説明

光送信モジュール

【課題】 温度に依存した伝送ペナルティを低減することが可能な光送信モジュールが提供される。
【解決手段】 第1の実施形態の光送信モジュールは、(a)感温素子を含み、該感温素子によって示される温度に応じた第1の信号を生成する温度モニタ部と、(b)この第1の信号に基づいて、温度の変化に起因する伝送ペナルティを低減するための第2の信号を生成する調整部と、(c)第1のレベルから第2のレベルへの第1の遷移と第2のレベルから第1のレベルへの第2の遷移とによって規定されるパルスの列を含む入力信号と、上記第2の信号とを受けており、該パルスのパルス幅と異なるパルス幅のパルスを含む変調信号を該入力信号から該第2の信号に応じて生成する波形整形部と、(d)この変調信号に応じて半導体レーザを駆動するドライバ部とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光通信用光送信モジュールに関するものである。
【背景技術】
【0002】
特許文献1には、光送信モジュールが記載されている。この光送信モジュールは、電界吸収型光変調器と、光出力波形のクロスポイントを常にハイレベルとローレベルとの中央に制御する制御回路とを備えている。この光送信モジュールは、伝送ペナルティを改善することができる。
【特許文献1】特開2000−59317号公報
【発明の開示】
【発明が解決しようとする課題】
【0003】
しかしながら、直接変調される半導体レーザを用いた光送信モジュールでは、電界吸収型光変調器を用いた光送信モジュールに比べてチャープが大きい。そのため、直接変調される半導体レーザを用いた光送信モジュールでは、光出力信号のクロスポイントを常にハイレベルとローレベルとの中央に固定すると、光送信モジュールの動作温度が上昇及び低下した場合に、伝送ペナルティが劣化してしまう。その一例を図10に示す。図10は、伝送距離100kmの時の受信感度と伝送距離0kmの時の受信感度との差である伝送ペナルティの温度依存性を示す図である。受信感度は、受信器の誤り率が1.0E−10になった時の受信器の光受信パワーである。伝送距離100kmは、2488.32Mbps(OC−48/LR−2)のためにSONET/SDHで定められた分散量1600ps/nm相当する。なお、測定のために最低限必要な伝送距離50m程度は、伝送距離に含まれていない。
【0004】
仮に、直接変調される半導体レーザを用いた光送信モジュールに特許文献1に記載の制御回路を用いても、温度に依存した伝送ペナルティは十分に改善されない。
【0005】
そこで、本発明は、温度に依存した伝送ペナルティを低減することが可能な光送信モジュールを提供することを目的としている。
【課題を解決するための手段】
【0006】
本発明の光送信モジュールは、(a)感温素子を含み、該感温素子によって示される温度に応じた第1の信号を生成する温度モニタ部と、(b)この第1の信号に基づいて、温度の変化に起因する伝送ペナルティを低減するための第2の信号を生成する調整部と、(c)第1のレベルから第2のレベルへの第1の遷移と第2のレベルから第1のレベルへの第2の遷移とによって規定されるパルスの列を含む入力信号と、上記第2の信号とを受けており、該パルスのパルス幅と異なるパルス幅のパルスを含む変調信号を該入力信号から該第2の信号に応じて生成する波形整形部と、(d)この変調信号に応じて半導体レーザを駆動するドライバ部とを備える。
【0007】
この光送信モジュールでは、第2の信号が、温度の変化に起因する伝送ペナルティを低減するために温度に応じて変化する。波形整形部は、この第2の信号に応じて入力信号からパルス幅を変更した変調信号を生成する。すなわち、この変調信号のパルス幅を変更することによって、温度変化に起因する伝送ペナルティが低減される。
【0008】
本発明の光送信モジュールの波形整形部は、(a)入力信号を増幅するバッファ増幅器と、(b)バッファ増幅器の出力信号を入力に受けるローパスフィルタと、(c)ローパスフィルタの出力信号を入力に受け、該入力とは逆相の入力に上記第2の信号を受けて上記変調信号を生成するコンパレータとを有し、(d)ローパスフィルタの出力信号の遷移は次の遷移が開始されるまでに完了していることが好ましい。
【0009】
また、本発明の光送信モジュールの調整部は、(a)上記第1の信号に応じた第1のディジタル信号を生成するアナログ/ディジタル変換器と、(b)このアナログ/ディジタル変換器に接続されており、上記温度の変化に起因する伝送ペナルティを低減するためのデータを記憶する記憶部と、(c)この記憶部に接続されており、記憶部からの第2のディジタル信号に応じた上記第2の信号を生成するディジタル/アナログ変換器とを有することが好ましい。
【0010】
本発明の他の光送信モジュールは、(a)感温素子を含み、該感温素子によって示される温度に応じた第1の信号を生成する温度モニタ部と、(b)半導体レーザの光出力に応じて受光素子から生成された電流に応じて、該半導体レーザのバイアス電流を制御するためのAPC信号を出力するAPC制御部と、(c)上記第1及びAPC信号に基づいて、上記温度の変化及び上記光出力の変化に起因する伝送ペナルティを低減するための第2の信号を生成する調整部と、(d)第1のレベルから第2のレベルへの第1の遷移と第2のレベルから第1のレベルへの第2の遷移とによって規定されるパルスの列を含む入力信号と、上記第2の信号とを受けており、該パルスのパルス幅と異なるパルス幅のパルスを含む変調信号を該入力信号から該第2の信号に応じて生成する波形整形部と、(e)この変調信号に応じて上記半導体レーザを駆動するドライバ部とを備える。
【0011】
