説明

光半導体装置、及びそれを用いた光ピックアップ装置、並びに電子機器

【課題】中空領域を備えたCSPの検査において、検査用プローブの荷重で半導体基板が破壊しない高信頼性で小型の光半導体装置、また、パッケージの方向認識がとりやすい光半導体装置、及びこれを用いた光ピックアップ装置、並びに電子機器を提供する。
【解決手段】半導体基板とガラス板とが半導体基板の周辺部で接着層103により接着され、半導体基板とガラス板と接着層103とで囲まれた部分に中空領域105が形成される。中空領域105には、半導体基板の裏面で等間隔に配置されたバンプ106のそれぞれと対応する位置に補強用接着層104が緩衝部として形成される。これら緩衝部104により、検査用プローブの荷重に対しても耐えうる強度を半導体基板に持たせる。ただし、パッケージの方向認識のため、半導体基板のコーナー部に近い少なくとも1箇所の緩衝部104bの配置場所には緩衝部を配置しない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、チップサイズパッケージを用いた光半導体装置に関し、詳しくは、検査時にバンプ部分に加わる物理的応力を緩和して応力破壊を低減する光半導体装置、及びこのような光半導体装置を用いた光ピックアップ装置、並びに電子機器に関するものである。
【背景技術】
【0002】
近年、半導体集積回路装置の高集積化、高機能化に伴って、回路の大規模化が進み、半導体チップの大型化、ひいては半導体パッケージの大型化に繋がっている。一方で、電子機器は益々小型化が進んでいるため、電子機器に対する半導体パッケージの大きさが課題となってきている。
【0003】
光ピックアップ装置用の受光増幅回路は、レーザ光をCD(Compact Disc)やDVD(Digital Versatile Disc)、更にはBD(Blu-ray Disc)等の光ディスク媒体へ照射することによって発生する反射光を複数の受光素子で受光し、光電流を電圧に変換して出力する数チャンネルのアンプから構成されている。
【0004】
また、CDには赤外レーザ素子、DVDには赤色レーザ素子、BDには青紫レーザ素子が光源として使用されている。近年では赤外と赤色の2つの波長のレーザ素子をモノリシックに形成したモノリシック2波長レーザ素子が普及している。このようなモノリシック2波長レーザ素子では、各々の発光位置が決められた間隔で配置され、光軸が2系統になるため、受光側もそれぞれの波長に対応する専用の受光素子及び増幅回路を同一半導体基板上に形成する必要があり、アンプのチャンネル数は増加している。更に、BDの対応も必要のため、アンプのチャンネル数は益々多くなり、半導体チップは大きくなり、これをモールドするパッケージはこれまでの大きさでは許容できなくなってきた。また特に、BD対応の場合、使用波長が化学変化を起こさせやすい405nm近辺の青紫光のため、パッケージ内部に使用する部材についても十分な注意が必要となってきている。
【0005】
そのため近年では、パッケージサイズを小さくする構造として、チップサイズパッケージ(以下、CSPと略称する)が提案されている。具体的には、半導体基板の表面から裏面に貫通する電極を形成し、当該半導体基板の裏面側に再配線と、電極端子としてのバンプとを形成した光半導体チップが登場している(特許文献1参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2006−228837号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
ところで、CSP構造の光半導体装置の電気的特性を検査する場合、半導体基板の裏面に配置された全てのバンプに同時に検査用プローブを押し当てて、バンプと検査用プローブとの電気的コンタクトをとるため、検査用プローブの荷重が各バンプに加わる。この荷重は半導体基板にも加わり、当該半導体基板のみで検査用プローブの荷重を吸収することとなる。その結果、半導体基板は検査用プローブの荷重に耐えきれず、半導体基板のバンプの周辺にクラックが発生し、最悪の場合は半導体基板が破壊することがある。また、バンプ端子のように基板表面から突出した端子でなくても、プローブを使用する検査においては、プローブ荷重によって基板が破壊することは発生しうる。
【0008】
今後、CSPの更なる小型化を図るには、CSP構造における厚みを薄くするため、小型・薄型化と堅牢性とを実現するCSP構造が必要となる。
