説明

内燃機関の点火制御装置

【課題】大幅なコストアップ無しに、常に良好な火花放電を得ることができるときのみ多重放電を許可するようにして、混合気が着火して燃焼したために気筒内圧力が上昇している可能性があるときに多重放電を継続させないようにする。
【解決手段】放電開始タイミングの時点で点火プラグ2から放電された火花によって混合気が着火・燃焼したときに発生する燃焼圧力が点火プラグ2の放電許容最大圧力値と等しくなるときの内燃機関1の回転位置を多重放電制御強制終了位置として算出し、内燃機関1の実際の回転位置が多重放電制御強制終了位置に達したときには、現在、多重放電制御が実行されている燃焼サイクルにおける多重放電制御を強制終了する。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、内燃機関の点火制御装置に係り、特に、多重放電を行う内燃機関の点火制御装置に関するものである。
【背景技術】
【0002】
多重放電とは、点火コイルの1次巻線に流れる電流の通電と遮断とを繰り返すことで点火コイルの2次巻線に高電圧を断続的に発生させ、燃焼室内の混合気に着火するために、設定されている放電開始タイミング(一般的には点火タイミングと言う。)を起点として1燃焼サイクル中において点火プラグによる火花放電を繰り返し発生させる点火方式のことであり、例えば、特許文献1あるいは特許文献2により提案されている技術が知られている。
【0003】
前記のような多重放電を行えば、混合気の形成状態が悪化して着火タイミングに遅れが生じたときや火炎の立ち消えが生じたとしても、着火しにくい混合気に着火することが可能となったり、一旦、立ち消えた火炎に再着火させることが可能となり、失火に至る確率を低減できるという利点が得られる。そのため、近年では、着火性が悪化したときに備えて多重放電を採用する内燃機関の点火制御装置が広まりつつある。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開平11−148452号公報
【特許文献2】特開2008−261230号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1においては、前述の利点を得ることを目的として、1燃焼サイクル中に点火プラグからの火花放電を繰り返し発生させる多重放電に関する基本的な制御方法が開示されている。しかし、この特許文献1に開示された多重放電では、放電開始タイミングの時点で点火プラグから放電された火花、即ち、最初に放たれた火花によって混合気が着火して燃焼した場合であっても、あらかじめ設定されている所定の放電回数ないし所定時間が経過するまで多重放電が継続されることになる。
【0006】
ところで、混合気が着火して燃焼が始まると、火炎の成長に伴って気筒内の圧力が上昇する。そのため、点火プラグは燃焼による高圧雰囲気中で火花を放電しなくてはならなくなる。点火プラグの置かれた雰囲気圧力が高くなれば、それだけプラグギャップでの絶縁破壊電圧(プラグギャップで火花放電を発生させるために必要な電圧)も上昇し、プラグ電極の磨耗や劣化が早まることは避けられなくなる。そして、プラグ電極の磨耗や劣化が進めば、プラグギャップの隙間が広がって絶縁破壊電圧が更に高くなることが予想され、最悪の場合には火花を発生できなくなることが懸念される。
【0007】
このような事態に至らないようにするには、気筒内で燃焼が始まっていることをいち早く検出して多重放電を中断することが考えられる。これについては、例えば、特許文献2に記載されているように、燃焼したときに発生するイオン電流を検出して多重放電を終了する方法や、気筒内の圧力状態を直接検出して多重放電を終了する方法などが挙げられるが、何れも燃焼状態を検出するための高価な燃焼検出手段を追加しなければならず、大幅なコストアップを招くことから採用は容易ではない。
【0008】
また、多重放電を行うときのもうひとつの課題として、複数の気筒間で1次巻線の通電期間が重なったときのバッテリ電圧の低下による放電性能の低下が挙げられる。点火コイルの1次巻線には、通常、数アンペアから十数アンペアの電流を流すようにしているため、1次巻線を通電したときにはバッテリ電圧が大きく低下する。そのため、多重放電を実行することで複数の気筒間で通電期間が重なってしまった場合、バッテリ電圧の著しい低下を招き、所望の遮断電流が確保できなくなることが予想される。そうなれば、点火コイルへの供給エネルギーが低下し、良好な火花放電が得られなくなることが懸念される。