この光送信モジュールによれば、第2の信号が、温度の変化及び光出力の変化に起因する伝送ペナルティを低減するために、温度及び光出力に応じて変化する。波形整形部は、この第2の信号に応じて入力信号からパルス幅を変更した変調信号を生成する。すなわち、この変調信号のパルス幅を変更することによって、温度変化及び光出力に起因する伝送ペナルティが低減される。
【0012】
本発明の他の光送信モジュールの調整部は、(a)上記第1の信号に応じた第1のディジタル信号を生成する第1のアナログ/ディジタル変換器と、(b)上記APC信号に応じた第3のディジタル信号を生成する第2のアナログ/ディジタル変換器と、(c)これらの第1及び第2のアナログ/ディジタル変換器に接続されており、上記温度の変化及び上記光出力の変化に起因する伝送ペナルティを低減するためのデータを記憶する記憶部と、(d)この記憶部に接続されており、記憶部からの第2のディジタル信号に応じた上記第2の信号を生成するディジタル/アナログ変換器とを有することが好ましい。
【発明の効果】
【0013】
本発明によれば、温度に依存した伝送ペナルティを低減することが可能な光送信モジュールが提供される。
【発明を実施するための最良の形態】
【0014】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
【0015】
(第1の実施形態)
図1は、本発明の第1の実施形態に係る光送信モジュールの構成を示す回路図である。図1に示す光送信モジュール10は、温度モニタ部12、調整部14、波形整形部16、ドライバ部18、半導体レーザ20、受光素子22、及び、APC制御部24を備える。
【0016】
温度モニタ部12は、感温素子26と、抵抗28a、28b、28cと、増幅器30とを有している。抵抗28aの第1の端子は第1の電源線31aに接続されており、抵抗28aの第2の端子はノードN1に接続されている。感温素子26の第1の端子はノードN1に接続されており、感温素子26の第2の端子は、例えば接地ラインといった第2の電源線31bに接続されている。抵抗28bの第1の端子は第1の電源線31aに接続されており、抵抗28bの第2の端子はノードN2に接続されている。抵抗28cの第1の端子はノードN2に接続されており、抵抗28cの第2の端子は第2の電源線31bに接続されている。なお、感温素子26には、例えば、ダイオードやサーミスタが用いられる。
【0017】
増幅器30の第1の入力はノードN1に接続されており、増幅器30の第2の入力はノードN2に接続されている。増幅器30の出力は、調整部14の入力に接続されている。増幅器30は、例えば、差動増幅回路で構成される。温度モニタ部12は、感温素子26によって示される温度に応じた第1の信号S1を生成し、この第1の信号S1を調整部14へ出力する。
【0018】
調整部14は、アナログ/ディジタル変換器(以下、ADCという)32と、記憶部34と、ディジタル/アナログ変換器(以下、DACという)36とを有している。ADC32の入力には、第1の信号S1が入力される。ADC32の出力は記憶部34に接続されている。ADC32は、第1の信号S1に応じて第1のディジタル信号D1を生成し、この第1のディジタル信号D1を記憶部34へ出力する。
【0019】
記憶部34は、第1のディジタル信号D1に応答して第2のディジタル信号D2を出力する。図2は、第1のディジタル信号D1の値と第2のディジタル信号D2の値の関係を示すグラフ図である。記憶部34は、温度変化に起因する伝送ペナルティを低減するためのデータを記憶している。これらのデータは、第2のディジタル信号D2の値に対応しており、また、第1のディジタル信号D1の値に対応付けて記憶部34に格納されている。図1に示されるように、これらの第2のディジタル信号D2は、スイッチ38を介してDAC36に出力される。記憶部34には、例えば、EEPROMやフラッシュメモリ、又は、RAMが用いられる。本実施形態では、これらのデータは書き込み端子34iを介して記憶部34に書き込まれる。これらデータの設定方法の詳細は後述する。
【0020】
DAC36の入力はスイッチ38を介して記憶部34に接続されており、DAC36の出力は波形整形部16の第1の入力16aに接続されている。DAC36は、第2のディジタル信号D2から第2の信号S2を生成する。DAC36は、この第2の信号S2を波形整形部16へ出力する。
【0021】
本実施形態では、光送信モジュール10は、外部出力端子14oと外部入力端子14iとを備えている。外部出力端子14oはADC32の出力に接続されている。スイッチ38の第1の端子は記憶部34の出力に接続されており、スイッチ38の第2の端子はDAC36の入力に接続されている。また、スイッチ38の第3の端子は外部入力端子14iに接続されている。スイッチ38は、外部からの制御信号を受けて、第1の端子と第2の端子との接続、又は、第1の端子と第3の端子との接続を切り換えることができる。外部出力端子14oと外部入力端子14iとの間に外部の記憶素子(図示せず)を接続することによって、例えば、出荷試験等のために記憶部34の代わりに外部の記憶素子を用いることができる。この構成によって、出荷試験等による記憶部34の劣化を防止できる。
【0022】
波形整形部16は、バッファ増幅器40と、パルス整形部42と、コンパレータ44とを有している。バッファ増幅器40の入力15a、15bは、それぞれ、差動の入力信号Si、Sixを受ける。入力信号Siは、第1のレベル(例えばLOWレベル)から第2のレベル(例えばHIGHレベル)への第1の遷移と第2のレベル(例えばHIGHレベル)から第1のレベル(例えばLOWレベル)への第2の遷移とによって規定されるパルスの列を含む。第1の遷移は立ち上がりであり、第2の遷移は立ち下がりであり、第1及び第2の遷移は、それぞれ、第1の遷移時間及び第2の遷移時間内に生じている。バッファ増幅器40の出力はパルス整形部42の入力に接続されている。バッファ増幅器40は、差動の入力信号Si、Sixを増幅する。本実施形態では、バッファ増幅器40は、例えば、差動増幅回路であり、その相補出力は、例えば、第1の電源線31a又は第2の電源線31bに終端されている。