【0009】
また、パッケージの小型化に伴い、セット実装のときにパッケージの方向認識がとりにくくなるため、パッケージを逆方向に実装するという課題も発生する。
【0010】
そこで、本発明は、前記の課題に鑑み、CSPの検査において、検査用プローブの荷重で半導体基板が破壊しない信頼性の高い光半導体装置、また、パッケージの方向認識がとりやすい光半導体装置、及びこれを用いた光ピックアップ装置、並びに電子機器を提供することを目的とする。
【課題を解決するための手段】
【0011】
前記目的を達成するため、本発明に係る光半導体装置は、第1の主面上に能動素子が形成された半導体基板と、前記半導体基板の他の主面上に形成された複数の電極端子と、前記第1の主面上に前記能動素子と対向するように間隔をおいて設けられた光透過性部材と、前記第1の主面上の周辺部に形成された封止部と、前記第1の主面上の前記能動素子と前記光透過性部材と前記封止部との間に形成された中空領域と、前記中空領域内に少なくとも1箇所以上形成された緩衝部とを備えたことを特徴とする。
【0012】
この構成によれば、半導体基板の周辺部だけでなく、中空領域においても検査用プローブの荷重を分散できる緩衝部を配置しているため、検査用プローブの荷重による半導体基板の破壊が低減できる。
【0013】
また、パッケージの方向認識を向上するためには、前記緩衝部のうち半導体基板のコーナー部に近い少なくとも1箇所の緩衝部の形状を他の緩衝部の形状とは異なるようにしたり、前記緩衝部のうち半導体基板のコーナー部に近い少なくとも1箇所の緩衝部の配置場所には緩衝部を配置しないようにしたりすればよい。
【発明の効果】
【0014】
本発明によれば、CSPの検査において、検査用プローブの荷重により半導体基板が破壊しない高信頼性で小型の光半導体装置、また、パッケージの方向認識がとりやすい光半導体装置、及びこれを用いた光ピックアップ装置、並びに電子機器を提供することができるという効果を奏する。
【図面の簡単な説明】
【0015】
【図1】本発明の第1の実施形態に係る光半導体装置の構成を示す平面図である。
【図2】図1のII−II断面図である。
【図3】本発明の第1の実施形態に係る他の光半導体装置の構成を示す断面図である。
【図4】本発明の第2の実施形態に係る光半導体装置の構成を示す平面図である。
【図5】本発明の第3の実施形態に係る光半導体装置の構成を示す平面図である。
【図6】本発明の第3の実施形態に係る他の光半導体装置の構成を示す平面図である。
【図7】本発明の第3の実施形態に係る更に他の光半導体装置の構成を示す平面図である。
【図8】本発明の第3の実施形態に係る更に他の光半導体装置の構成を示す平面図である。
【図9】本発明の第4の実施形態に係る光半導体装置の構成を示す平面図である。
【図10】図9のX−X断面図である。
【図11】本発明の第5の実施形態に係る光ピックアップ装置の構成を示す図である。
【発明を実施するための形態】
【0016】
以下、図面を参照して本発明における実施の形態を詳細に説明する。
【0017】
《第1の実施形態》
図1は、本発明の第1の実施形態における光半導体装置を示す平面図である。また図2は、本第1の実施形態の光半導体装置及び当該光半導体装置の検査時に用いる検査用プローブを示す断面図である。図1及び図2に示すように、光半導体装置100は、半導体基板101と、保護用のガラス板(光透過性部材)102と、封止部としての接着層103と、緩衝部としての補強用接着層104と、電極端子としてのバンプ106とで構成されている。なお、半導体基板101は、例えばシリコンからなり、100μm程度の厚みを持つものである。
【0018】
半導体基板101の表面(第1の主面)には受光領域107と信号処理回路108とが形成されており、光信号を受光し、光電流を発生する複数の受光素子107aが受光領域107の中に配置されている。半導体基板101とガラス板102とは、半導体基板101の周辺部で接着層103により接着されており、半導体基板101とガラス板102と接着層103とで囲まれた部分には中空領域105が形成されている。
【0019】
