性や粉体の取り扱いに悪影響を及ぼす可能性があり、また、通常1.7g/cc以下、好ましくは1.6g/cc以下、より好ましくは1.5g/cc以下、最も好ましくは1.4g/cc以下である。嵩密度がこの上限を上回ることは、粉体充填性や粉体の取り扱いにとって好ましい一方、比表面積が低くなり過ぎる可能性があり、焼成工程での反応性が低下する可能性がある。
【0140】
また、噴霧乾燥により得られる粉体は、比表面積が小さいと、次の焼成工程に際して、原料化合物間の反応性が低下してしまうため、前記の如く、噴霧乾燥前に出発原料を粉砕するなどの手段により、できるだけ高比表面積化されていることが好ましい。一方で、過度に高比表面積化しようとすると、工業的に不利となるだけでなく、本発明のリチウムニッケルマンガンコバルト系複合酸化物等のリチウム遷移金属系化合物が得られなくなる可能性がある。従って、これによって得られた噴霧乾燥粉体は、BET比表面積にして通常10m/g以上、好ましくは20m/g以上、更に好ましくは30m/g以上、最も好ましくは50m/g以上で、通常100m/g以下、好ましくは80m/g以下、更に好ましくは70m/g以下、最も好ましくは65m/g以下とすることが好ましい。
【0141】
<焼成工程>
このようにして得られた焼成前駆体は、次いで焼成処理される。
ここで、本発明において「焼成前駆体」とは、噴霧乾燥粉体を処理して得られる焼成前のリチウムニッケルマンガンコバルト系複合酸化物等のリチウム遷移金属系化合物の前駆体を意味する。例えば、前述の焼成時に分解ガスを発生又は昇華して、二次粒子内に空隙を形成させる化合物を、上述の噴霧乾燥粉体に含有させて焼成前駆体としてもよい。
【0142】
この焼成条件は、組成や使用するリチウム化合物原料にも依存するが、傾向として、焼成温度が高すぎると一次粒子が過度に成長したり、粒子間の焼結が進行し過ぎ、比表面積が小さくなり過ぎる。逆に低すぎると異相が混在し、また結晶構造が発達せずに格子歪が増大する。また比表面積が大きくなりすぎる。従って、焼成温度としては、通常700℃以上であるが、前記組成式(I)及び(II)で示される組成のリチウムニッケルマンガンコバルト系複合酸化物粉体の製造においては、通常970℃以上が好ましく、より好ましくは975℃以上、さらに好ましくは980℃以上、最も好ましくは990℃以上であり、通常1200℃以下、好ましくは1175℃以下、更に好ましくは1150℃以下、最も好ましくは1125℃以下である。
【0143】
焼成には、例えば、箱形炉、管状炉、トンネル炉、ロータリーキルン等を使用することができる。焼成工程は、通常、昇温・最高温度保持・降温の三部分に分けられる。二番目の最高温度保持部分は必ずしも一回とは限らず、目的に応じて二段階又はそれ以上の段階をふませてもよく、二次粒子を破壊しない程度に凝集を解消することを意味する解砕工程又は、一次粒子或いはさらに微小粉末まで砕くことを意味する粉砕工程を挟んで、昇温・最高温度保持・降温の工程を二回又はそれ以上繰り返しても良い。
【0144】
昇温工程は通常1℃/分以上10℃/分以下の昇温速度で炉内を昇温させる。この昇温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても炉によっては炉内温度が設定温度に追従しなくなる。昇温速度は、好ましくは2℃/分以上、より好ましくは3℃/分以上で、好ましくは7℃/分以下、より好ましくは5℃/分以下である。
【0145】
最高温度保持工程での保持時間は、温度によっても異なるが、通常前述の温度範囲であれば30分以上、好ましくは1時間以上、更に好ましくは3時間以上、最も好ましくは5時間以上で、50時間以下、好ましくは25時間以下、更に好ましくは20時間以下、最も好ましくは15時間以下である。焼成時間が短すぎると結晶性の良いリチウム遷移金属系化合物粉体が得られ難くなり、長すぎるのは実用的ではない。焼成時間が長すぎると、その後解砕が必要になったり、解砕が困難になったりするので、不利である。
【0146】
降温工程では、通常0.1℃/分以上10℃/分以下の降温速度で炉内を降温させる。降温速度があまり遅すぎても時間がかかって工業的に不利であるが、あまり速すぎても目的物の均一性に欠けたり、容器の劣化を早めたりする傾向にある。降温速度は、好ましくは1℃/分以上、より好ましくは3℃/分以上で、好ましくは7℃/分以下、より好ましくは5℃/分以下である。
【0147】
焼成時の雰囲気は、得ようとするリチウム遷移金属系化合物粉体の組成によって適切な酸素分圧領域があるため、それを満足するための適切な種々ガス雰囲気が用いられる。ガス雰囲気としては、例えば、酸素、空気、窒素、アルゴン、水素、二酸化炭素、及びそれらの混合ガス等を挙げることができる。本発明において具体的に実施しているリチウムニッケルマンガンコバルト系複合酸化物粉体については、空気等の酸素含有ガス雰囲気を用いることができる。通常は酸素濃度が1体積%以上、好ましくは10体積%以上、より好ましくは15体積%以上で、100体積%以下、好ましくは50体積%以下、より好ましくは25体積%以下の雰囲気とする。
【0148】
このような製造方法において、本発明のリチウム遷移金属系化合物粉体、例えば前記特定の組成を有するリチウムニッケルマンガンコバルト系複合酸化物粉体を製造するには、製造条件を一定とした場合には、リチウム化合物、ニッケル化合物、マンガン化合物、及びコバルト化合物と、焼成時の粒成長や焼結を抑制する添加剤とを液体媒体中に分散させたスラリーを調製する際、各化合物の混合比を調整することで、目的とするLi/Ni/Mn/Coのモル比を制御することができる。
このようにして得られたリチウムニッケルマンガンコバルト系複合酸化物粉体等の本発明のリチウム遷移金属系化合物粉体によれば、容量が高く、レート・出力等の負荷特性に優れ、性能バランスの良いリチウム二次電池用正極材料が提供される。
【0149】
[リチウム二次電池用正極]
本発明のリチウム二次電池用正極は、本発明のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体及び結着剤を含有する正極活物質層を集電体上に形成してなるものである。
【0150】
正極活物質層は、通常、正極材料と結着剤と更に必要に応じて用いられる導電材及び増粘剤等を、乾式で混合してシート状にしたものを正極集電体に圧着するか、或いはこれらの材料を液体媒体中に溶解又は分散させてスラリー状にして、正極集電体に塗布、乾燥することにより作成される。
【0151】
正極集電体の材質としては、通常、アルミニウム、ステンレス鋼、ニッケルメッキ、チタン、タンタル等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料が好ましく、アルミニウムが特に好ましい。また、形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜、エキスパンドメタル、パンチメタル、発泡メタル等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されているため好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。
【0152】
正極集電体として薄膜を使用する場合、その厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また通常100mm以下、好ましくは1mm以下、より好ましくは50μm以下の範囲が好適である。上記範囲よりも薄いと、集電体として必要な強度が不足する可能性がある一方で、上記範囲よりも厚いと、取り扱い性が損なわれる可能性がある。
【0153】
正極活物質層の製造に用いる結着剤としては、特に限定されず、塗布法の場合は、電極製造時に用いる液体媒体に対して安定な材料であれば良いが、具体例としては、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂系高分子、SBR(スチレン・ブタジエンゴム)、NBR(アクリロニトリル・ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン・プロピレンゴム等のゴム状高分子、スチレン・ブタジエン・スチレンブロック共重合体及びその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレンスチレンブロック共重合体及びその水素添加物等の熱可塑性エラストマー状高分子、シンジオタクチック−1,2−ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α−オレフィン共重合体等の軟質樹脂状高分子、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体等のフッ素系高分子、アルカリ金属イオン(特にリチウムイオン)のイオン伝導性を有する高分子組成物等が挙げられる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0154】
