説明

圧力変換装置及び圧力変換装置の性能調整方法

【課題】処理流量を増加させることが可能な圧力変換装置及び圧力変換装置の性能調整方法を提供する。
【解決手段】軸部23で連結された回転板21,22の夫々に高圧流路24と低圧流路25とが形成され、ケーシング11に回転板21,22の回転に伴って各流路と連通可能な圧力伝達管13が回転軸心方向に貫通するように複数本配設され、一対の端部カバー体30,31の各回転板21,22との対向面側に、高圧流路24と連通する高圧中継流路32及び低圧流路25と連通する低圧中継流路33が夫々形成されるとともに、前記対向面側とは異なる面の一方に、高圧中継流路32と連通する高圧入口側ポート34及び低圧中継流路33と連通する低圧出口側ポート35が形成され、前記対向面側とは異なる面の他方に、高圧中継流路32と連通する高圧出口側ポート37及び低圧中継流路33と連通する低圧入口側ポート38が形成されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高圧流体から低圧流体に圧力を伝達する圧力変換装置及び圧力変換装置の性能調整方法に関する。
【背景技術】
【0002】
従来、逆浸透膜装置を備える海水淡水化施設では、圧力変換装置を備えて逆浸透膜装置から排水される高圧濃縮海水がもつ余剰圧力を、逆浸透膜装置の濾過圧力として回収することが行われている。
【0003】
特許文献1には、図15に示すように、低圧入口側ポート81から供給した低圧海水に、高圧入口側ポート82から供給した高圧濃縮海水を、ロータ80内で接触させて前記低圧海水を昇圧し、高圧出口側ポート83から高圧海水として排水して逆浸透膜装置に供給し、前記圧力を伝達し終えた高圧濃縮海水を低圧出口側ポート84から排水する圧力変換装置が記載されている。
【0004】
ロータ80は複数の貫通穴が形成され、夫々の貫通穴内部で高圧流体と低圧流体を直接接触させて圧力を伝達することでエネルギを回収する。ロータ80は圧力変換装置に出入りする流体の流れによって回転し、回転によって高圧流体から低圧流体への圧力の伝達、排水の切り替えを行う。
【0005】
特許文献2には、図16に示すように、軸部90cで連設された回転板90a,90bで構成される回転体90を備え、回転体90は流体の流れによって回転しながら、低圧入口側ポート91から供給した低圧海水に、高圧入口側ポート92から供給した高圧濃縮海水を、圧力伝達管95内で接触させて前記低圧海水を昇圧し、高圧出口側ポート93から高圧海水として排水し、前記圧力を伝達し終えた高圧濃縮海水を低圧出口側ポート94から排水する圧力変換装置が記載されている。高圧入口側ポート92及び高圧出口側ポート93は夫々回転板90a,90bの円周方向側面に形成された流路と連接されるように構成されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許出願公開第2009180903号明細書
【特許文献2】中国特許出願公開第200710056401号明細書
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、上述の特許文献1記載の圧力変換装置では、ロータ80は、摺動性・耐摩耗性をよくするため一般にセラミックスなどの高級材料が使用される。また、圧力変換装置の処理流量は圧力伝達部であるロータ80の大きさで決まるため、処理流量を増加させるためにロータ80を大型化するのに伴い質量の増加が大きくなり、また、製造・加工が困難となり高価になる等の問題が発生する。また、ロータ80の質量が大きいため、流体の流れによって高速回転させることが困難である。また、大型の海水淡水化施設では、施設としての処理流量が大きいにもかかわらず、1台あたりの処理流量を増やすことが困難なので複数台の圧力変換装置が必要となる。そのため、各圧力変換装置を接続する配管が増大し、施工及び管理が煩雑なものになるという問題があった。
【0008】
上述の特許文献2記載の圧力変換装置は、高圧濃縮海水及び高圧海水の流路が回転板90a,90bの円周方向側面に形成されているため、回転板90a,90bに相応の厚みが必要となる。そのため回転体90の質量が増し、回転時のねじりや曲げ応力が大きくなり、回転板90a,90bを接続する軸部90cを太くする必要がある。また、流体の流路を回転軸心方向から円周方向へと切り替えるための回転板90a,90bの加工が困難であり製造・加工費用が高いという問題があった。回転体90が重くなるので水流により高速回転させることは困難であった。
【0009】
本発明の目的は、処理流量を増加させることが可能な圧力変換装置及び圧力変換装置の性能調整方法を提供する点にある。
【課題を解決するための手段】
【0010】
上述の目的を達成するため、本発明による圧力変換装置の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、高圧流体から低圧流体に圧力を伝達する圧力変換装置であって、一対の回転板が互いに連結され、それぞれの回転板に高圧流路と低圧流路とが、厚み方向に形成された回転体と、前記回転体の回転に伴って各流路と連通可能な圧力伝達管が回転軸心方向に貫通するように複数本配設されたケーシングと、各回転板との対向面側に、前記高圧流路と連通する高圧中継流路及び前記低圧流路と連通する低圧中継流路が夫々形成されるとともに、前記対向面側とは異なる面の一方に、前記高圧中継流路と連通する高圧入口側ポート及び前記低圧中継流路と連通する低圧出口側ポートが形成され、前記対向面側とは異なる面の他方に、前記高圧中継流路と連通する高圧出口側ポート及び前記低圧中継流路と連通する低圧入口側ポートが形成された一対の端部カバー体と、を備えて構成されている点にある。
【0011】
上述の構成によれば、逆浸透膜から排水される高圧濃縮海水がもつ余剰圧力を、濾過圧力の一部として回収するために高圧流体と低圧流体を接触させる圧力伝達管を固定し、高圧流路と低圧流路とが厚み方向に形成された回転板で構成された回転体により流路を切り替えるため、回転板を薄く質量を軽く構成できるので大型化しても高速回転が可能になるので処理流量を増加させることができる。
【0012】
同第二の特徴構成は、同請求項2に記載した通り、上述の第一特徴構成に加えて、前記流路の何れかに、流体の圧力を受けて所定方向へ、前記回転体を回転させる受圧面が形成されている点にある。
【0013】
上述の構成によれば、高圧流体の供給と排水、低圧流体の供給と排水の切り替えを流体の流れにより回転する回転体で行うため外部動力が不要となるため、電気代等のランニングコストの低減ができ、また、流路を切り替えるための切替弁が不要となり、構造を簡略化することができる。
【0014】
同第三の特徴構成は、同請求項3に記載した通り、上述の第二特徴構成に加えて、前記受圧面が少なくとも前記高圧流路に形成されている点にある。
【0015】
上述の構成によれば、高圧流路を流れる高圧の流体がもつ圧力を有効に利用して回転体を回転させることができる。
【0016】
同第四の特徴構成は、同請求項4に記載した通り、上述の第二又は第三特徴構成に加えて、各流路に前記回転板の周方向に傾斜した傾斜面が形成され、当該傾斜面により前記受圧面が構成され、前記高圧流路の傾斜面と前記低圧流路の傾斜面は傾斜方向が逆になるように形成されている点にある。
【0017】
上述の構成によれば、高圧流体の圧力のみならず、低圧流路を流れる流体の圧力も利用して回転体を回転させることができる。
【0018】
同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第四の何れかの特徴構成に加えて、前記端部カバー体に相対する前記高圧流路の開口部が、前記端部カバー体に相対する前記低圧流路の開口部よりも、前記回転板の径方向外側に形成されている点にある。
【0019】
上述の構成によれば、高圧流路の開口部が低圧流路の開口部よりも、回転体の回転軸心より遠い位置に形成されているので、高圧流体のもつ圧力を有効に利用して大きな回転トルクを得ることができる。
【0020】
同第六の特徴構成は、同請求項6に記載した通り、上述の第一から第五の何れかの特徴構成に加えて、前記高圧中継流路及び前記低圧中継流路は、前記回転軸心周りに同心円状の周部を備えた高圧流体溝部及び低圧流体溝部を含み、各端部カバー体に対向する前記高圧流路の開口部が前記高圧流体溝部と連通し、各端部カバー体に対向する前記低圧流路の開口部が前記低圧流体溝部と連通するように形成されている点にある。
【0021】
上述の構成によれば、回転板が回転しても、高圧流路は常に高圧流体溝部と連通し、低圧流路は常に低圧流体溝部と連通するので、圧力伝達管では常に高圧流体及び低圧流体の圧力伝達が行える。
【0022】
同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、隣接する複数本の圧力伝達管の開口部が、前記回転体の回転に伴って少なくとも1つの前記高圧流路又は前記低圧流路と同時に連通する点にある。
【0023】
上述の構成によれば、複数本の圧力伝達管の開口部が回転体の回転に伴って高圧流路又は低圧流路と同時に連通することで、回転に伴う高圧流体又は低圧流体の流量変動を低減し、流体の脈動、装置の脈動等の悪影響を防止することができる。
【0024】
同第八の特徴構成は、同請求項8に記載した通り、上述の第六又は第七特徴構成に加えて、圧力伝達管の開口部のうち、前記回転体の回転に伴って前記高圧流路及び前記低圧流路の何れにも連通しない開口部が存在する点にある。
【0025】
上述の構成によれば、前記回転体に形成された、前記高圧流路と前記低圧流路との間の面積を広くとることができ、高圧流体と低圧流体が混合する虞を低減することができる。
【0026】
同第九の特徴構成は、同請求項9に記載した通り、上述の第一から第八の何れかの構成に加えて、前記ケーシングに、前記圧力伝達管が前記回転軸心周りに同心円状に複数段配設されている点にある。
【0027】
上述の構成によれば、圧力伝達管を増加させることで、圧力変換装置の処理流量を増加することができる。
【0028】
同第十の特徴構成は、同請求項10に記載した通り、上述の第一から第九の何れかの構成に加えて、前記回転板が軸部で連結され、前記軸部に前記ケーシングの内周面と摺動するブッシュを備えている点にある。
【0029】
上述の構成によれば、回転板を軽量化できるため、軸部の直径を細くすることができ、回転体自体を軽量化することができる。また、摺動部にブッシュを使用することで高級材料の使用量を最小限に抑え、コストを低減することができる。
【0030】
同第十一の特徴構成は、同請求項11に記載した通り、上述の第一から第十の何れかの構成に加えて、前記ケーシングの両端に形成されたフランジ部と、前記端部カバー体に形成されたフランジ部が、スペーサ部材を介して連結固定されている点にある。
【0031】
上述の構成によれば、ケーシングと端部カバー体の間にスペーサ部材を備えることで、厚みや流路形状の異なる回転板とともにスペーサ部材を変更することで、性能調整を容易に行うことができる。
【0032】
同第十二の特徴構成は、同請求項12に記載した通り、上述の第一から第十一の何れかの構成に加えて、前記回転体を回転駆動する駆動機が設置されている点にある。
【0033】
上述の構成によれば、流体の流れが不安定であっても、駆動機により回転体を回転駆動するため、安定した回転を得ることができるので装置の信頼性が向上する。
【0034】
同第十三の特徴構成は、同請求項13に記載した通り、上述の第一から第十二の何れかの構成に加えて、前記高圧入口側ポートからの高圧流体が逆浸透膜装置から排水される高圧濃縮流体であり、前記低圧入口側ポートからの低圧流体が前記逆浸透膜装置に給水される被濃縮流体である点にある。
【0035】
上述の構成によれば、逆浸透膜装置から排水される高圧濃縮流体の余剰圧力を捨てることなく利用して逆浸透膜装置に給水される被濃縮流体を昇圧するので、逆浸透圧を得るためのエネルギ効率がよい。
【0036】
本発明による圧力変換装置の性能調整方法の特徴構成は、特許請求の範囲の書類の請求項14に記載した通り、上述の第一から第十三の何れかの特徴構成を備えた圧力変換装置の性能調整方法であって、前記回転板の厚み又は高圧流路形状と低圧流路形状を変更することにより、処理流量を調整する点にある。
【0037】
上述の構成によれば、回転板の厚み又は高圧流路形状と低圧流路形状を変更することにより、流体が回転板に与える回転力を変更することで、回転体の回転数を調整し、容易に処理流量を調整することができる。
【発明の効果】
【0038】
以上説明した通り、本発明によれば、処理流量を増加させることが可能な圧力変換装置及び圧力変換装置の性能調整方法を提供することができるようになった。
【図面の簡単な説明】
【0039】
【図1】海水淡水化施設の概略図
【図2】本発明による圧力変換装置の説明図
【図3】本発明による圧力変換装置の説明図であって、(a)は正面図、(b)は背面図
【図4】回転体の説明図であって(a)は正面図、(b)は正面図のA―A線断面図、(c)は背面図
【図5】ケーシングの説明図であって(a)は正面図、(b)は正面図のB―B線断面図
【図6】スペーサ部材の説明図であって(a)は正面図、(b)は断面図
【図7】端部カバー体の説明図であって(a)は正面図、(b)は正面図のC―C線断面図、(c)は背面図
【図8】端部カバー体の説明図であって(a)は背面図、(b)は正面図のD―D線断面図、(c)は正面図
【図9】別実施形態による圧力伝達管の説明図
【図10】圧力変換装置による圧力変換の様子の説明図であって(a)は圧力伝達管内で圧力変換が行われているときの説明図、(b)は圧力伝達管内で圧力変換が行われていないときの説明図
【図11】圧力変換装置による圧力変換の様子の説明図であって(a)は圧力伝達管内で圧力変換が行われているときの説明図、(b)は圧力伝達管内で圧力変換が行われていないときの説明図
【図12】別実施形態による圧力変換装置の説明図
【図13】別実施形態による圧力変換装置の説明図
【図14】別実施形態による圧力変換装置の説明図であって(a)は要部の概略図、(b)は要部の概略図
【図15】従来の圧力変換装置の説明図
【図16】従来の圧力変換装置の説明図
【発明を実施するための形態】
【0040】
以下に、本発明による圧力変換装置及び圧力変換装置の性能調整方法の好ましい実施形態を説明する。
【0041】
図1に示すように、海水淡水化施設は、海水中の夾雑物を取り除く前処理部1と、前処理部1で前処理された低圧海水を貯留する濾過海水槽2と、濾過海水槽2に貯留された低圧海水を保安フィルターに供給する供給ポンプ3と、逆浸透膜装置6の詰まりを防止するため低圧海水中の微細な異物を除去する保安フィルター4と、保安フィルター4を通過した低圧海水を昇圧する高圧ポンプ5と、昇圧された低圧海水を淡水と高圧濃縮海水に分離する逆浸透膜装置6等を備え、海水中の各種塩類を除去して飲料用水、工業用水等として利用できるように淡水化する。
【0042】
逆浸透膜装置6は、逆浸透膜の一方側に浸透圧以上の圧力を海水側にかけることにより、逆浸透膜の他方側に海水中の各種塩類を除去された淡水を染み出させるものであり、濾過するにあたり浸透圧以上の大きな圧力を必要とする。
【0043】
しかし、逆浸透膜装置6は、供給された海水のすべてを淡水化できるものではなく、淡水化されなかった海水は非常に圧力の高い高圧濃縮海水として排水される。そこで、逆浸透膜6から排水される高圧濃縮海水のもつ余剰圧力を有効なエネルギとして回収するために圧力変換装置10が備えられ、圧力変換装置10は、高圧濃縮海水を、逆浸透膜装置6に供給される低圧海水とを直接ふれあわせ、高圧濃縮海水の圧力を圧力伝達管内で低圧海水に伝達するのである。
【0044】
具体的には、濾過海水槽2から供給される水量のうち40%は高圧ポンプ5で浸透圧以上の所定の圧力、例えば、6.9MPaまで昇圧され、残りの60%は圧力変換装置10とブースターポンプ7により6.9MPaまで昇圧され、逆浸透膜装置6に供給される。
【0045】
逆浸透膜6に供給された低圧海水のうち40%が淡水となり、残りの60%は高圧濃縮海水(6.75MPa)として、圧力変換装置10に供給される。圧力変換装置10は、逆浸透膜装置6から排水される高圧濃縮海水がもつ余剰圧力を利用して、逆浸透膜装置6に供給される低圧海水を昇圧するのである。低圧海水の昇圧に利用された高圧濃縮海水は、低圧濃縮海水となって圧力変換装置10から排水される。
【0046】
このように、逆浸透膜装置6に必要な圧力の一部を、高圧濃縮海水のもつ余剰圧力を利用するので、施設全体のエネルギ効率がよい。
【0047】
圧力変換装置10について詳述する。
図2及び図3(a),(b)に示すように、圧力変換装置10は、ケーシング11と、回転体20と、スペーサ部材17と、一対の端部カバー体30,31等を備えて構成されている。軸部23の一端には端部カバー体30に形成された開口36に遊挿された連結部材28が接続され、連結部材28は図示しない駆動機が連結可能に構成されている。駆動機の動力により回転体を回転駆動できるように構成されている。駆動機により外部動力で回転体20を一定速度で回転することで、より安定的に流体の流れを切り替えることがきる。なお、開口36内部で連結部材28の周囲にシール36aが備えられ海水が外部に漏れ出さないように構成されている。
【0048】
なお、図12に示すように、圧力変換装置10の回転体20を駆動機の動力で回転駆動させる必要がない場合は、軸部23の端部に連結部材28を備えずに、端部カバー体30の開口36を蓋部材40で封止しておいてもよい。
【0049】
回転体20は、一対の回転板21,22が互いに軸部23で連結されて構成されている。
【0050】
図4(a),(b)に示すように、それぞれの回転板21,22には中央に、軸部23を挿通可能な開口27が形成され、高圧流路24と低圧流路25とが、二本ずつ厚み方向に形成されている。端部カバー体30,31に相対する高圧流路24の開口部は、端部カバー体30,31に相対する低圧流路25の開口部よりも、回転板21,22の径方向外側に形成されている。高圧流路24と低圧流路25は回転板21,22の厚み方向に形成されているため、回転板21,22の厚みを薄くすることができるので、回転体20の質量を軽くすることができ、高速回転ができるのである。
【0051】
また、圧力変換装置10の内部では、流体は基本的に回転体20の回転軸心に平行な方向へ流れとなり、流れの方向が大きく変動しないので、効率良く圧力変換を行うことができる。
【0052】
高圧流路24と低圧流路25に回転板21,22の周方向に傾斜させた傾斜面が形成され、当該傾斜面により受圧面26が構成され、流体が高圧流路24と低圧流路25を通過する際に、受圧面26が流体の圧力を受けて所定方向へ回転トルクを発生させて、回転体20が回転するように構成されている。
【0053】
高圧流路24の傾斜面と低圧流路25の傾斜面は傾斜方向が逆になるように形成されている。高圧の流体が高圧流路24の傾斜面に与える圧力と、低圧の流体が低圧流路25の傾斜面に与える圧力とが夫々回転板21,22の同一方向に回転力を与えることとなる。つまり、回転体20は高圧及び低圧両方の流体の圧力を利用して回転するため、高圧の流体の圧力のみで回転する場合より、効率良く回転することができる。なお、受圧面は少なくとも高圧流路24に形成されていればよい。
【0054】
回転板21,22は、濃縮された塩水に触れるため、耐食性のある高価な材料が使用されるが、薄く軽量化ができるため、材料費が安く製作・加工が容易なので低コスト化が図れる。また、質量が小さいため、高速回転させることができ、また、軸にねじりや曲げ等の大きな応力が発生しない。
【0055】
また、回転板の質量、厚み、高圧流路24と低圧流路25の流路形状を変更することにより回転数を調整でき圧力変換装置10の処理流量を調整できる。例えば、高圧流路24と低圧流路25は断面視直線状に限らず、曲線形状や羽根や溝付きの形状で構成することもできる。また、回転板を削り、削った後に異なる比重の材料で埋めたり、厚さを厚く又は薄くすることで、質量を変更することもできる。回転板の質量を変更することで回転体20の回転しやすさが変わり、厚み、高圧流路24と低圧流路25の流路形状を変更することで、受圧面の面積や圧力の加わり方が変わることで回転を生じる力を変え、回転板の回転数がかわるため、圧力変換装置10の処理流量がかわることになる。つまり、回転板の質量、厚み、高圧流路24と低圧流路25の流路形状を変更することにより、処理流量を調整する圧力変換装置の性能調整方法が実現される。
【0056】
軸部23の両端側にはケーシング11の内周面と摺動するブッシュ27が備えられている。ケーシング11と軸部23の摺動部には耐摩耗性、低摩擦係数を備えた高級な材料が要求されるが、ブッシュ27を備えることで、ブッシュ27のみを高級な材料とすることが可能となる。このことから圧力変換装置10を構成するケーシング11や軸部23は比較的安い材料を使用することができ、高級な材料の使用料を最小限に抑えることができるので低コスト化できるのである。
【0057】
回転板21,22、軸部23及びブッシュ27は、セラミックスや二相ステンレス鋼、スーパー二相ステンレス鋼等の金属材料のように海水に対する耐食性のある材料に、必要に応じて、溶射、肉盛溶接、窒化処理、HIP処理等を施し、耐摩耗性、硬度を高め、摩擦係数を低減するように形成されている。回転板21,22と軸部23は、キーにより結合され一体回転するように構成されている。なお、回転板21,22と軸部23は、キー以外のスプラインや圧入等による結合であっても、回転板と軸を一体形成する構成であってもよい。
【0058】
図5(a),(b)に示すように、ケーシング11の中央には軸部23を遊挿する開口12が形成され、開口12の周囲には回転体20の回転に伴って各流路24,25と連通可能な圧力伝達管13が回転軸心方向に貫通するように複数本配設されている。本実施形態では、圧力伝達管13は同心円上に16本備えられている。
【0059】
図5(a)中、回転板21,22の高圧流路24及び低圧流路25を二点鎖線で示す。配設方向に沿って隣接する3本ずつの圧力伝達管13の開口部13aが回転板21,22の回転に伴って高圧流路24と同時に連通し、開口部13bが低圧流路25と同時に連通し、開口部13cは高圧流路24及び低圧流路25の何れにも連通しないように構成されている。
【0060】
このように高圧流路24と低圧流路25との間に高圧流路24及び低圧流路25の何れにも連通しない開口部13cを設けることで、高圧流路24と低圧流路25との間の面積を広くとることができ、つまり、回転板11とケーシング14との間のシール性を向上することができ、低圧流体に高圧流体が混入する虞を低減することができる。
【0061】
本実施形態では、回転板21,22は、高圧流路、低圧流路を2つずつ備えて構成したが、夫々1つや、3つ以上の複数で構成してもよい。さらに、高圧流路と低圧流路の数は異なっていてもよい。
【0062】
なお、圧力伝達管の本数、直径を変更することで、圧力伝達管13の総容量を変更して、圧力変換装置10の処理流量を変更することができる。また、圧力伝達管13は、円筒状に限らず、断面形状が楕円や三角、四角等の多角形状であっても、長手方向で断面形状が変わってもよい。さらに、図9に示すように、圧力伝達管は同心円状に複数段配列することも可能である。
【0063】
ケーシング11の両端にはフランジ部14が形成され、フランジ部14には、後述するスペーサ部材17を介して端部カバー体30,31を固定するためのボルト穴16が形成されている。両端面にはシールを嵌入できるシール溝15が形成されている。
【0064】
ケーシング11は、全体をセラミックスや二相ステンレス鋼、スーパー二相ステンレス鋼等の金属材料のように海水に対する耐食性があり強度のある材料で形成してもよいし、圧力伝達管のみ二相ステンレス鋼、スーパー二相ステンレス鋼等の高強度の金属管で構成し、圧力伝達管の周囲を樹脂材料で被覆して、当該樹脂材料でケーシングを構成してもよい。これにより、ケーシングの軽量化が図れる。
【0065】
図6(a),(b)に示すように、スペーサ部材17は、中央に回転板21,22を遊挿可能な開口18が形成され、回転板21,22と等しい厚みに形成されている。開口18の周囲にはケーシング11のフランジ部14に形成されたボルト穴16と対応する位置にボルト穴19が形成されている。なお、スペーサ部材17は、ケーシング11又は端部カバー体30,31と一体形成してもよいが、別部材として構成することで、圧力変換装置10の処理流量を変更するために回転板21,22の厚みを変更したときは、同じ厚みのスペーサ部材を用いれば良いため処理流量の変更が容易である点で好ましい。スペーサ部材17は、セラミックスや樹脂等の海水に対する耐食性のある材料で形成されている。
【0066】
図7(a),(b),(c)に示すように、端部カバー体30は、回転板21との対向面側に、高圧流路24と連通する高圧中継流路32及び低圧流路25と連通する低圧中継流路33が形成されるとともに、前記対向面側とは異なる面の中央に軸部23に接続された連結部材28を挿通可能な開口36が形成され、その高さ方向上下に高圧中継流路32と連通する高圧入口側ポート34及び低圧中継流路33と連通する低圧出口側ポート35が形成されている。開口36内部で連結部材28の周囲にシール36aが備えられ海水が外部に漏れ出さないように構成されている。
【0067】
図8(a),(b),(c)に示すように、端部カバー体31は、回転板22との対向面側に、高圧流路24と連通する高圧中継流路32及び低圧流路25と連通する低圧中継流路33が形成されるとともに、前記対向面側とは異なる面に、高圧中継流路31と連通する高圧出口側ポート37及び低圧中継流路32と連通する低圧入口側ポート38が形成されている。
【0068】
高圧中継流路32及び低圧中継流路33は、回転体20の回転軸心周りに同心円状の周部を備えた高圧流体溝部32a及び低圧流体溝部33aを含み、各端部カバー体30,31に対向する高圧流路24の開口部が高圧流体溝部32aと連通し、各端部カバー体30,31に対向する低圧流路25の開口部が低圧流体溝部33aと連通するように形成されている。つまり、回転板21,22が回転しても、高圧流路24は常に高圧流体溝部32aと連通し、低圧流路25は常に低圧流体溝部33aと連通するように構成されている。
【0069】
なお、高圧入口側ポート33からの高圧流体が逆浸透膜装置6から排水される高圧濃縮流体としての高圧濃縮海水であり、低圧入口側ポート36からの低圧流体が逆浸透膜装置6に給水される被濃縮流体としての低圧海水である。
【0070】
端部カバー体30,31は夫々セラミックスや樹脂、二相ステンレス鋼、スーパー二相ステンレス鋼等の金属材料のように海水に対する耐食性のある材料で形成され、端部カバー体30,31の夫々には、ケーシング11のフランジ部14に形成されたボルト穴16と対応する位置にボルト穴39が形成されている。
【0071】
以上のように構成された、ケーシング11と、一対の端部カバー体30,31がボルト・ナット18によりスペーサ部材17を介して連結固定される。ケーシング11とスペーサ部材17の接触面及びスペーサ部材17と端部カバー体30,31の接触面には夫々シール19が配設され、海水が接触面から漏れ出さないように構成される。
【0072】
図10(a),(b)及び図11(a),(b)に基づいて、本発明による圧力変換装置10の具体的な圧力変換の様子について説明する。
【0073】
以下の説明において、図10(a),(b)及び図11(a),(b)の各左図は、各右図のE―E矢視によるケーシング11端面の概略図を示し、各右図の圧力伝達管13Uは、各左図での0時位置に配置された圧力伝達管を示し、各右図の圧力伝達管13Dは、各左図での9時位置に配置された圧力伝達管を示す。
【0074】
図10(a)に示すように、回転板21の高圧流路24は、圧力伝達管13Uに連通し、低圧流路25が圧力伝達管13Dに連通しているとき、圧力伝達管13U内では高圧入口側ポート34から供給される高圧濃縮海水F1により、高圧海水F2が高圧出口側ポート37から排水され、圧力伝達管13D内では低圧入口側ポート38から供給される低圧海水f2により、低圧濃縮海水f1が低圧出口側ポート35から排水される。
【0075】
回転板21の高圧流路24を通過する高圧濃縮海水F1及び低圧流路25を通過する低圧濃縮海水f1と、回転板22の高圧流路24を通過する高圧海水F2及び低圧流路25を通過する低圧海水f2の流れが、夫々の受圧面26に作用し回転体20を回転させ、図10(b)に示す状態になる。
【0076】
このとき、回転板21の高圧流路24及び低圧流路25の何れも、圧力伝達管13U,13Dに連通していないため、圧力伝達管13U,13D内では圧力の伝達が行われない。
【0077】
さらに、回転体20が回転すると、図11(a)に示すように、回転板21の高圧流路24は、圧力伝達管13Dに連通し、低圧流路25が圧力伝達管13Uに連通する状態となる。圧力伝達管13D内では高圧入口側ポート34から供給される高圧濃縮海水F1により、図10(a)で入った低圧海水f2が高圧海水F2として高圧出口側ポート37から排水され、圧力伝達管13U内では低圧入口側ポート38から供給される低圧海水f2により、図10(a)で圧力を伝えた高圧濃縮海水F1が、低圧濃縮海水f1として低圧出口側ポート35から排水される。
【0078】
図11(b)に示すように、さらに、回転体20が回転すると、回転板21の高圧流路24及び低圧流路25の何れも、圧力伝達管13U,13Dに連通していない状態となり、圧力伝達管13U,13D内では圧力の伝達が行われない。
【0079】
以上のように、回転体20の回転とともに圧力伝達管13U,13Dに連通する高圧流路24及び低圧流路25が切り替わり、高圧濃縮海水の余剰圧力の低圧海水への変換が連続的に行われるのである。
【0080】
なお、圧力伝達管13内部では、逆浸透膜装置6から排水される濃縮海水と、逆浸透膜装置6へ供給される海水が混在することになるが、境界部分はある一定量が常に混ざった領域となり、ピストンのような役目をしながら圧力伝達管13内部で揺動することになる。
【0081】
本発明による圧力変換装置の別実施形態について説明する。なお上述の実施形態と同様の構成については同一の符号を付し説明を省略する。
【0082】
図13に示すように、圧力変換装置10の回転体20を駆動機の動力で回転駆動させることがない場合は、図2に示す低圧出口側ポート35を閉止し、端部カバー体30の開口36が低圧濃縮海水の低圧出口側ポート35となるよう構成してもよい。さらに、端部カバー体31を端部カバー体30と同様の形状に形成して共通化することができるので、部品点数を低減させることができる。
【0083】
また、上述の何れの実施形態でも、高圧濃縮海水の高圧入口側ポートとして利用したポートに低圧海水を供給し、高圧海水の高圧出口側ポートとして利用したポートから低圧濃縮海水を排水させ、低圧海水の低圧入口側ポートとして利用したポートに高圧濃縮海水を供給し、低圧濃縮海水の低圧側出口側ポートとして利用したポートから高圧海水を排水してもよい。
【0084】
上述の何れの実施形態でも、受圧面26は、流路中の傾斜面としたが、例えば、流路中に羽根や溝を受圧面として設ける、又は、流路の壁面に流体が当たるように斜め方向から導入する等、受圧面は様々な形態をとることができる。
【0085】
ケーシング11に形成された圧力伝達管13の端部や、回転体21,22に形成された高圧流路24及び低圧流路25の端部や、端部カバー体30に形成した流体の通路の端部等に、面取や角丸め等の加工を行い、回転体の回転に伴う断面積の変化を緩やかにすることで、流体がスムーズに流れることができるため、キャビテーションや、脈動を防止することができる。
【0086】
上述の何れの実施形態でも、端部カバー体30,31が備える高圧側ポート及び低圧側ポートの数が夫々1つである場合について説明したが、高圧側ポート及び低圧側ポートは夫々複数備えていてもよい。ただし、取合配管が複雑となるため、高圧側ポート及び低圧側ポートの数が夫々1つであるであることが好ましい。
【0087】
上述の何れの実施形態でも、スペーサ部材17は、回転板21,22の厚みと同じ厚みに構成する場合について説明したが、スペーサ部材17と回転板21,22の厚みが異なる構成であってもよい。例えば、図14(a)に示すように、スペーサ部材17aを回転板22の厚みより薄く形成し、ケーシング11のフランジ部14の端面14aを端部カバー体31側へ突出するように構成したり、図14(b)に示すように、スペーサ部材17aを回転板22の厚みより薄く形成し、端部カバー体31の端面31aをケーシング11のフランジ部14側へ突出するように構成してもよい。なお、図14(a),(b)では、端部カバー体31側のみ図示したが、端部カバー体30側も同様の構成とすることができる。さらに、スペーサ部材を、ケーシング及び端部カバー体と水平分割可能に一体形成してもよい。
【0088】
以上説明した圧力変換装置及び圧力変換装置の性能調整方法の具体的構成は実施形態の記載に限定されるものではなく、本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。