【0023】
パルス整形部42の出力は、コンパレータ44の第1の入力に接続されている。パルス整形部42は、第3のレベル(例えばLOWレベル)から第4のレベル(例えばHIGHレベル)への第3の遷移と第4のレベル(例えばHIGHレベル)から第3のレベル(例えばLOWレベル)への第4の遷移とによって規定される調整パルスSfを入力信号Siのパルスから生成する。第3の遷移は立ち上がりであり、第4の遷移は立ち下がりであり、第3及び第4の遷移は、それぞれ、第3の遷移時間及び第4の遷移時間内に生じている。本実施形態では、パルス整形部42は、例えば、ローパスフィルタを含み、第3の遷移時間は第1の遷移時間より長く、第4の遷移時間は第2の遷移時間より長い。第3及び第4の遷移は、次の遷移が開始されるまでに完了している。すなわち、第3の遷移は第4の遷移が開始されるまでに完了している。パルス整形部42は、調整パルスSfを含む出力信号をコンパレータ44の第1の入力に出力する。なお、ローパスフィルタには、例えば、OPアンプを用いた積分回路や、容量素子が用いられる。
【0024】
コンパレータ44の第2の入力には、波形整形部16の第1の入力16aを介して、第2の信号S2が入力されている。コンパレータ44は、変調信号Smと相補変調信号Smxとを変調パルスSfから第2の信号S2に応じて生成する。この変調信号Smに含まれるパルスのパルス幅は、入力信号Siに含まれるパルスのパルス幅と異なっており、温度に応じて変化する。すなわち、この変調信号Smに含まれるパルスのパルス幅は、温度の変化に起因する伝送ペナルティを低減するべく第2の信号S2に応じて変化する。相補変調信号Smxは変調信号Smの相補信号である。コンパレータ44は、これらの変調信号Smと相補変調信号Smxとをドライバ部18へ出力する。
【0025】
ドライバ部18は、変調信号Smと相補変調信号Smxとを受けて、半導体レーザ20を駆動する。半導体レーザ20からの光出力信号Soは光ファイバ(図示せず)に入力され、半導体レーザ20からのモニタ光Lmは受光素子22によって受光される。受光素子22は、半導体レーザ20の光出力信号Soに応じた電流を生成し、この電流をAPC制御部24へ出力する。APC制御部24は、半導体レーザ20の光出力信号Soの平均値と消光比とが一定となるように、受光素子22からの電流に応じてドライバ部18を制御する。そのため、APC制御部24は、変調電流制御信号Vmとバイアス電流制御信号Vbとを生成し、これらの変調電流制御信号Vm及びバイアス電流制御信号Vbをドライバ部18へ出力する。
【0026】
図3に、ドライバ部18の詳細な回路図の一例を示す。ドライバ部18は、差動対を構成する第1のトランジスタTr1及び第2のトランジスタTr2、変調電流源46、バイアス電流源48、抵抗50a、50b、インダクタ52、及び、容量素子54a、54bを有する。
【0027】
第1のトランジスタTr1のベースといった制御端子には変調信号Smが入力されている。第1のトランジスタTr1のコレクタは抵抗50aを介して第1の電源線31aに接続されている。第1のトランジスタTr1のエミッタは共通ノードN3に接続されている。一方、第2のトランジスタTr2のベースには相補変調信号Smxが入力されている。第2のトランジスタTr2のコレクタは抵抗50bを介して第1の電源線31aに接続されている。第2のトランジスタTr2のエミッタは共通ノードN3に接続されている。
【0028】
変調電流源46は、共通ノードN3と第2の電源線31bの間に接続されている。変調電流源46は、APC制御部24からの変調電流制御信号Vmに応じて半導体レーザ20へ変調電流を供給する。
【0029】
第1のトランジスタTr1のコレクタは容量素子54aを介して半導体レーザ20のアノードに接続されている。一方、第2のトランジスタTr2のコレクタは容量素子54bを介して半導体レーザ20のカソードに接続されている。
【0030】
バイアス電流源48は、例えば、半導体レーザ20のカソードと第2の電源線31bとの間に接続されている。バイアス電流源48は、APC制御部24からのバイアス電流制御信号Vbに応じて半導体レーザ20へバイアス電流を供給する。
【0031】
インダクタ52は、半導体レーザ20のアノードと第1の電源線31aとの間に接続されている。インダクタ52を用いると高周波成分が除かれるので、安定したバイアス電流が半導体レーザ20に供給される。
【0032】
次に、再び図1を参照しながら、記憶部34のデータの設定方法について説明する。調整部14と波形整形部16との接続を切り離し、波形整形部16の入力16a(コンパレータ44の第2の入力)には外部の電圧発生装置(図示せず)を接続する。また、温度モニタ部12と調整部14との接続も切り離す。光送信モジュール10の周囲温度Taを例えば80℃とする。電圧発生装置の出力電圧値、すなわち、コンパレータ44の第2の入力の電圧値を変更しながら、伝送距離100kmの場合と伝送距離0mの場合とにおいて、光送信モジュール10の光出力信号Soを受信する受信器(図示せず)の受信感度を測定する。これらの受信感度の差である伝送ペナルティが低減されるときのコンパレータ44の第2の入力の電圧値と、温度モニタ部12の出力電圧値とを測定する。このコンパレータ44の第2の入力の電圧値と温度モニタ部12の出力電圧値とが、それぞれ、当該周囲温度における第2の信号S2の値及び第1の信号S1の値である。この第1の信号S1の値と第2の信号S2の値とから、ADC32とDAC36との特性を考慮して、それぞれ、第1のディジタル信号D1の値と第2のディジタル信号D2の値とを求める。
