説明

倒立顕微鏡システム

【課題】 タイムラプス観察において、励起光を観察試料に照射する時間を短くする倒立顕微鏡システムを提供すること。
【解決手段】 タイムラプス観察において、オートフォーカスを行なっている間は、励起光を観察試料に対して照射しない状態とし、オートフォーカスが完了した後、観察試料の撮影を行うときに、励起光を観察試料に対して照射する状態とし、さらに撮影が完了した後は、励起光を観察試料に再び照射しない状態にすることを特徴とする倒立顕微鏡システム。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、顕微鏡を用いて観察体である標本を観察する顕微鏡システム、観察方法および観察プログラムに関し、特に、所定時間間隔毎に観察および観察画像の記録を行う、いわゆるタイムラプス観察に利用される顕微鏡システム、観察方法および観察プログラムに関するものである。
【背景技術】
【0002】
従来、顕微鏡を用いて観察体である標本を観察する方法として、一定時刻ごとに顕微鏡画像の観察及び撮影を行い、時間的な標本の形態変化を観察する方法がある。このような観察方法の場合、一般的にまずは標本近傍に合焦を行い、標本の移動を含めた標本の変化を観察するために、光軸方向に対し座標を一定間隔で変化させながら複数枚の画像の撮影を行っている。このような方法は、特定の標本、例えば生きた細胞の時間的変化を観察する方法として極めて有効とされている。
【0003】
しかしながら、標本観察時に、標本に対して対物レンズの焦点合わせを行っても、例えば、気温変化や空調設備などの作動による周囲温度の変化により各機械部品の寸法が変化し、対物レンズと標本間の距離が大きく変化するため焦点がずれてしまうという問題が発生している。そこで、これらの焦点ずれを補正するため各種の合焦装置が考えられている。ところが、一般的に標本はスライドガラスに載置あるいはスライドガラスとカバーガラスに封入されており、合焦装置はさまざまなスライドガラスやカバーガラスの厚みに対応するために、大きな駆動距離が必要となってくる。一方、光軸方向に対し距離を変化させながら複数毎の画像の撮影を行う場合は、特に蛍光標本の場合、励起光を標本に照射する時間を短くするために、極めて迅速な駆動動作をすることが望ましい。しかしながら、駆動距離が大きいものは駆動速度を速くする事が困難であり、また、駆動速度を速くしたものは駆動距離を大きくとることが困難であるという問題が発生する。
【0004】
この問題を解決する技術として、粗動駆動手段と微動駆動手段を有し、粗動駆動手段で合焦を行った後、微動駆動手段で合焦を追い込むという技術が開示されている(例えば、特許文献1参照。)。
【0005】
また、さらに微動駆動手段にピエゾ素子を採用した技術が開示されている(例えば、特許文献2参照。)。
【特許文献1】特開平5−346528号公報
【特許文献2】特開2003−172878号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、従来の技術は、光軸方向の合焦動作に関する技術であり、具体的にスライドガラスに載置あるいはスライドガラスとカバーガラスとに封入された標本に対する合焦動作の改善までには至っておらず、個々のスライドガラスに載置された標本に対しての迅速かつ適切な合焦動作、あるいはスライドガラスとカバーガラスとに封入された標本に対しての迅速かつ適切な合焦動作を行うのが困難であるという問題点があった。
【0007】
また、X−Y方向の複数点の繰り返し合焦動作や対物レンズ、励起光の変更に伴う合焦位置の変更についても迅速かつ適切に行うのが困難であるという問題点があった。
本発明は、上記従来技術の欠点に鑑みてなされたもので、様々な厚さのスライドガラスに載置あるいはスライドガラスとカバーガラスに封入された標本に対しても、高い合焦速度を維持しつつ、迅速な合焦動作を可能とした顕微鏡システム、観察方法および観察プログラムを提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するため、本発明の倒立顕微鏡システムは、蛍光観察可能な倒立顕微鏡システムにおいて、透明体と該透明体上に載置された観察体とからなる観察試料を載せるステージと、該ステージに載せられた前記観察試料に対して対峙するように前記ステージより下方に配置される対物レンズと、前記ステージと前記対物レンズのうち少なくとも一方を観察光軸に対して平行方向に駆動させる焦準駆動部と、前記観察試料を励起するための励起光源と、前記観察光路に配置され前記励起光を前記観察光路に導入する励起光導入手段と、前記励起光源からの励起光が前記観察試料へ照射されるか非照射状態にするかをコントロールするための励起光制御手段と前記励起光源とは異なる光源で、前記対物レンズの下方から前記観察試料に対してオートフォーカス用の検出光を出射する焦点検出光源と、前記観察光路に配置され前記観察光路の光軸方向に対して前記検出光の波長成分を反射し、前記励起光の波長を透過させる検出光導入手段と、前記観察試料における前記透明体から反射した前記検出光を前記対物レンズを介して受光する受光手段と、前記受光手段の結果から前記焦準駆動部を制御することで前記透明体の所定の位置にオートフォーカスをするオートフォーカス部と、前記所定の位置から光軸方向に一定量離れている距離を記録するオフセット量記録手段と、前記対物レンズを介して前記観察試料の撮影を行う撮像装置と、前記撮像装置の間欠撮影間隔であるタイムラプス測定間隔を設定するタイムラプス測定間隔設定手段と前記撮像装置及び前記オートフォーカス部の制御を行う撮影制御手段とを備え、前記撮影制御手段によって前記検出光を照射し前記オートフォーカス部により前記透明体から前記焦点検出光が反射される位置である前記所定の位置に対してオートフォーカスを行なっている間は、励起光制御手段によって前記観励起光源からの励起光を前記観察試料に非照射状態とし、前記所定の位置に対してオートフォーカスが完了した後、前記撮像装置によって前記所定の位置から光軸方向に一定量離れている距離で前記観察試料の撮影を行うときに、励起光制御手段によって前記励起光源からの励起光を前記観察試料に照射状態とし、前記撮像装置によって前記観察画像の撮影が完了した後は励起光制御手段によって、前記励起光源からの励起光を前記観察試料に再び非照射状態することを、前記タイムラプス測定間隔設定手段に記録された前記タイムラプス測定間隔毎に行うことを特徴とする。
【0009】