【0009】
そこで、この発明の第1の目的は、大幅なコストアップ無しに、常に良好な火花放電を得ることができるときのみ多重放電を許可するようにして、混合気が着火して燃焼したために気筒内圧力が上昇している可能性があるときに多重放電を継続させないようにした内燃機関の点火制御装置を得ることにある。
【0010】
また、第2の目的は、多重放電の実行中に複数の気筒間での1次巻線の通電期間が重なったためにバッテリ電圧の著しい低下を招き、所望の遮断電流が確保できなくなって点火コイルへの供給エネルギーが低下し、良好な火花放電が得られなくなることを回避する内燃機関の点火制御装置を得ることにある。
【課題を解決するための手段】
【0011】
この発明に係る内燃機関の点火制御装置は、1次巻線と2次巻線を有し、前記1次巻線への通電電流が遮断されると前記2次巻線に高電圧を発生する点火コイルと、前記点火コイルの2次巻線に発生した高電圧が印加されて火花放電を発生する点火プラグと、前記点火コイルの1次巻線への通電時期を制御することにより、1燃焼サイクル中に設定された放電開始タイミングを起点として前記点火プラグからの火花放電を繰り返し発生させる多重放電制御を行なう多重放電制御手段と、を備えた内燃機関の点火制御装置において、前記点火プラグにおいて良好な火花放電を得る前記点火プラグの雰囲気圧力の最大値として設定された放電許容最大圧力値と、前記放電開始タイミングの時点で前記点火プラグから放電された火花によって混合気が着火・燃焼したときに発生する燃焼圧力と内燃機関の回転位置との関係として設定された燃焼圧力−回転位置特性の、前記2つの既知情報に基づいて、前記放電開始タイミングの時点で前記点火プラグから放電された火花によって混合気が着火・燃焼したときに発生する燃焼圧力が、前記放電許容最大圧力値と等しくなるときの内燃機関の回転位置を多重放電制御強制終了位置として算出し、前記内燃機関の実際の回転位置が前記多重放電制御強制終了位置に達したときには、現在、多重放電制御が実行されている燃焼サイクルにおける多重放電制御を強制終了させる多重放電強制終了手段を備えたものである。
【発明の効果】
【0012】
この発明に係る内燃機関の点火制御装置によれば、良好な火花放電を得ることが困難になることが予想されたときには多重点火を強制終了して不要な多重点火を継続せず、常に良好な火花放電を得ることができるときのみ多重放電を継続するようにしたので、気筒内で燃焼が始まって気筒内圧力が高くなり、絶縁破壊電圧が過上昇している可能性があるときに多重放電を継続し、プラグ電極の磨耗を早めてしまうことを防止することができる。そして、イオン電流検出センサや気筒内圧力センサといった燃焼状態を検出するための高価な燃焼検出手段を追加することなく、既存の点火制御装置のまま大幅なコストアップなしに前記効果を実現することができる。
【図面の簡単な説明】
【0013】
【図1】この発明の実施の形態1に係る内燃機関の点火制御装置を説明する全体構成図である。
【図2】この発明の実施の形態1に係る内燃機関の点火制御装置の構成図である。
【図3】多重放電中の動作を説明するためのタイミングチャート図である。
【図4】点火プラグの置かれた雰囲気圧力と絶縁破壊電圧との関係を示す特性図である。
【図5】混合気が燃焼したときの気筒内圧力と内燃機関の回転位置との関係を示す特性図である。
【図6】この発明の実施の形態1に係る内燃機関の点火制御装置の制御動作を示すフローチャート図である。
【図7】多重放電中の動作を連続した複数の気筒間にわたって記載したタイミングチャート図である。
【図8】この発明の実施の形態2に係る内燃機関の点火制御装置の制御動作を示すフローチャート図である。
【発明を実施するための形態】
【0014】
以下、添付の図面を参照して、この発明に係る内燃機関の点火制御装置について好適な実施の形態を説明する。なお、この実施の形態により発明が限定されるものではなく、諸種の設計的変更をも包摂するものである。
【0015】
実施の形態1.