受光領域107の上に接着層103を接着すると、接着層103の光特性により光の透過率が低減するか、あるいは、波長が405nm近辺の青紫レーザ光を照射すると、特に接着層103の物性が変化し、変色や変形を起こすため、受光領域107の上には接着層103を形成することは望ましくない。また、信号処理回路108の上に接着層103を接着すると、接着層103の硬化による応力で、受動素子である抵抗や容量の値がシフトし、能動素子であるトランジスタやダイオードの特性がシフトするため、信号処理回路108の上にも接着層103を形成することは望ましくない。したがって、これらの特性劣化を防止するため、受光領域107及び信号処理回路108の上には接着層103を接着せず、中空領域105としている。
【0020】
また、この中空領域105には等間隔に配置されたバンプ106のそれぞれ対応する位置に補強用接着層104が形成されており、補強用接着層104の半導体基板101との接着面積は、バンプ106の半導体基板101との接合面積より大きい。すなわち、半導体基板101の裏面(他の主面)に配置されているバンプ106の位置が半導体基板101の表面の中空領域105の範囲内にある場合、バンプ106の位置と同じ位置の半導体基板101の表面に補強用接着層104を形成する。ただし、受光領域107の直下にはバンプ106aを配置しないことが望ましい。
【0021】
中空領域105を備えたCSP構造の光半導体装置100を検査する場合、光半導体装置100の裏面に配置されたバンプ106に検査用プローブ200を押し当てて、バンプ106と検査用プローブ200との電気的コンタクトをとるため、バンプ106には検査用プローブ200の荷重(例えば、1プローブ当たり50g)が加わる。
【0022】
図1において、中空領域105の中にはバンプ106が8個あるため、中空領域105における半導体基板101にはトータルで、50g×8個=400gの荷重が加わることとなる。この400gの荷重が加わった中空領域105は、半導体基板101の周辺部に形成された接着層103のみで支持されていた場合、半導体基板101は強度不足でクラックが発生するか、最悪の場合は破壊する。検査用プローブ200の荷重による破壊を防止するため、8個のバンプ106の直上に半導体基板101を支持するための補強用接着層104を形成している。
【0023】
この補強用接着層104により、検査用プローブ200の荷重に対しても耐えうる強度を半導体基板101に持たせることができる。また、マスク合わせずれによって、バンプ106の位置に対して補強用接着層104の位置がバンプ106の直上からずれた場合でも半導体基板101の強度を確保するため、補強用接着層104の大きさはバンプ106の大きさより大きく設定することが望ましい。
【0024】
しかも、本第1の実施形態によれば、補強用接着層104があるので、接着層103の面積を小さくしても、半導体基板101とガラス板102との接着強度に問題は生じない。したがって、チップサイズを小さくすることができる。
【0025】
なお、本第1の実施形態では封止部及び緩衝部に、それぞれ接着層103及び補強用接着層104を使用したが、図3の光半導体装置140に示すように、封止部103及び緩衝部104として、例えば絶縁体であるセラミックを支持体とし、上下に接着層を有する構造体を使用しても、同様の効果を奏することができる。ただし、封止部103と緩衝部104とは同一の製造工程で形成できることが好ましい。工程の簡略化、及び低コスト化が図れるからである。
【0026】
また、CSP裏面端子として、基板から突出したバンプ106について説明したが、単なる平坦な端子の場合でも、プローブ検査における基板破壊防止の観点からは、同様の効果を奏することができる。
【0027】
《第2の実施形態》
図4は、本発明の第2の実施形態に係る光半導体装置150を示す平面図である。第1の実施形態と比べ、緩衝部の配置、及びそれに伴う信号処理回路108の配置の点が異なる。また更に、本第2の実施形態では緩衝部として、基板上にめっきもしくは蒸着で形成した金属層を使用している。金属層の厚みは封止部に使用する接着層の厚み以下としている。緩衝部設置の目的は、前述のように検査プローブの荷重を分散させることにあるため、半導体基板に対向するガラス板と接着している必要はなく、荷重によって発生する半導体基板の変形が抑制されるのであれば問題ない。
【0028】
金属層である金めっき層109は、中空領域105において補助線110で示す対角線上で、中空領域105の中心から放射状に同一距離で、検査用プローブの総荷重が均等に分散される位置に4箇所形成されている。
【0029】
なお、緩衝部を金めっき層109として説明したが、荷重によって発生する半導体基板の変形が抑制されるのであれば、金めっき層109に限定されずどのような材質のものであってもよい。例えば、セラミックやガラス板であっても本発明の目的は達成される。
【0030】
また、この構成であれば、バンプ106の数や位置によらず金めっき層109を配置でき、信号処理回路108の領域を有効に使用できるため、回路レイアウトの自由度も向上し、チップサイズの小型化、ひいてはパッケージサイズの更なる小型化も可能となる。また、緩衝部が有機材料である接着剤を含有していないため、BD用の青紫レーザ光に対するパッケージ内部の変質を抑制することができる。
【0031】
また、前述した説明では、半導体基板101上の封止部及び緩衝部の設置領域には、受動素子及び能動素子を配置しないとしているが、回路レイアウトの工夫で応力に対して特性がシフトしない素子や、特性がシフトしても光半導体装置150の全体の特性に影響を与えない素子、及びアルミニウム配線は、封止部及び緩衝部の設置領域に配置してもかまわないことは言うまでもない。
【0032】
また、緩衝部(金めっき層109)は半導体基板101が検査用プローブ200の荷重に対して破壊しない場所であれば、中空領域105のどの位置に何箇所配置してもかまわない。更に、緩衝部は封止部と接触した位置、あるいは一部がオーバーラップした位置に配置してもかまわない。
【0033】
《第3の実施形態》
図5、図6、図7及び図8は、本発明の第3の実施形態に係る光半導体装置を示す平面図である。第1の実施形態と比べ、一部の緩衝部又は一部の封止部の形状が異なる。
【0034】
図5の光半導体装置160に示す緩衝部104aは、他の緩衝部104と比べサイズが小さく、他の緩衝部104が円形であるのに対して四角形である。また、図6の光半導体装置170に示す緩衝部104bは、緩衝部自体を除いている。これら2つの緩衝部形状及び配置は、どちらも他の緩衝部104とは異なっているため、光半導体装置160及び170を表面から見た時、容易に位置を認識することができ、例えば、1番端子に近い部分に上記緩衝部104a,104bを配置することで、光半導体装置160,170のパッケージ方向が認識しやすくなるという効果を奏する。
【0035】
また、図7に示す光半導体装置180の封止部103aは、封止部103の他の3箇所のコーナー部とは異なった形状をしているため、上記緩衝部の配置と同様に光半導体装置180を表面から見た時、容易に位置を認識することができ、例えば、1番端子に近い部分に上記封止部103aを配置することで、光半導体装置180のパッケージ方向が認識しやすくなるという効果を奏する。
【0036】
更に、図8に示すように、封止部103にレーザマーカ等でマーク300を入れることにより、マーク300は半導体基板とガラス板に挟まれた位置に形成されるため、洗浄やリフロー等のダメージによりマークが薄くなったり、剥がれたりすることが無くなり、常に鮮明にマークが見え、マークの位置で光半導体装置190を表面から見た時、光半導体装置190のパッケージ方向が認識しやすくなるという効果を奏する。更に、図形、文字、数字を組み合わせてマーク300を形成することで、個々の光半導体装置に認識番号を形成することができ、例えば製品型番や製造年月日等の個別情報を個々に形成できるという効果を奏する。
【0037】
《第4の実施形態》
図9及び図10は、本発明の第4の実施形態に係る光半導体装置を示す図である。第1の実施形態と比べ、緩衝部の代わりに光半導体装置の表面に弾性体部を配置した点が異なる。
【0038】
例えば、イメージセンサー等では受光領域が広いため、第1の実施形態のように中空領域に緩衝部を配置することができない。この場合、緩衝部に代わる衝撃吸収部を光半導体装置に設ける必要がある。
【0039】
図9及び図10に示すように、光半導体装置350は、半導体基板101と、ガラス板(光透過性部材)102と、封止部としての接着層103と、衝撃吸収部としてのゴム状の弾性体部351と、電極端子としてバンプ106とで構成されている。
【0040】
半導体基板101の表面(第1の主面)には受光領域107と信号処理回路108とが形成されており、光信号を受光し、光電流を発生する複数の受光素子107aが受光領域107の中に配置されている。半導体基板101とガラス板102とは、半導体基板101の周辺部で接着層103により接着されており、半導体基板101とガラス板102と接着層103とで囲まれた部分には中空領域105が形成されている。
【0041】
受光領域107の上に接着層103を接着すると、接着層103の光特性により光の透過率が低減するか、あるいは、波長が405nm近辺の青紫レーザ光を照射すると、特に接着層103の物性が変化し、変色や変形を起こすため、受光領域107の上には接着層103を形成することは望ましくない。また、信号処理回路108の上に接着層103を接着すると、接着層103の硬化による応力で、受動素子である抵抗や容量の値がシフトし、能動素子であるトランジスタやダイオードの特性がシフトするため、信号処理回路108の上にも接着層103を形成することは望ましくない。したがって、これらの特性劣化を防止するため、受光領域107及び信号処理回路108の上には接着層103を接着せず、中空領域105としている。
【0042】
また、ガラス板102の表面には、受光領域107の上方で受光領域107とほぼ同じ位置に開口部352を備えた弾性体部351を配置している。受光領域107の上方に開口部352を設けるのは、上記接着層と同様に弾性体部351の光特性により光の透過率が低減するか、あるいは、波長が405nm近辺の青紫レーザ光を照射すると、特に弾性体部351の物性が変化し、変色や変形を起こすため、受光領域107の上には弾性体部351を形成することは望ましくないからである。
【0043】
中空領域105を備えたCSP構造の光半導体装置350を検査する場合、光半導体装置350の裏面に配置されたバンプ106に検査用プローブ200を押し当てて、バンプ106と検査用プローブ200との電気的コンタクトをとるため、バンプ106には検査用プローブ200の荷重(例えば、1プローブ当たり50g)が加わる。
【0044】
図9において、中空領域105の中にはバンプ106が8個あるため、中空領域105における半導体基板101にはトータルで、50g×8個=400gの荷重が加わることとなる。この400gの荷重が加わった中空領域105は、半導体基板101の周辺部に形成された接着層103のみで支持されていた場合、半導体基板101は強度不足でクラックが発生するか、最悪の場合は破壊する。検査用プローブ200の荷重による破壊を防止するため、ガラス板102の表面にゴム状の弾性体部351を配置し、光半導体装置350の全体で検査用プローブ200の荷重を緩和している。つまり、ゴム状の弾性体部351により、検査用プローブ200の荷重に対しても耐えうる強度を半導体基板101に持たせることができる。
【0045】
また、弾性体開口部352の位置はガラス板102の表面がむき出しになっているため、ゴミ等の異物によりガラス板102の表面にキズが付く可能性があるため、弾性体部351の厚みは製造工程中に付着するダストサイズ(数十μm)よりも厚い50μm以上が望ましい。弾性体部351の厚みが50μm以上あれば、弾性体開口部352のガラス板102表面にゴミが付着したとしても、光半導体装置350の表面が製造装置やトレー等に接してガラス板102の表面にキズを付けることは無くなる。
【0046】
また、弾性体開口部352は光半導体装置350を個片にダイシングする直前に形成することが望ましい。すなわち、半導体基板101とガラス板102とを貼り合わせた後、ガラス板102の表面に弾性体材料を塗布し、この状態で貫通電極(不図示)の形成からバンプ形成までを行い、最後にダイシングする前にマスキング、露光して弾性体開口部352を形成することにより、弾性体材料塗布後からバンプ形成までの間はガラス板表面は弾性体材料で保護されているため、弾性体開口部352におけるガラス板表面へのゴミ等の付着も防止でき、弾性体開口部352の形成後の洗浄工程で他の部分に付着したゴミも洗浄されるからである。
【0047】
また、弾性体部351の表面は粗面処理することが望ましい。光半導体装置350をセットに組み込んだ場合、更に光半導体装置350にホルダーをかぶせる時には、光半導体装置350の表面(弾性体部351の表面)とホルダーとを接着剤で接着するため、光半導体装置350の表面が粗面のほうが鏡面より接着力が向上する。
【0048】
更に、受光領域107に対応するガラス板102表面以外の部分に弾性体部351が配置されているため、弾性体部351が遮光膜としての機能も有することから、迷光等による不要光が受光領域107以外の部分に照射されることを防止でき、不要光による回路の誤動作や、特に接着層103の物性が変化し、変色や変形を起こすことを防止することができる。この場合、弾性体材料に予め顔料等の光を透過しにくい色を混ぜておくことが望ましい。
【0049】
また、図9に示す弾性体コーナー部351aは、弾性体部351の他の3箇所のコーナー部とは異なった形状をしているため、上記第3の実施形態における封止部の配置と同様に光半導体装置350を表面から見た時、容易に位置を認識することができ、例えば、1番端子に近い部分に上記弾性体コーナー部351aを配置することで、光半導体装置350のパッケージ方向が認識しやすくなるという効果を奏する。
【0050】
更に、弾性体部351にレーザマーカ等でマーク400を入れることにより、マークの位置で光半導体装置350を表面から見た時、光半導体装置350のパッケージ方向が認識しやすくなるという効果を奏する。更に、図形、文字、数字を組み合わせてマーク400を形成することで、個々の光半導体装置に認識番号を形成することができ、例えば製品型番や製造年月日等の個別情報を個々に形成できるという効果を奏する。
【0051】
なお、CSP裏面端子として、基板から突出したバンプ106について説明したが、単なる平坦な端子の場合でも、プローブ検査における基板破壊防止の観点からは、同様の効果を奏することができる。
【0052】
《第5の実施形態》
図11は、本発明の第5の実施形態に係る光ピックアップ装置の構成を示す図である。図11に示すように、光ピックアップ装置50は、レーザ光を用いてDVD及びCDの光ディスク媒体58からの情報の読み出し、及び光ディスク媒体58への情報の書き込みを行う装置である。
【0053】
光ピックアップ装置50は、CDに使用される光源としての赤外レーザ素子51と、DVDに使用される光源としての赤色レーザ素子52と、3ビームグレーティング53と、ビームスプリッタ54aと、ビームスプリッタ54bと、コリメータレンズ55と、ミラー56と、対物レンズ57a,57bと、受光用IC59とから構成される。
【0054】
光ピックアップ装置50では、光ディスク媒体58がCDである場合において、赤外レーザ素子51から出射されたレーザ光は、3ビームグレーティング53により、3ビームに分割された後、ビームスプリッタ54a、コリメータレンズ55及びビームスプリッタ54bを順次通って、ミラー56で反射されて対物レンズ57aに入射する。その後、対物レンズ57aで集光された光が光ディスク媒体58(CD)に入射した後、反射され、反射光は対物レンズ57a、ミラー56及びビームスプリッタ54bを順次通って戻ってくる。光ディスク媒体58からの反射光は、ビームスプリッタ54bによってその方向が曲げられ、対物レンズ57bを通って受光用IC59の受光面上に照射される。受光用IC59は、光ディスク媒体58の情報を電気信号として出力する。
【0055】
ここで、受光用IC59は、図示しない受光部を有する受光素子、及び受光素子で発生した光電流を増幅する信号処理回路が同じシリコン基板上に形成されたICであり、第1〜第4の実施形態で説明した光半導体装置である。
【0056】
光ディスク媒体58からの反射光には、光ディスク媒体58の面上のピット情報等が含まれており、受光素子で発生した光電流を演算処理することにより、光ディスク媒体58の情報信号、フォーカスエラー信号及びトラッキングエラー信号等が得られる。これらの信号は光ディスク媒体58の情報の読み取りや光ピックアップ装置50の位置制御等に用いられる。
【0057】
したがって、第1〜第4の実施形態の光半導体装置により、光ピックアップ装置50の高信頼性化、及び小型化が可能となる。
【0058】
また、光ピックアップ装置50では、光ディスク媒体58がDVDである場合において、赤色レーザ素子52から出射されたレーザ光は、ビームスプリッタ54a、コリメータレンズ55及びビームスプリッタ54bを順次通って、ミラー56で反射されて対物レンズ57aに入射する。その後、対物レンズ57aで集光された光が光ディスク媒体58(DVD)に入射した後、反射され、反射光は対物レンズ57a、ミラー56及びビームスプリッタ54bを順次通って戻ってくる。光ディスク媒体58からの反射光は、ビームスプリッタ54bによってその方向が曲げられ、対物レンズ57bを通って受光用IC59の受光面上に照射される。受光用IC59は、光ディスク媒体58の情報を電気信号として出力する。
【0059】
光ディスク媒体58からの反射光に起因する電気信号が、光ディスク媒体58の情報の読み取りや光ピックアップ装置50の位置制御等に用いられる点は前記CDの場合と同じであるが、光ディスク媒体58がCDの場合には、レーザ光が3ビームに分割されているのに対して、光ディスク媒体58がDVDの場合には1ビームであるため、CDからの反射光とDVDからの反射光とは受光部上の異なった位置に照射される。よって、受光用IC59では、CDからの情報を得るために使用される受光部と、DVDからの情報を得るために使用される受光部とが一部異なってくる。
【0060】
光ピックアップ装置50において、赤外レーザ素子51から出射されたレーザ光及び赤色レーザ素子52から出射されたレーザ光はそれぞれ、ビームスプリッタ54aから光ディスク媒体58に至る光路、及び光ディスク媒体58から受光用IC59に至る光路において、光軸がほぼ同じになるように調整されている。よって、光ディスク媒体58がCD及びDVDのいずれであっても同じ光学素子、及び同じ光学系を使用することができ、光ピックアップ装置50の小型化及び組立て時の調整等が容易となる。
【0061】
以上のように本第5の実施形態の光ピックアップ装置50によれば、第1〜第4の実施形態の光半導体装置が用いられる。よって、信頼性が高く小型の光ピックアップ装置を実現することができる。
【0062】
なお、前記光ピックアップ装置50では、レーザ光、受光用IC等の構造及び各部品の配置関係等は、適宜、設計に応じて変更されてもよい。
【0063】
以上、本発明の光半導体装置を用いた光ピックアップ装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。例えば、本発明の光半導体装置は光ピックアップ装置以外の様々な電子機器にも好適に用いられる。これにより、信頼性が高く小型の電子機器を実現することができる。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。
【0064】
また、本発明は光半導体装置として光透過性部材を用いて説明したが、半導体基板を積層するインターポーザとして用いる場合等は、光透過性部材である必要はなく、シリコン基板やセラミック基板、あるいはプリント基板であっても、本発明の要旨を逸脱しない範囲内であれば、本発明の範囲内に含まれる。
【産業上の利用可能性】
【0065】
本発明は、光半導体装置及びこれを用いた光ピックアップ装置、並びに電子機器に利用でき、特に光ディスク媒体の情報読み取りを行う光半導体装置及びこれを用いた光ピックアップ装置等に利用することができる。
【符号の説明】
【0066】
50 光ピックアップ装置
51 赤外レーザ素子
52 赤色レーザ素子
53 3ビームグレーティング
54a,54b ビームスプリッタ
55 コリメータレンズ
56 ミラー
57a,57b 対物レンズ
58 光ディスク媒体
59 受光用IC
100,140,150,160,170,180,190,350 光半導体装置
101 半導体基板
102 ガラス板
103 接着層
103a 封止部の欠けパターン
104,104a,104b 補強用接着層
105 中空領域
106 バンプ
106a バンプの欠け位置
107 受光領域
107a 受光素子
108 信号処理回路
109 金めっき層
110 補助線
200 検査用プローブ
300,400 マーク
351 弾性体部
352 弾性体開口部

【特許請求の範囲】
【請求項1】
第1の主面上に能動素子が形成された半導体基板と、
前記半導体基板の他の主面上に形成された複数の電極端子と、
前記第1の主面上に前記能動素子と対向するように間隔をおいて設けられた光透過性部材と、
前記第1の主面上の周辺部に形成された封止部と、
前記第1の主面上の前記能動素子と前記光透過性部材と前記封止部との間に形成された中空領域と、
前記中空領域内に少なくとも1箇所以上形成された緩衝部とを備え、
前記緩衝部のうち、前記半導体基板のコーナー部に近い少なくとも1箇所の前記緩衝部の配置場所には前記緩衝部を配置しないことを特徴とする光半導体装置。
【請求項2】
請求項1記載の光半導体装置において、
前記半導体基板の第1の主面上における前記緩衝部の設置領域には、能動素子及び受動素子を形成しないことを特徴とする光半導体装置。
【請求項3】
請求項1又は2に記載の光半導体装置において、
前記緩衝部は、前記中空領域内に等間隔に配置されていることを特徴とする光半導体装置。
【請求項4】
請求項1〜3のいずれか1項に記載の光半導体装置において、
前記緩衝部は、前記半導体基板の他の主面上に配置された少なくとも1つ以上の電極端子に対向する前記半導体基板の第1の主面上の位置に形成されていることを特徴とする光半導体装置。
【請求項5】
請求項4記載の光半導体装置において、
前記半導体基板の第1の主面上における前記緩衝部の設置面積は、該緩衝部のそれぞれに対応する電極端子の前記半導体基板の他の主面に接する面積より大きいことを特徴とする光半導体装置。
【請求項6】
請求項1〜5のいずれか1項に記載の光半導体装置において、
前記半導体基板上に形成された能動素子のうち、少なくとも1つは入射光量に応じて光電流を出力する受光素子であって、該受光素子が形成された位置に対して前記半導体基板を介した直下には電極端子を形成しないことを特徴とする光半導体装置。
【請求項7】
請求項1〜6のいずれか1項に記載の光半導体装置において、
前記半導体基板の第1の主面上における前記封止部の設置領域には、能動素子及び受動素子を形成しないことを特徴とする光半導体装置。
【請求項8】
請求項1〜7のいずれか1項に記載の光半導体装置において、
前記封止部は接着層からなることを特徴とする光半導体装置。
【請求項9】
請求項1〜7のいずれか1項に記載の光半導体装置において、
前記封止部は支持体の上下に接着層を有する構成であることを特徴とする光半導体装置。
【請求項10】
請求項1〜9のいずれか1項に記載の光半導体装置において、
前記緩衝部は接着層からなることを特徴とする光半導体装置。
【請求項11】
請求項1〜9のいずれか1項に記載の光半導体装置において、
前記緩衝部は支持体の上下に接着層を有する構成であることを特徴とする光半導体装置。
【請求項12】
第1の主面上に能動素子が形成された半導体基板と、
前記半導体基板の他の主面上に形成された複数の電極端子と、
前記第1の主面上に前記能動素子と対向するように間隔をおいて設けられた光透過性部材と、
前記第1の主面上の周辺部に形成された封止部と、
前記第1の主面上の前記能動素子と前記光透過性部材と前記封止部との間に形成された中空領域と、
前記中空領域内に少なくとも1箇所以上形成された緩衝部とを備え、
前記緩衝部のうち、前記半導体基板のコーナー部に近い少なくとも1箇所の前記緩衝部の形状は、他の前記緩衝部の形状とは異なることを特徴とする光半導体装置。
【請求項13】
第1の主面上に能動素子が形成された半導体基板と、
前記半導体基板の他の主面上に形成された複数の電極端子と、
前記第1の主面上に前記能動素子と対向するように間隔をおいて設けられた光透過性部材と、
前記第1の主面上の周辺部に形成された封止部と、
前記第1の主面上の前記能動素子と前記光透過性部材と前記封止部との間に形成された中空領域と、
前記中空領域内に少なくとも1箇所以上形成された緩衝部とを備え、
前記封止部において、前記半導体基板のコーナー部に近い少なくとも1箇所の前記封止部の形状は、他の前記封止部の形状とは異なることを特徴とする光半導体装置。
【請求項14】
第1の主面上に能動素子が形成された半導体基板と、
前記半導体基板の他の主面上に形成された複数の電極端子と、
前記第1の主面上に前記能動素子と対向するように間隔をおいて設けられた光透過性部材と、
前記第1の主面上の周辺部に形成された封止部と、
前記第1の主面上の前記能動素子と前記光透過性部材と前記封止部との間に形成された中空領域と、
前記中空領域内に少なくとも1箇所以上形成された緩衝部とを備え、
前記封止部にマークを形成したことを特徴とする光半導体装置。
【請求項15】
請求項14記載の光半導体装置において、
前記マークは、図形、文字、及び数字のいずれか1つ、又はいずれか2つ以上を組み合わせたマークであることを特徴とする光半導体装置。
【請求項16】
請求項1〜15のいずれか1項に記載の光半導体装置を備えたことを特徴とする光ピックアップ装置。
【請求項17】
請求項1〜15のいずれか1項に記載の光半導体装置を備えたことを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate


【公開番号】特開2011−129906(P2011−129906A)
【公開日】平成23年6月30日(2011.6.30)
【国際特許分類】
【出願番号】特願2010−272335(P2010−272335)
【出願日】平成22年12月7日(2010.12.7)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】