【符号の説明】
【0089】
6:逆浸透膜装置
10:圧力変換装置
11:ケーシング
13:圧力伝達管
14:フランジ部
17:スペーサ部材
20:回転体
21,22:回転板
23:軸部
24:高圧流路
25:低圧流路
26:受圧面
27:ブッシュ
30,31:端部カバー体
32:高圧中継流路
33:低圧中継流路
34:高圧入口側ポート
35:低圧出口側ポート
37:高圧出口側ポート
38:低圧入口側ポート
32a:高圧流体溝部
33a:低圧流体溝部

【特許請求の範囲】
【請求項1】
高圧流体から低圧流体に圧力を伝達する圧力変換装置であって、
一対の回転板が互いに連結され、それぞれの回転板に高圧流路と低圧流路とが、厚み方向に形成された回転体と、
前記回転体の回転に伴って各流路と連通可能な圧力伝達管が回転軸心方向に貫通するように複数本配設されたケーシングと、
各回転板との対向面側に、前記高圧流路と連通する高圧中継流路及び前記低圧流路と連通する低圧中継流路が夫々形成されるとともに、前記対向面側とは異なる面の一方に、前記高圧中継流路と連通する高圧入口側ポート及び前記低圧中継流路と連通する低圧出口側ポートが形成され、前記対向面側とは異なる面の他方に、前記高圧中継流路と連通する高圧出口側ポート及び前記低圧中継流路と連通する低圧入口側ポートが形成された一対の端部カバー体と、
を備えて構成されている圧力変換装置。
【請求項2】
前記流路の何れかに、流体の圧力を受けて所定方向へ、前記回転体を回転させる受圧面が形成されている請求項1に記載の圧力変換装置。
【請求項3】
前記受圧面が少なくとも前記高圧流路に形成されている請求項2に記載の圧力変換装置。
【請求項4】
各流路に前記回転板の周方向に傾斜した傾斜面が形成され、当該傾斜面により前記受圧面が構成され、前記高圧流路の傾斜面と前記低圧流路の傾斜面は傾斜方向が逆になるように形成されている請求項2又は3に記載の圧力変換装置。
【請求項5】
前記端部カバー体に相対する前記高圧流路の開口部が、前記端部カバー体に相対する前記低圧流路の開口部よりも、前記回転板の径方向外側に形成されている請求項1から4の何れかに記載の圧力変換装置。
【請求項6】
前記高圧中継流路及び前記低圧中継流路は、前記回転軸心周りに同心円状の周部を備えた高圧流体溝部及び低圧流体溝部を含み、
各端部カバー体に対向する前記高圧流路の開口部が前記高圧流体溝部と連通し、各端部カバー体に対向する前記低圧流路の開口部が前記低圧流体溝部と連通するように形成されている請求項1から5の何れかに記載の圧力変換装置。
【請求項7】
隣接する複数本の圧力伝達管の開口部が、前記回転体の回転に伴って少なくとも1つの前記高圧流路又は前記低圧流路と同時に連通する請求項1から6の何れかに記載の圧力変換装置。
【請求項8】
圧力伝達管の開口部のうち、前記回転体の回転に伴って前記高圧流路及び前記低圧流路の何れにも連通しない開口部が存在する請求項6又は7記載の圧力変換装置。
【請求項9】
前記ケーシングに、前記圧力伝達管が前記回転軸心周りに同心円状に複数段配設されている請求項1から8の何れかに記載の圧力変換装置。
【請求項10】
前記回転板が軸部で連結され、前記軸部に前記ケーシングの内周面と摺動するブッシュを備えている請求項1から9の何れかに記載の圧力変換装置。
【請求項11】
前記ケーシングの両端に形成されたフランジ部と、前記端部カバー体に形成されたフランジ部が、スペーサ部材を介して連結固定されている請求項1から10の何れかに記載の圧力変換装置。
【請求項12】
前記回転体を回転駆動する駆動機が設置されている請求項1から11の何れかに記載の圧力変換装置。
【請求項13】
前記高圧入口側ポートからの高圧流体が逆浸透膜装置から排水される高圧濃縮流体であり、前記低圧入口側ポートからの低圧流体が前記逆浸透膜装置に給水される被濃縮流体である請求項1から12の何れかに記載の圧力変換装置。
【請求項14】
請求項1から13の何れかに記載の圧力変換装置の性能調整方法であって、
前記回転板の厚み又は高圧流路形状と低圧流路形状を変更することにより、処理流量を調整する圧力変換装置の性能調整方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate


【公開番号】特開2011−231634(P2011−231634A)
【公開日】平成23年11月17日(2011.11.17)
【国際特許分類】
【出願番号】特願2010−100673(P2010−100673)
【出願日】平成22年4月26日(2010.4.26)
【出願人】(000001052)株式会社クボタ (4,415)
【Fターム(参考)】