図1は、この発明の実施の形態1に係る内燃機関の点火制御装置を説明する全体構成図である。
図1において、内燃機関1における気筒1aの燃焼室1bには、吸気弁1cと排気弁1dとピストン1eとが備えられており、更に、燃焼室1b内を臨むようにして、点火プラグ2と燃料噴射弁3とが備えられている。また、内燃機関1には、吸気通路4に設けられた電子制御スロットル5により、吸入空気量が調整される。電子制御スロットル5は、バタフライバルブ5aと、これを駆動するモータ5b、バタフライバルブ5aの開度を検出するスロットル開度センサ5cとから構成されている。
【0016】
エンジン制御ユニット(以下、ECUと称する。)6は、アクセルペダル7の踏み込み位置を検出するアクセルポジションセンサ8の出力信号を取得して、モータ5bに制御信号を送り、スロットル開度センサ5cからのバタフライバルブ開度信号に基づいて、バタフライバルブ5aを適切な開度に制御する。クランク角センサ9は、クランク軸1fのクランク角度を検出し、カム角センサ10は、吸気側のカム軸1gのカム角度を検出し、水温センサ11は、内燃機関1の冷却水の温度を検出する。
【0017】
ECU6は、アクセルポジションセンサ8、クランク角センサ9、カム角センサ10、エアフローセンサ12、水温センサ11、図示しないその他の各種センサ類からの各出力信号を取得して、点火タイミングや燃料噴射量などを決定する。そして、それらの各決定値に基づいて、燃料噴射弁3を駆動して燃料を燃焼室1b内に噴射供給し、点火プラグ2に接続された点火コイル13を駆動することにより点火プラグ2のプラグギャップから火花を放電させる。
【0018】
エアクリーナ14によって塵やごみが除去された吸入空気は、エアフローセンサ12で流量が計測された後、電子制御スロットル5を通過してサージタンク15へと導かれ、更に、サージタンク15から吸気弁1cを通って燃焼室1bに導入される。燃焼室1b内に導入された吸入空気と燃料噴射弁3から噴射された燃料とが混ざりあって混合気が形成され、点火プラグ2の火花放電によって混合気が着火されて燃焼する。
【0019】
混合気の燃焼圧力はピストン1eに伝えられてピストン1eを往復運動させる。ピストン1eの往復運動はコネテクティングロッド1hを介してクランク軸1fに伝えられ、ここで回転運動に変換されて、内燃機関1の出力として取り出される。燃焼後の混合気は排
気ガスとなり、排気弁1dを通ってエキゾーストマニホールド16へ排出され、触媒17で浄化された後、大気中へ排出される。
【0020】
図2は、実施の形態1に係る内燃機関の点火制御装置の構成図である。この図においては、1気筒分のみを示している。
実施の形態1に係る点火制御装置は、図2に示すように、点火プラグ2と点火コイル13およびEUC6とから構成される。点火コイル13の内部は、1次巻線13aと2次巻線13bとドライバ回路13cとから構成されている。点火コイル13では、1次巻線13aに接続されたバッテリ電圧V1を2次巻線13bで昇圧して点火プラグ2に供給するように構成されている。また、ドライバ回路13cはECU6に接続されており、ECU6から送られてくる制御信号IBに基づいて1次巻線13aの通電が制御される。
【0021】
ECU6は、放電開始タイミングにおいて点火プラグ2のプラグギャップから火花を放電するために、放電開始タイミングの直前の所定期間、制御信号IBをHレベルにしてドライバ回路13cをオンにする。ドライバ回路13cがオンしている間は、1次巻線13aにバッテリ電圧V1が印加されて1次巻線13aには1次電流I1が流れる。
【0022】
そして、内燃機関1の回転位置が放電開始タイミングを迎えると、ECU6は制御信号IBをHレベルからLレベルに切り替えてドライバ回路13cをオフにする。ドライバ回路13cがオンからオフに切り替わることにより、それまで1次巻線13aに流れていた1次電流I1が遮断され、1次巻線13aと電磁的に結合されている2次巻線13bに高電圧V2が発生する。この高電圧V2が点火プラグ2に印加されると点火プラグ2のプラグギャップで絶縁破壊が起こり、火花を放電して2次電流I2が流れる。点火プラグ2のプラグギャップから火花が放電すると、燃焼室1b内の混合気が着火して燃焼を始める。
【0023】
図3は、多重放電制御の動作を説明するタイミングチャート図である。図3では、図2で説明した制御信号IB、バッテリ電圧(1次巻線13aへ印加される電源電圧)V1、1次巻線13aに流れる電流I1、2次巻線13bに発生する高電圧(プラグギャップに印加される電圧)V2、およびプラグギャップで絶縁破壊が起きたときにプラグギャップに流れる電流I2を用いて多重放電を行うときの動作を説明する。なお、図3においては、放電開始タイミングの時点で放電される最初の火花放電(主放電:1回)と多重放電(4回)との合計5回の放電を行うときの例として示されている。