【0033】
上記の測定を、例えば、Ta=−40℃〜80℃の各温度において繰り返し行い、第1のディジタル信号D1の値と第2のディジタル信号D2の値とを求める。これらの第2のディジタル信号D2の値を、それぞれ、同一温度のときの第1のディジタル信号D1の値に対応付けて、書き込み端子34iを介して記憶部34に書き込む。このようにして、記憶部34のデータが設定される。なお、これらのデータは、APC制御部24によってオートパワーコントロールが行われているときのデータである。
【0034】
図4(a)は、Ta=80℃のときの光ファイバ100km伝送後及び光ファイバ伝送前の受信感度の光出力信号クロスポイント位置依存性を示す図である。図5は、Ta=80℃のときの伝送ペナルティの光出力信号クロスポイント位置依存性を示す図である。伝送ペナルティとは、伝送距離100kmの時の受信感度と伝送距離0kmの時の受信感度との差である。受信感度は、受信器の誤り率が1.0E−10になった時の受信器の光受信パワーである。伝送距離100kmは、2488.32Mbps(OC−48/LR−2)のためにSONET/SDHで定められた分散量1600ps/nm相当する。なお、測定のために最低限必要な伝送距離50m程度は、伝送距離に含まれていない。
【0035】
図4(a)に示すように、光送信モジュール10の光出力信号Soのクロスポイントの位置が50%から60%に変化した場合、光ファイバ伝送前の受信感度は1dB程度劣化(低下)している。ここで、受信感度及び伝送ペナルティは受信器の平均光受信パワーによって規定され、光送信モジュール10の光出力信号Soは光ファイバ伝送前の受信器の光受信信号にほぼ等しいので、図4(b)に示す平均光受信パワーを求めるための計算式から、光ファイバ伝送前の受信感度の劣化量を計算する。この計算式における各符号は次の通りである。
Pave:受信器の平均光受信パワー
Ps:受信器の光受信信号振幅
Tt:受信器の光受信信号の立ち上がり時間及び立ち下がり時間
To:受信器の光受信信号の1ビットの時間
a:受信器の光受信信号の消光比(真数)
m:受信器の光受信信号のマーク率
b:受信器の光受信信号の遷移確率
x:受信器の光受信信号のクロスポイントのズレ量
なお、x=0%は、クロスポイントがハイレベルとローレベルの中央となる場合を示し、x=50%は、クロスポイントがハイレベルに等しい場合を示す。
【0036】
例えば、OC−48規格では、To=400psec、Tt=200psec、m=b=0.5、a=9dB=7.9程度であるので、光受信信号のクロスポイントの位置が50%から60%(x=0%からx=10%)に変わると、光受信信号振幅Psが同じでも、平均光受信パワーPaveは0.17dB程度変化することになる。すなわち、図4(a)の測定結果から求められる光ファイバ伝送前の受信感度の劣化量1dBは、図4(b)の計算式から求められる光ファイバ伝送前の受信感度の劣化量0.17dBより大きいことがわかる。これは、図4(b)の計算式では、以下のことが考慮されていないことに起因する。
【0037】
光ファイバ伝送前の光受信信号(光送信モジュール10の光出力信号So)のアイパターンでは、クロスポイントの位置を50%から60%に変化した場合、50%の位置(例えば、受信器のデータ識別のための閾値)のパルス幅が狭くなることがある。また、光受信信号のアイパターンでは、クロスポイントの位置を50%から60%に変化した場合、LOWレベルが浮き上がることがある。すなわち、光受信信号の振幅が小さくなることがある。
【0038】
一方、図4(a)に示すように、光受信モジュール10の光出力信号Soのクロスポイントの位置が50%から60%に変化したことによる、光ファイバ100km伝送後の受信感度の劣化量は、光ファイバ伝送前の受信感度の劣化量と比較して小さい。これは、以下のことに起因する。
【0039】
光ファイバを伝送した光信号のパルスは、光ファイバの波長分散に起因して、LOWレベルが浮き上がることがある(1ビットごとに1、0、1という信号の場合、0が下がり切らない)。図6(a)に、光出力信号Soのクロスポイントの位置が50%のときの光ファイバ伝送前の光受信信号のアイパターンを示し、図6(b)に、光出力信号Soのクロスポイントの位置が60%のときの光ファイバ伝送前の光受信信号のアイパターンを示し、図6(c)に、光出力信号Soのクロスポイントの位置が50%のときの光ファイバ伝送前の光受信信号のアイパターンを示す。図6(d)に、光出力信号Soのクロスポイントの位置が60%のときの光ファイバ伝送前の光受信信号のアイパターンを示す。図6(a)〜図6(d)に示すように、光ファイバの波長分散に起因する光信号のLOWレベルの浮き上がり量(図(a)と図(c)との差)は、上述したクロスポイントの位置の変化(50%から60%)に起因する光信号のLOWレベルの浮き上がり量(図(a)と図(b)との差)に比べて大きい。したがって、光送信モジュール10の光出力信号Soのパルスのクロスポイントの位置が50%であっても60%であっても、光ファイバ100km伝送後の受信器の光受信信号のパルスは、LOWレベルが浮き上がることがある(図(c)及び図(d))。
【0040】
以上のことから、光送信モジュール10の光出力信号Soのクロスポイントが大きくなるほど、光ファイバ100km伝送後の受信感度と光ファイバ伝送前の受信感度との差である伝送ペナルティが小さくなる。したがって、本実施形態では、Ta=80の場合、光送信モジュール10の光出力信号S1のクロスポイントの位置が60%となるように記憶部34のデータを設定した。
【0041】
