説明

多孔性のファイバー電極コーティングおよび関連する方法

本明細書中の実施形態は、ファイバーメッシュ、多層コーティング、および外側コーティングを含む多孔性コーティングを有する電極、ならびに同電極を作製する方法に関する。様々な電極コーティングの実施形態は、該コーティング中に、タンパク質または細胞の到達を抑制しつつイオンおよび液体のうち少なくともいずれかの到達を可能にする細孔を備えている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、身体移植式医療用デバイスに関し、より具体的には、体組織中で電気インパルスを感知するため、または、例えば心臓をペーシングするために臓器に電気刺激パルスを送達するための、コーティング付きの移植可能な電極に関する。
【背景技術】
【0002】
心調律管理システムで使用するための多種類の医療用電気リード線が知られている。そのようなリード線は、典型的には、患者の心臓内部または心臓上の移植位置まで血管内を伸ばされた後、心臓の電気的活性の感知、治療刺激の送達などのためパルス発生器または他の移植式デバイスに接続される。リード線は、望ましくは自然な患者の動きに対応するために高い可撓性を有しつつ、なおも最小限にとどめた外形を有するように構築される。同時に、リード線は、例えばヒトの筋肉系および骨格系、パルス発生器、他のリード線、ならびに移植処置および外植処置の際に使用される外科用器具によって与えられる様々な外力に曝される。改善されたリード線の設計が絶えず必要とされている。
【発明の概要】
【0003】
本明細書中で議論されるのは、移植式医療用電気リード線のための様々な多孔性コーティング、例えばファイバーメッシュと少なくとも1つのコーティングとを有する多孔性コーティング、ならびにそのようなコーティングを備えた医療用リード線についてである。
【0004】
例1において、医療用電気リード線は、可撓性かつ長尺状の高分子リード線本体、少なくとも1つのルーメンを通って伸びる導電性ワイヤ、リード線本体に接続されたコネクタ、リード線本体の外側部分に配置された電極、および該電極上に配置された多孔性コーティングを含む。リード線本体は、該リード線本体の中を通る少なくとも1つの長手方向に伸びるルーメンを画成し、コネクタは、リード線を移植式パルス発生装置に機械的かつ電気的に接続する。電極は、導電性ワイヤに電気的に接続される。多孔性コーティングは、高分子ナノファイバーメッシュと、該メッシュ上に配置された第1のコーティングと、第1のコーティング上に配置された第2のコーティングとを含む。メッシュはポリエーテルエーテルケトンを含み、第1のコーティングはTiOおよびポリアクリル酸を含み、第2のコーティングはフルオロアルキルシランを含む。
【0005】
例2は、第1のコーティングがTiOの層およびポリアクリル酸の層を含む多層コーティングである、例1の医療用電気リード線に関する。
例3は、第1のコーティングがTiOおよびポリアクリル酸の交互に重なっている層を含む、例2の医療用電気リード線に関する。
【0006】
例4は、第1のコーティングがTiOおよびポリアクリル酸の交互に重なっている少なくとも5つの層を含む、例2の医療用電気リード線に関する。
例5は、多孔性コーティングが細孔を含み、それぞれの細孔が約1μm〜約5μmの範囲の直径を有する、例1の医療用電気リード線に関する。
【0007】
例6は、高分子ナノファイバーメッシュが静電紡糸法で作製された高分子ナノファイバーメッシュである、例1の医療用電気リード線に関する。
例7は、高分子ナノファイバーメッシュが微細に製織された高分子ナノファイバーメッシュである、例1の医療用電気リード線に関する。
【0008】
例8は、第2のコーティングが式CF(CF(CHSi(OCHを有する化合物、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリクロロシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリクロロシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリメトキシシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリエトキシシラン、およびトリフルオロプロピルトリメトキシシランからなる群から選択されるフルオロアルキルシランを含む、例1の医療用電気リード線に関する。
【0009】
例9では、医療用電気リード線は、可撓性かつ長尺状の高分子リード線本体、少なくとも1つのルーメンを通って伸びる導電性ワイヤ、リード線本体に接続されたコネクタ、リード線本体の外側部分に配置された電極、および電極上に配置された多孔性コーティングを含む。リード線本体は、該リード線本体の中を通る少なくとも1つの長手方向のルーメンを画成し、コネクタは、リード線を移植式パルス発生装置に機械的かつ電気的に接続する。電極は、導電性ワイヤに電気的に接続される。多孔性コーティングは、ポリテトラフルオロエチレンを含むパターン化されたファイバーメッシュと、該ファイバーメッシュ上に配置された、親水性組成物を含む第1のコーティングとを含む。
【0010】
例10は、親水性組成物がカーボンコーティングを含む、例9の医療用電気リード線に関する。
例11は、親水性組成物がTiOおよびポリアクリル酸を含む、例9の医療用電気リード線に関する。
【0011】
例12は、多孔性コーティングが細孔を含み、それぞれの細孔が約0.1μm〜約10μmの範囲の直径を有する、例9の医療用電気リード線に関する。