【0024】
ECU6は、先ず、最初の火花放電を行うために、放電開始タイミングである回転位置IG1から所定期間K1前の位置ON1で制御信号IBをHレベルにする。これにより、IBがHレベルとなっているON1からIG1までの間は1次巻線13aに1次電流I1が流れ出すため、1次電流I1の増加に応じてバッテリ電圧V1は低下する。
【0025】
そして、最初の放電位置IG1をむかえると、ECU6は、制御信号IBをHレベルからLレベルに切り替える。制御信号IBがHレベルからLレベルに切り替わると、それまで1次巻線13aに流れていた1次電流I1が遮断されるため、2次巻線13bに高電圧V2が発生する。2次巻線13bで発生した高電圧V2がプラグギャップに印加されるとプラグギャップでは絶縁破壊が起こり、火花が放電されて2次電流I2が一気に流れて減衰していく。
【0026】
続いて、多重放電(2回目以降の火花放電の繰り返し)を行うために、ECU6は、最初の放電位置であるIG1から所定期間K2後の位置IG2を2回目の放電タイミングとして決定し、2回目の放電位置IG2から所定期間K3前の位置ON2で制御信号IBを再びHレベルにする。これにより、制御信号IBがHレベルとなっているON2からIG2までの間は1次巻線13aに1次電流I1が流れ出すため、先ほど同様、1次電流I1
の増加に応じてバッテリ電圧V1は低下する。なお、制御信号IBをHレベルにすると、1次巻線13aに1次電流I1が流れ始めるが、先ほどの1回目の放電を終えたときに点火コイル13内にエネルギーが残っている場合には、ON2の時点の1次電流I1に示されるように1次電流I1は零から始まらない。
【0027】
そして、2回目の放電位置IG2をむかえると、ECU6は、制御信号IBをHレベルからLレベルに切り替える。制御信号IBがHレベルからLレベルに切り替わると、それまで1次巻線13aに流れていた1次電流I1が遮断されるため、2次巻線13bには2回目の高電圧V2が発生する。2次巻線13bで発生した高電圧V2がプラグギャップに印加されるとプラグギャップでは絶縁破壊が起きて2回目の火花が放電される。
【0028】
以降、3〜5回目の放電については、前述した2回目の放電動作と同じであり、ON3からIG3の間、ON4からIG4の間、ON5からIG5の間、それぞれ、制御信号IBがHレベルに制御され、その結果、IG3、IG4、IG5の各位置において、3〜5回目の放電が実施される。
【0029】
次に、点火プラグ2における絶縁破壊電圧(要求電圧とも言う。)について説明する。一般に点火プラグ2の絶縁破壊電圧は、式(1)で表されるパッシェンの法則により決定される。即ち、
V=K×P×d+C・・・・・(1)
ここで、V:絶縁破壊電圧
K:比例定数
P:着火時点での燃焼室1b内の圧力
d:プラグギャップ
C:点火プラグ2の電極温度や混合気の濃度によって決定される定数
式(1)より、プラグギャップdが広い場合、或いは、着火時点での燃焼室1b内の圧力Pが高い場合に絶縁破壊電圧Vが高くなることが明らかである。
【0030】
絶縁破壊電圧Vが高くなると、火花が放たれるプラグギャップにおける電気的衝撃が増し、プラグギャップ磨耗を早める。また、絶縁破壊を起こさせるために必要なエネルギーも増加するため、2次電流I2が低下して放電持続期間が短くなり、着火性の悪化を招く。そして、最悪の場合にはプラグギャップでの絶縁破壊が起こらず火花を放電できなくなることも考えられる。このことからすれば、絶縁破壊電圧Vが高くなり過ぎる状況では放電を行わないようにする方が望ましい。
【0031】
図4は、点火プラグ2の置かれた雰囲気圧力Pと絶縁破壊電圧Vとの関係を示す特性図である。ここで、良好な放電を実現できなくなる限界の絶縁破壊電圧をVmaxとすると、そのときの放電許容最大圧力値Pmaxが定まる。これを気筒内に置き換えてみると、燃焼によって発生する気筒内の圧力Pが放電許容最大圧力値Pmax以下の条件でのみ放電を行うように制限すれば、絶縁破壊電圧が良好な放電を実現できなくなる限界の絶縁破壊電圧Vmaxを超えることは無く、常に良好な火花放電を得ることができるときのみ放電を行うようにすることが可能となる。その結果、プラグギャップ磨耗を早めることが回避される。
【0032】
なお、良好な放電を実現できなくなる限界の絶縁破壊電圧Vmaxは、圧縮比や点火プラグ2の設計仕様などによって値が異なることから、あらかじめ対象とする内燃機関および点火制御装置を用いての点火プラグ磨耗性や耐圧性に関わる検証試験を行ない、更に関連する仕様や諸元値のばらつき幅などを加味して決定するとともに、ECU6内の記憶素子に記憶させておく。
【0033】