光通信規格(例えばOC−48/LR−2)では、伝送ペナルティに関する規格値が厳しいことが多い。また、伝送ペナルティを求めるための長距離伝送後の受信感度の測定には時間がかかるので(長距離伝送後の誤り率測定では時間軸に対して誤り発生が局在することがあるので)、コストに大きな影響を及ぼすことがある。一方、送受信器の光出力には個体差があるので、受信感度は大きなマージンを取って設計されることが多い。そのため、受信感度の設定はそれほどクリティカルな項目ではない。また、短距離伝送時の受信感度の測定には時間がかからないので、それほどコストに影響を及ぼさない。したがって、本発明によれば、温度に依存した伝送ペナルティを改善することによって、規格外品を削減することができ、また出荷前検査の工数を削減することができるので、コスト的に大きなメリットが得られる。その結果、低コスト化を図ることができる。
【0042】
次に、図1及び図7を参照しながら、第1の実施形態の光送信モジュールの動作を説明する。図7は、第1の実施形態の光送信モジュールの各部の信号のパルスの一部の一例を示す図である。まず、入力信号Si及び相補入力信号Sixが、それぞれ、入力15a、15bに入力されると、この入力信号Si及び相補入力信号Sixはバッファ増幅器40によって増幅され、パルス整形部42へ入力される。図7(a)に、入力信号Siの一部を示す。この入力信号Siの立ち上がり時間及び立ち下がり時間は、それぞれ、t1、t2であり、入力信号Siのパルス幅はtiである。パルス整形部42は、増幅された入力信号Siから立ち上がり時間t3及び立ち下がり時間t4の調整パルスSfを出力する(図7(b)参照)。これらの立ち上がり時間t3及び立ち下がり時間t4は、それぞれ、入力信号Siの立ち上がり時間t1及び立ち下がり時間t2より長い。
【0043】
ここで、例えば、光モジュール10の周囲温度Taが20℃の場合を考える。感温素子26の端子間電圧がTa=20℃に応じた電圧となり、温度モニタ部12がこの電圧に応じた第1の信号S1を出力する。記憶部34は、温度変化に起因する伝送ペナルティを低減するためのデータを予め記憶している。調整部14のADC32が、第1の信号S1に応じた第1のディジタル信号D1を生成し、調整部14の記憶部34が、記憶しているデータから第1のディジタル信号D1に応答して第2のディジタル信号D2を読み出し、調整部14のDAC36が、第2のディジタル信号D2に応じた第2の信号S2aを出力する(図7(b)参照)。コンパレータ44は、調整パルスSfと第2の信号S2aとを比較して変調信号Sma及び相補変調信号Smxを出力する。図7(c)に示すように、変調信号Smaのパルス幅tmaは、入力信号Siのパルス幅tiにほぼ等しい。
【0044】
ドライバ部18は、変調信号Smaと制御部24からの変調電流制御信号Vmとに基づいて変調電流を半導体レーザ20に供給し、制御部24からのバイアス電流制御信号Vbに基づいてバイアス電流を半導体レーザ20に供給する。半導体レーザ20は、光出力信号Soa及びモニタ光Lmを出力する。図7(e)に示すように、光出力信号Soaのパルス幅toaは、入力信号Siのパルス幅tiにほぼ等しい。モニタ光Lmは受光素子22によって受光される。受光素子22は、モニタ光Lmに応じた電流をAPC制御部24に出力する。APC制御部24は、半導体レーザの光出力平均値及び消光比が一定となるようにバイアス電流及び変調電流を制御する(APC)。
【0045】
本実施形態では、Ta=20℃の場合、光出力信号Soaのパルス幅toaが入力信号Siのパルス幅tiとほぼ等しくなるので、光出力信号Soaのアイパターンのクロスポイントの位置はほぼ50%となる。
【0046】
次に、例えば、光モジュール10の周囲温度Taが80℃の場合を考える。感温素子26の端子間電圧がTa=80℃に応じた電圧となり、温度モニタ部12がこの電圧に応じた第1の信号S1を出力する。調整部14のADC32が、第1の信号S1に応じた第1のディジタル信号D1を生成し、調整部14の記憶部34が、記憶しているデータから第1のディジタル信号D1に応答して第2のディジタル信号D2を読み出し、調整部14のDAC36が、第2のディジタル信号D2に応じた第2の信号S2bを出力する(図7(b)参照)。コンパレータ44は、調整パルスSfと第2の信号S2bとを比較して変調信号Smb及び相補変調信号Smxを出力する。図7(d)に示すように、変調信号Smbのパルス幅tmbは、入力信号Siのパルス幅tiに比べて長い。
【0047】
ドライバ部18は、変調信号Smbと制御部24からの変調電流制御信号Vmとに基づいて変調電流を半導体レーザ20に供給し、制御部24からのバイアス電流制御信号Vbに基づいてバイアス電流を半導体レーザ20に供給する。半導体レーザ20は、光出力信号Sob及びモニタ光Lmを出力する。図7(f)に示すように、光出力信号Sobのパルス幅tobは、入力信号Siのパルス幅tiに比べて長い。モニタ光Lmは受光素子22によって受光される。受光素子22は、モニタ光Lmに応じた電流をAPC制御部24に出力する。APC制御部24は、半導体レーザの光出力平均値及び消光比が一定となるようにバイアス電流及び変調電流を制御する。
【0048】
本実施形態では、Ta=80の場合、光出力信号Sobのパルス幅tobが入力信号Siのパルス幅tiに比べて長くなるので、光出力信号Sobのアイパターンのクロスポイントの位置はほぼ60%となる。本実施形態では、記憶部34に記憶されている第2のディジタル信号D2は図2に示す値であるので、周囲温度Taが20℃より上昇又は低下すると、光出力信号Soのパルス幅toが入力信号Siのパルス幅tiに比べて長くなり、光出力信号Soのアイパターンのクロスポイントの位置は50%よりHIGHレベル側に位置することとなる。したがって、図8に示すように、温度変化に起因する伝送ペナルティが低減される。図8は上記したOC−48/LR−2規定に準じて測定したものである。なお、本実施形態では、半導体レーザ20に流れる電流信号と変調信号Sfとが逆相の関係であるので、調整部14からの第2の信号D2は反転されてコンパレータ44の第2の入力に入力されている。そのため、図7(b)に示す第2の信号S2bの値が第2の信号S2aの値に比べて小さくなっている。