また、本発明の倒立顕微鏡システムは、蛍光観察可能な倒立顕微鏡システムにおいて、透明体と該透明体上に載置された観察体とからなる観察試料を載せるステージと、該ステージに載せられた前記観察試料に対して対峙するように前記ステージより下方に配置される対物レンズと、前記ステージと前記対物レンズのうち少なくとも一方を観察光軸に対して平行方向に駆動させる焦準駆動部と、前記観察試料を励起するための励起光源と、前記観察光路に配置され前記励起光を前記観察光路に導入する励起光導入手段と、前記励起光源からの励起光が前記観察試料へ照射されるか非照射状態にするかをコントロールするための励起光制御手段と前記励起光源とは異なる光源で、前記対物レンズの下方から前記観察試料に対してオートフォーカス用の検出光を出射する焦点検出光源と、前記観察光路に配置され前記観察光路の光軸方向に対して前記検出光の波長成分を反射し、前記励起光の波長を透過させる検出光導入手段と、前記観察試料における前記透明体から反射した前記検出光を前記対物レンズを介して受光する受光手段と、前記受光手段の結果から前記焦準駆動部を制御することで前記透明体の所定の位置にオートフォーカスをするオートフォーカス部と、前記所定の位置から光軸方向に一定量離れている距離を記録するオフセット量記録手段と、前記オフセットをもとに2点以上の異なる撮影位置である撮影範囲設定手段と、前記対物レンズを介して前記観察試料の撮影を行う撮像装置と、前記撮像装置の間欠撮影間隔であるタイムラプス測定間隔を設定するタイムラプス測定間隔設定手段と前記撮像装置及び前記オートフォーカス部の制御を行う撮影制御手段とを備え、前記撮影制御手段によって前記検出光を照射し前記オートフォーカス部により前記透明体から前記焦点検出光が反射される位置である前記所定の位置に対してオートフォーカスを行なっている間は、励起光制御手段によって前記観励起光源からの励起光を前記観察試料に非照射状態とし、前記所定の位置に対してオートフォーカスが完了した後、前記撮像装置によって前記所定の位置から光軸方向に前記撮影範囲設定手段にて設定されている一定量離れている2点以上の撮影位置における前記観察試料の撮影を行うときに、励起光制御手段によって、前記励起」光源からの励起光を前記観察試料に照射状態とし、前記撮像装置によって前記撮影範囲設定手段によって設定させた前記観察画像の撮影が完了した後は、励起光制御手段によって、前記励起光源からの励起光を前記観察試料に再び非照射状態することを、前記タイムラプス測定間隔設定手段に記録された前記タイムラプス測定間隔毎に行うことを特徴とする。
【発明の効果】
【0010】
本発明によれば、観察対象物(被検物)の長時間観察解析を行う際、迅速な合焦動作が可能となり、励起光照射時間の短縮がはかれるとともに、良好な合焦動作観察が可能となる。
【発明を実施するための最良の形態】
【0011】
以下、図面を参照しながら本発明の実施の形態について述べる。
(第1の実施の形態)
図1は、本発明にかかる顕微鏡システムを適用した第1の実施の形態の構成を示す図である。
【0012】
本第1の実施の形態における技術的特徴は、準焦部モータ22とモータ制御部24が本発明にかかる第1の駆動手段として機能し、ピエゾ素子21とピエゾ制御部25が本発明にかかる第2の駆動手段として機能している点である。
【0013】
図1において、本発明にかかる顕微鏡システムの1例としての倒立顕微鏡システム1Aでは、被検物である標本2がスライドガラス3に載置され、さらに標本2を載置したスライドガラス3が電動ステージ4に固定されている。電動ステージ4は、光軸に対して直交方向であるX−Y方向に電動制御が可能となっており、その制御はステージ制御部5によって行われる。
【0014】
蛍光光源6は、標本2に対して蛍光照明を行うための光源である。蛍光光源6から出射された励起光はコレクタレンズ7で集光され、励起フィルタ8、ダイクロックミラー9、および対物レンズ10aを介して、電動ステージ4上に固定された標本2へ照射されることにより標本2を照明する。励起光に照明されたことによって標本2が発する蛍光は、ダイクロックミラー9および吸収フィルタ11を通過し、光路切換え部12によって接眼レンズ13またはCCDカメラユニット14へ導かれる。そして、CCDカメラユニット14によって撮像された標本2の画像は、ビデオキャプチャボード15によりホストPC16に取得される。ホストPC16は、取得した画像を図示しない画像メモリ上に保存する。この画像メモリは通常複数の画像を保存することが可能となっている。また、電動シャッタ17は、蛍光光源6から照射される励起光を遮光するためのシャッタで、コントロール部18によって励起光の遮光を制御できるものとなっている。
【0015】
対物レンズ10aは、電動レボルバ19に装着されており、電動レボルバ19はコントロール部18からの信号により任意の対物レンズ10aまたは対物レンズ10bを光路内に挿入する機能を有している。また、この電動レボルバ19はピエゾ素子21を介して焦準用モータ22よって駆動させる架台23に固定させており、コントロール部18からの制御されるモータ制御部24によって光軸方向(Z方向)に移動させることで、標本2と対物レンズ10aの距離を相対的に駆動することが可能になっている。
【0016】
一方、ピエゾ素子21は、電動レボルバ19と架台23との間に配置させており、コントロール部18から制御されるピエゾ駆動部25によって電気的にピエゾ素子21の光軸方向の厚みを変えることで、連動レボルバ19に装着された対物レンズ10aの位置を光軸方向に移動させる構造のもので、同じく標本2と対物レンズ10aとの距離を相対的に駆動することが可能になっている。ピエゾ素子21は、焦準用モータ22よりも駆動範囲は短くなっている反面、高速、高分解能という特徴を持っている素子である。
【0017】
図2は、電動レボルバ19とピエゾ素子21による駆動位置関係を示すである。
図2に示すように、電動レボルバ19は、準焦用モータ22によって「電レボUpper Limit」から「電レボLower Limit」の間の駆動距離Lの範囲が駆動可能となっており、さらにその範囲内において、ピエゾ素子21による「ピエゾUpper Limit」から「ピエゾLowerLimit」の間のL_pの範囲を、高速、高分解能駆動が可能となっている。なお、図2において、「ピエゾCenter」はピエゾ素子21による駆動範囲L_pの中心座標を示している。
【0018】
図1の説明に戻る。
コントロール部18はホストPC16に接続させており、倒立顕微鏡システム1Aの各種制御を行うものである。また、電動レボルバ19の駆動をユーザーが指示入力するためのジョグエンコーダ38、パルスカウンタ39、およびその他の各種指示を入力するための操作部40が接続されている。
【0019】
一方、合焦を行うための測定光源は可視外波長領域である赤外光半導体レーザー26が対応しており、コントロール部18に接続させたレーザー制御部27によって制御されている。
【0020】
半導体レーザー26から出射されたレーザー光は、平行光を保つ為のコリメートレンズ28を通り、光束径の半分を投光側ストッパ29によりカットされる。その後、PBS(偏光ビームスプリッタ:Polarization Beam Splitter)30でP偏光成分のみが反射され、標本2側に導かれる。そして、集光レンズ群31により一旦集光された光束は、色収差補正レンズ群32を通過する。色収差補正レンズ群32を通過した光は、λ/4板33で45°偏光され、ダイクロイックミラー34に入射する。ここで、ダイクロイックミラー34では、赤外域のみ反射される為、反射された光束は、対物レンズ10aによりスライドガラス3の表面にスポット形状の像を形成する。
【0021】
そして、スライドガラス3により反射された光束は、今度は逆に対物レンズ10a、ダイクロイックミラー34を介し、λ/4板33にてさらに45°偏光され、S偏光成分に切り換わる。さらに、色収差補正レンズ群32および集光レンズ群31を戻り、PBS30へ入射される。すると、光束はS偏光成分になっているのでそのままPBS30を透過し、集光レンズ群35を通過した後に受光センサ36に結像される。
【0022】
受光センサ36は、光軸を中心に設置された2分割(A領域とB領域)のフォトダイオードとなっている。そして、標本2がピント位置にある場合は、図3に示す様に受光センサ36に結像されたスポットが狭く強度の高い信号となっており、標本2がピント位置からZ方向の上側(後ピン位置)にある場合は、図4に示す様にB領域の範囲に偏った信号強度分布となっており、標本2がピント位置からZ方向の下側(前ピン位置)にある場合は、図5に示す様にA領域の範囲に偏った信号強度分布となっており、それぞれセンサ信号に変換される。
【0023】
そして、A領域とB領域の範囲に分割、変換された検出信号は、合焦判別部37で、それぞれの範囲における強度の総和を算出される。すなわち、図6に示す様に、横軸を電動レボルバ19のZ方向、縦軸をそれぞれの受光センサ36に入射する光強度とすると、ピント位置を挟んで左右対称なA範囲信号およびB範囲信号の2つのカーブが検出できる。次に、このA範囲信号およびB範囲信号から、図7に示すようなA+Bの算出、および図8に示すような(A−B)/(A+ B)の算出を行う。特に図8のような特性はS字カ
ーブと呼ばれ、その値は評価関数値(以下、Ef値と略す)と呼ばれる。
【0024】
コントロール部18は合焦判別部37よりのEf値の符号により合焦位置方向を判定し、例えば図8中「1」の位置からAFを開始した場合には、Ef値の符号が負のため、電動レボルバ19を上昇させる制御を行い、図8中「2」の位置からAFを開始した場合には、Ef値の符号が正のため電動レボルバ19を下降させる制御を行い、最終的にEf値が0となるように、モータ制御部24にて対物レンズ10aとスライドガラス3の表面の距離を光軸方向に相対的に駆動させて合焦動作を行なっている。なお、スライドガラス3のように表面と背面2つの反射面をもつ場合のものは、2つの座標位置関係から自動的にスライドガラス3の表面に合焦を合わせる機能も有している。
【0025】
続いて、本第1の実施の形態の動作について説明する。
本第1の実施の形態では、図9に示すように、標本2はスライドガラス3上の培養液内に存在する培養標本である場合について説明する。
【0026】
図9において、「Center」で示した座標が標本2の観察開始時のZ方向における観察中心座標である。「Pitch」はZ方向に対して撮影を行う間隔である。撮影枚数を中心から
の撮影枚数を3枚と設定した場合は、撮影枚数nは7枚となり、(1)〜(7)で示した各座標で7枚の画像の撮影を行う事を示している。図9中の「Lower Limit」はこのときの撮影開始座標であり、同じく図9中の「Upper Limit」が撮影終了座標となる。標本2はAの位置からBの位置に移動しているものとする。
【0027】
観察を行うにあたって、ユーザーは撮影条件の設定を行う。まず、ユーザーはスライドガラス3の表面である「Base」座標の位置に合焦を行うように指示する。すると、合焦判別部37のEf値が0となるように、コントロール部18はモータ制御部24を介して準焦部モータ22の駆動を行い、電動レボルバ19をZ方向に移動させる事により、「Base」座標に合焦を行う。
【0028】
続いて、「Base」座標から、観察を行いたい座標である「Center」まで、合焦位置を移動させる。ユーザーはコントロール部18に接続されたジョグエンコーダ38より入力を行い、同様にモータ制御部24を介して準焦部モータ22の駆動を行うことにより電動レボルバ19をZ方向に移動させ「Center」座標に合焦を行う。「Center」座標に合焦終了後、「Base」座標から「Center」座標までの距離の記憶を行う。すなわち「Center」-「Base」の値がオフセット量Off_1となる。
【0029】
続いて、「Center」座標からの撮影ピッチpと片側撮影枚数n_sの設定を行う。今回は撮影ピッチpと撮影枚数n_sは「Center」位置を中心に同一で設定しているが、それぞれ別々に設定できるようになっていてもよい。本第1の実施の形態では両方向に対して、撮影ピッチをp1、片側撮影枚数を3枚に設定したものとし、総撮影数nは7枚する。次に、設定された撮影ピッチ及び撮影枚数より、図9に示す撮影の開始座標である「Lower Limit」座標を算出する。
【0030】
次に、タイムラップス観察における撮影間隔時間tpと撮影繰り返し回数n_tの設定を行う。本第1の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回に設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tとに基づいて、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
【0031】
図10は、第1の実施の形態における測定処理の流れを示すフローチャートである。
上述のように設定された倒立顕微鏡システム1Aの動作について、図10のフローチャートを用いて説明する。
【0032】
撮影開始時、ピエゾ駆動部25に制御されるピエゾ素子21による駆動座標を、中央位置である「ピエゾCenter」座標に移動を行う。そして、測定が開始されると、ステップS101において、撮影終了時刻end_timeに達してタイムラプス測定が終了したかチェックする。撮影が終了した場合(ステップS101:Y)には、処理は終了する。
【0033】
撮影が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定したタイムラプス撮影間隔時間tp1に達するまで待機する。撮影間隔時間に達すると(ステップS102:Y)、ステップS103において、スライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図9に示した「Base」座標に駆動を行う。
【0034】
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、図9中の(1)〜(7)のZ方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower Limit」座標へ移動させる。
【0035】
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1づつ、合焦位置の移動を行いながら撮影を行う。
【0036】
そして、所定の撮影枚数が終了したら(ステップS108:Y)、ステップS110において、シャッタ17を閉じることにより励起光を遮光する。この動作を撮影終了時刻end_timeに達して測定が終了するまで繰り返し続ける。以上の動作によって図11に示すタイムラプス画像の取得が行われる。
【0037】
以上のように構成・制御される本第1の実施の形態の倒立顕微鏡システム1Aは、スライドガラス3にオートフォーカスをかけることにより、周囲温度の変化により対物レンズ10aの焦点位置が変化した場合でも基準位置が固定された状態で観察体撮影位置をオフセットで設定するため、確実に観察体である標本2の動きを測定することができ、かつZ方向の撮影ポイントの移動はピエゾ素子21により迅速な駆動で行うために、励起光を当てる時間を極めて短くすることが可能となる。
【0038】
なお、本第1の実施の形態では、スライドガラス3の表面に合焦を合わせるものとして説明してあるが、もちろんこれに限定させるものではなく、培養シャーレ等であってもよい。
【0039】
また、本第1の実施の形態の倒立顕微鏡システム1Aは、電動レボルバ19を上下させる機構としているが、電動ステージ4を上下する機能を有していてもよく、あるいはいわゆる正立型の顕微鏡システムであっても同様の効果を得ることが可能である。
(第2の実施の形態)
次に、本発明にかかる顕微鏡システムを適用した第2の実施の形態について説明する。
【0040】
図12は、本発明にかかる顕微鏡システムを適用した第2の実施の形態の構成を示す図である。
第1の実施の形態と同一のものは同一の符号を付加して説明を省略する。
【0041】
本第2の実施の形態における顕微鏡システム1Bの技術的特徴は、本発明にかかるX方向またはY方向に電動で駆動可能なX−Yステージが、電動ステージ4、ステージ制御部5および光軸に対して平行方向であるX−Y方向へ移動するものであり、XY座標記録部43へ座標の記録を行う機能を有するX−Y座標記記録部に対応している点である。そして、このX−Yステージはコントロール部18に接続されている。
【0042】
本第2の実施の形態では図13に示すように、スライドガラス3上の培養液培内に標本2a、2bのように異なる座標に存在する場合に説明する。
図13において、「Center_a」座標が標本2aの観察開始時のZ方向の観察中心座標、「Center_b」座標が標本2bの観察開始時のZ方向の観察中心座標である。なお、標本2aのX−Y座標は、X−Ya、標本2bのX−Y座標は、X−Ybであるものとする。
【0043】
図12に説明に戻る。
第1の実施の形態と同様にまずは、ユーザーは撮影条件の設定を行う。電動ステージ4によって標本2aの座標であるX−Ya座標に駆動を行う。ユーザーはスライドガラス3の表面である「Base」座標の位置に合焦を行う。
【0044】
続いて、「Base」位置から、観察開始時の「Center_a」座標まで、合焦位置を移動させる。「Center」座標に合焦終了後、「Base」座標から「Center_a」座標までの距離の記憶を行う。すなわち「Center_a」-「Base」の値がX−Ya座標におけるオフセット量Off_1aとなる。
【0045】
続いて、「Center_a」座標からの撮影ピッチpと片側撮影枚数n_sの設定を行う。今回は撮影ピッチpと撮影枚数n_sは「Center」位置を中心に同一で設定しているが、それぞれX−Y座標ごとに別々に設定できるようになっていてもよい。本第2の実施の形態では両方向に対して、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_a」座標を算出する。
【0046】
次に、電動ステージ4によって標本2bの座標であるX−Yb座標に駆動を行う。標本2aの時と同様にユーザーはスライドガラス3の表面である「Base」座標の位置に合焦を行う。続いて、「Base」位置から、観察を行いたい「Center_b」座標まで、合焦位置を移動させる。「Center_b」座標に合焦終了後、「Base」座標から「Center_b」座標までの距離の記憶を行う。すなわち「Center_b」-「Base」の値X−Yb座標におけるオフセット量Off_1bとなる。
【0047】
続いて、「Center_b」座標からの撮影ピッチpと片側撮影枚数n_sの設定を行う。ここでは標本2aと同様に、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチp及び撮影枚数n_sに基づいて、撮影の開始座標である「Lower Limit_b」座標を算出する。
【0048】
次に撮影間隔時間tpと撮影繰り返し回数n_tの設定を行う。本第2の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回として設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tとに基づいて、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
【0049】
図14は、第2の実施の形態における測定処理の流れを示すフローチャートである。
撮影開始時、ピエゾ素子21による駆動座標を中央位置である「ピエゾCenter」座標に移動させる。そして、測定が開始されると、ステップS101において、撮影終了時刻end_timeに達して測定が終了したかチェックする。測定が終了した場合(ステップS101:Y)には、終了する。
【0050】
測定が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定した測定間隔に達するまで待機する。測定間隔に達すると(ステップS102:Y)、ステップS201において、複数の測定点の設定順に電動ステージ4のX−Y駆動を行う。そして、最初の測定点であるX−Ya座標にステージX−Yの駆動を行い、ステップS103において、そのX−Ya座標のスライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図13に示した「Base」座標に駆動を行う。
【0051】
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center_a」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、Z方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower_Limit_a」へ駆動をおこなう。
【0052】
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ホストPC16にて設定した撮影枚数分だけ、同じくホストPC16にて設定した撮影ピッチ分だけ、ピエゾ素子21の駆動を行うことで、合焦位置の移動を行いながら撮影を行う。
【0053】
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。
その後、ステップS202において、全てのX−Y座標についての処理が終了したか確認をし、終了していなければ(ステップS202:N)ステップS201に戻り、次の設定したX−Yb座標に電動ステージ4の駆動を行う。そして、同様にそのX−Yb座標のスライドガラス3の「Base」座標に対してAF制御(ステップS103)を行い、設定した撮影枚数の測定(ステップS107)を行う。
【0054】
この動作を測定が終了するまで繰り返し続ける。
以上のように構成・制御される本第2の実施の形態の倒立顕微鏡システム1Bは、複数の測定点毎にスライドガラス3にオートフォーカスをかけることにより、周囲温度の変化により対物レンズ10aの焦点位置が変化した場合でも基準位置が固定された状態で観察体撮影位置をオフセットで設定するため、観察体である標本2の動きを測定することが可能になり、また各撮影座標における撮影ポイントのZ方向の移動はピエゾ素子21により迅速な駆動で行うために、励起光を当てる時間を極めて短くすることが可能となる。
【0055】
なお、本第2の実施の形態では電動X−Yステージの場合につい説明しているが、標本2のX−Y方向の駆動を行うという観点ではこれに限定させるものではなく、たとえば回転ステージであってもよい。
(第3の実施の形態)
次に、本発明にかかる顕微鏡システムを適用した第3の実施の形態について説明する。
【0056】
図15は、本発明にかかる顕微鏡システムを適用した第3の実施の形態の構成を示す図である。
第1の実施の形態と同一のものは同一の符号を付加して説明を省略する。
【0057】
本第3の実施の形態における顕微鏡システム1Cの技術的特徴は、本発明にかかる挿入された対物レンズ10a、10bの種別を判別する対物判別手段が、対物検出部20が対応している点である。
【0058】
第1の実施の形態と同様に、ユーザーは撮影条件の設定を行う。まず、観察を行いたい倍率の対物レンズ10aを光路中に挿入し、図16に示すスライドガラス3の表面である「Base」座標の位置に合焦を行う。
【0059】
続いて、「Base」位置から、観察を行いたい対物レンズ10aに対する観察中心座標である「Center_ob_a」座標まで、合焦位置を移動させる。コントロール部18に接続されたジョグエンコーダ38より入力を行い、同様にモータ制御部24を介して準焦部モータ22の駆動をおこなうことにより電動レボルバ19をZ方向に移動させ「Center_ob_a」座標に合焦を行う。「Center_ob_a」座標に合焦終了後、「Base」座標から「Center_ob_a」座標までの距離の記憶を行う。すなわち「Center_ob_a」-「Base」の値が選択された対物レンズ10aのオフセット量Off_ob_aとなる。
【0060】
続いて、「Center_ob_a」座標からの撮影ピッチp_ob_aと片側撮影枚数n_s_ob_aの設定を行う。本第3の実施の形態では両方向に対して、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_ob_a」座標を算出する。
【0061】
次に、電動レボルバ19によって、次に観察を行いたい倍率の対物レンズ10bを光路中に挿入する。続いて、先の対物レンズ10aの「Center_ob_a」座標から、観察を行いたい選択された対物レンズ10bに対する「Center_ob_b」座標まで、合焦位置を移動させる。合焦座標への移動は、電動レボルバ19に構成されているピエゾ素子21を駆動することによって行う。「Center_ob_b」座標に合焦終了後、「Center_ob_a」座標から「Center_ob_b」座標までの距離の記憶を行う。すなわち「Center_ob_b」-「Center_ob_a」の値が選択させた対物レンズ10aのオフセット量Off_ob_bとなる。
【0062】
続いて、「Center_ob_b」座標からの撮影ピッチp_ob_bと片側撮影枚数n_s_ob_bの設定を行う。本第3の実施の形態では両方向に対して、撮影ピッチp1b、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_ob_b」座標を算出する。
【0063】
次に、撮影間隔時刻tpと撮影繰り返しn_t回数の設定を行う。本第3の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回に設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tより、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
【0064】
図17は、第3の実施の形態における測定処理の流れを示すフローチャートである。
測定が開始されると、ピエゾ素子21による駆動座標を中央位置である「ピエゾCenter」座標に移動を行い、ステップS101において、撮影終了時刻end_timeに応じたタイムラプス測定が終了したかチェックする。測定が終了した場合(ステップS101:Y)には、終了する。
【0065】
測定が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定したタイムラプス測定間隔tp1に達するまで待機する。測定間隔に達すると(ステップS102:Y)、ステップS301において、設定された対物レンズ10aを光路中に挿入する。対物レンズ10aが光路中に挿入されると、ステップS103において、スライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図16に示した「Base」座標に駆動を行う。
【0066】
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center_ob_a」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、Z方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower_Limit_ob_a」へ駆動をおこなう。
【0067】
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1づつ、合焦位置の移動を行いながら撮影を行う。
【0068】
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。
その後、ステップ302において、設定された対物レンズ10aまたは10bについての処理が終了したかを確認し、終了していなければ(ステップS302:N)、ステップS303において、次に設定された対物レンズ10bを光路中に挿入する。そして、対物レンズ10bを光路中に挿入後、ステップS105に戻り、電動レボルバ19に構成されているピエゾ素子21を駆動することによってホストPC16にて予め設定した「Lower_Limit_ob_b」座標へ移動する。続いて、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1bづつ、合焦位置の移動を行いながら撮影を行う。
【0069】
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。この動作を撮影終了時刻end_timeに達して測定が終了するまで繰り返し続ける。
【0070】
以上のように構成・制御される本第3の実施の形態の倒立顕微鏡システム1Cは、タイムラプス測定条件において複数の対物レンズ10aおよび10bによる観察が含まれている場合に焦点ズレが存在した場合でも基準位置が固定された状態で観察体撮影位置をオフセットで設定するため、確実に複数の測定であっても観察体である標本2の動きを測定することが可能となる。
【0071】
なお、本第3の実施の形態では対物レンズ10aおよび10bの場合について説明してあるが、連続的に倍率を可変できるズームレンズの場合であってもよい。
(第4の実施の形態)
次に、本発明にかかる顕微鏡システムを適用した第4の実施の形態について説明する。
【0072】
図18は、本発明にかかる顕微鏡システムを適用した第4の実施の形態の構成を示す図である。
第1の実施の形態と同一のものは同一の符号を付加して説明を省略する。
【0073】
本第4の実施の形態における顕微鏡システム1Dの技術的特徴は、本発明にかかる照射する励起光を切換えるための励起光選択手段が、複数の励起フィルタ8、ダイクロックミラー9、吸収フィルタ11で構成させる蛍光キューブユニット41を選択的に光路中に挿入可能な電動キューブターレット42に対応している点である。そして、電動キューブターレット42はコントロール部18によって制御されている。
【0074】
図19において、標本2における「Center_q_a」座標が励起光aによる観察中心座標を示しており、「Center_q_b」座標が励起光bによる観察中心座標を示している。
図18の説明に戻る。
【0075】
第1の実施の形態と同様に、ユーザーは撮影条件の設定を行う。まず、観察を行いたい倍率のキューブユニット41を光路中に挿入し、図19に示すスライドガラス3の表面である「Base」座標の位置に合焦を行う。続いて、「Base」位置から、観察を行いたいキューブユニット41に対する観察中心位置である「Center_q_a」座標まで、合焦位置を移動させる。コントロール部18に接続されたジョグエンコーダ38より入力を行い、同様にモータ制御部24を介して準焦部モータ22の駆動をおこなうことにより電動レボルバ19をZ方向に移動させ「Center_ob_a」座標に合焦を行う。「Center_q_a」座標に合焦終
了後、「Base」座標から「Center_q_a」座標までの距離の記憶を行う。すなわち「Center_q_a」-「Base」の値が選択させたキューブユニット41におけるのオフセット量Off_q_aとなる。
【0076】
続いて、「Center_q_a」座標からの撮影ピッチp_q_aと片側撮影枚数n_s_q_aの設定を行う。本第4の実施の形態では両方向に対して、撮影ピッチp1、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチ及び撮影枚数より、撮影の開始座標である「Lower Limit_q_a」座標を算出する。
【0077】
次に、電動キューブターレット42によって、次に観察を行いたい倍率のキューブユニット41bを光路中に挿入する。続いて、先のキューブユニット41の「Center_q_a」座標から、観察を行いたい選択されたキューブユニット41bに対する「Center_q_b」座標まで、合焦位置を移動させる。合焦座標への移動は、電動レボルバ19に構成されているピエゾ素子21を駆動することによって行う。「Center_q_b」座標に合焦終了後、「Center_q_a」座標から「Center_q_b」座標までの距離の記憶を行う。すなわち「Center_q_b」-「Center_q_a」の値が選択させたキューブユニット41bにおけるオフセット量off_q_bとなる。
【0078】
続いて、「Center_q_b」座標からの撮影ピッチp_q_bと片側撮影枚数n_s_q_bの設定を行う。本第4の実施の形態では両方向に対して、撮影ピッチp1b、片側撮影枚数を3枚に設定したものとする。次に、設定された撮影ピッチp_q_bと片側撮影枚数n_s_q_bより、撮影の開始座標である「Lower Limt_q_b」座標を算出する。
【0079】
次に撮影間隔時間tpと撮影繰り返し回数n_tの設定を行う。本第4の実施の形態では撮影間隔時間をtp1、撮影繰り返し回数を5回に設定したものとする。設定はホストPC16を介して行うものとする。撮影間隔時間tpと撮影繰り返し回数n_tとに基づいて、撮影開始時に設定させる撮影開始時刻start_timeから撮影終了時刻end_timeが算出される。
【0080】
図20は、第4の実施の形態における測定処理の流れを示すフローチャートである。
測定が開始されると、ピエゾ素子21による駆動座標を中央位置である「ピエゾCenter」座標に移動を行い、ステップS101において、撮影終了時刻end_timeに達してタイムラプス測定が終了したかチェックする。測定が終了した場合(ステップS101:Y)には、終了する。
【0081】
測定が終了していない場合(ステップS101:N)には、ステップS102において、ホストPC16で設定したタイムラプス測定間隔tp1に達するまで待機する。測定間隔に達すると(ステップS102:Y)、ステップS401において、設定されキューブユニット41を光路中に挿入する。キューブユニット41が光路中に挿入されると、ステップS103において、スライドガラス3の「Base」座標に対してAF制御を行い、準焦用モータ22の駆動によって図19に示した「Base」座標に駆動を行う。
【0082】
続いて、「Base」座標に移動した後、ステップS104において、ホストPC16にて予め設定した「Center_q_a」座標、すなわちオフセット量だけ電動レボルバ19を駆動する。さらに、ステップS105において、Z方向画像を取得するために、電動レボルバ19に構成されているピエゾ素子21を駆動することによって、合焦位置を「Lower_Limit_q_a」へ駆動をおこなう。
【0083】
その後、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1づつ、合焦位置の移動を行いながら撮影を行う。
【0084】
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。
その後、ステップS402において、設定されたキューブユニット41または41bについての処理が終了したかを確認し、終了していなければ(ステップS402:N)、ステップS403において、次に設定されたキューブユニット41bを光路中に挿入する。そして、ステップS105に戻り、電動レボルバ19に構成されているピエゾ素子21を駆動することによってホストPC16にて予め設定した「Lower_Limit_q_b」座標へ移動する。続いて、ステップS106において、励起光用のシャッタ17を開けることによって励起光を通過させ、ステップS107において、標本2に励起光を照明して撮影を行う。この撮影がおこなわれた後は、ステップS109において、ピエゾ素子21の駆動を行うことで、ホストPC16にて設定した撮影枚数nである7枚を、同じくホストPC16にて設定した撮影ピッチ分であるp1bづつ、合焦位置の移動を行いながら撮影を行う。
【0085】
そして、撮影終了後(ステップS108:Y)、シャッタ17を閉じることにより励起光を遮光する。この動作を撮影終了時刻end_timeに達して測定が終了するまで繰り返し続ける。
【0086】
以上のように構成・制御される本第4の実施の形態の倒立顕微鏡システム1Dは、タイムラプス測定条件において複数の励起光a、bによる観察が含まれている場合に焦点ズレが存在した場合でも撮影位置をオフセットで設定するため、観察体である標本2の動きを測定することが可能となるともに、各撮影座標における撮影ポイントのZ方向の移動はピエゾ素子21により迅速な駆動で行うために、励起光を当てる時間を極めて短くすることが可能となる。
【0087】
なお、本第4の実施の形態では、合焦検出手段として本第4の実施の形態で説明した方式に限らず、周知の他の方法に適応することができる。また、本第4の実施の形態では倒立顕微鏡システム1Dを代表として顕微鏡装置について説明を行ったが、このような顕微鏡装置に限らず、顕微鏡装置を組み込んだライン装置といった、各種システムに適応することも可能である。
【0088】
以上、本発明の各実施の形態を、図面を参照しながら説明してきたが、本発明が適用される顕微鏡システムは、その機能が実行されるのであれば、上述の各実施の形態等に限定されることなく、単体の装置であっても、複数の装置からなるシステムあるいは統合装置であってもよいことは言うまでもない。
【0089】
すなわち、本発明は、以上に述べた各実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の構成または形状を取ることができる。
【図面の簡単な説明】
【0090】
【図1】本発明にかかる顕微鏡システムを適用した第1の実施の形態の構成を示す図である。
【図2】電動レボルバとピエゾ素子による駆動位置関係を示すである。
【図3】受光センサとピント位置との関係(合焦位置)を説明するための図である。
【図4】受光センサとピント位置との関係(後ピン位置)を説明するための図である。
【図5】受光センサとピント位置との関係(前ピン位置)を説明するための図である。
【図6】デフォーカスと入射光強度との関係を説明するための図(その1)である。
【図7】デフォーカスと入射光強度との関係を説明するための図(その2)である。
【図8】デフォーカスと入射光強度との関係を説明するための図(その3)である。
【図9】第1の実施の形態における標本とスライドガラスとの関係を説明するための図である。
【図10】第1の実施の形態における測定処理の流れを示すフローチャートである。
【図11】第1の実施の形態における測定処理によりタイムラプス画像の取得を説明するための図である。
【図12】本発明にかかる顕微鏡システムを適用した第2の実施の形態の構成を示す図である。
【図13】第2の実施の形態における標本とスライドガラスとの関係を説明するための図である。
【図14】第2の実施の形態における測定処理の流れを示すフローチャートである。
【図15】本発明にかかる顕微鏡システムを適用した第3の実施の形態の構成を示す図である。
【図16】第3の実施の形態における標本とスライドガラスとの関係を説明するための図である。
【図17】第3の実施の形態における測定処理の流れを示すフローチャートである。
【図18】本発明にかかる顕微鏡システムを適用した第4の実施の形態の構成を示す図である。
【図19】第4の実施の形態における標本とスライドガラスとの関係を説明するための図である。
【図20】第4の実施の形態における測定処理の流れを示すフローチャートである。
【符号の説明】
【0091】
1A 倒立顕微鏡システム
1B 倒立顕微鏡システム
1C 倒立顕微鏡システム
1D 倒立顕微鏡システム
2 標本
2a 標本
2b 標本
3 スライドガラス
4 電動ステージ
5 ステージ制御部
6 蛍光光源
7 コレクタレンズ
8 励起フィルタ
8b 励起フィルタ
9 ダイクロックミラー
9b ダイクロックミラー
10a 対物レンズ
10b 対物レンズ
11 吸収フィルタ
11b 吸収フィルタ
12 光路切換え部
13 接眼レンズ
14 CCDカメラユニット
15 ビデオキャプチャボード
16 ホストPC
17 電動シャッタ
18 コントロール部
19 電動レボルバ
20 対物検出部
21 ピエゾ素子
22 準焦部モータ
23 架台
24 モータ制御部
25 ピエゾ制御部
26 赤外光半導体レーザー
27 レーザー制御部
28 コリメートレンズ
29 投光側ストッパ
30 PBS
31 集光レンズ群
32 色収差補正レンズ群
33 λ/4板
34 ダイクロイックミラー
35 集光レンズ群
36 受光センサ
37 合焦判別部
38 ジョグエンコーダ
39 パルスカウンタ
40 操作部
41 蛍光キューブユニット
41b 蛍光キューブユニット
42 電動キューブターレット
43 XY座標記録部

【特許請求の範囲】
【請求項1】
蛍光観察可能な倒立顕微鏡システムにおいて、
透明体と該透明体上に載置された観察体とからなる観察試料を載せるステージと、
該ステージに載せられた前記観察試料に対して対峙するように前記ステージより下方に配置される対物レンズと、
前記ステージと前記対物レンズのうち少なくとも一方を観察光軸に対して平行方向に駆動させる焦準駆動部と、
前記観察試料を励起するための励起光源と、
前記観察光路に配置され前記励起光を前記観察光路に導入する励起光導入手段と、
前記励起光源からの励起光が前記観察試料へ照射されるか非照射状態にするかをコントロールするための励起光制御手段と
前記励起光源とは異なる光源で、前記対物レンズの下方から前記観察試料に対してオートフォーカス用の検出光を出射する焦点検出光源と、
前記観察光路に配置され前記観察光路の光軸方向に対して前記検出光の波長成分を反射し、前記励起光の波長を透過させる検出光導入手段と、
前記観察試料における前記透明体から反射した前記検出光を前記対物レンズを介して受光する受光手段と、
前記受光手段の結果から前記焦準駆動部を制御することで前記透明体の所定の位置にオートフォーカスをするオートフォーカス部と、
前記所定の位置から光軸方向に一定量離れている距離を記録するオフセット量記録手段と、
前記対物レンズを介して前記観察試料の撮影を行う撮像装置と、
前記撮像装置の間欠撮影間隔であるタイムラプス測定間隔を設定するタイムラプス測定間隔設定手段と
前記撮像装置及び前記オートフォーカス部の制御を行う撮影制御手段とを備え、
前記撮影制御手段によって前記検出光を照射し前記オートフォーカス部により前記透明体から前記焦点検出光が反射される位置である前記所定の位置に対してオートフォーカスを行なっている間は、励起光制御手段によって前記観励起光源からの励起光を前記観察試料に非照射状態とし、
前記所定の位置に対してオートフォーカスが完了した後、前記撮像装置によって前記所定の位置から光軸方向に一定量離れている距離で前記観察試料の撮影を行うときに、励起光制御手段によって前記励起光源からの励起光を前記観察試料に照射状態とし、
前記撮像装置によって前記観察画像の撮影が完了した後は励起光制御手段によって、前記励起光源からの励起光を前記観察試料に再び非照射状態することを、前記タイムラプス測定間隔設定手段に記録された前記タイムラプス測定間隔毎に行うこと
を特徴とする倒立顕微鏡システム。
【請求項2】
蛍光観察可能な倒立顕微鏡システムにおいて、
透明体と該透明体上に載置された観察体とからなる観察試料を載せるステージと、
該ステージに載せられた前記観察試料に対して対峙するように前記ステージより下方に配置される対物レンズと、
前記ステージと前記対物レンズのうち少なくとも一方を観察光軸に対して平行方向に駆動させる焦準駆動部と、
前記観察試料を励起するための励起光源と、
前記観察光路に配置され前記励起光を前記観察光路に導入する励起光導入手段と、
前記励起光源からの励起光が前記観察試料へ照射されるか非照射状態にするかをコントロールするための励起光制御手段と
前記励起光源とは異なる光源で、前記対物レンズの下方から前記観察試料に対してオートフォーカス用の検出光を出射する焦点検出光源と、
前記観察光路に配置され前記観察光路の光軸方向に対して前記検出光の波長成分を反射し、前記励起光の波長を透過させる検出光導入手段と、
前記観察試料における前記透明体から反射した前記検出光を前記対物レンズを介して受光する受光手段と、
前記受光手段の結果から前記焦準駆動部を制御することで前記透明体の所定の位置にオートフォーカスをするオートフォーカス部と、
前記所定の位置から光軸方向に一定量離れている距離を記録するオフセット量記録手段と、
前記オフセットをもとに2点以上の異なる撮影位置である撮影範囲設定手段と、
前記対物レンズを介して前記観察試料の撮影を行う撮像装置と、
前記撮像装置の間欠撮影間隔であるタイムラプス測定間隔を設定するタイムラプス測定間隔設定手段と
前記撮像装置及び前記オートフォーカス部の制御を行う撮影制御手段とを備え、
前記撮影制御手段によって前記検出光を照射し前記オートフォーカス部により前記透明体から前記焦点検出光が反射される位置である前記所定の位置に対してオートフォーカスを行なっている間は、励起光制御手段によって前記観励起光源からの励起光を前記観察試料に非照射状態とし、
前記所定の位置に対してオートフォーカスが完了した後、前記撮像装置によって前記所定の位置から光軸方向に前記撮影範囲設定手段にて設定されている一定量離れている2点以上の撮影位置における前記観察試料の撮影を行うときに、励起光制御手段によって、前記励起」光源からの励起光を前記観察試料に照射状態とし、
前記撮像装置によって前記撮影範囲設定手段によって設定させた前記観察画像の撮影が完了した後は、励起光制御手段によって、前記励起光源からの励起光を前記観察試料に再び非照射状態することを、前記タイムラプス測定間隔設定手段に記録された前記タイムラプス測定間隔毎に行うこと
を特徴とする倒立顕微鏡システム。
【請求項3】
前記ステージは、電動でX方向またはY方向に移動可能なX−Yステージであり、前記倒立顕微鏡システムは、前記X−Yステージで予め位置決めされたX−Y座標に対しての駆動量を設定する手段をさらに備え、
前記第1の駆動手段が、前記透明部材に合焦を行った後、前記第2の駆動手段が前記X−Yステージで位置決めされた座標に対して予め定められた駆動制御を行なうことを特徴とする請求項1又は2に記載の倒立顕微鏡システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate


【公開番号】特開2012−159854(P2012−159854A)
【公開日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2012−85791(P2012−85791)
【出願日】平成24年4月4日(2012.4.4)
【分割の表示】特願2005−27783(P2005−27783)の分割
【原出願日】平成17年2月3日(2005.2.3)
【出願人】(000000376)オリンパス株式会社 (11,466)
【Fターム(参考)】