図5は、混合気が燃焼したときの気筒内圧力と内燃機関の回転位置との関係を示す特性図である。図5では、内燃機関の回転位置を横軸、気筒内圧力を縦軸としたときに、放電開始タイミングIG1で最初の放電を行ったときに混合気が着火して燃焼したときの気筒内圧力の挙動A(実線で描かれたカーブ)、および内燃機関をモータリング運転したとき(混合気を燃焼させなかった場合)の気筒内圧力の挙動B(1点鎖線で描かれたカーブ)が例示している。なお、図5の例では、IG1、IG2、IG3、IG4、IG5の各位置にて放電(合計5回の放電)を実施しているものとする。また、図5の横軸は、ピストン1eがBDC(Bottom Dead Center)からTDC(Top Dead Center)へ向かって上昇する圧縮行程と、ピストン1eがTDCからBDCへ向かって下降する膨張行程の2つの行程の期間として示されている。
【0034】
図5において、最初の放電位置IG1で放電したときに混合気が着火して燃焼した場合、IG1の時点での気筒内圧力は、モータリング運転したとき(カーブB)と同じP1である。しかし、2回目の放電位置IG2では最初の(1回目の)放電により燃焼が始まっているため、モータリング運転したときの圧力よりも少し高いP2となり、それ以降の3〜5回目の放電位置IG3、IG4、IG5では燃焼による圧力上昇のため、気筒内圧力は、それぞれP3、P4、P5のように一気に上昇する。
【0035】
ここで、仮に、図4で説明したように、放電許容最大圧力値Pmaxが圧力P3とP4の間にあったとするならば、放電許容最大圧力値Pmaxを超えている放電位置、即ち、IG4とIG5の位置では放電を実施しないことが望まれる。
【0036】
即ち、図5のように、放電開始タイミングIG1を起点として多重放電を実施する場合には、絶縁破壊電圧がVmaxを超えない圧力値Pmaxに対応する放電位置IGEを推定し、IGE位置以降での放電を禁止すれば絶縁破壊電圧がVmax以下となる場合にのみ多重放電が実施されるように制限することができる。
【0037】
なお、絶縁破壊電圧がVmaxを超えない圧力値Pmaxと放電位置IGEは、内燃機関の回転数、運転負荷、放電開始タイミング、内燃機関を運転しているときの環境条件などによって値が異なることから、あらかじめ、対象とする内燃機関および点火制御装置を用いて運転状態毎、環境条件毎に放電開始タイミングで放電させたときにおける内燃機関の回転位置と気筒内圧力の関係を計測しておき、ECU6内の記憶素子に記憶させておく。
【0038】
次に、実施の形態1に係る点火制御装置の制御動作を図6のフローチャートに従って説明する。
図6において、先ず、ステップS101では、総放電回数Nをセットする。一例としてN=5(合計5回の放電制御を実施する場合)を設定する。
【0039】
続く、ステップS102では、放電開始タイミングIG1において最初の放電を行うための目標通電オフタイミングCoffを決定(CoffにIG1を代入)し、ステップS103では、放電開始タイミングIG1において放電を行うための1次巻線13aの通電開始位置となる目標通電オンタイミングConを決定(Con=Coff−K1を計算)する。
【0040】
次のステップS104では、目標通電オフタイミングCoffが多重放電禁止位置であるIGEよりも手前の位置であるか否かを判定する。ここで、Coff<IGEの場合(YESの場合)にはステップS105に進んで後述の放電制御を実行する。一方、Coff≧IGEの場合(NOの場合)には放電制御を中止して処理を抜ける。即ち、ステップS104は、多重放電強制終了手段として機能する。
【0041】
ステップS104からステップS105に進んだ場合、次のステップS105〜S107では、現在の回転位置ANGを読み込んで、現在の回転位置ANGが目標通電オンタイミングConになるまで待機し、ANG=Conとなった時点で、点火コイル13の1次巻線13aの通電を開始(制御信号IBをLレベルからHレベルへ切替)する。
【0042】
そして、次のステップS108〜S110では、再び、現在の回転位置ANGを読み込んで、現在の回転位置ANGが目標通電オフタイミングCoffになるまで待機し、ANG=Coffとなった時点で、1次巻線13aの通電を終了(制御信号IBをHレベルからLレベルへ切替)する。
【0043】
以上により、回転位置ON1から放電開始タイミングIG1位置までの間、1次巻線13aへの通電が実施され、IG1の時点で1回目の放電が実行される。
【0044】
次のステップS111では、総放電回数Nをデクリメント(N←N−1)してステップS112へ進む。
【0045】
ステップS112では、総放電回数N>0か否かを判定する。今はまだ、総放電回数N>0であるのでYES判定となり、ステップS112からステップS113へ進む。
【0046】