正極活物質層中の結着剤の割合は、通常0.1重量%以上、好ましくは1重量%以上、更に好ましくは5重量%以上であり、通常80重量%以下、好ましくは60重量%以下、更に好ましくは40重量%以下、最も好ましくは10重量%以下である。結着剤の割合が低すぎると、正極活物質を十分保持できずに正極の機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう可能性がある一方で、高すぎると、電池容量や導電性の低下につながる可能性がある。
【0155】
正極活物質層には、通常、導電性を高めるために導電材を含有させる。その種類に特に制限はないが、具体例としては、銅、ニッケル等の金属材料や、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック等のカーボンブラック、ニードルコークス等の無定形炭素等の炭素材料などを挙げることができる。なお、これらの物質は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。正極活物質層中の導電材の割合は、通常0.01重量%以上、好ましくは0.1重量%以上、更に好ましくは1重量%以上であり、また、通常50重量%以下、好ましくは30重量%以下、更に好ましくは20重量%以下である。導電材の割合が低すぎると導電性が不十分になることがあり、逆に高すぎると電池容量が低下することがある。
【0156】
スラリーを形成するための液体媒体としては、正極材料であるリチウム遷移金属系化合物粉体、結着剤、並びに必要に応じて使用される導電材及び増粘剤を溶解又は分散することが可能な溶媒であれば、その種類に特に制限はなく、水系溶媒と有機系溶媒のどちらを用いても良い。水系溶媒の例としては水、アルコールなどが挙げられ、有機系溶媒の例としてはN−メチルピロリドン(NMP)、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン(THF)、トルエン、アセトン、ジメチルエーテル、ジメチルアセタミド、ヘキサメチルホスファルアミド、ジメチルスルホキシド、ベンゼン、キシレン、キノリン、ピリジン、メチルナフタレン、ヘキサン等を挙げることができる。特に水系溶媒を用いる場合、増粘剤に併せて分散剤を加え、SBR等のラテックスを用いてスラリー化する。なお、これらの溶媒は、1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0157】
正極活物質層中の正極材料としての本発明のリチウム遷移金属系化合物粉体の含有割合は、通常10重量%以上、好ましくは30重量%以上、更に好ましくは50重量%以上であり、通常99.9重量%以下、好ましくは99重量%以下である。正極活物質層中のリチウム遷移金属系化合物粉体の割合が多すぎると正極の強度が不足する傾向にあり、少なすぎると容量の面で不十分となることがある。
【0158】
また、正極活物質層の厚さは、通常10〜200μm程度である。
【0159】
なお、塗布、乾燥によって得られた正極活物質層は、正極活物質の充填密度を上げるために、ローラープレス等により圧密化することが好ましい。
かくして、本発明のリチウム二次電池用正極が調整できる。
【0160】
[リチウム二次電池]
本発明のリチウム二次電池は、リチウムを吸蔵・放出可能な上記の本発明のリチウム二次電池用正極と、リチウムを吸蔵・放出可能な負極と、リチウム塩を電解塩とする非水電解質とを備える。更に、正極と負極との間に、非水電解質を保持するセパレータを備えていても良い。正極と負極との接触による短絡を効果的に防止するには、このようにセパレータを介在させるのが望ましい。
【0161】
〈負極〉
負極は通常、正極と同様に、負極集電体上に負極活物質層を形成して構成される。
負極集電体の材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料や、カーボンクロス、カーボンペーパー等の炭素材料が用いられる。中でも金属材料の場合、金属箔、金属円柱、金属コイル、金属板、金属薄膜等が、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。中でも、金属薄膜が、現在工業化製品に使用されていることから好ましい。なお、薄膜は適宜メッシュ状に形成しても良い。負極集電体として金属薄膜を使用する場合、その好適な厚さの範囲は、正極集電体について上述した範囲と同様である。
【0162】
負極活物質層は、負極活物質を含んで構成される。負極活物質としては、電気化学的にリチウムイオンを吸蔵・放出可能なものであれば、その種類に他に制限はないが、通常は安全性の高さの面から、リチウムを吸蔵、放出できる炭素材料が用いられる。
【0163】
炭素材料としては、その種類に特に制限はないが、人造黒鉛、天然黒鉛等の黒鉛(グラファイト)や、様々な熱分解条件での有機物の熱分解物が挙げられる。有機物の熱分解物としては、石炭系コークス、石油系コークス、石炭系ピッチの炭化物、石油系ピッチの炭化物、或いはこれらピッチを酸化処理したものの炭化物、ニードルコークス、ピッチコークス、フェノール樹脂、結晶セルロース等の炭化物等及びこれらを一部黒鉛化した炭素材、ファーネスブラック、アセチレンブラック、ピッチ系炭素繊維等が挙げられる。中でも黒鉛が好ましく、特に好適には、種々の原料から得た易黒鉛性ピッチに高温熱処理を施すことによって製造された、人造黒鉛、精製天然黒鉛、又はこれらの黒鉛にピッチを含む黒鉛材料等であって、種々の表面処理を施したものが主として使用される。これらの炭素材料は、それぞれ1種を単独で用いても良いし、2種以上を組み合わせて用いても良い。
【0164】
負極活物質として黒鉛材料を用いる場合、学振法によるX線回折で求めた格子面(002面)のd値(層間距離:d002)が、通常0.335nm以上、また、通常0.34nm以下、好ましくは0.337nm以下であるものが好ましい。
【0165】
また、黒鉛材料の灰分が、黒鉛材料の重量に対して通常1重量%以下、中でも0.5重量%以下、特に0.1重量%以下であることが好ましい。
【0166】
更に、学振法によるX線回折で求めた黒鉛材料の結晶子サイズ(Lc)が、通常30nm以上、中でも50nm以上、特に100nm以上であることが好ましい。
【0167】
また、レーザー回折・散乱法により求めた黒鉛材料のメジアン径が、通常1μm以上、中でも3μm以上、更には5μm以上、特に7μm以上、また、通常100μm以下、中でも50μm以下、更には40μm以下、特に30μm以下であることが好ましい。
【0168】
また、黒鉛材料のBET法比表面積は、通常0.5m/g以上、好ましくは0.7m/g以上、より好ましくは1.0m/g以上、更に好ましくは1.5m/g以上、また、通常25.0m/g以下、好ましくは20.0m/g以下、より好ましくは15.0m/g以下、更に好ましくは10.0m/g以下である。
【0169】
更に、黒鉛材料についてアルゴンレーザー光を用いたラマンスペクトル分析を行った場合に、1580〜1620cm−1の範囲で検出されるピークPの強度Iと、1350〜1370cm−1の範囲で検出されるピークPの強度Iとの強度比I/Iが、0以上0.5以下であるものが好ましい。また、ピークPの半価幅は26cm−1以下が好ましく、25cm−1以下がより好ましい。
【0170】
なお、上述の各種の炭素材料の他に、リチウムの吸蔵及び放出が可能なその他の材料の負極活物質として用いることもできる。炭素材料以外の負極活物質の具体例としては、酸化錫や酸化ケイ素などの金属酸化物、Li2.6Co0.4Nなどの窒化物、リチウム単体やリチウムアルミニウム合金等のリチウム合金などが挙げられる。これらの炭素材料以外の材料は、それぞれ1種を単独で用いてもよいし、2種以上を組み合わせて用いても良い。また、上述の炭素材料と組み合わせて用いても良い。
【0171】
