説明

レール緊張ガス圧接工法

【課題】ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、作業時間と作業量を簡略化し、且つ、接合部の信頼を高めることができるレール緊張ガス圧接工法を提供する。
【解決手段】ガス圧接終了後の緊張器外側レールの計画軸力と同じ大きさの軸力が生じるように一定の圧力γをガス圧接機により与えるとともに、緊張器の外側に位置するレールに対しては、当接時の緊張力に加算して、ガス圧接圧力から既に前記内側に位置するレールに与えられた圧力γを引いたレール圧接力βを付加した一定の圧接緊張力をレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行うことで当接部のレール突き合わせ面の温度が十分な接合可能温度に達した時期に当接部を潰すことができ、接合品質の向上を図る。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法に関し、更に詳しくは、中位温度で敷設したロングレールの一部を冬場に切断し、新しいレールに交換する必要が生じた時、ロングレールの切断箇所と交換レールとを接合させる工法に関する。
【背景技術】
【0002】
ロングレールを敷設する場合、気温の変化に伴うレールの膨張、縮みを考慮して夏と冬の中間の気候である中位温度のとき敷設する事によりレールの内部圧力である軸力を最小限にしている。
ロングレールには伸縮を行う両側の可動区間と、レールが伸びたり縮まろうとする力よりもコンクリート枕木等の締結装置による抵抗力の方が高く伸縮が行われない不動区間とがある。この不動区間では、冬は縮まろうとする内部圧力が、夏は伸びようとする内部圧力としてのレール軸力が生じる。
中位温度で敷設したロングレールの不動区間に亀裂等が生じたとき、冬場においてこの不良部分を切断するとレールの軸力は0になりレール切断箇所が大きく開く。従って新しいレールを接続する場合、もとのレール軸力になるよう新しいレールに圧力を加えて接続する必要があった。
【0003】
従来、冬場においてレールを交換する場合、図11(A)(B)に示すように不良個所1を含むレール2を枕木間の中央位置A,Bで切断して取り外す。
次に、切断部分の外側のレールR1とR2にレール同士を引張る機械であるレール緊張器により所定の圧力を加えた後、レール2より少し短いレール3をレール2のあった箇所に挿入して、切断位置A、BとレールR1、R2との間隙に金属4を溶け込ませて繋ぐ置き継ぎ方法が従来より存在する。
【0004】
また、特許文献1に示すように、レール2とほぼ同じ長さのレール3の一端をロングレールの切断箇所の一方に接合し、レール3の他端を所定のレール軸力(計画軸力)まで徐々に緊張させる(緊張力を与える)と共に、レール3の他端が前記ロングレールの切断箇所の他方に当接する以降に、緊張させる圧力にレール圧接圧力を付加した圧力を与え、前記レール3と前記ロングレールの切断部分を加熱してレール圧接を行い、緊張力が前記レール軸力(計画軸力)に達したとき接続部分の加熱を止めてレール圧接を行い、その後、枕木に締結装置でレール締結をする方法が提案されている。
【特許文献1】特公平2−36355
【発明の開示】
【発明が解決しようとする課題】
【0005】
しかしながら、上記従来の前者の方法であると、レール間にレールとは異なる溶接金属を溶け込ませて接合するため接合面では異なる金属が接しており、溶接性が悪く接合箇所の疲労強度が低いという問題点があった。
【0006】
また、特許文献1に記載の方法は、緊張力が前記レール軸力に達したとき接続部分の加熱を止めてレール圧接を行う方法であるので、レールを圧接したあと緊張させている圧力からレール圧接圧力を取り除くため、緊張器内のレール3の軸力は0tonfになる。
このため、緊張器を解体してレールから外すと、レール3の軸力0tonf と緊張器の外側で緊張したレールR1、R2の軸力が相殺し合って、レール3付近の軸力は緊張器で設定した計画軸力より低くなるという現象が生じる。
【0007】
具体的な例について、図12のロングレールの軸力分布図を用いて説明する。
図12の縦軸は軸力、横軸は長さで、下線が軸力0tonf、軸力面積は軸力×長さで表わす。なお、図の両側のレールは接続されていない。また、軸力150、可動区間151とした場合、可動区間151はレールが可動する区間で軸力150を抵抗力γ(道床縦抵抗力とも言う)で除した値となる。不動区間152は、レールが全く動かない区間である(図12(a))。
【0008】
ここで、不動区間152の中間部にレール傷Aが発生し、レール傷Aを含むレールをレール156に交換する場合、まず、レール傷Aの近くを切断すると、不動区間152には軸力150があるのでその大きさに応じた分レールが開口し、切断端面の両側には可動区間151が生じる(図12(b))。
【0009】
次にレール傷Aを含むレールを撤去し、新レール156を挿入する。この時、接合部159ではガス圧接するため、ガス圧接機が取り付けられるようにレール158の範囲のレール締結を解体しておく、また、接合部162では緊張器を取り付けるためレール157の範囲のレール締結を解体しておく。これにより、レール157〜158の区間の軸力は0tonfになる。
そして、接合部159で通常のガス圧接を行い接合する(図12(c))。
【0010】
次に、既設レール位置160と新レール156の位置161に緊張器を取り付け、その内側に圧接機を取り付ける。そして、緊張器で軸力を徐々に上げ、既設レール位置160側のレール端と新レール端156が当接して接触した時は、その軸力に圧接圧力(γ+β)を加えてガス圧接機で接合部162を加熱し、接合部162のガス圧接を行い、緊張器の軸力が外気温から計算した所定の計画軸力150+圧接圧力を加えた値になった時、加熱を止め接合部162のガス圧接を終了し、緊張器の軸力から圧接圧力(γ+β)を抜き、計画軸力150だけ残すようにする。この時、緊張器内側のレール163の軸力は0tonfになる(図12(e))。
その後、ガス圧接に際して軸力が変化した緊張器の外側の区間B〜D、E〜Gのレール締結を一旦解体し、その間の軸力を木ハンマー等でレールを叩いて均等化した後、再締結する軸力均等化処理が行われる。その後、ガス圧接部162が300℃に低下してから緊張器を解体する。
【0011】
緊張器を解体すると緊張器端から不動区間長151に相当する区間C〜D、E〜Fのレールが、軸力のない緊張器内側レール163の影響を受ける。
すなわち、区間C〜F間では区間C〜D、E〜F間の計画軸力150と、区間D〜E間の0tonfの軸力が平均化され、結果的に 区間C〜F間で軸力不足168が残るという問題があった。
軸力が不足すると、夏期にレール温度が上昇した際のレール張り出し等の原因になりロングレールの保守上好ましくない。
なお、区間B〜C、F〜Gは可動区間長151より遠いのでその影響を受けない。
【0012】
この軸力不足168を解消するため、ガス圧接終了後に緊張器に残す軸力を外気温から計算した所定の計画軸力150ではなく、図12(b)に示す、レール切断時のレール端面153と154同士が合致した時に生じる軸力を算出し、それを保持軸力とする方法が現在取られている。これについて具体的に図13のロングレールの軸力分布図から説明する。