続く、ステップS113では、放電タイミングIG2において2回目の放電を行うための目標通電オフタイミングCoffを決定(Coff←Coff+K2を計算)し、ステップS114では、2回目の放電タイミングIG2において放電を行うための1次巻線13aの通電開始位置となる目標通電オンタイミングConを決定(Con=Coff−K3を計算)し、その後、ステップS104へ戻る。
【0047】
ステップS114からステップS104に戻った以降は、前述同様、ステップS104にて目標通電オフタイミングCoffが多重放電禁止位置であるIGEよりも手前の位置であるか否かを判定するが、今はまだ、Coff<IGEであるので、ステップS104からステップS105へ進み、ステップS105〜S110では前述同様の処理を行って2回目の放電が実行され、引き続き、ステップS111からステップS114までの処理により、3回目の放電タイミングにおける目標通電オフタイミングCoffと目標通電オンタイミングConが決定されて、ステップS104に戻る。
【0048】
そして、前記同様のループ処理が進み、4回目の放電のための目標通電オフタイミングCoffと目標通電オンタイミングConが決定されてステップS114からステップS104に戻ったとき、今度は、目標通電オフタイミングCoffは位置IG4となっているため、Coff(=IG4)<IGEが不成立(NO判定)となり、ステップS105には進まず、放電制御を中止して処理を抜ける。
【0049】
なお、もし、4回目の放電位置も5回目(最後)の放電位置も多重放電禁止位置IGEよりも手前の位置であった場合には、4回目、5回目の放電も実行された後、ステップS111の処理の結果、N=0となり、ステップS112でNO判定となって処理を抜けることになる。
【0050】
以上のように、実施の形態1に係る内燃機関の点火制御装置によれば、従来の制御装置に対してコストアップ無しに、常に良好な火花放電を得ることができるときのみ多重放電を継続するような多重放電期間の制限を設定したので、例えば、内燃機関の開発段階において機関運転状態毎に放電開始タイミングを設定する際、良好な放電を実現できなくなる限界の絶縁破壊電圧Vmaxを超えてしまうような多重放電期間を設定してしまったとし
ても、ECU6にプログラミングされた多重放電期間の制限によって、常に良好な火花放電を得ることができるときのみ放電を行うようにすることが可能となる。その結果、不要な多重放電の継続に起因したプラグ電極の磨耗を早めてしまうことを防止することができる。
【0051】
実施の形態2.
次に、この発明の実施の形態2に係る内燃機関の点火制御装置について説明する。実施の形態2における内燃機関の全体構成、および点火制御装置については、実施の形態1の図1および図2と同様であり、図示説明を省略する。また、以降の説明においては、図1および図2を適宜参照して説明する。
【0052】
図7は、多重放電中の動作を連続した複数の気筒間にわたって記載したタイミングチャート図である。
図7の上段には、多重放電が実行されるときの任意気筒における放電動作のタイムチャートが示されており、図7の下段には、前記任意気筒の次に多重放電が実行される次気筒における放電動作のタイムチャートが示されている。なお、図7の実線で描かれたチャートでは、任意気筒における4回目の放電を行うための通電時期(ON4〜IG4の期間)が、次気筒における1回目の放電を行うための通電時期の前半(ON1’〜IG1’の期間の前半)と重なった場合として例示されている。
【0053】
ここで、任意気筒においては、複数気筒で通電が重なっていない場合のバッテリ電圧V1の低下量v1に対し、複数気筒での通電が重なった場合にはバッテリ負荷増大のために低下量がv2(>v1)に増大する。
【0054】
バッテリ電圧V1の低下量が増大すると点火コイル13の1次巻線13aに流れる1次電流I1の上昇度合いが鈍くなり、1次電流I1を遮断する時点におけるピーク電流は、複数気筒で通電が重なっていない場合の値i1に対し、複数気筒での通電が重なった場合には電流の上昇度合いが鈍くなったことでi2(<i1)に目減りする。その結果、複数気筒で通電が重なっていない場合の放電電流I2のピーク値c1および放電持続時間t1に対し、複数気筒での通電が重なった場合には放電電流I2のピーク値c2も放電持続時間t2もともに目減りする。
【0055】
また、次気筒においても、1回目の放電を行うための通電時期の前半(ON1’〜IG1’の期間の前半)でのバッテリ電圧V1の低下の影響を受けて1次電流I1の上昇度合いが鈍くなり、1回目の通電が遮断される時点IG1’での1次電流I1の値i3は、複数気筒で通電が重ならなかった場合のピーク値i4よりも目減りする。その結果、複数気筒での通電が重なったために放電電流I2のピーク値c3、放電持続時間t3ともに、複数気筒での通電が重ならなかった場合の放電電流I2のピーク値c4、放電持続時間t4に対して目減りする。
【0056】