例13は、多孔性コーティングが細孔を含み、それぞれの細孔が約3μm未満の直径を有する、例9の医療用電気リード線に関する。
【0012】
例14は、パターン化されたファイバーメッシュが製織されたファイバーメッシュである、例9の医療用電気リード線に関する。
例15は、パターン化されたファイバーメッシュが熱収縮性である、例9の医療用電気リード線に関する。
【0013】
例16は、パターン化されたファイバーメッシュが管状構造を有する、例9の医療用電気リード線に関する。
例17では、リード線本体と少なくとも1つの導電性ワイヤとを有する種類の医療用電気リード線のための電極を作製する方法は、リード線本体上に電極を形成するステップと、電極の上に高分子ナノファイバーメッシュを配置するステップと、高分子ナノファイバーメッシュに第1の多層コーティングを施すステップと、第1の多層コーティングに第2のコーティングを施すステップとを含む。ナノファイバーメッシュはポリエーテルエーテルケトンを含み、第1の多層コーティングはTiOの層およびポリアクリル酸の層を含み、第2のコーティングはフルオロアルキルシランを含む。
【0014】
例18は、電極の上に高分子ナノファイバーメッシュを配置するステップが、静電紡糸法により電極の上に高分子ナノファイバーメッシュを作製する工程を含む、例17の方法に関する。
【0015】
例19は、高分子ナノファイバーメッシュが微細に製織された高分子ナノファイバーメッシュからなる、例17の方法に関する。
例20は、高分子ナノファイバーメッシュに第1の多層コーティングを施すステップが、電極および高分子ナノファイバーメッシュをTiOの中でコーティングするステップ、電極および高分子ナノファイバーメッシュをポリアクリル酸の中でコーティングするステップ、ならびにこれら2つのコーティングステップを交互に少なくとも5回繰り返すステップをさらに含む、例17の方法に関する。
【0016】
例21では、リード線本体と少なくとも1つの導電性ワイヤとを有する種類の医療用電気リード線のための電極を作製する方法は、リード線本体上に電極を形成するステップと、電極の上にパターン化されたファイバーメッシュを配置するステップと、パターン化されたファイバーメッシュに第1のコーティングを施すステップとを含む。パターン化されたファイバーメッシュはポリテトラフルオロエチレンを含み、第1のコーティングは親水性組成物を含む。
【0017】
例22は、2/1綾織り(2 over 1 weave)を使用してファイバーメッシュをパターン化されたファイバーメッシュに製織するステップをさらに含む、例21の方法に関する。
例23は、親水性組成物がカーボンコーティング、TiOおよびポリアクリル酸、BioSlide(商標)、またはプラズマ処理を含む、例21の方法に関する。
【0018】
多数の実施形態が開示されるが、当業者には、本発明の実例となる実施形態を示しかつ説明する以下の詳細な説明から、本発明のさらに別の実施形態が明白となるであろう。従って、図面および詳細な説明は当然例示としてみなされるべきであり、限定的なものとみなされるべきではない。
【図面の簡単な説明】
【0019】
【図1】1つの実施形態による、患者の心臓に設置された1対の医療用電気リード線に接続されたパルス発生器を含む心調律管理システムの概略図。
【図2】1つの実施形態による、図1に示されたリード線のうち一方の斜視図。
【図3】1つの実施形態による、多孔性コーティングを有する電極の概略図。
【図4】1つの実施形態による、ナノファイバーメッシュの拡大概略図。
【図5A】1つの実施形態による、パターン化されたファイバーメッシュの拡大概略図。
【図5B】図5Aのパターン化されたファイバーメッシュのさらなる拡大概略図。
【図6】別の実施形態による、パターン化されたファイバーメッシュの概略斜視図。
【図7】1つの実施形態による、多孔性コーティングの拡大概略図。
【図8A】1つの実施形態による、多孔性コーティングを備えたリード線の作製方法のフローチャート。
【図8B】1つの実施形態による、ナノファイバーを静電紡糸してメッシュにするための典型的な装置の概略図。
【発明を実施するための形態】
【0020】
本明細書中に開示された様々な実施形態は、多孔性コーティングを有する電極を備える医療用電気リード線、および該リード線を作製するための関連する方法に関する。本発明の様々な実施形態によるリード線は、内因性の電気的活性の感知、および患者への治療的な電気刺激の付与のうち少なくともいずれか一方に適している。典型的な用途には、限定するものではないが、心調律管理(CRM)システムおよび神経刺激システムが挙げられる。例えば、ペースメーカー、移植式除細動器、または心臓再同調療法(CRT)デバイスを利用する典型的なCRMシステムでは、本発明の実施形態による医療用電気リード線は、心臓の電気的活性を感知して心臓内部の心組織に治療的電気刺激を与えるように、1つ以上の心腔内に部分的に移植されるように構成された心内膜リード線であってよい。さらに、本発明の実施形態によって形成されたリード線は、CRTまたはCRT‐Dシステムにおける両室ペーシングを容易にするように、心臓の左側に隣接している冠状静脈中に配置するのに特に適切となりうる。さらに加えて、本発明の実施形態により形成されるリード線は、心臓の外表面に固定されるように(すなわち心外膜リード線として)構成されてもよい。図1は、患者の心臓18に設置された1対の医療用電気リード線14,16に接続されたパルス発生器12を含む心調律管理システム10の概略図であり、心臓18は、右心房20および右心室22、左心房24および左心室26、右心房20の中の冠状静脈洞口28、冠状静脈洞30、ならびに冠状静脈洞30から分かれた典型的な分枝血管32を含む様々な冠状静脈を有している。
【0021】
1つの実施形態によれば、図1に示されるように、リード線14は、基端側部分42および先端側部分36を備え、先端側部分36は図のように右心房20、冠状静脈洞口28および冠状静脈洞30を通り、冠状静脈洞30の分枝血管32の中へ導入されている。先端側部分36はさらに先端38および電極40を備え、該先端および電極はいずれも分枝血管32の内部に配置されている。図示されたリード線14の配置は、心臓18の左側にペーシング刺激および除細動刺激のうち少なくともいずれかを送達するために使用可能である。さらに、当然のことであるが、リード線14は、心臓18の左側または右側に治療法を提供するために、冠状静脈系の他の領域、例えば大心臓静脈内または他の分枝血管内に部分的に設置されてもよい。
【0022】
図示された実施形態では、電極40は、内因性の電気的心律動の感知および分枝冠状静脈32の内部から左心室26への比較的低電圧のペーシング刺激の送達のうち少なくともいずれかのために構成された比較的小さな低電圧電極である。様々な実施形態において、リード線14は、多極ペーシング用および選択的なペーシング部位設定用のうち少なくともいずれか一方のための、追加のペーシング電極/感知電極を備えることができる。
【0023】
さらに示されているように、図の実施形態では、リード線16は、基端側部分34と、右心室22に埋め込まれた先端側部分44とを備えている。他の実施形態では、CRMシステム10は、さらなる追加のリード線、例えば右心房20に埋め込まれたリード線を備えていてもよい。先端側部分44は、いずれも図の実施形態の右心室22に移植された、可撓性の高圧電極46、比較的低電圧のリング電極48、および低電圧のチップ電極50をさらに備えている。当然ながら、高圧電極46はリング電極48およびチップ電極50と比べて比較的大きな表面積を有し、従って除細動/電気除細動療法のために心組織へ比較的高電圧の電気刺激を送達するために構成され、一方リング電極48およびチップ電極50は比較的低電圧のペーシング電極/感知電極として構成される。電極48,50は双極のペーシング/感知能力をリード線16に提供する。
【0024】
様々な実施形態において、リード線16は、多極の除細動/電気除細動能力を提供するように、リード線16に沿って追加の除細動/電気除細動電極および追加のペーシング/感知電極のうち少なくともいずれかを備えている。1つの典型的な実施形態では、リード線16は、移植時に右心房20(および上大静脈のうち少なくともいずれか)の中に位置するようにリード線16に沿って配置された、電極46以外の基端側高圧電極を備えている。当然ながら、さらなる電極構成をリード線16とともに利用することが可能である。要するに、いかなる電極構成も、本発明の意図する範囲から逸脱することなくリード線16に使用することができる。
【0025】
パルス発生器12は、典型的には、患者の胸部または腹部の移植位置または嚢状腔の内部に皮下移植される。パルス発生器12は、患者に治療的な電気刺激を送達するための、当分野で既知または後に開発される任意の移植式医療用デバイスであってよい。様々な実施形態において、パルス発生器12は、ペースメーカー、移植式除細動器、両室ペーシング用に構成された心臓再同調(CRT)デバイスであるか、またはペーシング能力、CRT能力および除細動能力の組み合わせを備えている。
【0026】
図2は、図1に示されたリード線16の斜視図である。上記に議論されるように、リード線16は心臓を刺激するための電気パルスを送達すること、および心臓を監視するための電気パルスを受信することのうち少なくともいずれか一方を行うように適合されている。リード線16は長尺状の高分子リード線本体52を備え、該本体は、ポリウレタン、ポリアミド、ポリカーボネート、シリコーンゴムまたはその他この種類のリード線に使用するための任意の既知のポリマーのような、任意の高分子材料から形成可能である。
【0027】
1つの実施によれば、該高分子材料は少なくとも摂氏約100度の温度で安定である。すなわち、高分子材料は少なくとも約100℃まではその完全性を維持するように構成される。1つの態様では、この熱安定性により、高分子材料は下記に記載されたコーティング処理に耐えることが可能となる。別例として、高分子材料は少なくとも摂氏約70度の温度で安定である。
【0028】
さらに示されるように、リード線16はリード線本体52の基端と作動可能なように結合されたコネクタ54をさらに備えている。コネクタ54は、リード線16をパルス発生器12に機械的かつ電気的に接続するように構成され、任意の標準的な型、大きさまたは形状であってよい。当然ながら、コネクタ57は、リード線本体52内部の1つ以上の導電ワイヤ(図示せず)経由で電極46,48,50に電気的かつ機械的に連結される。利用される導電ワイヤは、必要な機能性を提供する任意の形状を呈することができる。例えば、当然ながら、電極48および50のうち少なくともいずれか一方をコネクタ54に(したがってパルス発生器12に)接続する導電ワイヤは、リード線送達用のスタイレットまたはガイドワイヤを受け入れるための内部ルーメンを画成しているコイル状の導電体であってもよい。逆に、様々な実施形態において、高圧電極53への導電ワイヤはマルチストランドケーブル導体であってもよい。
【0029】
本発明の様々な実施形態によれば、電極46,48,50のうちの1つ以上、例えば高圧電極46は、電極表面への組織の内殖および付着のうち少なくともいずれか一方を抑制する多孔性複合コーティングを備えている。1つの実施形態では、該コーティングは、コーティングの孔径の結果として電極表面への血球の到達を防止することにより、組織の内殖および付着のうち少なくともいずれか一方を抑制する。別例として、該コーティングは、電極表面に対する組織の内殖および付着のうち少なくともいずれか一方を抑制することができる疎水性の性質を有する。さらなる別例では、該コーティングは、電極表面への血球の到達を制限する小さな細孔と、下層をなす電極への液体の到達を可能にして電極の有効性を増強することができる親水性の性質とを組み合わせて有している。したがって、本発明の様々な実施形態による電極構成は、電極表面への組織の接着および内殖を抑制するための既存の技術、例えばePTFEのコーティングまたは被膜の代替物を提供する。
【0030】
当然ながら、本発明の様々な実施形態による本明細書中に記載の電極構成は、冠状静脈系への移植用に構成されたリード線14(図1を参照)の電極用にも、右心房リード線および心外膜リード線のような他のリード線の電極用にも利用可能である。
【0031】
図3は、多孔性コーティング62を有する電極(図1および2の電極に類似)を備えたリード線60を概略的に示している。この実施形態では、多孔性コーティング62は電極を覆うかまたは電極の上に配置される。別例として、当然ながら多孔性コーティングは電極上だけでなくリード線本体の他の部分の上に同様に配置されてもよい。1つの実施形態では、多孔性コーティングは電極の上に配置され、さらには電極を越えてリード線本体のある程度の部分まで広がる。別例として、多孔性コーティングはリード線本体の長さ全体の上に配置される。1つの実施形態によれば、電極および電極を越えたリード線本体の少なくともある程度の部分を覆うか、またはその上に配置された多孔性コーティングは、リード線本体の移行部分をマスキングすることができる。すなわち、ある種のリード線本体は、異なる特徴を備えた2つの異なるセグメントが接する移行部分を有し、それらの移行部分は直径もしくは外側表面の変化またはその他の特徴を備える可能性があり、この変化や特徴は、挿入または抜去の際に患者の組織の何らかの部分(例えば動脈または静脈の内壁)と接触して損傷を与える可能性がある。多孔性コーティングは、そのような移行部分を覆うことにより、挿入または抜去の際にそのような部分が原因で生じる可能性のある損傷から患者を保護するために、使用することができる。
【0032】
1つの実施によれば、多孔性コーティング62は、ファイバーメッシュと、該メッシュ上に配置された第1のコーティングとを有する。別例として、多孔性コーティング62は、ファイバーメッシュ、該メッシュ上に配置された第1のコーティング、および第1のコーティングの上に配置された第2のコーティングを有する。本願の目的に関して、「多孔性コーティング」は、ファイバーメッシュを該メッシュ上に配置された少なくとも1つのコーティングと組み合わせたものを意味するように意図される。「第1のコーティング」および「第2のコーティング」は、メッシュに付与されるかまたはメッシュ上に配置されるコーティングを意味するように意図される。
【0033】
1つの実施形態によれば、ファイバーメッシュはナノファイバーメッシュで構成される。別例として、ファイバーメッシュはパターン化されたファイバーメッシュである。
図4は、ナノファイバーメッシュの一実施形態の典型的なSEM像を示す。本願の目的に関して、用語「ナノファイバーメッシュ」は、任意のファイバーメッシュであって、電極コーティングの中に含められる非パターン化メッシュまたは不均一なメッシュに形成可能な直径約10nm〜約1,000nmのファイバーを有するファイバーメッシュを意味するように意図される。
【0034】
1つの実施において、ナノファイバーメッシュは、絡み合っているがパターン化されていない、高分子ナノファイバーの配置構成である。高分子ナノファイバー材料には、約10nm〜約1,000nmの範囲の直径を有するファイバーが挙げられる。ナノファイバーメッシュの基になる典型的な高分子材料にはポリエーテルエーテルケトン(「PEEK」)が挙げられる。別例として、ナノファイバーは、ポリウレタン、ポリスチレン、ポリエチレンテレフタラート、ポリメタクリル酸メチル、ポリカーボネート、またはナノファイバーに使用可能なその他の既知の高分子で作られてもよい。下記に述べるように、一実施形態によるメッシュは、ファイバーが紡糸されて絡み合った配置構成となる静電紡糸工程を使用して作出され、次いで電極上に配置される。別例として、メッシュは最初に無作為またはパターン化されていない方法で製織され、次いで電極上に配置される。
【0035】
上述のように、代替実施形態では、メッシュはパターン化されたファイバーメッシュである。本願の目的に関して、用語「パターン化(された)メッシュ」または「パターン化(された)ファイバーメッシュ」は、多孔性の電極コーティングに含めるための、織り合わせまたは他の方法で形成されてパターン化または非無作為の配置構成に、例えば製織パターンまたは他の種類のパターン化もしくは非無作為の配置構成になりうるファイバーを有する任意のファイバーメッシュを意味するように意図される。
【0036】
1つの実施において、多孔性コーティングのパターン化メッシュは、図5Aおよび5Bに最もよく示されているような、ファイバーの製織された配置構成であり、これらの図面は、パターン化ファイバーメッシュの一実施形態の40×拡大(図5A)および150×拡大(図5B)における典型的なSEM像を示している。この製織されたメッシュ中のファイバーは、約1本のファイバーから約1,000束のファイバー束まで様々な数であってよい。1つの実施形態では、製織メッシュは48本のファイバーで構成される。1つの実施形態では、ファイバーは、「2/1」の綾織りまたはパターンを使用して製織される。別例として、任意の既知の非無作為の織り方またはパターンも使用可能である。さらなる実施形態では、ファイバーは任意の既知のパターン化構造または非無作為の構造に形成されてもよい。ファイバーは、約0.01μm〜約10μmの範囲の直径を有することができる。
【0037】
1つの実施形態によれば、ファイバーは、ポリテトラフルオロエチレン(「PTFE」)(最も一般的な商標のテフロン(Teflon、登録商標)としても知られている)のような熱収縮性材料で作られる。別例として、熱収縮性材料はポリフッ化ビニリデン(「PVDF」)である。さらなる代替例では、該材料は製織可能なファイバーに形成することができる任意の熱収縮性材料であってよい。熱収縮性材料は、1つの実施によれば、摂氏約120度〜約150度の範囲の熱を加えられたときに収縮可能であり、かつ該材料の原寸の5%を超えて収縮することができる。1つの実施形態によれば、熱はリード線の中心部まで熱が拡散するのを回避するべく迅速に加えられ、このことにより、熱を原因としてリード線に生じうる損傷が防止される。
【0038】
代替の実施によれば、ファイバーは、ポリ塩化ビニリデン(「PVDC」)のような非熱収縮性の材料で作られてもよい。別例として、非熱収縮性の材料は、ポリエーテルエーテルケトン(「PEEK」)もしくはカーボンファイバー、または製織可能なファイバーに形成することができる任意の他の非熱収縮性の材料であってよい。
【0039】
パターン化メッシュ中のファイバーは、パターン化メッシュに形成可能な任意の材料(熱収縮性、またはそうでないもの)で作製可能であることが理解される。
図6に示される1つの実施形態によれば、パターン化メッシュ70は、電極74を覆うように配置可能な円筒状または管状構造物72に形成される。1つの実施形態では、メッシュ70は管状構造72に形成され、電極74の上に配置され、次いでメッシュ70が電極74の上で熱収縮される。材料が熱収縮性ではない代替実施形態では、メッシュ70は下記に記載されるような他の方法を使用して電極74に取り付けられてもよい。
【0040】
上述のように、本明細書中に開示された多孔性コーティングの様々な実施形態は第1のコーティングを備えている。第1のコーティングは、ファイバーメッシュをコーティングするか、またはその他の方法でファイバーメッシュ上に配置される。1つの実施形態では、第1のコーティングはTiOおよびポリアクリル酸を含むコーティングである。さらなる実施形態では、内側コーティングは、TiOの層およびポリアクリル酸の層を有する多層コーティングである。該内側コーティングは、TiOの約5つの層およびポリアクリル酸の5つの層から、各成分の約30の層までの範囲の、多数の交互に重なった層を有することができる。
【0041】
別例として、第1のコーティングには、BioSlide(商標)、すなわちミネソタ州ミネアポリス所在のボストン・サイエンティフィック・サイムド社(Boston Scientific SciMed)から市販されている親水性潤滑コーティングが挙げられる。1つの実施形態では、BioSlide(商標)製品は第1のコーティング組成物の100%を占める。別例では、BioSlide(商標)製品は第1のコーティング組成物の100%未満を占めることもできる。
【0042】
さらなる代替例では、第1のコーティングは非熱プラズマ処理であってよい。非熱プラズマ処理は、参照により全体が本願に組み込まれる「Non‐thermal Plasma Treatment of Textiles」というタイトルの論文(Surface&Coatings Technology 202(2008),3427‐3449)にさらに詳細に記載されているように、イオン温度より高い電子温度を有する部分的にイオン化された気体を適用する既知の処理法である。1つの実施において、非熱プラズマ処理には、低圧周囲温度条件でのファイバーメッシュへの水素/アルゴンまたは水/アルゴンのガスプラズマの適用が挙げられる。さらなる実施形態では、ファイバーメッシュはPTFEであり、水素/アルゴンまたは水/アルゴンのガスプラズマの適用はPTFEファイバーの湿潤性を増大させる。
【0043】
第1のコーティングは、別の実施によれば、ドイツ連邦共和国ラインブライトバッハ所在のNTTFコーティングズ・ゲーエムベーハー(NTTF Coatings GmbH)から市販されているcardient(R)HydroXのようなカーボンコーティングである。別例として、カーボンコーティングはダイヤモンドライクカーボン(「DLC」)コーティングであってよい。ある態様では、DLCコーティングは窒素またはリンでドープされている。ある実施形態によれば、DLCコーティングは湿潤性を増大させることができる。カーボンコーティングは、第1のコーティング組成物の100%を占めることができる。別例として、カーボンコーティングは第1のコーティング組成物の100%未満を占めることもできる。
【0044】
1つの実施によれば、第1のコーティングは、得られる多孔性コーティングの親水性の性質を提供または増強する親水性コーティングであってよい。
本明細書中に開示された多孔性コーティングのある実施形態は、第1のコーティングのみを有する。しかしながら、上述のように、別例の実施形態は第2のコーティングを備えることができる。第2のコーティングを有する実施形態では、第2のコーティングは、第1のコーティングおよびファイバーメッシュのうち少なくともいずれか一方をコーティングするかまたはその上にコーティング以外の方法で配置される。1つの実施形態では、第2のコーティングはフルオロアルキルシラン(「FAS」)である。例えば、1つの実施において、FASは次式:CF(CF(CHSi(OCHを有する。さらに典型的なフルオロアルキルシランには、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリクロロシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリクロロシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリメトキシシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリエトキシシラン、およびトリフルオロプロピルトリメトキシシランが挙げられる。1つの実施によれば、該外側コーティングは、多孔性コーティングの疎水性をさらに増強するのに十分に大きな水接触角(WCA)を作り出す。例えば、1つの典型的な実施形態におけるWCAは150度より大きく、その結果著しく疎水性の多孔性コーティングが得られる。
【0045】
ある特定の典型的な実施形態についてここで議論する。1つの典型的な実施形態では、多孔性コーティングは、ナノファイバーメッシュ、第1のコーティング、および、図7の典型的なSEM像に示されたものに類似の多孔性コーティングを生じる第2のコーティングを有する。様々な実施形態によれば、ナノファイバーメッシュと2つのコーティングとを備えた多孔性コーティング62は、約1μm〜約5μmの範囲の直径の細孔を有することができる。この孔径により、タンパク質および細胞、例えば赤血球またはその他の種類の細胞が電極表面へ到達するのが抑制されるとともに、該表面へのイオンおよび水分の到達が提供される。したがって、多孔性コーティング62は、電極表面へのイオンおよび流体の到達を可能にする、タンパク質および細胞反発性のコーティングである。別例として、ナノファイバーメッシュを備えた多孔性コーティング62は、電極表面へのイオンの到達を可能にする疎水性コーティング(かつ、したがってタンパク質および細胞反発性)である。
【0046】
多孔性コーティング62がパターン化メッシュおよび第1のコーティングを有する別例の典型的な実施によれば、多孔性コーティング62は、約1〜約500μmの範囲の厚さを有することができる。別例として、コーティングの厚さは150μm未満であってもよい。1つの実施形態によれば、パターン化メッシュおよび第1のコーティングを備えた多孔性コーティング62は、直径約0.1μm〜約10μmの範囲の細孔を有する。別例として、細孔は約3μm未満である。1つの実施において、細孔密度は、多孔性コーティングの表面積全体の約5%より大きい。
【0047】
別の実施は、上記に開示された様々な実施形態に類似の多孔性コーティングを有する電極を作製する方法に関する。その製法は、以下に詳細に述べるような様々な実施形態によって電極本体をコーティングするステップを含むことができる。
【0048】
図8Aは、一実施形態による、電極80の上にファイバーメッシュを有する多孔性コーティングを形成する方法について述べている。ファイバーメッシュがナノファイバーメッシュである1つの変更形態では、ナノファイバーメッシュは、円筒ロッド上に(ブロック82)、または別例として直接電極本体の上に、ナノファイバーを静電紡糸することにより作出される。そのような静電紡糸工程を行なうための1つの装置が、図8Bに概略的に示されている。別例として、ナノファイバーメッシュは、微細に製織されたナノファイバーメッシュを形成することにより作出されてもよい。
【0049】
ファイバーメッシュがパターン化ファイバーメッシュである代替実施形態では、管状構造を有するパターン化メッシュは、ファイバーを非無作為形態またはパターン化された形態に配置構成することにより作出される。1つの実施によれば、ファイバーは、図5Aおよび5Bに示されるようなパターンに互いに織り合わされる。別例として、ファイバーは任意の既知の非無作為な方式で配置構成されてもよい。
【0050】
図8Aに戻ると、メッシュはその後円筒ロッドから取り外されて電極上に配置される(ブロック84)。熱収縮性の実施形態については、次に加熱または温度調整(tempering)の工程が行われてメッシュが加熱され、これによりメッシュが電極上で収縮する(ブロック86)が、このことは電極にメッシュを固定または付着させる助けとなる。加熱は、熱送風機、赤外線照射、1つまたは複数のレーザー、オーブン、または熱収縮性の材料を収縮させるための任意の他の既知の熱源を利用して達成することができる。
【0051】
次に、電極およびメッシュは第1のコーティングで被覆される。1つの実施形態では、電極およびメッシュはTiOコロイド溶液中で浸漬コーティングされる(ブロック88)。別例として、電極およびメッシュは任意の既知のコーティング法によってTiOの中でコーティングされる。1つの実施形態によれば、コーティング工程は化学蒸着(「CVD」)工程である。次に、電極およびメッシュはポリアクリル酸水溶液中で浸漬コーティングされる(ブロック90)。別例として、電極およびメッシュは任意の既知のコーティング法によってポリアクリル酸の中でコーティングされる。
【0052】
この実施形態では、これらのコーティングステップは次いで各々複数回繰り返され(ブロック92)、その結果としてTiOとポリアクリル酸との組み合わせを生じ、この組み合わせは、ある実施形態では交互に重なっているTiOの層およびポリアクリル酸の層を生じることができる。1つの実施において、コーティングステップは、各々約30回繰り返されてもよい。別例として、コーティングステップは、各々約5〜約30回の範囲の任意の回数で繰り返されてもよい。得られたコーティングはその後、80℃で約24時間乾燥させる(ブロック94)。別例として、コーティングは、約30℃〜約120℃の範囲の温度で約1時間〜約30時間の範囲で乾燥させてもよい。
【0053】
別例の実施において、第1のコーティングは上述の任意のコーティングであってよい。さらに、第1のコーティングは別例として原子層堆積(「ALD」)工程を使用して施されてもよい。別の実施形態では、外側コーティングは、デバイスに沿った、容易には到達できない位置でのコーティングの堆積を可能にする任意の既知の処理工程を使用して施すことができる。
【0054】
上述のように、本明細書中で考慮されるいくつかの代替実施形態は第2のコーティングを有する。そのような実施形態の1つの実施において、上記で作出されたメッシュおよび第1のコーティングは、第2のコーティングで被覆される。1つの実施形態では、第2のコーティングはフルオロアルキルシラン(「FAS」)である(ブロック96)。得られた外側コーティングはその後、80℃で約1時間乾燥および加熱される(ブロック88)。別例として、該コーティングは約30℃〜約120℃の範囲の温度で約1時間〜約24時間の範囲で乾燥および加熱されてもよい。
【0055】
別例の実施形態では、コーティング工程は、メッシュおよび管状構造物のうち少なくともいずれか一方の形成に先立ってファイバー上で実施されてもよい。さらなる実施形態では、コーティング工程は、メッシュがリード線本体上の適切な位置に配置された後で該メッシュ上において実施されてもよい。メッシュが熱収縮性である実施形態では、コーティング工程は、後述のようにメッシュがリード線本体の上で収縮される前または後のいずれにおいて実施されてもよい。
【0056】
メッシュが第1のコーティングで(また、別例の実施形態では第2のコーティングで)被覆されると、得られた多孔性コーティングはリード線本体の上に配置可能である。メッシュが熱収縮性である実施形態によれば、多孔性コーティングはリード線本体上に配置され、次いでリード線上の所望の位置で該コーティングを収縮させるために、コーティングに熱が加えられる。
【0057】
1つの実施形態によれば、熱は多孔性コーティングの長さ全体に沿って加えられる。別例として、多孔性コーティングの長さに沿った特定の箇所(複数)にのみ熱が加えられてもよく、それらの箇所における固定はリード線本体へのコーティングの付着を維持するのに十分となりうる。例えば、多孔性コーティングがちょうど電極部分だけではなくリード線本体のより多くの部分を覆う実施形態では、熱は、コーティングの両端部および電極自体に加えられてよい。
【0058】
メッシュが熱収縮性ではない別例の実施において、多孔性コーティングは他の方法でリード線本体に取り付け可能である。1つの実施形態では、コーティングは接着剤を用いてリード線本体に取り付けられてもよい。別例として、コーティングは、該コーティングの一部を覆って配置されるリングを使用して、該コーティングがリード線本体とリングとの間に取り付けられるように、取り付けられてもよい。
【0059】
本発明の範囲は、冠状静脈内移植用のリード線への適用のみに限定されることは意図されていない。開示された実施形態の適用は、右心系の徐脈もしくは頻脈用リード線、または心外膜リード線に対してなされてもよい。冠状静脈への適用については、開示された実施形態はリード線本体の非電極部分に対しても利用可能である。
【0060】
議論された典型的な実施形態に対し、本発明の範囲から逸脱することなく様々な改変および追加を加えることができる。例えば、上述の実施形態は特定の特徴を表しているが、本発明の範囲には、様々な組み合わせの特徴を有する実施形態および記載された特徴を必ずしも全て含んでいない実施形態も含まれる。従って、本発明の範囲は、特許請求の範囲の範囲内にあるそのような全ての代替形態、改変形態および変更形態を、それらの等価物全てとともに包含するように意図されている。

【特許請求の範囲】
【請求項1】
医療用電気リード線であって、
可撓性かつ長尺状の高分子リード線本体であって、前記リード線本体の中を通る少なくとも1つの長手方向のルーメンを画成しているリード線本体、
前記少なくとも1つのルーメンを通って伸びる導電性ワイヤ、
リード線を移植式パルス発生装置に機械的かつ電気的に接続するための、リード線本体に接続されたコネクタ、
リード線本体の外側部分に配置された電極であって、導電性ワイヤに電気的に接続される電極、ならびに
電極上に配置された多孔性コーティングであって、
ポリエーテルエーテルケトンを含む高分子ナノファイバーメッシュと、
ファイバーメッシュ上に配置されるとともにTiOおよびポリアクリル酸を含む第1のコーティングと、
第1のコーティング上に配置されるとともにフルオロアルキルシランを含む第2のコーティングとを含む多孔性コーティング
からなるリード線。
【請求項2】
第1のコーティングがTiOの層およびポリアクリル酸の層を含む多層コーティングである、請求項1に記載のリード線。
【請求項3】
第1のコーティングがTiOおよびポリアクリル酸の交互に重なっている層を含む、請求項2に記載のリード線。
【請求項4】
第1のコーティングがTiOおよびポリアクリル酸の交互に重なっている少なくとも5つの層を含む、請求項2に記載のリード線。
【請求項5】
多孔性コーティングが細孔を含み、それぞれの細孔が約1μm〜約5μmの範囲の直径を有する、請求項1に記載のリード線。
【請求項6】
高分子ナノファイバーメッシュが静電紡糸法で作製された高分子ナノファイバーメッシュである、請求項1に記載のリード線。
【請求項7】
高分子ナノファイバーメッシュが微細に製織された高分子ナノファイバーメッシュである、請求項1に記載のリード線。
【請求項8】
第2のコーティングが、式CF(CF(CHSi(OCHを有する化合物、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリエトキシシラン、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリメトキシシラン、ヘプタデカフルオロ‐1,1,2,2‐テトラヒドロデシルトリクロロシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリクロロシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリメトキシシラン、トリデカフルオロ‐1,1,2,2‐テトラヒドロオクチルトリエトキシシラン、およびトリフルオロプロピルトリメトキシシランからなる群から選択されるフルオロアルキルシランを含む、請求項1に記載のリード線。
【請求項9】
医療用電気リード線であって、
可撓性かつ長尺状の高分子リード線本体であって、前記リード線本体の中を通る少なくとも1つの長手方向のルーメンを画成しているリード線本体、
前記少なくとも1つのルーメンを通って伸びる導電性ワイヤ、
リード線を移植式パルス発生装置に機械的かつ電気的に接続するための、リード線本体に接続されたコネクタ、
リード線本体の外側部分に配置された電極であって、導電性ワイヤに電気的に接続される電極、および
電極上に配置された多孔性コーティングであって、
ポリテトラフルオロエチレンを含むパターン化されたファイバーメッシュと、
ファイバーメッシュ上に配置されるとともに親水性組成物を含む第1のコーティングとを含む多孔性コーティング
からなるリード線。
【請求項10】
親水性組成物がカーボンコーティングを含む、請求項9に記載のリード線。
【請求項11】
親水性組成物がTiOおよびポリアクリル酸を含む、請求項9に記載のリード線。
【請求項12】
多孔性コーティングが細孔を含み、それぞれの細孔が約0.1μm〜約10μmの範囲の直径を有する、請求項9に記載のリード線。
【請求項13】
多孔性コーティングが細孔を含むことと、それぞれの細孔が約3μm未満の直径を有する、請求項9に記載のリード線。
【請求項14】
パターン化されたファイバーメッシュが製織されたファイバーメッシュである、請求項9に記載のリード線。
【請求項15】
パターン化されたファイバーメッシュが熱収縮性である、請求項9に記載のリード線。
【請求項16】
パターン化されたファイバーメッシュが管状構造を有する、請求項9に記載のリード線。
【請求項17】
リード線本体と、前記リード線本体の中の少なくとも1つの導電性ワイヤとを有する種類の医療用電気リード線のための電極を作製する方法であって、
リード線本体上に電極を形成するステップと、
電極の上に、ポリエーテルエーテルケトンを含む高分子ナノファイバーメッシュを配置するステップと、
高分子ナノファイバーメッシュに、TiOの層およびポリアクリル酸の層を含む第1の多層コーティングを施すステップと、
第1の多層コーティングに、フルオロアルキルシランを含む第2のコーティングを施すステップと
を含む方法。
【請求項18】
電極の上に高分子ナノファイバーメッシュを配置するステップが、静電紡糸法により電極の上に高分子ナノファイバーメッシュを作製する工程を含む、請求項17に記載の方法。
【請求項19】
高分子ナノファイバーメッシュが微細に製織された高分子ナノファイバーメッシュからなる、請求項17に記載の方法。
【請求項20】
高分子ナノファイバーメッシュに第1の多層コーティングを施すステップは、
電極および高分子ナノファイバーメッシュをTiOの中でコーティングするステップと、
電極および高分子ナノファイバーメッシュをポリアクリル酸の中でコーティングするステップと、
これら2つのコーティングステップを交互に少なくとも5回繰り返すステップと
をさらに含む、請求項17に記載の方法。
【請求項21】
リード線本体と、前記リード線本体の中の少なくとも1つの導電性ワイヤとを有する種類の医療用電気リード線のための電極を作製する方法であって、
リード線本体上に電極を形成するステップと、
電極の上に、ポリテトラフルオロエチレンを含むパターン化されたファイバーメッシュを配置するステップと、
パターン化されたファイバーメッシュに、親水性組成物を含む第1のコーティングを施すステップと
を含む方法。
【請求項22】
2/1綾織りを使用して、ファイバーメッシュをパターン化されたファイバーメッシュに製織するステップをさらに含む、請求項21に記載の方法。
【請求項23】
親水性組成物は、カーボンコーティング、TiOおよびポリアクリル酸、BioSlide(商標)、またはプラズマ処理を含む、請求項21に記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8A】
image rotate

【図8B】
image rotate


【公表番号】特表2012−519053(P2012−519053A)
【公表日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2011−552961(P2011−552961)
【出願日】平成22年2月10日(2010.2.10)
【国際出願番号】PCT/US2010/023749
【国際公開番号】WO2010/107530
【国際公開日】平成22年9月23日(2010.9.23)
【出願人】(505003528)カーディアック ペースメイカーズ, インコーポレイテッド (466)
【Fターム(参考)】