【0049】
このように、第1の実施形態の光送信モジュールによれば、温度に依存した伝送ペナルティを低減することが可能である。本実施形態は、直接変調されるようなチャープが大きい半導体レーザを用い、光ファイバの波長分散に起因して伝送ペナルティが大きく劣化するような光送信モジュールに適用されると、より大きな伝送ペナルティの低減効果を得ることが可能である。
【0050】
(第2の実施形態)
図9は、本発明の第2の実施形態に係る光送信モジュールの構成を示す回路図である。図9に示す光送信モジュール10aは、調整部14の代わりに調整部14aを備える構成において第1の実施形態と異なる。その他の構成は、第1の実施形態と同様である。
【0051】
引き続く説明では、第1の実施形態と異なる部分を説明する。調整部14aは、第1のアナログ/ディジタル変換器(以下、第1のADCという)32aと、第2のアナログ/ディジタル変換器(以下、第2のADCという)32bと、記憶部34aと、ディジタル/アナログ変換器(以下、DACという)36とを有している。第1のADC32aはADC32と同一である。第2のADC32bはADC32と同一の構成であり、第2のADC32bの入力には、APC制御部24からのAPC信号(バイアス電流制御信号)Vbが入力される。第2のADC32bの出力は記憶部34aに接続されている。第2のADC32bは、APC信号Vmに応じて第3のディジタル信号D3を生成し、この第3のディジタル信号D3を記憶部34aへ出力する。
【0052】
記憶部34aは、第1のディジタル信号D1と第3のディジタル信号D3の値とに応答して第2のディジタル信号D2を出力する。記憶部34aは、温度変化及び光出力変化に起因する伝送ペナルティを低減するためのデータを記憶している。これらのデータは、第2のディジタル信号D2の値に対応しており、また、第1のディジタル信号D1の値と第3のディジタル信号D3の値とに対応付けて記憶部34aに格納されている。これらのデータは、例えば、第1のディジタル信号D1の値をアドレスの下位6ビットとし、第3のディジタル信号D3の値をアドレスの上位6ビットとしたアドレスに対応付けて記憶部34aに格納されている。これらの第2のディジタル信号D2は、スイッチ38を介してDAC36に出力される。記憶部34aには、例えば、EEPROMやRAM、又は、フラッシュメモリが用いられる。本実施形態では、これらのデータは書き込み端子34iを介して記憶部34aに書き込まれる。
【0053】
DAC36の入力はスイッチ38を介して記憶部34aに接続されており、DAC36の出力は波形整形部16の第1の入力16aに接続されている。DAC36は、第2のディジタル信号D2から第2の信号S2を生成する。DAC36は、この第2の信号S2を波形整形部16へ出力する。
【0054】
次に、記憶部34aのデータの設定方法について説明する。第1に実施形態の記憶部34と同様に、調整部14aと波形整形部16との接続を切り離し、波形整形部16の入力16a(コンパレータ44の第2の入力)には外部の電圧発生装置(図示せず)を接続する。また、温度モニタ部12と調整部14aとの接続、及び、APC制御部24と調整部14aとの接続も切り離す。光送信モジュール10の周囲温度Taを例えば80℃とする。電圧発生装置の出力電圧値、すなわち、コンパレータ44の第2の入力の電圧値を変更しながら、伝送距離100kmの場合と伝送距離0mの場合とにおいて、光送信モジュール10の光出力信号Soを受信する受信器(図示せず)の受信感度を測定する。これらの受信感度の差である伝送ペナルティが低減されるときのコンパレータ44の第2の入力の電圧値と温度モニタ部12の出力電圧値とを測定する。
【0055】
次いで、コンパレータ44の第2の入力の電圧を、この伝送ペナルティが低減されるときのコンパレータ44の第2の入力の電圧値に固定する。次いで、例えば、APC制御部24内の半導体レーザ20の電流を検知する抵抗の抵抗値を10%小さくして、同様に、伝送距離100kmの場合と伝送距離0mの場合とにおいて、受信器の受信感度を測定し、伝送ペナルティが低減されるときのAPC制御部24のバイアス電流制御信号の値Vbを測定する。これらのコンパレータ44の第2の入力の電圧値と、温度モニタ部12の出力電圧値と、APC制御部24のバイアス電流制御信号の値Vbとが、それぞれ、第2の信号S2の値、第1の信号S1の値、APC信号S3の値である。これらの第1の信号S1の値、第2の信号S2の値、及び、APC信号の値から、ADC32a、DAC36、及び、ADC32bの特性を考慮して、それぞれ、第1のディジタル信号D1の値、第2のディジタル信号D2の値、及び、第3のディジタル信号D3の値を求める。
【0056】
次いで、Ta=80℃、コンパレータ44の第2の入力の電圧値を固定したまま、例えば、APC制御部24内の半導体レーザ20の電流を検知する抵抗の値を9%、8%、…、0%と小さくした場合それぞれについて、同様に、伝送ペナルティが低減されるときの第1のディジタル信号D1の値、第2のディジタル信号D2の値、及び、第3のディジタル信号D3の値を求める。なお、通常、半導体レーザの電流が10%程度増加すると、この半導体レーザは寿命と判断されるので、上記検知抵抗の抵抗値の変化は0%〜10%程度で十分である。
【0057】