負極活物質層は、通常は正極活物質層の場合と同様に、上述の負極活物質と、結着剤と、必要に応じて導電材及び増粘剤とを液体媒体でスラリー化したものを負極集電体に塗布し、乾燥することにより製造することができる。スラリーを形成する液体媒体や結着剤、増粘剤、導電材等としては、正極活物質層について上述したものと同様のものを使用することができる。
【0172】
〈非水電解質〉
非水電解質としては、例えば公知の有機電解液、高分子固体電解質、ゲル状電解質、無機固体電解質等を用いることができるが、中でも有機電解液が好ましい。有機電解液は、有機溶媒に溶質(電解質)を溶解させて構成される。
【0173】
ここで、有機溶媒の種類は特に限定されないが、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等を使用することができる。代表的なものを列挙すると、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、4−メチル−2−ペンタノン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、γ−ブチロラクトン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、ジメチルホルムアミド、ジメチルスルホキシド、リン酸トリメチル、リン酸トリエチル等が挙げられ、これら化合物は、水素原子が一部ハロゲン原子で置換されていてもよい。また、これらの単独若しくは2種類以上の混合溶媒が使用できる。
【0174】
上述の有機溶媒には、電解塩を解離させるために、高誘電率溶媒を含めることが好ましい。ここで、高誘電率溶媒とは、25℃における比誘電率が20以上の化合物を意味する。高誘電率溶媒の中でも、エチレンカーボネート、プロピレンカーボネート、及び、それらの水素原子をハロゲン等の他の元素又はアルキル基等で置換した化合物が、電解液中に含まれることが好ましい。高誘電率溶媒の電解液に占める割合は、好ましくは20重量%以上、更に好ましくは25重量%以上、最も好ましくは30重量%以上である。高誘電率溶媒の含有量が上記範囲よりも少ないと、所望の電池特性が得られない場合がある。
【0175】
また、有機電解液中には、CO、NO、CO、SO等のガスやビニレンカーボネート、ポリサルファイドS2−など、負極表面にリチウムイオンの効率良い充放電を可能にする良好な被膜を形成する添加剤を、任意の割合で添加しても良い。このような添加剤としてはなかでもとりわけビニレンカーボネートが好ましい。
【0176】
さらに、有機電解液中には、ジフルオロリン酸リチウムなど、サイクル寿命や出力特性の向上に効果を発揮する添加剤を任意の割合で添加しても良い。
【0177】
電解塩の種類も特に限定されず、従来公知の任意の溶質を使用することができる。具体例としては、LiClO、LiAsF、LiPF、LiBF、LiB(C、LiBOB、LiCl、LiBr、CHSOLi、CFSOLi、LiN(SOCF、LiN(SO、LiC(SOCF、LiN(SOCF等が挙げられる。これらの電解塩は任意の1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で併用しても良い。
【0178】
電解塩のリチウム塩は電解液中に、通常0.5mol/L以上1.5mol/L以下となるように含有させる。電解液中のリチウム塩濃度が0.5mol/L未満でも1.5mol/Lを超えても、電気伝導度が低下し、電池特性に悪影響を与えることがある。この濃度の下限としては0.75mol/L以上、上限として1.25mol/L以下が好ましい。
【0179】
高分子固体電解質を使用する場合にも、その種類は特に限定されず、固体電解質として公知の任意の結晶質・非晶質の無機物を用いることができる。結晶質の無機固体電解質としては、例えば、LiI、LiN、Li1+xTi2−x(PO(J=Al、Sc、Y、La)、Li0.5−3xRE0.5+xTiO(RE=La、Pr、Nd、Sm)等が挙げられる。また、非晶質の無機固体電解質としては、例えば、4.9LiI−34.1LiO−61B、33.3LiO−66.7SiO等の酸化物ガラス等が挙げられる。これらは任意の1種を単独で用いても良く、2種以上を任意の組み合わせ及び比率で用いても良い。
【0180】
〈セパレータ〉
電解質として前述の有機電解液を用いる場合には、電極同士の短絡を防止するために、正極と負極との間にセパレータが介装される。セパレータの材質や形状は特に制限されないが、使用する有機電解液に対して安定で、保液性に優れ、且つ、電極同士の短絡を確実に防止できるものが好ましい。好ましい例としては、各種の高分子材料からなる微多孔性のフィルム、シート、不織布等が挙げられる。高分子材料の具体例としては、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子が用いられる。特に、セパレータの重要な因子である化学的及び電気化学的な安定性の観点からは、ポリオレフィン系高分子が好ましく、電池におけるセパレータの使用目的の一つである自己閉塞温度の点からは、ポリエチレンが特に望ましい。
【0181】
ポリエチレンからなるセパレータを用いる場合、高温形状維持性の点から、超高分子ポリエチレンを用いることが好ましく、その分子量の下限は好ましくは50万、更に好ましくは100万、最も好ましくは150万である。他方、分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると流動性が低くなりすぎてしまい、加熱された時にセパレータの孔が閉塞しない場合があるからである。
【0182】
〈電池形状〉
本発明のリチウム二次電池は、上述した本発明のリチウム二次電池用正極と、負極と、電解質と、必要に応じて用いられるセパレータとを、適切な形状に組み立てることにより製造される。更に、必要に応じて外装ケース等の他の構成要素を用いることも可能である。
【0183】
本発明のリチウム二次電池の形状は特に制限されず、一般的に採用されている各種形状の中から、その用途に応じて適宜選択することができる。一般的に採用されている形状の例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプなどが挙げられる。また、電池を組み立てる方法も特に制限されず、目的とする電池の形状に合わせて、通常用いられている各種方法の中から適宜選択することができる。
【0184】
以上、本発明のリチウム二次電池の一般的な実施形態について説明したが、本発明のリチウム二次電池は上記実施形態に制限されるものではなく、その要旨を超えない限りにおいて、各種の変形を加えて実施することが可能である。
【実施例】
【0185】
以下に実施例により本発明を更に詳細に説明するが、本発明はその要旨を超えない限り、これらの実施例によってなんら制限されるものではない。
【0186】
[物性の測定方法]
後述の各実施例及び比較例において製造されたリチウム遷移金属系化合物粉体の物性等は、各々次のようにして測定した。
【0187】
<組成(Li/Ni/Mn/Co)>
ICP−AES分析により求めた。
【0188】
<添加元素(Mo,W,Nb,B,Sn)の定量>
ICP−AES分析により求めた。
【0189】
<X線光電子分光法(XPS)による一次粒子表面の組成分析>
Physical Electronics社製 X線光電子分光装置「ESCA−5700」を用い、下記条件で行った。
X線源:単色化AlKα
分析面積:0.8mm径
取り出し角:65°
定量方法:Bls、Mn2p1/2、Co2p3/2、Ni2p3/2、Nb3d、Mo3d、Sn3d5/2、W4f各ピークの面積を感度係数で補正。
(表面スパッタリング)
イオン種:Ar
加速電圧:3kV
イオン電流:6.6nA(実施例3、4、6、比較例2)
4.7nA(実施例1、5、7、8、比較例3、4)
スパッタリングレート:2.29nm/min(SiO換算)
(実施例3、4、6、比較例2)
2.91nm/min(SiO換算)
(実施例1、5、7、8、比較例3、4)
【0190】
<二次粒子のメジアン径>
超音波分散5分後に測定した。
【0191】
<平均一次粒子径>
30,000倍のSEM画像により求めた。
【0192】
<水銀圧入法による各種物性の測定>
水銀圧入法による測定装置としては、Micromeritics社製オートポアIII9420型を用いた。また、水銀圧入法の測定条件としては、室温で3.86kPaから413MPaまで昇圧しながら測定を行った。なお、水銀の表面張力の値としては480dyn/cm、接触角の値としては141.3°を用いた。
【0193】
<嵩密度>
試料粉体4〜10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
【0194】
<比表面積>
BET法により求めた。
【0195】
<含有炭素濃度C>
(株)堀場製作所製EMIA−520炭素硫黄分析計を使用した。数十から100mgの試料を、空焼きした磁性るつぼに秤り取り、助燃剤を加えて、酸素気流中、高周波加熱炉で炭素を燃焼抽出した。燃焼ガス中のCOを、非分散赤外吸光光度法により定量した。感度較正には社団法人日本鉄鋼連盟製150−15低合金鋼1号(C保障値:0.469重量%)を使用した。
【0196】
<体積抵抗率>
粉体抵抗率測定装置(ダイアインスツルメンツ社製:ロレスターGP粉体低効率測定システムPD−41)を用い、試料重量3gとし、粉体用プローブユニット(四探針・リング電極、電極間隔5.0mm、電極半径1.0mm、試料半径12.5mm)により、印加電圧リミッタを90Vとして、種々加圧下の粉体の体積抵抗率[Ω・cm]を測定し、40MPaの圧力下における体積抵抗率の値について比較した。
【0197】
<結晶相(層状構造)の確認、半価幅FWHM(110)の測定
(018)(110)(113)回折ピーク中の異相ピークの有無確認並びに異相ピーク/本来の結晶相ピークの積分強度および積分強度比の算出>
以下に記載のCuKα線を使用した粉末X線回折測定により求めた。各試料で観測された 六方晶系R−3m(No.166)由来の(018)、(110)、(113)回折ピークについて、プロファイルフィッティングを実施し積分強度、積分強度比等を算出した。
・半価幅、面積の算出は、集中法の固定スリットモードで測定した場合の回折パターンを使用
・実際のXRD測定(実施例、比較例)は、可変スリットモードで測定し、可変→固定のデータ変換を実施
・可変→固定の変換は、強度(固定)=強度(可変)/sinθの計算式による
(粉末X線回折測定装置仕様)
装置名:オランダ PANalytical社製 X’Pert Pro MPD
光学系:集中法光学系
(光学系仕様)
入射側:封入式X線管球(CuKα)
Soller Slit(0.04rad)
Divergence Slit (Variable Slit)
試料台:回転試料台(Spinner)
受光側:半導体アレイ検出器(X’Celerator)
Ni−filter
ゴニオ半径:243mm
(測定条件)
X線出力(CuKα):40kV、30mA
走査軸:θ/2θ
走査範囲(2θ):10.0−75.0°
測定モード:Continuous
読込幅:0.015°
計数時間:99.7sec
自動可変スリット(Automatic−DS:10mm(照射幅))
横発散マスク:10mm(照射幅)
【0198】
<スラリー中の粉砕粒子のメジアン径>
公知のレーザー回折/散乱式粒度分布測定装置を用い、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
【0199】
<原料LiCO粉末の平均粒子径としてのメジアン径>
公知のレーザー回折/散乱式粒度分布測定装置(堀場製作所製、LA−920)を用い、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としてエチルアルコールを用い、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。
【0200】
<噴霧乾燥により得られた粒子状粉体の物性>
形態はSEM観察及び断面SEM観察により確認した。平均粒子径としてのメジアン径及び90%積算径(D90)は、公知のレーザー回折/散乱式粒度分布測定装置(堀場製作所製、LA−920)によって、屈折率を1.24に設定し、粒子径基準を体積基準として測定した。また、分散媒としては0.1重量%ヘキサメタリン酸ナトリウム水溶液を用い、0分、1分、3分、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定を行った。比表面積は、BET法により求めた。嵩密度は、試料粉体4〜6gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度として求めた。
【0201】
[リチウム遷移金属系化合物粉体の製造(実施例及び比較例)]
(実施例1)
LiCO、Ni(OH)、Mn、CoOOH、LiWOを、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1720cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が5.4×10Ω・cm、含有炭素濃度Cは0.042重量%、組成がLi1.114(Ni0.453Mn0.450Co0.097)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.097、y=0.003、z=0.114)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は0.62モル%であった。また、平均一次粒子径は0.4μmで、メジアン径は1.4μm、90%積算径(D90)は2.1μm、嵩密度は1.1g/cc、BET比表面積は2.1m/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は9.8倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R/R10は4.4であった。
【0202】
(実施例2)
LiCO、Ni(OH)、Mn、CoOOH、LiWOを、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.01のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1890cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは7×10−3L/minとした(気液比G/S=6429)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が4.7×10Ω・cm、含有炭素濃度Cは0.030重量%、組成がLi1.139(Ni0.450Mn0.452Co0.098)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.098、y=−0.002、z=0.139)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.03モル%であった。また、平均一次粒子径は0.3μmで、メジアン径は2.2μm、90%積算径(D90)は3.9μm、嵩密度は1.0g/cc、BET比表面積は2.9m/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は9.4倍となっていた。
【0203】
(実施例3)
LiCO、Ni(OH)、Mn、CoOOH、LiMoOを、Li:Ni:Mn:Co:Mo=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1710cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が3.6×10Ω・cm、含有炭素濃度Cは0.027重量%、組成がLi1.124(Ni0.452Mn0.450Co0.098)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.098、y=0.002、z=0.124)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Moの含有モル比率は0.48モル%であった。また、平均一次粒子径は0.7μmで、メジアン径は2.0μm、90%積算径(D90)は3.2μm、嵩密度は1.3g/cc、BET比表面積は1.6m/gであった。さらに、粒子全体のMo(モリブデン)の原子比(Mo/(Ni+Mn+Co)に対して、一次粒子表面のMoの原子比は21倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するMoの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するMoの合計の原子比R10との割合R/R10は3.6であった。
【0204】
(実施例4)
LiCO、Ni(OH)、Mn、CoOOH、WOを、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量14重量%、粘度1670cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が5.8×10Ω・cm、含有炭素濃度Cは0.033重量%、組成がLi1.094(Ni0.453Mn0.450Co0.097)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.097、y=0.003、z=0.094)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は0.51モル%であった。また、平均一次粒子径は0.5μmで、メジアン径は1.6μm、90%積算径(D90)は2.4μm、嵩密度は1.0g/cc、BET比表面積は2.2m/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は12倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R/R10は3.3であった。
【0205】
(実施例5)
LiCO、Ni(OH)、Mn、CoOOH、Nbを、Li:Ni:Mn:Co:Nb=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量14重量%、粘度1660cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が4.4×10Ω・cm、含有炭素濃度Cは0.027重量%、組成がLi1.118(Ni0.448Mn0.450Co0.102)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.102、y=−0.002、z=0.118)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Nbの含有モル比率は0.48モル%であった。また、平均一次粒子径は0.6μmで、メジアン径は2.0μm、90%積算径(D90)は3.3μm、嵩密度は1.2g/cc、BET比表面積は1.9m/gであった。さらに、粒子全体のNb(ニオブ)の原子比(Nb/(Ni+Mn+Co)に対して、一次粒子表面のNbの原子比は8.8倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するNbの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するNbの合計の原子比R10との割合R/R10は3.6であった。
【0206】
(実施例6)
LiCO、Ni(OH)、Mn、CoOOH、WOを、Li:Ni:Mn:Co:W=1.12:0.45:0.45:0.10:0.01のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.23μmに粉砕した。
次に、このスラリー(固形分含有量16.5重量%、粘度1650cp)を、四流体ノズル型スプレードライヤー(藤崎電機(株)製:MDP−50型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは1600L/min、スラリー導入量Sは780mL/minとした(気液比G/S=2051)。また、乾燥入り口温度は200℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約370gをアルミナ製角鉢に仕込み、空気雰囲気下、1000℃で2時間焼成(昇温速度:約1.7℃/min.、降温速度:約3.3℃/min.)した後、目通し45μmのパウシフター(ツカサ工業(株)製)を用いて分級し、リチウムニッケルマンガンコバルト複合酸化物粉体を得た。
このリチウムニッケルマンガンコバルト複合酸化物粉体は、組成がLi(Li0.053Ni0.425Mn0.427Co0.095)Oの層状構造を有するリチウムニッケルマンガンコバルト複合酸化物(x=0.100、y=−0.002、z=0.111)であり、(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.01モル%であった。また、平均一次粒子径は0.2μmで、メジアン径は2.7μm、90%積算径(D90)は4.9μm、嵩密度は1.0g/cc、BET比表面積は2.8m/g、体積抵抗率は6.3×10Ω・cm、含有炭素濃度Cは0.031重量%であった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co))に対して、一次粒子表面のWの原子比は7.8倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R/R10は4.5であった。
【0207】
(実施例7)
LiCO、Ni(OH)、Mn、CoOOH、WOを、Li:Ni:Mn:Co:W=1.15:0.475:0.475:0.05:0.015のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.27μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度840cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1050℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が1.5×10Ω・cm、含有炭素濃度は0.063重量%、組成がLi1.149(Ni0.472Mn0.480Co0.048)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.048、y=−0.008、z=0.149)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.47モル%であった。また、平均一次粒径は0.4μmで、メジアン径は3.4μm、90%積算径(D90)は5.8μm、嵩密度は1.0g/cc、BET比表面積は2.5m/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co))に対して、一次粒子表面のWの原子比は11倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R/R10は4.9であった。
【0208】
(実施例8)
焼成温度を1100℃とした以外は、実施例7と同様に作製し、体積抵抗率が4.7×10Ω・cm、含有炭素濃度は0.056重量%、組成がLi1.134(Ni0.472Mn0.480Co0.048)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.048、y=−0.008、z=0.134)を得た。
得られたリチウムニッケルマンガンコバルト複合酸化物粉体の(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は1.47モル%であった。また、平均一次粒径は0.4μmで、メジアン径は3.9μm、90%積算径(D90)は6.3μm、嵩密度は1.2g/cc、BET比表面積は2.0m/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co))に対して、一次粒子表面のWの原子比は14倍となっていた。また、粒子最表面における(Ni,Mn,Co)の合計に対するWの原子比Rと、粒子表面から深さ10nmにおける(Ni,Mn,Co)の合計に対するWの合計の原子比R10との割合R/R10は4.8であった。
【0209】
(比較例1)
LiCO、Ni(OH)、Mn、CoOOHを、Li:Ni:Mn:Co=1.10:0.45:0.45:0.10のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量13重量%、粘度1350cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が2.7×10Ω・cm、含有炭素濃度Cは0.023重量%、組成がLi1.096(Ni0.458Mn0.444Co0.098)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.098、y=0.016、z=0.096)を得た。この平均一次粒子径は0.6μmで、メジアン径は3.0μm、90%積算径(D90)は5.1μm、嵩密度は1.2g/cc、BET比表面積は1.7m/gであった。
【0210】
(比較例2)
LiCO、Ni(OH)、Mn、CoOOH、LiWOを、Li:Ni:Mn:Co:W=1.10:0.45:0.45:0.10:0.02のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.13μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1910cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは7×10−3L/minとした(気液比G/S=6429)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が1.1×10Ω・cm、含有炭素濃度Cは0.050重量%、組成がLi1.124(Ni0.457Mn0.446Co0.097)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.097、y=0.012、z=0.124)を得た。また、(Ni,Mn,Co)トータルのモル比を1とした時、Wの含有モル比率は2.06モル%であった。この平均一次粒子径は0.2μmで、メジアン径は0.8μm、90%積算径(D90)は1.3μm、嵩密度は0.9g/cc、BET比表面積は3.8m/gであった。さらに、粒子全体のW(タングステン)の原子比(W/(Ni+Mn+Co)に対して、一次粒子表面のWの原子比は6.0倍となっていた。
【0211】
(比較例3)
LiCO、Ni(OH)、Mn、CoOOH、Liを、Li:Ni:Mn:Co:B=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.16μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1460cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が5.3×10Ω・cm、含有炭素濃度Cは0.047重量%、組成がLi1.096(Ni0.450Mn0.451Co0.099)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.099、y=−0.001、z=0.096)を得た。また、(Ni,Mn,Co)トータルのモル比を1とした時、Bの含有モル比率は0.24モル%であった。この平均一次粒子径は1.0μmで、メジアン径は5.9μm、90%積算径(D90)は8.9μm、嵩密度は1.8g/cc、BET比表面積は0.8m/gであった。さらに、粒子全体のB(ホウ素)の原子比(B/(Ni+Mn+Co)に対して、一次粒子表面のBの原子比は213倍となっていた。
【0212】
(比較例4)
LiCO、Ni(OH)、Mn、CoOOH、SnOを、Li:Ni:Mn:Co:Sn=1.10:0.45:0.45:0.10:0.005のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.17μmに粉砕した。
次に、このスラリー(固形分含有量14重量%、粘度1580cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは6×10−3L/minとした(気液比G/S=7500)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1000℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が3.1×10Ω・cm、含有炭素濃度Cは0.028重量%、組成がLi1.083(Ni0.448Mn0.456Co0.096)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.096、y=−0.009、z=0.083)を得た。また、(Ni,Mn,Co)トータルのモル比を1とした時、Snの含有モル比率は0.49モル%であった。この平均一次粒子径は0.5μmで、メジアン径は3.8μm、90%積算径(D90)は6.2μm、嵩密度は1.1g/cc、BET比表面積は1.7m/gであった。さらに、粒子全体のSn(スズ)の原子比(Sn/(Ni+Mn+Co)に対して、一次粒子表面のSnの原子比は3.5倍となっていた。
【0213】
(比較例5)
LiCO、Ni(OH)、Mn、CoOOHを、Li:Ni:Mn:Co=1.15:0.475:0.475:0.05のモル比となるように秤量し、混合した後、これに純水を加えてスラリーを調製した。このスラリーを攪拌しながら、循環式媒体攪拌型湿式粉砕機を用いて、スラリー中の固形分をメジアン径0.25μmに粉砕した。
次に、このスラリー(固形分含有量15重量%、粘度1450cp)を、二流体ノズル型スプレードライヤー(大川原化工機(株)製:LT−8型)を用いて噴霧乾燥した。この時の乾燥ガスとして空気を用い、乾燥ガス導入量Gは45L/min、スラリー導入量Sは7×10−3L/minとした(気液比G/S=6429)。また、乾燥入り口温度は150℃とした。スプレードライヤーにより噴霧乾燥して得られた粒子状粉末、約15gをアルミナ製るつぼに仕込み、空気雰囲気下、1050℃で6時間焼成(昇降温速度3.33℃/min.)した後、解砕して、体積抵抗率が2.1×10Ω・cm、含有炭素濃度は0.037重量%、組成がLi1.106(Ni0.481Mn0.471Co0.048)Oのリチウムニッケルマンガンコバルト複合酸化物(x=0.048、y=0.011、z=0.106)を得た。得られたリチウムニッケルマンガンコバルト複合酸化物粉体の平均一次粒径は1.5μmで、メジアン径は6.2μm、90%積算径(D90)は9.5μm、嵩密度は1.9g/cc、BET比表面積は0.8m/gであった。
【0214】
上記、実施例及び比較例で製造したリチウム遷移金属系化合物粉体の組成及び物性値を、表1、表2、表3、及び表4に示す。また、焼成前駆体である噴霧乾燥体の粉体性状を表5に示す。
【0215】
また、実施例1〜8及び比較例1〜5で製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の細孔分布曲線を、図1〜13にそれぞれ示し、SEM画像(写真)(倍率×10,000)を図14〜26にそれぞれ示し、粉末X線回折パターンを図27〜39にそれぞれ示す。また、実施例1,3〜8及び比較例2〜4で製造されたリチウムニッケルマンガンコバルト複合酸化物粉体の粒子表面から深さ方向への添加元素の濃度分布を示すグラフを図40〜49にそれぞれ示す。
【0216】
【表1】

【0217】
【表2】

【0218】
【表3】

【0219】
【表4】

【0220】
【表5】

【0221】
〔電池の作製及び評価〕
上述の実施例1〜8及び比較例1〜5で製造したリチウム遷移金属系化合物粉体をそれぞれ正極材料(正極活物質)として用いて、以下の方法によりリチウム二次電池を作製し、評価を行った。
【0222】
(1)レート試験:
実施例1〜8及び比較例1〜5で製造したリチウム遷移金属系化合物粉体の各々75重量%と、アセチレンブラック20重量%、ポリテトラフルオロエチレンパウダー5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφのポンチを用いて打ち抜いた。この際、全体重量は約8mgになるように調整した。これをアルミニウムエキスパンドメタルに圧着して、9mmφの正極とした。
【0223】
この9mmφの正極を試験極とし、リチウム金属板を対極とし、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPFを1mol/Lで溶解した電解液を用い、厚さ25μmの多孔性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。
【0224】
得られたコイン型セルについて、初期2サイクルは、充電上限電圧を4.4Vに設定して定電流・定電圧充電(電流密度:0.137mA/cm(0.1C)で4.4Vまで定電流充電後、0.01Cとなるまで定電圧充電)を行った後、放電下限電圧を3.0Vに設定して定電流放電(電流密度0.137mA/cm(0.1C))を行った。さらに3〜10サイクル目を、0.2Cの定電流・定電圧充電(0.2Cで4.4Vまで定電流充電後、0.01Cとなるまで定電圧充電)、0.1C、0.2C、0.5C、1C、3C、5C、7C、及び9Cの各定電流放電での試験を行った。ただし、1C相当の電流は、活物質1g当たり150mAと仮定した。この時の1サイクル目の0.1C放電容量(mAh/g)(初回放電容量)、3サイクル目の0.1C放電容量(mAh/g)(3サイクル目放電容量)[a])、6サイクル目の1C放電容量(mAh/g)(6サイクル目放電容量[b])、及び10サイクル目の9C放電容量(mAh/g))(10サイクル目放電容量[c])を調べ、結果を表6に示した。
【0225】
なお、実施例の合格判定基準として、前記1サイクル目の初期放電容量が172mAh/g以上、3サイクル目の0.1C放電容量が172mAh/g以上、6サイクル目の1C放電容量が160mAh/g以上、10サイクル目の9C放電容量が120mAh/g以上を設定した。
【0226】
(2)低温負荷特性試験:
実施例1〜8及び比較例1〜5で製造した層状リチウムニッケルマンガンコバルト複合酸化物粉体を各々75重量%、アセチレンブラック20重量%、ポリテトラフルオロエチレンパウダー5重量%の割合で秤量したものを乳鉢で十分混合し、薄くシート状にしたものを9mmφ及び12mmφのポンチを用いて打ち抜いた。この際、全体重量は各々約8mg、約18mgになるように調整した。これをアルミニウムエキスパンドメタルに圧着して、9mmφ及び12mmφの正極とした。9mmφのものを「正極A」、12mmφのものを「正極B」という。
【0227】
9mmφの正極Aを試験極とし、リチウム金属板を対極とし、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPFを1mol/Lで溶解した電解液を用い、厚さ25μmの多孔性ポリエチレンフィルムをセパレータとしてコイン型セルを組み立てた。
【0228】
得られたコイン型セルについて、0.2mA/cmの定電流定電圧充電、即ち正極からリチウムイオンを放出させる反応を上限4.2Vで行った。次いで0.2mA/cm、正極活物質単位重量当たりの初期充電容量をQs(C)[mAh/g]、初期放電容量をQs(D)[mAh/g]とした。
【0229】
負極活物質として平均粒子径8〜10μmの黒鉛粉末(d002=3.35Å)、バインダーとしてポリフッ化ビニリデンをそれぞれ用い、これらを重量比で92.5:7.5の割合で秤量し、これをN−メチルピロリドン溶液中で混合し、負極合剤スラリーとした。このスラリーを20μmの厚さの銅箔の片面に塗布し、乾燥して溶媒を蒸発させた後、12mmφに打ち抜き、0.5ton/cm(49MPa)でプレス処理をしたものを負極Bとした。この時、電極上の負極活物質の量は約7mgになるように調節した。
【0230】
なお、この負極Bを試験極とし、リチウム金属を対極として電池セルを組み、0.2mA/cm−3mVの定電流−定電圧法(カット電流0.05mA)で負極にリチウムイオンを吸蔵させる試験を下限0Vで行った際の、負極活物質単位重量当たりの初期吸蔵容量をQf[mAh/g]とした。
【0231】
上記正極Bと負極Bを組み合わせ、コインセルを使用して試験用電池を組み立て、その電池性能を評価した。即ち、コインセルの正極缶の上に、作製した上述の正極Bを置き、その上にセパレータとして厚さ25μmの多孔性ポリエチレンフィルムを置き、ポリプロピレン製ガスケットで押さえた後、非水電解液として、EC(エチレンカーボネート):DMC(ジメチルカーボネート):EMC(エチルメチルカーボネート)=3:3:4(容量比)の溶媒にLiPFを1moll/Lで溶解した電解液を用い、これを缶内に加えてセパレータに十分染み込ませた後、上述の負極Bを置き、負極缶を載せて封口し、コイン型のリチウム二次電池を作製した。なお、この時、正極活物質の重量と負極活物質重量のバランスは、ほぼ以下の式を満たすように設定した。
正極活物質重量[g]/負極活物質重量[g]
=(Qf[mAh/g]/1.2)Qs(C)[mAh/g]
【0232】
こうして得られた電池の低温負荷特性を測定するため、電池の1時間率電流値、即ち1Cを下式の様に設定し、以下の試験を行った。
1C[mA] = Qs(D)×正極活物質重量[g]/h
【0233】
まず、室温で定電流0.2C充放電2サイクル及び定電流1C充放電1サイクルを行った。なお、充電上限は4.1V、下限電圧は3.0Vとした。次に、1/3C定電流充放電により、充電深度40%に調整したコインセルを−30℃の低温雰囲気に1時間以上保持した後、定電流0.5C[mA]で10秒間放電させた時の10秒後の電圧をV[mV]、放電前の電圧をV[mV]とした時、ΔV=V−Vとして下式より抵抗値R[Ω]を算出した。
R[Ω] = ΔV[mV]/0.5C[mA]
【0234】
表6に、実施例1〜8及び比較例1〜5のリチウムニッケルマンガンコバルト複合酸化物をそれぞれ正極活物質とした使用した電池で測定した抵抗値を示す。抵抗値が小さい程、低温負荷特性が良好であることを表す。なお、実施例の合格判定基準として、該抵抗値が480Ω以下であることを設定した。
【0235】
【表6】

【0236】
表6より、本発明のリチウム二次電池正極材料用リチウムニッケルマンガンコバルト系複合酸化物粉体等によれば、負荷特性に優れたリチウム二次電池を実現することができることが分かる。

【特許請求の範囲】
【請求項1】
リチウムイオンの挿入・脱離が可能な機能を有するリチウム遷移金属系化合物を主成分とし、該主成分原料に、焼成時の粒成長や焼結を抑制する添加剤の少なくとも1種以上を、主成分原料中の遷移金属元素の合計モル量に対して0.01モル%以上、2モル%未満の割合で添加した後、焼成されたものであることを特徴とするリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項2】
前記添加剤が、Mo、W、Nb、Ta、及びReから選ばれる少なくとも一種以上の元素(以下「添加元素」と称す。)を含有する酸化物であることを特徴とする請求項1に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項3】
一次粒子の表面部分のLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比が、粒子全体の該原子比の5倍以上であることを特徴とする請求項2に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項4】
前記添加剤が金属元素(以下「添加元素」と称す。)を含有し、粒子最表面におけるLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比Rと、粒子表面から深さ10nmにおけるLi及び前記添加元素以外の金属元素の合計に対する該添加元素の合計の原子比R10との割合R/R10が、3倍以上であることを特徴とする請求項1ないし3のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項5】
前記添加剤が金属元素(以下「添加元素」と称す。)を含有し、該添加元素が、粒子表面から深さ方向に非直線的な濃度勾配を持って存在する連続的組成傾斜構造を有することを特徴とする請求項1ないし4のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項6】
レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定されたメジアン径が0.1μm以上、5μm未満であることを特徴とする請求項1ないし5のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項7】
一次粒子の平均径が0.1μm以上、0.9μm以下であることを特徴とする請求項1ないし6のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項8】
BET比表面積が1.5m/g以上、5m/g以下であることを特徴とする請求項1ないし7のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項9】
水銀圧入法による水銀圧入曲線において、圧力3.86kPaから413MPaまでの昇圧時における水銀圧入量が、0.7cm/g以上、1.5cm/g以下であることを特徴とする請求項1ないし8のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項10】
水銀圧入法による細孔分布曲線が、細孔半径300nm以上、1000nm以下にピークトップが存在するメインピークを少なくとも1つ以上有し、かつ細孔半径80nm以上、300nm未満にピークトップが存在するサブピークを有さないことを特徴とする請求項1ないし9のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項11】
水銀圧入法による細孔分布曲線において、細孔半径300nm以上、1000nm以下にピークトップが存在するピークに係る細孔容量が0.4cm/g以上、1cm/g以下であることを特徴とする請求項1ないし10のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項12】
嵩密度が0.5g/cm以上、1.7g/cm以下であることを特徴とする請求項1ないし11のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項13】
40MPaの圧力で圧密した時の体積抵抗率が1×10Ω・cm以上、1×10Ω・cm以下であることを特徴とする請求項1ないし12のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項14】
層状構造に帰属する結晶構造を含んで構成されるリチウムニッケルマンガンコバルト系複合酸化物を主成分としたことを特徴とする請求項1ないし13のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項15】
組成が、下記組成式(I)で示されることを特徴とする請求項14に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
LiMO …(I)
(ただし、上記式(I)中、Mは、Li、Ni及びMn、或いは、Li、Ni、Mn及びCoから構成される元素であり、Mn/Niモル比は0.3以上、5以下、Co/(Mn+Ni+Co)モル比は0以上、0.30以下、M中のLiモル比は0.001以上、0.2以下である。)
【請求項16】
酸素含有ガス雰囲気下において、焼成温度900℃以上で焼成されたものであることを特徴とする請求項14又は15に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項17】
含有炭素濃度をC(重量%)とした時、C値が0.005重量%以上、0.25重量%以下であることを特徴とする請求項14ないし16のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項18】
前記組成式(I)中のMが、下記式(II)で表されることを特徴とする請求項15ないし17のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
M=Liz/(2+z){(Ni(1+y)/2Mn(1−y)/21−xCo2/(2+z) …(II)
(ただし、上記式(II)中、
0≦x≦0.1
−0.1≦y≦0.1、
(1−x)(0.05−0.98y)≦z≦(1−x)(0.20−0.88y)
である。)
【請求項19】
CuKα線を使用した粉末X線回折測定において、回折角2θが64.5°付近に存在する(110)回折ピークの半価幅をFWHM(110)とした時に、0.01≦FWHM(110)≦0.2で表されることを特徴とする請求項18に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
【請求項20】
CuKα線を使用した粉末X線回折測定において、回折角2θが64°付近に存在する(018)回折ピーク、64.5°付近に存在する(110)回折ピーク、及び68°付近に存在する(113)回折ピークにおいて、それぞれのピークトップよりも高角側に、異相由来の回折ピークを持たないか、或いは異相由来の回折ピークを有する場合、本来の結晶相の回折ピークに対する異相ピークの積分強度比が、各々、以下の範囲内にあることを特徴とする請求項18又は19に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体。
0≦I018/I018≦0.30
0≦I110/I110≦0.25
0≦I113/I113≦0.30
(ここで、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークの積分強度を表し、I018、I110、I113は、それぞれ(018)、(110)、(113)回折ピークのピークトップよりも高角側に現れる異相由来の回折ピークの積分強度を表す。)
【請求項21】
リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを得るスラリー調製工程と、得られたスラリーを噴霧乾燥する噴霧乾燥工程と、得られた噴霧乾燥粉体を焼成する焼成工程とを含むことを特徴とする請求項1ないし20のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
【請求項22】
スラリー調製工程において、リチウム化合物と、前記遷移金属化合物と、前記添加剤とを、液体媒体中で、レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定するメジアン径が0.4μm以下になるまで粉砕し、噴霧乾燥工程において、噴霧乾燥時のスラリー粘度をV(cp)、スラリー供給量をS(L/min)、ガス供給量をG(L/min)とした際、50cp≦V≦4000cp、500≦G/S≦10000となる条件で噴霧乾燥を行うことを特徴とする請求項21に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
【請求項23】
前記遷移金属化合物として少なくともニッケル化合物、マンガン化合物及びコバルト化合物を含み、前記焼成工程において、前記噴霧乾燥粉体を、酸素含有ガス雰囲気下、970℃以上で焼成することを特徴とする請求項21又は22に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
【請求項24】
リチウム化合物が炭酸リチウムであることを特徴とする請求項21ないし23のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体の製造方法。
【請求項25】
リチウム化合物と、V、Cr、Mn、Fe、Co、Ni、及びCuから選ばれる少なくとも1種類以上の遷移金属化合物と、焼成時の粒成長及び焼結を抑制する添加剤とを、液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥して得られる、リチウム二次電池正極材料用リチウム遷移金属系化合物粉体の前駆体となる噴霧乾燥体であって、レーザー回折/散乱式粒度分布測定装置によって、屈折率を1.24に設定し、粒子径基準を体積基準として、5分間の超音波分散(出力30W、周波数22.5kHz)後に測定された該噴霧乾燥体のメジアン径が0.01μm以上、4μm以下であることを特徴とする噴霧乾燥体。
【請求項26】
BET比表面積が10m/g以上、100m/g以下であることを特徴とする請求項25に記載の噴霧乾燥体。
【請求項27】
請求項1ないし20のいずれか1項に記載のリチウム二次電池正極材料用リチウム遷移金属系化合物粉体と結着剤とを含有する正極活物質層を集電体上に有することを特徴とするリチウム二次電池用正極。
【請求項28】
リチウムを吸蔵・放出可能な負極、リチウム塩を含有する非水電解質、及びリチウムを吸蔵・放出可能な正極を備えたリチウム二次電池であって、正極として請求項27に記載のリチウム二次電池用正極を用いたことを特徴とするリチウム二次電池。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate


【公開番号】特開2011−3551(P2011−3551A)
【公開日】平成23年1月6日(2011.1.6)
【国際特許分類】
【出願番号】特願2010−192120(P2010−192120)
【出願日】平成22年8月30日(2010.8.30)
【分割の表示】特願2007−278871(P2007−278871)の分割
【原出願日】平成19年10月26日(2007.10.26)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】