前述のように、放電電流I2のピーク値や放電持続時間が所望の値よりも目減りしてしまった場合、混合気への着火性が悪化したり、気筒内流動によって放電火花が吹き飛び易くなることが知られており、複数の気筒間での通電期間が重なることは望ましいとは言えない。
【0057】
これに対し、図7の点線で描かれたチャートは、任意気筒と次気筒における放電期間の重なりを回避するため、任意気筒における4回目以降における通電を禁止した場合として例示されている。
任意気筒における4回目以降における通電を禁止することにより、任意気筒では合計3回の放電が実行されて多重放電を終了する。その結果、次気筒においては、複数気筒にお
ける通電の重なりによるバッテリ電圧V1の低下の増大が回避され、1回目の通電が遮断される時点IG1’での1次電流I1は通常値i4となり、放電電流I2のピーク値c4、放電持続時間t4が確保されるようになる。
【0058】
次に、実施の形態2に係る点火制御装置の制御動作を図8のフローチャートに従って説明する。
図8において、先ず、ステップS201では、総放電回数Nをセットする。一例としてN=5(合計5回の放電制御を実施する場合)を設定する。
【0059】
続く、ステップS202では、放電開始タイミングIG1において最初の放電を行うための目標通電オフタイミングCoffを決定(CoffにIG1を代入)し、ステップS303では、放電開始タイミングIG1において放電を行うための1次巻線13aの通電開始位置となる目標通電オンタイミングConを決定(Con=Coff−K1を計算)する。
【0060】
次のステップS204では、現在気筒における目標通電オフタイミングCoffが、次気筒における最初の放電のための通電開始位置ON1’よりも手前の位置であるか否かを判定する。ここで、Coff<ON1’の場合(YESの場合)にはステップS205に進んで後述の放電制御を実行する。一方、Coff≧ON1’の場合(NOの場合)には放電制御を中止して処理を抜ける。即ち、ステップS204は、多重放電重複禁止手段として機能する。
【0061】
ステップS204からステップS205に進んだ場合、次のステップS205〜S207では、現在の回転位置ANGを読み込んで、現在の回転位置ANGが目標通電オンタイミングConになるまで待機し、ANG=Conとなった時点で、点火コイル13の1次巻線13aの通電を開始(制御信号IBをLレベルからHレベルへ切替)する。
【0062】
そして、次のステップS208〜S210では、再び、現在の回転位置ANGを読み込んで、現在の回転位置ANGが目標通電オフタイミングCoffになるまで待機し、ANG=Coffとなった時点で、点火コイル13の1次巻線13aの通電を終了(制御信号IBをHレベルからLレベルへ切替)する。
【0063】
以上により、回転位置ON1からIG1位置までの間、1次巻線13aへの通電が実施され、IG1の時点で現在気筒における1回目の放電が実行される。
【0064】
次のステップS211では、総放電回数Nをデクリメント(N←N−1)してステップS212へ進む。
【0065】
ステップS212では、N>0か否かを判定する。今はまだ、N>0であるのでYES判定となり、ステップS212からステップS213へ進む。
【0066】
続く、ステップS213では、放電タイミングIG2において2回目の放電を行うための目標通電オフタイミングCoffを決定(Coff←Coff+K2を計算)し、ステップS214では、2回目の放電タイミングIG2において放電を行うための1次巻線13aの通電開始位置となる目標通電オンタイミングConを決定(Con=Coff−K3を計算)し、その後、ステップS204へ戻る。
【0067】
ステップS214からステップS204に戻った以降は、前述同様、ステップS204において現在気筒における目標通電オフタイミングCoffが次気筒における最初の放電のための通電開始位置ON1’よりも手前の位置であるか否かを判定するが、今はまだ、
Coff<IG1’であるので、ステップS204からステップS205へ進み、ステップS205〜S210では前述同様の処理を行って現在気筒における2回目の放電が実行され、引き続き、ステップS211からステップS214までの処理により、現在気筒における3回目の放電タイミングにおける目標通電オフタイミングCoffと目標通電オンタイミングConが決定されて、ステップS204に戻る。
【0068】
そして、前記同様のループ処理が進み、現在気筒における4回目の放電のための目標通電オフタイミングCoffと目標通電オンタイミングConが決定されてステップS214からステップS204に戻ったとき、今度は、目標通電オフタイミングCoffが、次気筒における最初の放電のための通電開始位置ON1’よりも手前の位置ではなくなっているため、Coff(=IG4)<ON1’が不成立(NO判定)となり、ステップS205には進まず、放電制御を中止して処理を抜ける。