上記の測定を、例えば、Ta=−40℃〜80℃の各温度において繰り返し行い、第1のディジタル信号D1の値、第2のディジタル信号D2の値、及び、第3のディジタル信号D3の値を求める。これらの第2のディジタル信号D2の値を、それぞれ、同一温度、及び、APC制御部24内の検知抵抗が同一な抵抗値のときの第1のディジタル信号D1の値及び第3のディジタル信号D3の値に対応付けて、書き込み端子34iを介して記憶部34aに書き込む。このようにして、記憶部34aのデータが設定される。
【0058】
次に、図9及び図7を参照しながら、第2の実施形態の光送信モジュールの動作を説明する。第1の実施形態と同様に、入力信号Si及び相補入力信号Sixが、それぞれ、入力15a、15bに入力されて、パルス整形部42から調整パルスSfが出力される。
【0059】
ここで、例えば、光モジュール10の周囲温度Taが20℃の場合で、半導体レーザ20の光出力が初期状態の場合(劣化なしの場合)を考える。感温素子26の端子間電圧がTa=20℃に応じた電圧となり、温度モニタ部12がこの電圧に応じた第1の信号S1を出力する。記憶部34aは、温度変化及び光出力変化に起因する伝送ペナルティを低減するためのデータを予め記憶している。調整部14aの第1のADC32aが、第1の信号S1に応じた第1のディジタル信号D1を生成し、調整部14aの第2のADC32bが、半導体レーザ20の光出力一定制御(APC)のためのAPC信号(バイアス電流制御信号)Vbに応じた第3のディジタル信号D3を生成し、調整部14aの記憶部34aが、記憶しているデータから第1のディジタル信号D1及び第3のディジタル信号D3に応答して第2のディジタル信号D2を読み出し、調整部14aのDAC36が、第2のディジタル信号D2に応じた第2の信号S2aを出力する(図7(b)参照)。コンパレータ44は、調整パルスSfと第2の信号S2aとを比較して変調信号Sma及び相補変調信号Smxを出力する。図7(c)に示すように、変調信号Smaのパルス幅tmaは、入力信号Siのパルス幅tiにほぼ等しい。
【0060】
ドライバ部18は、変調信号Smaと制御部24からの変調電流制御信号Vmとに基づいて変調電流を半導体レーザ20に供給し、制御部24からのバイアス電流制御信号Vbに基づいてバイアス電流を半導体レーザ20に供給する。半導体レーザ20は、光出力信号Soa及びモニタ光Lmを出力する。図7(e)に示すように、光出力信号Soaのパルス幅toaは、入力信号Siのパルス幅tiにほぼ等しい。モニタ光Lmは受光素子22によって受光される。受光素子22は、モニタ光Lmに応じた電流をAPC制御部24に出力する。APC制御部24は、半導体レーザ20の光出力平均値及び消光比が一定となるようにバイアス電流及び変調電流を制御する。
【0061】
本実施形態では、Ta=20℃で、半導体レーザ20の光出力が初期状態の場合、光出力信号Soaのパルス幅toaが入力信号Siのパルス幅tiとほぼ等しくなるので、光出力信号Soaのアイパターンのクロスポイントの位置はほぼ50%となる。
【0062】
次に、例えば、光モジュール10の周囲温度Taが80℃の場合で、半導体レーザ20の光出力が劣化(低下)した場合を考える。感温素子26の端子間電圧がTa=80℃に応じた電圧となり、温度モニタ部12がこの電圧に応じた第1の信号S1を出力する。また、制御部24からのバイアス電流制御信号Vbの値と変調電流制御信号Vmの値とが、半導体レーザ20の光出力劣化に応じて大きな値である。調整部14aの第1のADC32aが、第1の信号S1に応じた第1のディジタル信号D1を生成し、調整部14aの第2のADC32bが、半導体レーザ20の光出力一定制御のためのAPC信号(バイアス電流制御信号)Vbに応じた第3のディジタル信号D3を生成し、調整部14aの記憶部34aが、記憶しているデータから第1のディジタル信号D1及び第3のディジタル信号D3に応答して第2のディジタル信号D2を読み出し、調整部14aのDAC36が、第2のディジタル信号D2に応じた第2の信号S2bを出力する(図7(b)参照)。コンパレータ44は、調整パルスSfと第2の信号S2bとを比較して変調信号Smb及び相補変調信号Smxを出力する。図7(d)に示すように、変調信号Smbのパルス幅tmbは、入力信号Siのパルス幅tiに比べて長い。
【0063】
ドライバ部18は、変調信号Smbと制御部24からの変調電流制御信号Vmbとに基づいて変調電流を半導体レーザ20に供給し、制御部24からのバイアス電流制御信号Vbに基づいてバイアス電流を半導体レーザ20に供給する。半導体レーザ20は、光出力信号Sob及びモニタ光Lmを出力する。図7(f)に示すように、光出力信号Sobのパルス幅tobは、入力信号Siのパルス幅tiに比べて長い。モニタ光Lmは受光素子22によって受光される。受光素子22は、モニタ光Lmに応じた電流をAPC制御部24に帰還する。APC制御部24は、半導体レーザの光出力平均値及び消光比が一定となるようにバイアス電流及び変調電流を制御する。
【0064】
本実施形態では、第1の実施形態と同様に、周囲温度Taが20℃より上昇又は低下すると、光出力信号Soのパルス幅toが入力信号Siのパルス幅tiに比べて長くなる。また、半導体レーザ20の光出力が劣化すると、光出力信号Soのパルス幅toが入力信号Siのパルス幅tiに比べて長くなる。したがって、光出力信号Soのアイパターンのクロスポイントの位置は50%よりHIGHレベル側に位置する。故に、温度変化及び光出力変化に起因する伝送ペナルティが低減される。
【0065】
このように、第2の実施形態の光送信モジュールによれば、温度に依存した伝送ペナルティを低減することが可能であり、且つ、半導体レーザの光出力劣化に依存した伝送ペナルティをも低減することが可能である。
【0066】
なお、本発明は上記した本実施形態に限定されることなく種々の変形が可能である。本実施形態の調整部は、記憶部と、ADCと、DACとによって、温度変化に起因する伝送ペナルティを低減するためのディジタル信号を予め記憶する構成であったが、ダイオード又はトランジスタの温度変化に起因する非線形特性を利用したアナログ回路で構成し、温度変化に起因する伝送ペナルティを低減してもよい。
【0067】
また、本実施形態では、トランジスタとしてバイポーラトランジスタ(BJT)を例示したが、トランジスタとして電界効果トランジスタ(FET)を用いてもよい。
【図面の簡単な説明】
【0068】
【図1】本発明の第1の実施形態に係る光送信モジュールの構成を示す回路図である。
【図2】記憶部に予め記憶された温度変化に起因する伝送ペナルティを低減するためのデータを図化した図である。
【図3】ドライバ部の詳細な回路図の一例である。
【図4】(a)は、Ta=80℃のときの光ファイバ100km伝送後及び光ファイバ伝送前の受信感度の光出力信号クロスポイント位置依存性を示す図であり、(b)は、受信器の平均光受信パワーを求めるための計算式である。
【図5】Ta=80℃のときの伝送ペナルティの光出力信号クロスポイント位置依存性を示す図である。
【図6】光ファイバ100km伝送後及び光ファイバ伝送前の光出力波形の光出力信号クロスポイント位置依存性を示す図である。
【図7】第1の実施形態の光送信モジュールの各部の信号波形のパルスの一部の一例を示す図である。
【図8】第1の実施形態の光送信モジュールの伝送ペナルティ特性である。
【図9】本発明の第2の実施形態に係る光送信モジュールの構成を示す回路図である。
【図10】従来の光送信モジュールの伝送ペナルティ特性である。
【符号の説明】
【0069】
10…光送信モジュール、12…温度モニタ部、14…調整部、16…波形整形部、18…ドライバ部、20…半導体レーザ、22…受光素子、24…APC制御部、26…感温素子、28a、28b、28c…抵抗、30…増幅器、32…ADC、34…記憶部、36…DAC、38…スイッチ、40…バッファ増幅器、42…パルス整形部(ローパスフィルタ)、44…コンパレータ、46…変調電流源、48…バイアス電流源。

【特許請求の範囲】
【請求項1】
感温素子を含み、該感温素子によって示される温度に応じた第1の信号を生成する温度モニタ部と、
前記第1の信号に基づいて、前記温度の変化に起因する伝送ペナルティを低減するための第2の信号を生成する調整部と、
第1のレベルから第2のレベルへの第1の遷移と第2のレベルから第1のレベルへの第2の遷移とによって規定されるパルスの列を含む入力信号と、前記第2の信号とを受けており、該パルスのパルス幅と異なるパルス幅のパルスを含む変調信号を該入力信号から該第2の信号に応じて生成する波形整形部と、
前記変調信号に応じて半導体レーザを駆動するドライバ部と、
を備える光送信モジュール。
【請求項2】
前記波形整形部は、
前記入力信号を増幅するバッファ増幅器と、
前記バッファ増幅器の出力信号を入力に受けるローパスフィルタと、
前記ローパスフィルタの出力信号を入力に受け、該入力とは逆相の入力に前記第2の信号を受けて前記変調信号を生成するコンパレータと、
を有し、
前記ローパスフィルタの出力信号の遷移は次の遷移が開始されるまでに完了している、
請求項1に記載の光送信モジュール。
【請求項3】
前記調整部は、
前記第1の信号に応じた第1のディジタル信号を生成するアナログ/ディジタル変換器と、
前記アナログ/ディジタル変換器に接続されており、前記温度の変化に起因する伝送ペナルティを低減するためのデータを記憶する記憶部と、
前記記憶部に接続されており、前記記憶部からの第2のディジタル信号に応じた前記第2の信号を生成するディジタル/アナログ変換器と、
を有する請求項1に記載の光送信モジュール。
【請求項4】
感温素子を含み、該感温素子によって示される温度に応じた第1の信号を生成する温度モニタ部と、
半導体レーザの光出力に応じて受光素子から生成された電流に応じて、該半導体レーザのバイアス電流を制御するためのAPC信号を出力するAPC制御部と、
前記第1及びAPC信号に基づいて、前記温度の変化及び前記光出力の変化に起因する伝送ペナルティを低減するための第2の信号を生成する調整部と、
第1のレベルから第2のレベルへの第1の遷移と第2のレベルから第1のレベルへの第2の遷移とによって規定されるパルスの列を含む入力信号と、前記第2の信号とを受けており、該パルスのパルス幅と異なるパルス幅のパルスを含む変調信号を該入力信号から該第2の信号に応じて生成する波形整形部と、
前記変調信号に応じて前記半導体レーザを駆動するドライバ部と、
を備える光送信モジュール。
【請求項5】
前記調整部は、
前記第1の信号に応じた第1のディジタル信号を生成する第1のアナログ/ディジタル変換器と、
前記APC信号に応じた第3のディジタル信号を生成する第2のアナログ/ディジタル変換器と、
前記第1及び第2のアナログ/ディジタル変換器に接続されており、前記温度の変化及び前記光出力の変化に起因する伝送ペナルティを低減するためのデータを記憶する記憶部と、
前記記憶部に接続されており、前記記憶部からの第2のディジタル信号に応じた前記第2の信号を生成するディジタル/アナログ変換器と、
を有する請求項4に記載の光送信モジュール。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2006−324801(P2006−324801A)
【公開日】平成18年11月30日(2006.11.30)
【国際特許分類】
【出願番号】特願2005−144528(P2005−144528)
【出願日】平成17年5月17日(2005.5.17)
【出願人】(000002130)住友電気工業株式会社 (12,747)
【Fターム(参考)】