図13(a)は、接合部162のガス圧接が終了した状態である。レール切断時のレール端面153と154同士が合致した時に生じる軸力を緊張器に保持しているので、緊張器内側のレール163を軸力150にするための軸力面積164は、区間B〜D、E〜Gの軸力面積168、169、170、171に相当する。
軸力面積168、169、170、171の軸力172の大きさは、緊張器内の長さ163に軸力150を乗じた値を、区間B〜DとE〜Gの合計長さで除して算出される。つまり、ガス圧接終了後の緊張器の軸力173は軸力150より軸力172だけ大きい(図13(a))。
【0013】
また、緊張器を解体したときに生じるレール可動区間175は、軸力173を抵抗力γ(道床縦抵抗力とも言う)で除した値なので、可動区間151より長くなっている(図13の(b))。
緊張器を解体すると緊張器端から不動区間長175に相当する区間C”〜D、E〜F”のレール軸力と、区間D〜E間の軸力0tonfとが平均化される。しかし、区間B〜C’とF’〜Gは不動区間長175より遠いのでその影響を受けないので軸力173が残る。
つまり、区間D〜Eでは軸力面積181が不足し、区間B〜C’とF’〜Gには所定の軸力150より高い軸力173が残る問題があった(図13(c))。ロングレールの一部分だけ軸力が不足すると、夏期にレール温度が上昇した際のレール張り出し等の原因になりロングレールの保守上好ましくない。また、ロングレールの一部分だけ軸力が大きくなると、万一その部分のレールが破断したときのレール開口量が保守基準値より大きくなり、これもロングレールの保守上好ましくない。
このため、緊張ガス圧接後に緊張器外のレールを所定の長さだけ軸力均等化処理を行い、その後、緊張器を解体する工法において、緊張器を解体した後に、緊張していたロングレールに軸力不足が生じないこと、また、軸力が大きくなる区間が生じる場合でも、最小の軸力増加になる方法が求められていた。
【0014】
また、特許文献1に記載の工法においては、緊張器により所定の軸力及び計画軸力を与えるために、交換レールの他端がロングレールの切断箇所の他方に当接した時の緊張器圧力に圧接圧力を付加し、緊張器の圧力を上げながら当接部のバーナー加熱を行う時に、圧力の上げ具合によってレール当接部は、その温度が十分に上がらない状態で所定の圧接圧力より高い圧力を受ける場合があった。この様になると、当接部のレール突き合わせ面の温度が十分な接合可能温度に達しない時期に、当接部が潰されてしまうため接合不良が生じ易かった。
【0015】
また、従来法及び特許文献1の工法においては、レール圧接後に緊張器内のレールの軸力が0tonfになる事を見越して、その分の圧力を緊張器で緊張器前後のレールに付加した場合、本来の軸力よりも大きな力が緊張器前後のレールに作用するため、緊張器を取り付ける前にはレールを締結している枕木が緊張器により引っ張られないように長めに解体する必要があった。
【0016】
さらに圧接終了後には、レール締結解体箇所の両端から、設定軸力を道床縦抵抗値( 軌道構造にもよるが一般に0.6〜1.0tonf )で除した長さに対応するレール締結装置を一旦解体して、緊張器外側のレール軸力をそのレール全長に均等分散・再締結する軸力均等化処理が行われる。
この軸力均等化処理を行うレール長さは、緊張器で設定する軸力の大きさに比例して長くなるので、緊張器内のレールの軸力が0tonfになる事を見越して、その分の圧力を緊張器前後のレールR1、R2に付加すると、軸力均等化処理の作業時間や作業量が増大するという問題があった。
【0017】
本発明は、上記実情に鑑みてなされたもので、不良個所が生じたレールを中位温度以下において交換する際、交換するレール及びその前後のレールに所定の軸力を均一に与えると共に、その作業時間と作業量を簡略化し、夏場になってレールの膨張が働いてもレール設定替えをする必要がなく、しかも、接合部の信頼性を高めることができるレール緊張ガス圧接工法を提供することを目的とする。
【課題を解決するための手段】
【0018】
上記目的を達成するため請求項1のレール緊張ガス圧接工法は、ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、次の各工程を含むことを特徴としている。
先ず、前記切断されたレールのレール端面同士を合致させた場合に生じる軸力を保持軸力として算出しておく。
交換レールの一端をロングレールの切断箇所の一方に接合し、交換レールの他端とロングレールの切断箇所の他方の間にレール緊張器及びガス圧接機を架設し、レール同士間に徐々に増加する緊張力を与える第1の工程(図1のイ部分)。
前記レール同士間が当接する以降に前記ガス圧接機によりガス圧接を行うに際して、前記レール緊張器の内側に位置するレールに対しては、一定の圧力(γ)をガス圧接機により与えるとともに、緊張器の外側に位置するレールに対しては、当接時の緊張力に加算して、ガス圧接圧力から既に前記内側に位置するレールに与えられた圧力(γ)を引いたレール圧接力(β)を付加した一定の圧接緊張力をレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う第2の工程(図1のロ部分)。
前記レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う第3の工程(図1のハ部分)。
前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にレール圧接力(β)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力を加えた圧力のみを与えるとともに、前記レール緊張器の内側に位置するレールに対して前記圧力(γ)をガス圧接機により与え続けることにより、緊張器外側の所定の長さのレールに軸力均等化処理を行う第4の工程(図1のニ部分)。
前記レール圧接によるガス圧接部が300℃以下になった後にレール間における緊張器とガス圧接機の架設を解体し、前記保持軸力がレールに生じるようにする第5の工程。
【0019】
請求項2のレール緊張ガス圧接工法は、ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、次の各工程を含むことを特徴としている。
先ず、前記切断されたレールのレール端面同士を合致させた場合に生じる軸力を保持軸力として算出しておく。
交換レールの一端をロングレールの切断箇所の一方に接合し、交換レールの他端とロングレールの切断箇所の他方の間にレール緊張器及びガス圧接機を架設し、レール同士間に徐々に増加する緊張力を与える第1の工程(図6のイ部分)。
前記レール同士間が当接する以降に前記ガス圧接機によりガス圧接を行うに際して、緊張器の外側に位置するレールに対して、当接時の緊張力に加算して一定の圧力(γ)が付加されたガス圧接圧力(β+γ)を一定の圧接緊張力としてレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う第2の工程(図6のロ部分)。
前記レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う第3の工程(図6のハ部分)。
前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にガス圧接圧力(β+γ)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β+γ)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力を加えた圧力のみを与えるとともに、前記レール緊張器の内側に位置するレールに対して前記圧力(γ)に等しい圧力を圧力付加手段により与えることにより、緊張器外側の所定の長さのレールに軸力均等化処理を行う第4の工程(図6のニ部分)。
前記レール圧接によるガス圧接部が300℃以下になった後にレール間における緊張器とガス圧接機の架設を解体し、前記保持軸力がレールに生じるようにすする第5の工程。
【0020】
請求項3のレール緊張ガス圧接工法は、ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、次の各工程を含むことを特徴としている。
先ず、前記切断されたレールのレール端面同士を合致させた場合に生じる軸力を保持軸力として算出する一方、
交換レールの一端をロングレールの切断箇所の一方に接合し、交換レールの他端とロングレールの切断箇所の他方の間にレール緊張器及びガス圧接機を架設し、レール同士間に徐々に増加する緊張力を与える第1の工程(図7のイ部分)。
前記レール同士間が当接する以降に前記ガス圧接機によりガス圧接を行うに際して、緊張器の外側に位置するレールに対して、当接時の緊張力に加算して一定の圧力(γ)が付加されたガス圧接圧力(β+γ)を一定の圧接緊張力としてレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う第2の工程(図7のロ部分)。
前記レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う第3の工程(図7のハ部分)。
前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にガス圧接圧力(β+γ)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β+γ)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力が付加された圧力に新たに均衡軸力αを加えた圧力を与えることで、緊張器外側の所定の長さのレールに軸力均等化処理を行う第4の工程(図7のニ部分)。
前記レール圧接によるガス圧接部が300℃以下になった後に、緊張器による均衡軸力αの付与を停止し、レール間における緊張器とガス圧接機の架設を解体し、前記保持軸力がレールに生じるようにする第5の工程。
【0021】
請求項4は、請求項1乃至請求項3のレール緊張ガス圧接工法において、前記第3の工程においてレール当接部分を加熱してレール圧接を行うに際し、当接部分に常時一定の圧接圧力が生じるように、前記圧接緊張力が制御されたことを特徴としている。
【0022】
請求項5は、請求項1乃至請求項3のレール緊張ガス圧接工法において、前記保持軸力について、レールの敷設状況を考慮し、前記切断されたレールのレール端面同士を合致させた場合に生じる軸力と異なる値として算出したことを特徴としている。
この値は、レール端面同士を合致させた場合に生じる軸力より大きい値の場合、小さい値の場合の両方がある。
【発明の効果】
【0023】
請求項1の工法によれば、前記レール同士間が当接する以降にガス圧接機によりガス圧接を行うに際し、前記レール緊張器の内側に位置するレールに対しては、一定の圧力(γ)をガス圧接機により与えるとともに、緊張器の外側に位置するレールに対しては、当接時の緊張力に加算して、ガス圧接圧力から既に前記内側に位置するレールに与えられた圧力(γ)を引いたレール圧接力(β)を付加した一定の圧接緊張力をレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行うので、当接部のレール突き合わせ面の温度が十分な接合可能温度に達した時期に当接部を潰すことができ、接合品質の向上を図ることができる。
また、ガス圧接終了後の緊張器外側レールに対して保持軸力(切断されたレールのレール端面同士を合致させた場合に生じる軸力)に所望の圧力を加えた圧力のみを与えるとともに、前記レール緊張器の内側に位置するレールに対して前記圧力(γ)をガス圧接機により与え続けることにより、緊張器外側の所定の長さのレールに軸力均等化処理を行うことで、ガス圧接部が300℃以下になってから緊張器とガス圧接機を解体した場合でも、ガス圧接部を含めたロングレールに軸力不足が生じず、部分的に軸力が大きくなる区間が生じる場合でも、10%以下の軸力増加にすることができる。
そのため、計画軸力よりも大きな力が緊張器前後のレールに作用することがなく、緊張器を取り付ける前において、レールを締結している枕木を解体する場合も必要以上に長くすることを防止できる。
【0024】
請求項2の工法によれば、圧力(γ)とレール圧接力(β)を緊張器の緊張力に加えて圧接することで、レール同士間の当接部分を加熱してレール圧接を行うので、当接部のレール突き合わせ面の温度が十分な接合可能温度に達した時期に当接部を潰すことができ、接合品質の向上を図ることができる。
そして、圧接終了時において、前記レール緊張器の内側に位置するレールに対して前記圧力(γ)に等しい圧力を圧力付加手段により与えることで、請求項1の工法と同様に、ガス圧接部を含めたロングレールに軸力不足が生じることがない。
【0025】
請求項3の工法によれば、請求項2の工法と同様に、圧力(γ)とレール圧接力(β)を緊張器の緊張力に加えて圧接することで、レール同士間の当接部分を加熱してレール圧接を行うので、当接部のレール突き合わせ面の温度が十分な接合可能温度に達した時期に当接部を潰すことができ、接合品質の向上を図ることができる。
そして、圧接終了時において、緊張器外側に位置するレールに前記保持軸力に所望の圧力が付加された圧力に新たに均衡軸力αを加えた圧力を与えることで、請求項1及び請求項2の工法と同様に、ガス圧接部を含めたロングレールに軸力不足が生じることがない。
【0026】
請求項4の工法によれば、レール当接部分を加熱してレール圧接を行うに際し(第3の工程)、当接部分に常時一定の圧接圧力が生じさせて接合するので、圧接部の品質向上を図ることができる。
【0027】
請求項5の工法によれば、レールを切断したときの開口量から計算した軸力が、保守上の管理軸力よりも低い場合や高い場合に、計算した保持軸力を増減して緊張ガス圧接を行い、軸力均等化処理、緊張器解体後、保守上の管理軸力にすることができる。
【発明を実施するための最良の形態】
【0028】
本発明の実施の形態の第一の例(請求項1に対応)としてのレール緊張ガス圧接工法(特殊断面レールの連続頭部硬化熱処理方法)について、図面を参照しながら説明する。
先ず、図10に示すように、不良個所1を含むレールR3を切断箇所A,Bで切断する。レールを切断すると軸圧が0tonfとなるのでレールが縮む。このときの縮小量が後述する圧接に必要な圧縮量に満たない場合には、レールR1,R2の前後の締結装置を緩解し、レールの収縮を図り、圧接に必要な圧縮量を確保する。
【0029】
切断レールを撤去し、切断部分(AB間)より長い交換レールR4を切断部分に設置し、一端を切断箇所Bに接合する。切断箇所Bの接合は通常のガス圧接により行う。ガス圧接機による圧接方法は後述する。
【0030】
次に、切断箇所Bを接合した交換レールR4の他端を敷設レールR1に沿わせ、夏場における膨張分を見込んで切断箇所Aとの間に隙間があくように切断する。
交換レールR4を切断後に端面処理をして、切断箇所Aと交換レールR4の端を対面させて、図2に示すようにレールR1と交換レールR4との間に、レール緊張器Cの取り付を行なう。
【0031】
すなわち、レールR1の一方の側面腹部を図3に示すように第1固定具11で固定する。この固定具11は半円形であってその直径部には歯形の溝が設けられたレールR1への密着部12が形成され、レールR1の固定を確実にする。第1固定具11の彎曲面13にはL字型の第1腕部14が廻動自在に枢着される。この第1固定具11と第1腕部14の枢着は、彎曲面13と同一曲率半径を有する彎曲溝15を第1腕部14の先端に形成すると共に、この彎曲溝15に面接触するように第1固定具11が設けられる。
また、第1固定具11の上面には前記半径と同一中心のガイド溝16が形成されると共に、このガイド溝16に下端が挿入するように、ビス17が第1腕部14に螺着される。
【0032】
同様に交換レールR4には一方の側面腹部に第2固定具18と第2腕部19が、レールR1の他側腹部には第3固定具20と第3腕部21が、交換レールR4の他側腹部には第4固定具22と第4腕部23が配設される。
第1腕部14と第2腕部19とは、油圧シリンダ24で連結されている。同様に第3腕部21と第4腕部23とは油圧シリンダ25で連結されている。
【0033】
油圧シリンダ24、25内は、油圧シリンダ24、25端部から突出するピストンロッド26、27の一端に固着しシリンダ内を摺動するピストンにより2つの室に分かれ、各室に圧油を供給する油圧ホース28の一端に切替レバー29を介してモーターポンプ30が接続されている。
L字型第1腕部14とL字型第3腕部21の突出部間は第1連結板31で連結されている。
【0034】
この第1連結板31は第1腕部14、第3腕部21に対して連結ピン32を介して廻動自在に設けられ、第1椀部14、第3腕部21上面及び下面の両側に設けられる。
同様に第2腕部19と第4腕部23間は第2連結板33で連結されている。
油圧シリンダ24、25を伸ばした状態で第1固定具11、第3固定具20の密着部12をレールR1の両側に当て、一方第2固定具18、第4固定具22を交換レールR4に同様に当接させてセットする。
【0035】
次に、油圧シリンダ24、25を縮めると連結ピン32が支点となって各腕部14、19、21、23が廻動すると共に、これに追従して各固定具11、18、20、22の彎曲面13と各腕部14、19、21、23の彎曲溝15がすり合わせの状態で各々レールR1,R4方向へ前進し、互いに押圧することによってレールR1,R4に確実に固定される。
【0036】
次に、緊張器Cの中側に圧接機Dを装着する。圧接機Dは、接続すべき2本のレールR1,R4の一方をクランプする左クランプの支持ブロック51と、他方をクランプする右クランプの支持ブロック52と、加熱用のバーナーの支持ブロック53と圧接用シリンダの支持ブロック54から構成され、各ブロックは、上下左右の各隅部を4本の案内シャフト55によって支持されている。
左クランプの支持ブロック51は案内シャフト55に定置しているが、右クランプの支持ブロック52は前記支持ブロック51に対設して案内シャフト55に移動可能に支えられ、またバーナーの支持ブロック53は支持ブロック51と支持ブロック52との間に位置して案内シャフト55に移動可能に支持されている。
【0037】
また、圧接用シリンダ56の支持ブロック54には圧接用シリンダ56が対称位置に案内シャフト55と平行に二個取付けされており、各々のラム57が前記移動クランプの支持ブロック52に連結され、該ラム57の進退動によって移動クランプ支持ブロック52を案内シャフト55に沿って、これに対設した定置クランプの支持ブロック51に向け移動し、各クランプの支持ブロック51、52にクランプされたレールR1,R4を互いに突き合せ圧接する構造となっている。
各支持ブロック51、52、53、54には図5に示すように各々同一位置に下方に向け開口したクランプ口58、59、バーナー吹出口60及びレール嵌合口61が形成されており、各開口58、59、60、61はレールの頭部R1方向からの嵌合を許容する大きさと形状を有しており、各支持ブロック51、52、53、54をレールR1,R4上方から、これに乗せるような状態で各開口58、59、60、61にレールR1,R4を嵌合させ、圧接機DをレールR1,R4に設置させる。
【0038】
図5は上記定置クランプの支持ブロック51及び移動クランプの支持ブロック52の構造を詳細に示している。
両支持ブロック51、52とも同一の構造で、図に示すように、クランプ口58、59を構成する各支持ブロック51、52の頚部62、63内側面には固定クランプ爪64、65が、又該固定クランプ爪64、65と対向する頚部66、67内側面には移動クランプ爪68、69が夫々設けられると共に、上記移動クランプ爪68、69が設けられている頚部66、67には各々同一位置に側面から取付穴が設けられ、これにシリンダ70、71が夫々着脱自在に取付され、各シリンダ70、71のラム72、73には前記移動クランプ爪68、69が取り付けられており、各シリンダ70、71の動作により、ラム72、73は進退し、これに伴って移動クランプ爪68、69を固定クランプ爪64、65に向け移動し、レールR1、R4の腹部をクランプするように構成されている。
【0039】
また、上記移動クランプの支持ブロック52の前面には熱間押し抜き刃76が装着されており、圧接終了後、シリンダ70でレールR1を固定したまま、シリンダ71の交換レールR4の固定を解いてから、圧接用シリンダ56で支持ブロック52を前進することにより、圧接で出来た当接部全周の余肉を熱間剪断して取り除くように構成されている。
【0040】
油圧ポンプ等によってクランプ爪68、69用のシリンダ70、71を動かすと、レールR1,R4の腹部に該移動クランプ爪68、69が当接せしめられる。
更にシリンダ70、71が動作すると、その反作用で固定クランプ爪64、65が他側のレールR1,R4の腹部に当接する方向に機械本体が寄せられ、最終的にレールR1,R4の腹部両側を挟み付けるような状態でクランプする。
これによって自動的にレール車輪フランジの通り側首部は固定クランプ爪64、65の把持面に規制され、車輪フランジの通り側首部はクランプ口58、59の内奥面によって規制され、レールR1,R4は通り側を一致して突合された状態となり、レールは車輪通過上好ましい状態で、精度良く把持される。
尚、圧接機Dは上述の構造に限らず他の構造でレールR1,R4を把持するようにしてもよい。
【0041】
以上のようにレールR1,R4に緊張器Cおよび圧接機Dを取り付けた後、緊張器Cのモータポンプ30に通じる切替レバー29を、ピストンロッド26及び27が伸びる方向に圧油が供給されるように切替え、レールを切断した時のレールの縮小量または作業時のレール温度から算出した計画レール軸圧を与えるように徐々に引張力を与え、レールR1,R4を伸ばす(図1のイ部分)。引張力はコントロールボックス34に設けた圧力計を監視しながら圧力調整ツマミを動かし、平均に加圧する。
そして、レール間R1,R4の隙間がなくなり当接した状態(図1のT1)で、当接面をバーナー支持ブロック53に設けたバーナー(図示せず)にて加熱する(図1のロ部分)。バーナー支持ブロック53は、左右クランプ爪によってクランプ圧接されたレールR1,R4の当接部全外周面に向かってバーナー吹出口が開口し、バーナーの火炎をレール当接部全域に向け集中的に加熱し、レールの接合面を接合するようになっている。
【0042】
バーナー吹出口がレールR1,R4の当接部の中心に正しく位置していない時はバーナー支持ブロック53を案内シャフト55に沿って移動せしめ、正しい加熱位置となるよう位置調整をする。
バーナーに送るガスは、酸素とアセチレンとを平衡器74を通して混合した混合ガス圧として調整し、バーナー支持ブロック53に設けた供給口75より供給する。バーナーにて加熱を行う際には、圧接圧力を必要とする。
この圧接圧力は、圧接機Dの圧接用シリンダ56の圧力、及び、緊張器Cのシリンダ24,25の圧力を増加させることにより対処する。
【0043】
すなわち、圧接機Dでは緊張器Cの第1固定具11と第2固定具18間のレールに一定の圧力(図1の圧力γ)を与える。なお、圧接用シリンダ56の圧力調整は油圧操作盤77で行う。
また、緊張器Cには、圧接圧力(レールの大きさにより異なるが一般に16〜20tonf)から、既に圧接機Dで与えた圧力γを減じた圧力(図1の圧力β)を与える。この圧力βは、コントロールボックス34で油圧シリンダ24、25の圧力を監視する人間が、レールR1,R4が当接したことを確認して(図1のT1)、緊張圧力に加える。
【0044】
当接後、緊張器CによるレールR1,R4の当接圧力(圧力β)に、圧接機Dによる圧接圧力(圧力γ)を付加した一定の圧力状態でレールR1,R4の当接部中心へのバーナー加熱を続ける(図1のロ部分)。
【0045】
バーナー加熱を続けると当接部の温度が上がり当接部が圧接圧力を支えられない高温になると、当接面が潰れて緊張器Cの油圧シリンダ24,25が動作する。この時、油圧シリンダ24,25内の圧力低下が一時的に起きる。この圧力低下をモーターポンプ30内の圧力スイッチで検知して、自動的にモーターポンプ30が駆動し、油圧油を油圧シリンダ24,25内に供給する(図1のT2部分)。
【0046】
このモーターポンプ30の駆動により、コントロールボックス34を制御するシーケンサー35が作動する。シーケンサー35は緊張器Cの油圧シリンダ24,25の圧力を一定時間毎に一定の圧力を上げるようにプログラムにより制御されている。
例えば、モーターポンプ30の駆動開始から1分間までは6秒間隔で、1分以降から2分までは3秒間隔で、2分以降から3分までは2秒間隔で、3分以降は1秒間隔で0.5tonfずつ圧力を増加させる(図1のハ部分)。
【0047】
この増加させる圧力は、レールを切断した時のレールの縮小量または作業時のレール温度から算出した計画軸力から当接時の圧力軸力を引いた値を60〜120で割った値が用いられる。
【0048】
通常のガス圧接を行う場合、当接面を一定の圧接圧力で押しつけながら当接部をバーナーで加熱する、バーナー加熱後、当接面の温度が上昇して圧接圧力を当接面が支えきれなくなると当接面が潰れて圧接圧力が低下する。
本例の工法では、圧接圧力を制御する油圧コントロールボックス77には圧力スイッチが付いており、約1割の圧力低下が起きたとき、油圧ポンプが作動して圧接用シリンダ56に油を供給し、当接面に一定の圧接圧力が保たれるようにしている。
以後、バーナー加熱により当接面の温度が上がるほど油圧ポンプの作動頻度が高くなり、当接部の潰れる速度も速くなる。そして所定の圧縮量に達したとき圧接終了になる。
【0049】
この油圧ポンプの作動頻度は、圧縮量の大小(レール鋼種により圧縮量は24〜30mmがある)や、レールの大きさ(1m当たり40〜60kgfがある)により異なるが通常30〜60回行われる。この作動頻度が多いほど一定の圧接圧力で加圧していることになり、圧接部の品質も良くなる。
【0050】
本発明のレール緊張ガス圧接工法の場合においても、バーナー加熱中は常に一定の圧接圧力を当接部に与える事が重要である。
このため緊張器Cのモーターポンプ30には精度の高い圧力スイッチが設置されており、圧力低下が僅かに起きたとき(図1のT2)にモーターポンプ30が作動する以後の、モーターポンプ30の作動回数は、シーケンサー35により制御され、通常の圧接の場合よりも2倍程度の作動回数にすることにより、圧接部の品質が向上する。
【0051】
この様に、当接部には、バーナー加熱初期で当接部の温度が低い時まで一定の圧接圧力β+γで加圧をし、当接部が高温になり圧接圧力β+γを支えきれなくなった時からは圧接圧力β+γを保つために比較的長い時間間隔で緊張器Cの圧力を徐々に増加し、当接部の温度が十分に上がった時は比較的速い時間間隔で緊張器Cの圧力を増加する事により一定の圧接圧力β+γを保ち、良好な接合部を得ることができる。
【0052】
また、シーケンサー35には、あらかじめ保持軸力(図1における計画レールの軸力)に所望の圧力を加えた圧力(図1における緊張器外レールの保持軸力)に更にレール圧接力βを加えた圧力になったときブザー36が鳴るように、また、その時は緊張器Cの圧力増加を止め、保持するようにプログラムされている(図1のT3)。保持軸力は、切断されたレールのレール端面同士を合致させた場合に生じる軸力のことで、予め算出しておく値である。
ブザー36が鳴った時、バーナーを操作する人間がバーナーを消火し、直ちに、圧接機Dの熱間押抜き剪断機76により、圧接部の余肉を熱間剪断除去し、再度レールR1,R4を保持して圧力γを付加する。圧力γの値の具体的な算出方法は後述する。尚、上述のブザーが鳴る構造に限らず、他の構造で設定圧力になった時期を知らせるようにしても良い。
【0053】
圧接機Dの熱間剪断と再保持が終了してから、シーケンサー35のプログラムを解き、コントロールボックス34を操作して緊張器Cに付加した圧力βを抜き、保持軸圧に一定圧(後述する過多軸力x)を加えた圧力のみを緊張器Cの外側のレールに与えるようにする。
これにより、緊張器Cの油圧シリンダ24、25内の圧力は徐々に低下し、緊張器Cの外側のレールに必要なレール軸力を与え続ける(図1のニ部分)。
また、緊張器Cの内側のレールには、レールに一定の圧力γが圧接機Dにより与え続けられる(図1のニ部分)。
【0054】
そして、レール圧接部に緊張器Cの外側のレール軸圧をかけてもよい温度(300℃)に冷却するまでこの圧力を保持した後、緊張器Cを撤去する。
圧接器Dで与えていた圧力γも軸力をかけて良い温度(300℃)に冷却するまでこの圧力を保持(軸力均等化処理)した後に撤去することにより、レールに保持軸力のみが生じるようになる。
【0055】
軸力均等化処理は、緊張器Cにより、その外側のレールに必要以上の軸圧が付加されていないため、最低限の作業時間と作業量で済む。
また、レールに必要以上の軸圧を付加しないため、緊張器Cを取り付ける前に行うレール締結解体を長めにする必要はない。
【0056】
以上は切断箇所Aについての圧接方法であるが、切断箇所Bについては前述したように緊張器Cを用いず圧接機Dのみによって接合する。従って圧接圧力は圧接機Dに設けた圧接用シリンダ56の動作によって与えられる。
【0057】
図6は、レール緊張ガス圧接工法の第二の例(請求項2に対応)を示すもので、この例では、圧接機Dの圧力γは、レールR1,R4の当接時(図6のT1)に与えずに、バーナー加熱終了後(図6のT3)に与えるようにしている。その場合は、レールR1,R4が当接したあと緊張器Cには圧接圧力として圧力γに圧力βを付加させた圧接圧力(β+γ)を緊張圧接力として与え、バーナー加熱終了後(図6のT3)に圧接圧力(β+γ)を抜くようにする。
また、圧力γを与えるのは圧接機に限らず、他の油圧ポンプ等の圧縮装置であっても良い。
【0058】
すなわち、レール同士間が当接する以降にガス圧接機によりガス圧接を行うに際して、緊張器Cにより、当接時の緊張力に加算して圧力(γ)が付加されたガス圧接圧力(β+γ)を一定の圧接緊張力としてレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う(図6のロ部分)。
【0059】
そして、レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う(図6のハ部分)。
【0060】
前記圧接緊張力が所定のレール軸圧にレール圧接力を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β+γ)を取り除いて、緊張器外側に位置するレールにも計画軸力を与えるとともに、一定の圧力(γ)を緊張器内のレールに対してガス圧接機により付加することで、緊張器外側及び内側に位置するレールにそれぞれ軸力が与えられるようにする(図6のニ部分)。
【0061】
図7は、レール緊張ガス圧接工法の第三の例(請求項3に対応)を示すもので、この例では、圧接機Dの圧力γは、図6の例と同様に、レールR1,R4の当接時(図7のT1)に与えずに、バーナー加熱終了後(図7のT3)に与えるようにしている。
図6の例との相違は、前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にガス圧接圧力(β+γ)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β+γ)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力が付加された圧力に新たに均衡軸力αを加えた圧力を与えることで、緊張器外側の所定の長さのレールに軸力均等化処理を行う部分である(図7のニ部分)。そして、上記のレール圧接によるガス圧接部が300℃以下になった後に、緊張器による均衡軸力αの付与を停止し、レール間における緊張器とガス圧接機の架設を解体し、保持軸力がレールに生じるようにする。均衡軸力αの値の具体的な算出方法は後述する。
【0062】
次に、図1に示したレールガス圧接工法におけるレール軸圧と圧接圧力との関係について、具体的な数値を示して説明する。
気温30℃(中位温度)で敷設したロングレールの一部を0℃(冬場)に切断して新しいレールに交換する場合を例に説明する。
気温30℃で敷設したロングレール(一般に200m以上)のJIS60kgレールの中間部が0℃になった時には、下記の式1により55.6tonfの軸力が発生している。
【0063】
(式1)
軸力P1=ヤング率・60kgレールの断面積・温度差・線膨張係数

=2.1×103×77.4×30×1.14×10-5 ≒ 55.6
【0064】
従って、レールの中間部を切断すると55.6tonfの力が解放される。ここで、抵抗値r(道床縦抵抗値)が0.9tonf/mとすると、両側のレールとも55.6/0.9≒61.8mに対応する部分のレールが縮むことになる。
この現象について図8を参照しながら説明する。
図8はレールにおける軸力分布図で、縦軸は軸力、横軸は長さで、下線が軸力0tonf、軸力面積は軸力×長さで表わす。なお、図の両側のレールは接続されていない。また、150は軸力で55.6tonfである。151は可動区間で61.8mである。155は開口量で、下記の式2により、21mm開口している。
【0065】
(式2)
開口量K=ヤング率・60kgレールの断面積・温度差・線膨張係数・(温度差・線膨張係数 ) /r
=P1×(30×1.14×10-5 ) / 0.9 ≒ 21
【0066】
端面153と端面154は切断したそれぞれのレール面である。
ここで、図8(b)の様に、傷Aのあるレールを取り除いて10mのレール156を挿入し、緊張器や圧接機を取り付けるためレール156の両側レールの締結装置を10mずつ緩めると全長約30mの軸力0tonfの区間が生じる。可動区間151は軸力150に応じたものなので締結装置を緩めた端から生じる。つまり、図8(b)では締結装置を緩めた区間30mと可動区間151の2倍の長さで、合計153.6mのレールが軸力低下を起こしている。
軸力低下区間長=30+61.8×2 ≒ 153.6
【0067】
この状態で図8(c)のように、箇所159に通常のガス圧接を行う。
次に、レール157の箇所160とレール156の箇所161に緊張器をセットし、箇所162にガス圧接機をセットし、所定の緊張ガス圧接を行う。
【0068】
図8(d)は緊張ガス圧接が終わったときの軸力分布図である。
ここで、軸力面積182と183の合計値は、軸力面積177、178、179、180合計値と同じになる。
また、緊張器内側のレール長を4mとすると(通常はロッド37を1本と油圧シリンダー24、25を1台連結して使用するので4mである)、軸力172と173は次のようになる。
【0069】
軸力172=(軸力150×緊張器内側のレール長)/(軸力低下区間長−緊張器内側のレール長 )
=(55.6×4)/(153.6-4)
=1.49 ≒1.5 tonf
この軸力172を緊張器外側に生じた過多軸力x(請求項1の所望の圧力に対応する軸力)と定義する。
軸力173=軸力150+軸力172
=55.6+1.5 ≒ 57.1 tonf
また、軸力173に対応する可動区間175は、軸力/道床抵抗値なので、軸力173に対応する可動区間175は、57.1 / 0.9= 63.4mになる。
【0070】
つまり緊張器を解放すると緊張器外側のレールは緊張器端から63.4mずつ、軸力の変化を受ける。しかし、その外側の軸力面積177と180は影響を受けない。そして、このまま緊張器を解放すると、軸力面積177と180の分の軸力低下が緊張ガス圧接部付近に起きる。
【0071】
軸力面積177と180の合計値
=( 軸力低下区間長−緊張器内側のレール長―軸力173に対応する可動区間175長の2倍)・軸力172
=(153.6―4―63.4×2)×1.5= 34.2m・tonf
【0072】
軸力低下が緊張器のあった箇所だけレール長さ4mだけで考えると軸力低下値は、8.6tonf( 34.2m・tonf / 4m)と大きな値になる。また、可動区間長(63.4×2m)と緊張器内のレール長4mの合計値153.6mで割ると0.26tonfになる。
いずれの場合も緊張器を解放すると、可動区間の軸力は上記のように低下する。
【0073】
このため、軸力面積177と180の合計値に相当する軸力面積182をあらかじめ緊張器内のレールに負荷しておけばよい。具体的には、軸力面積177と180の合計値34.2m・tonfを緊張器内のレールにガス圧接機で加えておけばよい。つまり、34.2m・tonf / 緊張器内のレール長4m≒8.6tonfの軸力をγとするば良い。
【0074】
このように、ガス圧接後、緊張器で緊張器の外側のレールには57.1tonfの軸力を、緊張器内のレールにはガス圧接機で8.6tonfの軸力を与えておけば、ガス圧接後、軸力均等化処理を行い、ガス圧接部が300℃になって緊張器とガス圧接機を解体したときには図8(e)に示す軸力分布になり、ロングレール中間部の軸力低下は発生しない。また、軸力が1.5tonf高い箇所が区間174と176に残るが、軸力150の55.6tonfに対して2.7%と非常に小さいので、ロングレールの保守上問題になることはない。
【0075】
区間174または176の長さ。
合計長さは、軸力低下区間長−緊張器内側のレール長−軸力173に対応する可動区間175長の2倍なので、153.6−4−63.4×2=22.8mとなる。10mのレールを挿入した分だけ区間176は長くなるので(22.8−10)/2=6.4mが区間174の長さである。また区間176は10m+6.4m=16.4mとなる。
【0076】
続いて、図7に示したレールガス圧接工法(請求項3に対応)におけるレール軸圧と圧接圧力との関係について、図9を参照しながら具体的な数値を示して説明する。
前述と同じ条件で説明する。図9(a)はガス圧接が終わった時の軸力分布図である。
【0077】
軸力196はガス圧接が終わり、緊張力から(β+γ)を取って、新たに均衡軸力αを保持軸力に加えて緊張した状態である。
ここで、軸力面積183の合計値は、軸力面積187,188,189,190,191,192,193,194の合計値と同じになる。
軸力172は上記と同様に下記のように算出される。
【0078】
軸力172=(軸力150×緊張器内側のレール長さ)/(軸力低下区間長−緊張器内側のレール長)
=(55.6×4)/(153.6−4)
=1.49≒1.5 tonf
また、軸力196は次のようになる。
軸力196=軸力150+軸力172+軸力195
=55.6+1.5+α≒57.1+α
ここで、均衡軸力αを0.26tonfとすると、軸力196≒57.36tonfになる。
【0079】
均衡軸力αは下記の式で求まる。
緊張器内の軸力面積(4m×軸力)
={(過多軸力x+α)・(軸力+過多軸力x+α)に対する可動区間長}の2倍
={(過多軸力x+α)・(軸力+過多軸力x+α)/道床縦抵抗力}・2
これを数式にすると、
4×P1={(x+α)×(P1+x+α)/r}×2
となる。
このうち、軸力面積は、188,192,189,193は次の式で表される。
{(P1+x+α)/r}×(x+α)×2 (1)
また、183の軸力面積は次の式で表される。
P1×4 (2)
(1)と(2)が釣り合えば軸力低下は起きない。
ここで、
P1=ヤング率・60kgレールの断面積・温度差・線膨張係数(tonf)
x=4・P1/{(2・P1/r)+(Q−4)}(tonf)
Q=圧接前の締結解体時に軸力が0tonfになった区間長(m)
であり、P1とxとQの値が前述で算出されているので、それぞれの値を代入すれば均衡軸力αの値が求まる。
【0080】
4×55.6={(1.49+α)(55.6+1.49+α) /
0.9}×2
={(1.49+α)(57.09+α) /
0.9}×2
100.08 ={(1.49+α)(57.09+α)
0 ≒α2+58.58α−15.02
≒(α+58.32)(α−0.26)
したがって、αの値は、−58.32または+0.26になる。−の値は適当でないので、均衡軸力α≒0.26である。
【0081】
軸力196に対応する可動区間185は、軸力/道床抵抗値なので、57.36/0.9=63.7mになる。
つまり緊張器を解放すると緊張器外側のレールは63.7mずつ、軸力の変化を受ける。
これより、軸力面積188,192,189,193の合計値は、(軸力低下区間長・2)・(軸力172+軸力195)なので、(63.7×2)×(1.5+0.26)≒224.2m・tonfとなる。
この値は、緊張器内のレール軸力面積4m×55.6=222.4とほぼ等しいので緊張器を解体したとき、緊張器内レールの軸力が補償される。
【0082】
これにより、ガス圧接後、緊張器で緊張器の外側のレールに保持軸力+過多軸力x+均等軸力αを合わせた軸力を与えておけばガス圧接後、軸力均等化処理を行い、ガス圧接部が300℃になって緊張器とガス圧接機を解体したときには図9(b)に示す軸力分布になり、ロングレール中間部の軸力低下は発生しない。また、軸力が1.76tonf高い箇所が区間184と186に残る。この値は前記した方法(請求項1に対応)より大きいが、軸力150の55.6tonfに対して約3%と非常に小さいので、ロングレールの保守上問題になることはない。
【0083】
区間184または186の長さ。
合計長さは、軸力低下区間長−緊張器内側のレール長―軸力196に対応する可動区間185の2倍なので、153.6−4−63.6×2=22.4mとなる。
10mレールを挿入した分だけ区間186は長くなるので、(22.4−10)/2=6.2mが区間184の長さである。また区間186は10m+6.2m=16.2mとなる。
【0084】
上述したレール緊張ガス圧接工法においては、保持軸力について、「切断されたレールのレール端面同士を合致させた場合に生じる軸力」として算出するが、レールの敷設後の使用状況により、軸力が部分的に変化する現象が生じる。
これは、ロングレールの不動区間はどの箇所でも同じ軸力になるように敷設されるが、使用後にこの軸力が、道床の劣化、締結装置の劣化、列車通過によるレールのふく進、直射日光に当たる箇所と当たらない箇所、等の原因により変化する場合があるからである。
そのような場合は、上述したレール緊張ガス圧接工法において、レールの敷設状況を考慮し、前記切断されたレールのレール端面同士を合致させた場合に生じる軸力と異なる値として算出するようにしてもよい。
【0085】
すなわち、レールを切断したときの開口量から計算した軸力が、例えば保守上の管理軸力よりも10tonf低い場合は、開口量から計算した軸力に10tonfを加えた値を保持軸力として上述した各工法で緊張ガス圧接を行い、軸力均等化処理、緊張器解体を行えば良い。
また逆に、レールを切断したときの開口量から計算した軸力が、例えば保守上の管理軸力よりも10tonf高い場合は、開口量から計算した軸力に10tonfを引いた値を保持軸力として上述した各工法で緊張ガス圧接を行い、軸力均等化処理、緊張器解体を行えば良い。
【産業上の利用可能性】
【0086】
本発明工法は、不良個所が生じたレールを中位温度以下において交換する場合のレール同士の圧接に際して、交換するレール及びその前後のレールに所定の軸力を均一に与えることで、その作業時間と作業量を簡略化するとともに、圧接における接合部の信頼を高めることができる。
【図面の簡単な説明】
【0087】
【図1】本発明工法によるレールの接合面にかかる圧力を示すグラフ図である。
【図2】本発明工法の実施状況を示す平面説明図である。
【図3】本発明工法で用いる緊張器部分の断面説明図である。
【図4】本発明工法で用いる圧接機部分の正面説明図である。
【図5】本発明工法で用いる圧接機部分の断面説明図である。
【図6】本発明工法の他の例によるレールの接合面にかかる圧力を示すグラフ図である。
【図7】本発明工法の他の例によるレールの接合面にかかる圧力を示すグラフ図である。
【図8】(a)乃至(e)はレールを切断した場合のレールにおける軸力分布図を示す模式図である。
【図9】(a)及び(b)はレールを切断した場合のレールにおける軸力分布図を示す模式図である。
【図10】(A)(B)は本発明のレール交換の接合方法を説明するための平面説明図である。
【図11】(A)(B)は従来のレール交換の接合方法を説明するための平面説明図である。
【図12】(a)乃至(e)はレールを切断した場合のレールにおける軸力分布図を示す模式図である。
【図13】(a)乃至(c)はレールを切断した場合のレールにおける軸力分布図を示す模式図である。
【符号の説明】
【0088】
R1,R2,R3 レール
R4 交換レール
C 緊張器
D 圧接機
24,25 油圧シリンダ
26,27 ピストンロッド
30 モーターポンプ30
34 コントロールボックス
35 シーケンサー
56 圧接シリンダ

【特許請求の範囲】
【請求項1】
ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、
前記切断されたレールのレール端面同士を合致させた場合に生じる軸力を保持軸力として算出する一方、
交換レールの一端をロングレールの切断箇所の一方に接合し、交換レールの他端とロングレールの切断箇所の他方の間にレール緊張器及びガス圧接機を架設し、レール同士間に徐々に増加する緊張力を与える第1の工程と、
前記レール同士間が当接する以降に前記ガス圧接機によりガス圧接を行うに際して、前記レール緊張器の内側に位置するレールに対しては、一定の圧力(γ)をガス圧接機により与えるとともに、緊張器の外側に位置するレールに対しては、当接時の緊張力に加算して、ガス圧接圧力から既に前記内側に位置するレールに与えられた圧力(γ)を引いたレール圧接力(β)を付加した一定の圧接緊張力をレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う第2の工程と、
前記レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う第3の工程と、
前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にレール圧接力(β)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力を加えた圧力のみを与えるとともに、前記レール緊張器の内側に位置するレールに対して前記圧力(γ)をガス圧接機により与え続けることにより、緊張器外側の所定の長さのレールに軸力均等化処理を行う第4の工程と、
前記レール圧接によるガス圧接部が300℃以下になった後にレール間における緊張器とガス圧接機の架設を解体し、前記保持軸力がレールに生じるようにする第5の工程と、
を具備するレール緊張ガス圧接工法。
【請求項2】
ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、
前記切断されたレールのレール端面同士を合致させた場合に生じる軸力を保持軸力として算出する一方、
交換レールの一端をロングレールの切断箇所の一方に接合し、交換レールの他端とロングレールの切断箇所の他方の間にレール緊張器及びガス圧接機を架設し、レール同士間に徐々に増加する緊張力を与える第1の工程と、
前記レール同士間が当接する以降に前記ガス圧接機によりガス圧接を行うに際して、緊張器の外側に位置するレールに対して、当接時の緊張力に加算して一定の圧力(γ)が付加されたガス圧接圧力(β+γ)を一定の圧接緊張力としてレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う第2の工程と、
前記レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う第3の工程と、
前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にガス圧接圧力(β+γ)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β+γ)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力を加えた圧力のみを与えるとともに、前記レール緊張器の内側に位置するレールに対して前記圧力(γ)に等しい圧力を圧力付加手段により与えることにより、緊張器外側の所定の長さのレールに軸力均等化処理を行う第4の工程と、
前記レール圧接によるガス圧接部が300℃以下になった後にレール間における緊張器とガス圧接機の架設を解体し、前記保持軸力がレールに生じるようにすする第5の工程と、
を具備するレール緊張ガス圧接工法。
【請求項3】
ロングレール不動区間に生じた不良箇所のレールを切断し、新しいレールに交換する工法において、
前記切断されたレールのレール端面同士を合致させた場合に生じる軸力を保持軸力として算出する一方、
交換レールの一端をロングレールの切断箇所の一方に接合し、交換レールの他端とロングレールの切断箇所の他方の間にレール緊張器及びガス圧接機を架設し、レール同士間に徐々に増加する緊張力を与える第1の工程と、
前記レール同士間が当接する以降に前記ガス圧接機によりガス圧接を行うに際して、緊張器の外側に位置するレールに対して、当接時の緊張力に加算して一定の圧力(γ)が付加されたガス圧接圧力(β+γ)を一定の圧接緊張力としてレール同士間に与えながら、レール同士間の当接部分を加熱してレール圧接を行う第2の工程と、
前記レール圧接によりレール同士の当接面が潰れた以降、緊張力を前記当接時の緊張力から除々に増加させた圧接緊張力で当接部分を加熱してレール圧接を行う第3の工程と、
前記圧接緊張力が前記保持軸力に所望の圧力を加えた圧力にガス圧接圧力(β+γ)を付加した圧力に達したとき、当接部分の加熱を止めてレール圧接を完了し、前記圧接緊張力から当接時に加えた圧力(β+γ)を取り除いて、緊張器外側に位置するレールに前記保持軸力に所望の圧力が付加された圧力に新たに均衡軸力αを加えた圧力を与えることで、緊張器外側の所定の長さのレールに軸力均等化処理を行う第4の工程と、
前記レール圧接によるガス圧接部が300℃以下になった後に、緊張器による均衡軸力αの付与を停止し、レール間における緊張器とガス圧接機の架設を解体し、前記保持軸力がレールに生じるようにする第5の工程と、
を具備するレール緊張ガス圧接工法。
【請求項4】
前記第3の工程においてレール当接部分を加熱してレール圧接を行うに際し、当接部分に常時一定の圧接圧力が生じるように、前記圧接緊張力が制御された請求項1乃至請求項3に記載のレール緊張ガス圧接工法。
【請求項5】
前記保持軸力について、レールの敷設状況を考慮し、前記切断されたレールのレール端面同士を合致させた場合に生じる軸力と異なる値として算出した請求項1乃至請求項3に記載のレール緊張ガス圧接工法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate


【公開番号】特開2008−246510(P2008−246510A)
【公開日】平成20年10月16日(2008.10.16)
【国際特許分類】
【出願番号】特願2007−89115(P2007−89115)
【出願日】平成19年3月29日(2007.3.29)
【出願人】(000173784)財団法人鉄道総合技術研究所 (1,666)
【出願人】(391023725)株式会社峰製作所 (10)
【Fターム(参考)】