【0069】
以上のように、実施の形態2に係る内燃機関の点火制御装置によれば、多重放電制御を実行中の現在気筒における点火コイル13の1次巻線13aへの通電時期と、前記現在気筒の次に放電開始タイミングを迎える予定の次気筒における点火コイル13の1次巻線13aへの通電時期と、が重なることが予想された場合には、前記次気筒における点火コイル13の1次巻線13aへの通電が開始される前に前記現在気筒における多重放電制御を強制終了させる多重放電重複禁止手段を備えることにより、複数の気筒間で点火コイル13の1次巻線13aの通電期間が重なることでバッテリ電圧の低下を招き、供給エネルギーが低下することで所望の遮断電流が得られなくなり、良好な火花放電が得られなくなることが防止できる。
【0070】
なお、前記実施の形態では、多重放電強制終了手段と多重放電重複禁止手段とをそれぞれ備えた内燃機関の点火制御装置について説明したが、多重放電強制終了手段と多重放電重複禁止手段の両者を備えてもよいことは勿論である。
【符号の説明】
【0071】
1 内燃機関 1a 気筒
1b 燃焼室 1c 吸気弁
1d 排気弁 1e ピストン
1f クランク軸 1g カム軸
1h コネテクティングロッド 2 点火プラグ
3 燃料噴射弁 4 吸気通路
5 電子制御スロットル 5a バタフライバルブ
5b モータ 5c スロットル開度センサ
6 エンジン制御ユニット(ECU) 7 アクセルペダル
8 アクセルポジションセンサ 9 クランク角センサ
10 カム角センサ 11 水温センサ
12 エアフローセンサ 13 点火コイル
13a 1次巻線 13b 2次巻線
13c ドライバ回路 14 エアクリーナ
15 サージタンク 16 エキゾーストマニホールド
17 触媒

【特許請求の範囲】
【請求項1】
1次巻線と2次巻線を有し、前記1次巻線への通電電流が遮断されると前記2次巻線に高電圧を発生する点火コイルと、
前記点火コイルの2次巻線に発生した高電圧が印加されて火花放電を発生する点火プラグと、
前記点火コイルの1次巻線への通電時期を制御することにより、1燃焼サイクル中に設定された放電開始タイミングを起点として前記点火プラグからの火花放電を繰り返し発生させる多重放電制御を行なう多重放電制御手段と、を備えた内燃機関の点火制御装置において、
前記点火プラグにおいて良好な火花放電を得る前記点火プラグの雰囲気圧力の最大値として設定された放電許容最大圧力値と、前記放電開始タイミングの時点で前記点火プラグから放電された火花によって混合気が着火・燃焼したときに発生する燃焼圧力と内燃機関の回転位置との関係として設定された燃焼圧力−回転位置特性の、前記2つの既知情報に基づいて、
前記放電開始タイミングの時点で前記点火プラグから放電された火花によって混合気が着火・燃焼したときに発生する燃焼圧力が、前記放電許容最大圧力値と等しくなるときの内燃機関の回転位置を多重放電制御強制終了位置として算出し、前記内燃機関の実際の回転位置が前記多重放電制御強制終了位置に達したときには、現在、多重放電制御が実行されている燃焼サイクルにおける多重放電制御を強制終了させる多重放電強制終了手段を備えたことを特徴とする内燃機関の点火制御装置。
【請求項2】
前記多重放電制御を実行中の現在気筒における前記点火コイルの1次巻線への通電時期と、前記現在気筒の次に放電開始タイミングを迎える予定の次気筒における前記点火コイル1次巻線への通電時期とが重なることが予想された場合には、前記次気筒における前記点火コイルの1次巻線への通電が開始される前に前記現在気筒における多重放電制御を強制終了させる多重放電重複禁止手段を備えたことを特徴とする請求項1に記載の内燃機関の点火制御装置。
【請求項3】
1次巻線と2次巻線を有し、前記1次巻線への通電電流が遮断されると前記2次巻線に高電圧を発生する点火コイルと、
前記点火コイルの2次巻線に発生した高電圧が印加されて火花放電を発生する点火プラグと、
前記点火コイルの1次巻線への通電時期を制御することにより、1燃焼サイクル中に設定された放電開始タイミングを起点として前記点火プラグからの火花放電を繰り返し発生させる多重放電制御を行なう多重放電制御手段と、を備えた内燃機関の点火制御装置において、
前記多重放電制御を実行中の現在気筒における前記点火コイルの1次巻線への通電時期と、前記現在気筒の次に放電開始タイミングを迎える予定の次気筒における前記点火コイル1次巻線への通電時期とが重なることが予想された場合には、前記次気筒における前記点火コイルの1次巻線への通電が開始される前に前記現在気筒における多重放電制御を強制終了させる多重放電重複禁止手段を備えたことを特徴とする内燃機関の点火制御装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate