説明

多孔質支持体―ゼオライト膜複合体の製造方法

【課題】無機材料分離膜による分離、濃縮において、実用上十分な処理量と分離性能を両立する、欠陥のない緻密なゼオライト膜を有する多孔質支持体−ゼオライト膜複合体の製造方法などを提供する。
【解決手段】多孔質支持体上に、水熱合成でゼオライト膜を形成して多孔質支持体―ゼオライト膜複合体を製造する方法であって、水熱合成が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で行われる製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、多孔質支持体―ゼオライト膜複合体の製造方法に関し、さらに詳しくは、特定の粒度分布をもつ種結晶の存在下、多孔質支持体上に水熱合成によりゼオライト膜を形成して、ゼオライト膜複合体を製造する方法、該方法により得られる多孔質支持体―ゼオライト膜複合体などに関する。本発明により得られる多孔質支持体―ゼオライト膜複合体は、有機物を含む気体または液体の混合物から、透過性の高い物質を透過して分離し、透過性の低い物質を濃縮することができる。
【背景技術】
【0002】
従来、有機物を含有する気体または液体の混合物の分離、濃縮は、対象となる物質の性質に応じて、蒸留法、共沸蒸留法、溶媒抽出/蒸留法、吸着剤などにより行われている。しかしながら、これらの方法は、多くのエネルギーを必要とする、あるいは分離、濃縮対象の適用範囲が限定的であるといった欠点がある。
【0003】
近年、これらの方法に代わる分離方法として、高分子膜やゼオライト膜などの膜を用いた膜分離、濃縮方法が提案されている。高分子膜、例えば平膜や中空糸膜などは、加工性に優れるが、耐熱性が低いという欠点がある。また高分子膜は、耐薬品性が低く、特に有機溶媒や有機酸といった有機物との接触で膨潤するものが多いため、分離、濃縮対象の適用範囲が限定的である。
【0004】
また、ゼオライト膜は、通常、支持体上に膜状にゼオライトを形成させたゼオライト膜複合体として分離、濃縮に用いられている。例えば有機物と水との混合物を、ゼオライト膜複合体に接触させ、水を選択的に透過させることにより、有機物を分離し、濃縮することができる。無機材料の膜を用いた分離、濃縮は、蒸留や吸着剤による分離に比べ、エネルギーの使用量を削減できるほか、高分子膜よりも広い温度範囲で分離、濃縮を実施でき、更に有機物を含む混合物の分離にも適用できる。
【0005】
ゼオライト膜を用いた分離法として、例えば、A型ゼオライト膜複合体を用いて水を選択的に透過させてアルコールを濃縮する方法(特許文献1)、モルデナイト型ゼオライト膜複合体を用いてアルコールと水の混合系から水を選択的に透過させてアルコールを濃縮する方法(特許文献2)や、フェリエライト型ゼオライト膜複合体を用いて酢酸と水の混合系から水を選択的に透過させて酢酸を分離・濃縮する方法(特許文献3)などが提案されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平7−185275号公報
【特許文献2】特開2003−144871号公報
【特許文献3】特開2000−237561号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、実用化に十分な処理量と分離性能を両立し、かつ有機物、特に有機酸への耐性をもつゼオライト膜はいまだ見出せていない。例えば、特許文献2のモルデナイト型ゼオライト膜複合体や特許文献3のフェリエライト型ゼオライト膜複合体は、透過流束が小さく、実用化には処理量が不十分である。また、酸性条件下で脱Al化反応が進行するので、使用時間が長くなるにつれ分離性能が変化し、有機酸存在条件下での使用は望ましくない。特許文献1のA型ゼオライトは、酸と接触すると構造が破壊されるため、有機酸存在下では分離膜として用いることができない。
【0008】
本発明の目的は、かかる従来技術の問題点が解決された、欠陥がなく、無機材料分離膜による分離、濃縮において、実用上十分な処理量と分離性能を両立する多孔質支持体−ゼオライト膜複合体の製造方法、該方法により得られる多孔質支持体−ゼオライト膜複合体、該ゼオライト膜複合体を用いた分離、濃縮方法を提供することにある。
【課題を解決するための手段】
【0009】
本発明者らは上記課題を解決すべく鋭意検討を重ねた結果、ある種のゼオライトを無機多孔質支持体上に膜状に形成させれば、実用上十分な処理量と分離性能を両立するゼオライト膜複合体が得られることを見出し、先に提案した(特願2010−043366号明細書)。本発明者らは、さらに検討を重ねた結果、多孔質支持体上にゼオライト膜を形成させる際に、特定の粒度分布を有する種結晶の存在下で水熱合成を行えば、欠陥のない緻密なゼオライト膜が再現よく合成できることを見出した。本発明は、これらの知見に基づいて成し遂げられたものである。
【0010】
即ち、本発明の要旨は、次の(1)〜(9)に存する。
(1)多孔質支持体上に、水熱合成によりゼオライト膜を形成して多孔質支持体―ゼオライト膜複合体を製造する方法であって、水熱合成が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で行われることを特徴とする多孔質支持体―ゼオライト膜複合体の製造方法。
(2)種結晶のメジアン径(D50)が20μm以下であることを特徴とする上記(1)に記載の方法。
(3)多孔質支持体に予め種結晶を付着させ、種結晶の付着した多孔質支持体上にゼオライト膜を形成することを特徴とする上記(1)または(2)に記載の方法。
(4)ゼオライト膜が、CHA型ゼオライトを含むものであることを特徴とする上記(1)ないし(3)のいずれかに記載の方法。
(5)上記(1)ないし(4)のいずれかに記載の方法により製造されたことを特徴とする多孔質支持体―ゼオライト膜複合体。
(6)多孔質支持体上に、水熱合成によりゼオライト膜を形成して得られる多孔質支持体―ゼオライト膜複合体であって、該ゼオライト膜複合体を、絶対圧5kPaの真空ラインに接続した時の空気透過量が1400L/(m・h)以下であることを特徴とする多孔質支持体―ゼオライト膜複合体。
(7)ゼオライト膜が、CHA型ゼオライトを含むものであることを特徴とする上記(6)に記載のゼオライト膜複合体。
(8)ゼオライト膜が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で、水熱合成により形成されたものであることを特徴とする上記(6)または(7)に記載のゼオライト膜複合体。
(9)上記(5)ないし(8)のいずれかに記載の多孔質支持体―ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物から、透過性の高い物質を透過させて分離することを特徴とする分離方法。
【発明の効果】
【0011】
本発明により、有機物を含む気体または液体の混合物から特定の化合物を分離、濃縮する際に、実用上も十分に大きい処理量を有し、かつ十分な分離性能を有する、欠陥のない緻密なゼオライト膜をもつ多孔質支持体−ゼオライト膜複合体が提供される。このゼオライト膜複合体を、分離手段として用いることにより、十分な処理量と分離性能を両立する、有機物を含む気体または液体の混合物から透過性の高い物質の分離、混合物の濃縮が可能となる。
【図面の簡単な説明】
【0012】
【図1】パーベーパレーション測定装置の概略図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態について更に詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
【0014】
本発明の多孔質支持体−ゼオライト膜複合体の製造方法は、多孔質支持体に、水熱合成によりゼオライト膜を形成して多孔質支持体―ゼオライト膜複合体を製造する方法であって、水熱合成が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の種結晶の存在下で行われることに特徴を有するものである。
【0015】
本発明の多孔質支持体―ゼオライト膜複合体は、上記方法により製造されたことに特徴を有するものである。
【0016】
また、本発明の別の態様の多孔質支持体―ゼオライト膜複合体は、多孔質支持体上に、水熱合成でゼオライト膜を形成して得られる多孔質支持体―ゼオライト膜複合体であって、該ゼオライト膜複合体を絶対圧5kPaの真空ラインに接続した時の空気透過量が1400L/(m・h)以下であることに特徴を有するものである。
【0017】
先ず、これらの発明の構成要件について、さらに詳細に説明する。なお、本明細書において、「多孔質支持体−ゼオライト膜複合体」を単に「ゼオライト膜複合体」または「膜複合体」と、また「多孔質支持体」を単に「支持体」と略称することがある。
【0018】
(多孔質支持体)
本発明において使用される多孔質支持体としては、その表面などにゼオライトを膜状に結晶化できるような化学的安定性があり、無機の多孔質よりなる支持体(無機多孔質支持体)であれば如何なるものであってもよい。例えば、シリカ、α−アルミナ、γ−アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などのセラミックス焼結体(セラミックス支持体)、鉄、ブロンズ、ステンレス等の焼結金属や、ガラス、カーボン成型体などが挙げられる。
【0019】
これら多孔質支持体の中で、基本的成分あるいはその大部分が無機の非金属物質から構成されている固体材料であるセラミックスを焼結したものを含む無機多孔質支持体(セラミックス支持体)が好ましい。この無機多孔質支持体を用いれば、その一部がゼオライト膜合成中にゼオライト化することで界面の密着性を高める効果がある。
【0020】
具体的には、例えば、シリカ、α−アルミナ、γ−アルミナ、ムライト、ジルコニア、チタニア、イットリア、窒化珪素、炭化珪素などを含むセラミックス焼結体(セラミックス支持体)が挙げられる。それらの中で、アルミナ、シリカ、ムライトのうち少なくとも1種を含む無機多孔質支持体が好ましい。これらの支持体を用いれば、部分的なゼオライト化が容易であるため、支持体とゼオライトの結合が強固になり緻密で分離性能の高い膜が形成されやすくなる。
【0021】
多孔質支持体の形状は、気体混合物や液体混合物を有効に分離できるものであれば特に制限されず、具体的には、例えば、平板状、管状のもの、または円筒状、円柱状や角柱状の孔が多数存在するハニカム状のものやモノリスなどが挙げられる。
【0022】
本発明において、かかる多孔質支持体上、すなわち支持体の表面などにゼオライトを膜状に結晶化させる。支持体の表面は、支持体の形状に応じて、どの表面であってもよく、複数の面であっても良い。例えば、円筒管の支持体の場合には外側の表面でも内側の表面でもよく、場合によっては外側と内側の両方の表面であってよい。
【0023】
多孔質支持体表面が有する平均細孔径は特に制限されないが、細孔径が制御されているものが好ましい。平均細孔径は、通常0.02μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上であり、通常20μm以下、好ましくは10μm以下、より好ましくは5μm以下である。平均細孔径が小さすぎると透過量が小さくなる傾向があり、大きすぎると支持体自体の強度が不十分になることがあり、支持体表面の細孔の割合が増えて緻密なゼオライト膜が形成されにくくなることがある。
【0024】
支持体の平均厚さ(肉厚)は、通常0.1mm以上、好ましくは0.3mm以上、より好ましくは0.5mm以上であり、通常7mm以下、好ましくは5mm以下、より好ましくは3mm以下である。支持体はゼオライト膜に機械的強度を与える目的で使用しているが、支持体の平均厚さが薄すぎるとゼオライト膜複合体が十分な強度を持たずゼオライト膜複合体が衝撃や振動等に弱くなり実用上問題が生じる傾向がある。支持体の平均厚さが厚すぎると透過した物質の拡散が悪くなり透過流束が低くなる傾向がある。
【0025】
支持体の気孔率は、通常20%以上、好ましくは25%以上、より好ましくは30%以上であり、通常70%以下、好ましくは60%以下、より好ましくは50%以下である。支持体の気孔率は、気体や液体を分離する際の透過流量を左右し、下限未満では透過物の拡散を阻害する傾向があり、上限を超えると支持体の強度が低下する傾向がある。
【0026】
多孔質支持体の表面は滑らかであることが好ましく、必要に応じて表面をやすり等で研磨してもよい。なお、多孔質支持体の表面とはゼオライトを結晶化させる無機多孔質支持体表面部分を意味し、表面であればそれぞれの形状のどこの表面であってもよく、複数の面であっても良い。例えば円筒管の支持体の場合には外側の表面でも内側の表面でもよく、場合によっては外側と内側の両方の表面であってよい。
【0027】
(ゼオライト膜複合体)
本発明において、前記多孔質支持体上にゼオライト膜を形成させて、ゼオライト膜複合体を得る。
【0028】
ゼオライト膜を構成する成分としては、ゼオライト以外にシリカ、アルミナなどの無機バインダー、ポリマーなどの有機物、あるいはゼオライト表面を修飾するシリル化剤などを必要に応じ含んでいてもよい。また、本発明におけるゼオライト膜は、一部アモルファス成分などを含有していてもよいが、実質的にゼオライトのみで構成されるゼオライト膜が好ましい。
【0029】
ゼオライト膜の厚さは特に制限されないが、通常0.1μm以上、好ましくは0.6μm以上、より好ましくは1.0μm以上であり、通常100μm以下、好ましくは60μm以下、より好ましくは20μm以下の範囲である。
【0030】
ゼオライトの粒子径は特に限定されないが、小さすぎると粒界が大きくなるなどして透過選択性などを低下させる傾向がある。それゆえ、通常30nm以上、好ましくは50nm以上、より好ましくは100nm以上であり、上限は膜の厚さ以下である。さらに、ゼオライトの粒子径が膜の厚さと同じである場合が特に好ましい。ゼオライトの粒子径が膜の厚さと同じであるとき、ゼオライトの粒界が最も小さくなる。
【0031】
ゼオライトとしては、例えば、ケイ酸塩とリン酸塩が挙げられる。ケイ酸塩としては、例えば、アルミノケイ酸塩、ガロケイ酸塩、フェリケイ酸塩、チタノケイ酸塩、ボロケイ酸塩等が、リン酸塩としては、アルミニウムと燐からなるアルミノリン酸塩(ALPO−5などのALPOと称されるもの)、ケイ素とアルミニウムと燐からなるシリコアルミノリン酸塩(SAPO−34などのSAPOと称されるもの)、Feなどの元素を含むFAPO−5などのMeAPOと称されるメタロアルミノリン酸塩、等が挙げられる。これらの中で、アルミノケイ酸塩、シリコアルミノリン酸塩が好ましく、アルミノケイ酸塩がより好ましい。
【0032】
ゼオライトがアルミノ珪酸塩である場合、SiO/Alモル比は、好ましくは5以上、より好ましくは8以上、さらに好ましくは10以上、特に好ましくは12以上であり、好ましくは2000以下、より好ましくは1000以下、さらに好ましくは500以下、特に好ましくは100以下である。SiO/Alモル比が下限未満では耐久性が低下する傾向があり、上限を超えると疎水性が強すぎるため、透過流束が小さくなる傾向がある。
【0033】
なお、本発明におけるSiO/Alモル比は、走査型電子顕微鏡−エネルギー分散型X線分光法(SEM−EDX)により得られた数値である。数ミクロンの膜のみの情報を得るために通常はX線の加速電圧を10kVで測定する。
【0034】
ゼオライト膜を構成する主たるゼオライトは、好ましくは酸素6〜10員環構造を有するゼオライトを含むもの、より好ましくは酸素6〜8員環構造を有するゼオライトを含むものである。ここでいう酸素n員環を有するゼオライトのnの値は、ゼオライト骨格を形成する酸素とT元素(酸素以外の元素)で構成される細孔の中で最も酸素の数が大きいものを示す。例えば、MOR型ゼオライトのように酸素12員環と8員環の細孔が存在する場合は、酸素12員環のゼオライトとみなす。
【0035】
酸素6〜10員環構造を有するゼオライトとしては、例えば、AEI、AEL、AFG、ANA、BRE、CAS、CDO、CHA、DAC、DDR、DOH、EAB、EPI、ESV、EUO、FAR、FRA、FER、GIS、GIU、GOO、HEU、IMF、ITE、ITH、KFI、LEV、LIO、LOS、LTN、MAR、MEP、MER、MEL、MFI、MFS、MON、MSO、MTF、MTN、MTT、MWW、NAT、NES、NON、PAU、PHI、RHO、RRO、RTE、RTH、RUT、SGT、SOD、STF、STI、STT、TER、TOL、TON、TSC、TUN、UFI、VNI、VSV、WEI、YUGなどが挙げられる。
【0036】
酸素6〜8員環構造を有するゼオライトとしては、例えば、AEI、AFG、ANA、CHA、EAB、ERI、ESV、FAR、FRA、GIS、ITE、KFI、LEV、LIO、LOS、LTN、MAR、PAU、RHO、RTH、SOD、STI、TOL、UFIなどが挙げられる。
【0037】
酸素n員環構造はゼオライトの細孔のサイズを決定するものであり、6員環よりも小さいゼオライトではHO分子のKinetic半径よりも細孔径が小さくなるため透過流束が小さくなり実用的でない場合がある。また、酸素10員環構造よりも大きい場合は細孔径が大きくなり、サイズの小さな有機物では分離性能が低下することがあり、用途が限定的になる場合がある。
【0038】
ゼオライトのフレームワーク密度(T/1000Å)は特に制限されないが、通常17以下、好ましくは16以下、より好ましくは15.5以下、特に好ましくは15以下であり、通常10以上、好ましくは11以上、より好ましくは12以上である。
【0039】
フレームワーク密度とは、ゼオライトの1000Åあたりの酸素以外の骨格を形成する元素(T元素)の数を意味し、この値はゼオライトの構造により決まる。なおフレームワーク密度とゼオライトとの構造の関係はATLAS OF ZEOLITE FRAMEWORK TYPES Fifth Revised Edition 2001 ELSEVIERに示されている。
【0040】
本発明において、好ましいゼオライトの構造は、AEI、AFG、CHA、EAB、ERI、ESV、FAR、FRA、GIS、ITE、KFI、LEV、LIO、LOS、LTN、MAR、PAU、RHO、RTH、SOD、STI、TOL、UFIであり、より好ましい構造は、AEI、CHA、ERI、KFI、LEV、PAU、RHO、RTH、UFIであり、さらに好ましい構造は、CHA、LEVであり、最も好ましい構造はCHAである。
【0041】
ここで、CHA型のゼオライトとは、International Zeolite Association(IZA)が定めるゼオライトの構造を規定するコードでCHA構造のものを示す。これは、天然に産出するチャバサイトと同等の結晶構造を有するゼオライトである。CHA型ゼオライトは3.8×3.8Åの径を有する酸素8員環からなる3次元細孔を有することを特徴とする構造をとり、その構造はX線回折データにより特徴付けられる。
【0042】
CHA型ゼオライトのフレームワーク密度(T/1000Å)は14.5である。また、SiO/Alモル比は上記と同様である。
【0043】
本発明において、ゼオライト膜複合体は、ゼオライト膜がCHA型ゼオライトを含む場合、X線回折のパターンにおいて、2θ=17.9°付近のピークの強度が2θ=20.8°付近のピークの強度の0.5倍以上の大きさであることが好ましい。
【0044】
ここで、ピークの強度とは、測定値からバックグラウンドの値を引いたものをさす。(2θ=17.9°付近のピークの強度)/(2θ=20.8°付近のピークの強度)で表されるピーク強度比(以下これを「ピーク強度比A」ということがある。)でいえば、通常0.5以上、好ましくは1以上、より好ましくは1.2以上、特に好ましくは1.5以上である。上限は特に限定されないが、通常1000以下である。
【0045】
また、ゼオライト膜複合体は、ゼオライト膜がCHA型ゼオライトを含む場合、X線回折のパターンにおいて、2θ=9.6°付近のピークの強度が2θ=20.8°付近のピークの強度の4倍以上の大きさであることが好ましい。
【0046】
(2θ=9.6°付近のピークの強度)/(2θ=20.8°付近のピークの強度)で表されるピーク強度比(以下これを「ピーク強度比B」ということがある。)でいえば、通常4以上、好ましくは6以上、より好ましくは8以上、特に好ましくは10以上である。上限は特に限定されないが、通常1000以下である。
【0047】
ここでいう、X線回折パターンとは、ゼオライトが主として付着している側の表面にCuKαを線源とするX線を照射して、走査軸をθ/2θとして得るものである。測定するサンプルの形状としては、膜複合体のゼオライトが主として付着している側の表面にX線が照射できるような形状なら何でもよく、膜複合体の特徴をよく表すものとして、作成した膜複合体そのままのもの、あるいは装置によって制約される適切な大きさに切断したものが好ましい。
【0048】
ここで、X線回折パターンは、ゼオライト膜複合体の表面が曲面である場合には自動可変スリットを用いて照射幅を固定して測定してもかまわない。自動可変スリットを用いた場合のX線回折パターンとは、可変→固定スリット補正を実施したパターンを指す。
【0049】
ここで、2θ=17.9°付近のピークとは、基材に由来しないピークのうち17.9°±0.6°の範囲に存在するピークのうち最大のものを指す。
【0050】
2θ=20.8°付近のピークとは、基材に由来しないピークのうち20.8°±0.6°の範囲に存在するピークで最大のものを指す。
【0051】
2θ=9.6°付近のピークとは、基材に由来しないピークのうち9.6°±0.6°の範囲に存在するピークのうち最大のものを指す。
【0052】
X線回折パターンで2θ=9.6°付近のピークは、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによればrhombohedral settingで空間群を
【0053】
【数1】

【0054】
(No.166)とした時にCHA構造において指数が(1,0,0)の面に由来するピークである。
【0055】
また、X線回折パターンで2θ=17.9°付近のピークは、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによればrhombohedral settingで空間群を
【0056】
【数2】

【0057】
(No.166)とした時にCHA構造において指数が(1,1,1)の面に由来するピークである。
【0058】
X線回折パターンで2θ=20.8°付近のピークは、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによればrhombohedral settingで空間群を
【0059】
【数3】

【0060】
(No.166)とした時にCHA構造において指数が(2,0,−1)の面に由来するピークである。
【0061】
(1,0,0)面由来のピークの強度と(2,0,−1)の面に由来のピーク強度の典型的な比(ピーク強度比B)は、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによれば2.5である。
【0062】
それゆえ、この比が4以上であるということは、例えば、CHA構造をrhombohedral settingとした場合の(1,0,0)面が膜複合体の表面と平行に近い向きになるようにゼオライト結晶が配向して成長していることを意味すると考えられる。ゼオライト膜複合体においてゼオライト結晶が配向して成長することは分離性能の高い緻密な膜が出来るという点で有利である。
【0063】
(1,1,1)面由来のピークの強度と(2,0,−1)の面に由来のピーク強度の典型的な比(ピーク強度比A)は、COLLECTION OF SIMULATED XRD POWDER PATTERNS FOR ZEOLITE Third Revised Edition 1996 ELSEVIERによれば0.3である。
【0064】
そのため、この比が0.5以上であるということは、例えば、CHA構造をrhombohedral settingとした場合の(1,1,1)面が膜複合体の表面と平行に近い向きになるようにゼオライト結晶が配向して成長していることを意味すると考えられる。ゼオライト膜複合体においてゼオライト結晶が配向して成長することは分離性能の高い緻密な膜が出来るという点で有利である。
【0065】
このように、ピーク強度比A、Bのいずれかが、上記した特定の範囲の値であるということは、ゼオライト結晶が配向して成長し、分離性能の高い緻密な膜が形成されていることを示すものである。
【0066】
CHA型ゼオライト結晶が配向して成長している緻密なゼオライト膜は、次に述べる通り、ゼオライト膜を水熱合成により形成する際に、例えば、特定の有機テンプレートを用い、水性反応混合物中にKイオンを共存させることにより達成することができる。
【0067】
(ゼオライト膜複合体の製造方法)
ゼオライト膜の製造方法は、上記したとおり特定の粒度分布をもつ種結晶の存在下に、支持体上に水熱合成によりゼオライト膜を形成する方法であれば、他の条件は特に制限されない。
【0068】
具体的には、例えば、組成を調整して均一化した水熱合成用の反応混合物(以下これを「水性反応混合物」ということがある。)を、多孔質支持体を内部に緩やかに固定した、オートクレーブなどの耐熱耐圧容器に入れて密閉して、一定時間加熱すればよい。
【0069】
水性反応混合物としては、Si元素源、Al元素源、必要に応じて有機テンプレート、および水を含み、さらに必要に応じてアルカリ源を含むものが好ましい。
【0070】
水性反応混合物に用いるSi元素源としては、例えば、無定形シリカ、コロイダルシリカ、シリカゲル、ケイ酸ナトリウム、無定形アルミのシリケートゲル、テトラエトキシシラン(TEOS)、トリメチルエトキシシラン等を用いることができる。
【0071】
Al元素源としては、例えば、アルミン酸ナトリウム、水酸化アルミニウム、硫酸アルミニウム、硝酸アルミニウム、酸化アルミニウム、無定形アルミノシリケートゲル等を用いることができる。なお、Al元素源以外に他の元素源、例えばGa、Fe、B、Ti、Zr、Sn、Znなどの元素源を含んでいてもよい。
【0072】
ゼオライトの結晶化において、必要に応じて有機テンプレート(構造規定剤)を用いることができるが、有機テンプレートを用いて合成したものが好ましい。有機テンプレートを用いて合成することにより、結晶化したゼオライトのアルミニウム原子に対するケイ素原子の割合が高くなり、耐酸性が向上する。
【0073】
有機テンプレートとしては、所望のゼオライト膜を形成し得るものであれば種類は問わず、如何なるものであってもよい。また、テンプレートは1種類でも、2種類以上を組み合わせて使用してもよい。
【0074】
ゼオライトがCHA型の場合、有機テンプレートとしては、通常、アミン類、4級アンモニウム塩が用いられる。例えば、米国特許第4544538号明細書、米国特許公開第2008/0075656号明細書に記載の有機テンプレートが好ましいものとして挙げられる。
【0075】
具体的には、例えば、1−アダマンタンアミンから誘導されるカチオン、3−キナクリジナールから誘導されるカチオン、3−exo−アミノノルボルネンから誘導されるカチオン等の脂環式アミンから誘導されるカチオンが挙げられる。これらの中で、1−アダマンタンアミンから誘導されるカチオンがより好ましい。
【0076】
1−アダマンタンアミンから誘導されるカチオンを有機テンプレートとしたとき、緻密な膜を形成し得るCHA型ゼオライトが結晶化する。また、膜が水を選択的に透過するのに十分な親水性を有するCHA型ゼオライトが生成し得るほか、耐酸性に優れたCHA型ゼオライトが得られる。
【0077】
1−アダマンタンアミンから誘導されるカチオンのうち、N,N,N−トリアルキル−1−アダマンタンアンモニウムカチオンがさらに好ましい。N,N,N−トリアルキル−1−アダマンタンアンモニウムカチオンの3つのアルキル基は、通常、それぞれ独立したアルキル基であり、好ましくは低級アルキル基、より好ましくはメチル基である。それらの中で最も好ましい化合物は、N,N,N−トリメチル−1−アダマンタンアンモニウムカチオンである。
【0078】
このようなカチオンは、CHA型ゼオライトの形成に害を及ぼさないアニオンを伴う。このようなアニオンを代表するものには、Cl、Br、Iなどのハロゲンイオンや水酸化物イオン、酢酸塩、硫酸塩、およびカルボン酸塩が含まれる。これらの中で、水酸化物イオンが特に好適に用いられる。
【0079】
その他の有機テンプレートとしては、N,N,N−トリアルキルベンジルアンモニウムカチオンも用いることができる。この場合もアルキル基は、それぞれ独立したアルキル基であり、好ましくは低級アルキル基、より好ましくはメチル基である。それらの中で、最も好ましい化合物は、N,N,N−トリメチルベンジルアンモニウムカチオンである。また、このカチオンが伴うアニオンは上記と同様である。
【0080】
水性反応混合物に用いるアルカリ源としては、有機テンプレートのカウンターアニオンの水酸化物イオン、NaOH、KOHなどのアルカリ金属水酸化物、Ca(OH)などのアルカリ土類金属水酸化物などを用いることができる。
【0081】
アルカリの種類は特に限定されず、通常、Na、K、Li、Rb、Cs、Ca、Mg、Sr、Baなどが用いられる。これらの中で、Na、Kが好ましく、Kがより好ましい。また、アルカリは2種類以上を併用してもよく、具体的には、NaとKを併用するのが好ましい。
【0082】
水性反応混合物中のSi元素源とAl元素源の比は、通常、それぞれの元素の酸化物のモル比、すなわちSiO/Alモル比として表わす。
【0083】
SiO/Alモル比は特に限定されないが、通常5以上、好ましくは8以上、より好ましくは10以上、更に好ましくは15以上である。また、通常10000以下、好ましくは1000以下、より好ましくは300以下、更に好ましくは100以下である。
【0084】
SiO/Alモル比がこの範囲内にあるときゼオライト膜が緻密に生成し、更に生成したゼオライトが強い親水性を示し、有機物を含有する混合物中から親水性の化合物、特に水を選択的に透過することができる。また耐酸性に強く脱Alしにくいゼオライト膜が得られる。
【0085】
特に、SiO/Alモル比がこの範囲にあるとき、緻密な膜を形成し得るCHA型ゼオライトを結晶化させることができる。また、膜が水を選択的に透過するのに十分な親水性を有するCHA型ゼオライトが生成し得るほか耐酸性に優れたCHA型ゼオライトが得られる。
【0086】
水性反応混合物中のシリカ源と有機テンプレートの比は、SiOに対する有機テンプレートのモル比(有機テンプレート/SiOモル比)で、通常0.005以上、好ましくは0.01以上、より好ましくは0.02以上であり、通常1以下、好ましくは0.4以下、より好ましくは0.2以下である。
【0087】
有機テンプレート/SiOモル比が上記範囲にあるとき、緻密なゼオライト膜が生成し得ることに加えて、生成したゼオライトが耐酸性に強くAlが脱離しにくい。また、この条件において、特に緻密で耐酸性のCHA型ゼオライトを形成させることができる。
【0088】
Si元素源とアルカリ源の比は、M(2/n)O/SiO(ここで、Mはアルカリ金属またはアルカリ土類金属を示し、nはその価数1または2を示す。)モル比で、通常0.02以上、好ましくは0.04以上、より好ましくは0.05以上であり、通常0.5以下、好ましくは0.4以下、より好ましくは0.3以下である。
【0089】
CHA型ゼオライト膜を形成する場合、アルカリ金属の中でKを含む場合がより緻密で結晶性の高い膜を生成させるという点で好ましい。その場合のKと、Kを含むすべてのアルカリ金属および/またはアルカリ土類金属とのモル比は、通常0.01以上1以下、好ましくは0.1以上1以下、さらに好ましくは0.3以上1以下である。
【0090】
水性反応混合物中へのKの添加は、前記のとおり、rhombohedral settingで空間群を
【0091】
【数4】

【0092】
(No.166)とした時に、CHA構造において指数が(1,0,0)の面に由来するピークである2θ=9.6°付近のピーク強度と(2,0,−1)の面に由来するピークである2θ=20.8°付近のピーク強度の比(ピーク強度比B)、または、(1,1,1)の面に由来するピークである2θ=17.9°付近のピーク強度と(2,0,−1)の面に由来するピークである2θ=20.8°付近のピーク強度の比(ピーク強度比A)を大きくする傾向がある。
【0093】
Si元素源と水の比は、SiOに対する水のモル比(HO/SiOモル比)で、通常10以上、好ましくは30以上、より好ましくは40以上、特に好ましくは50以上であり、通常1000以下、好ましくは500以下、より好ましくは200以下、特に好ましくは150以下である。
【0094】
水性反応混合物中の物質のモル比がこれらの範囲にあるとき、緻密なゼオライト膜が生成し得る。水の量は緻密なゼオライト膜の生成においてとくに重要であり、粉末合成法の一般的な条件よりも水がシリカに対して多い条件のほうが細かい結晶が生成して緻密な膜ができやすい傾向にある。
【0095】
一般的に、粉末のCHA型ゼオライトを合成する際の水の量は、HO/SiOモル比で、15〜50程度である。HO/SiOモル比が高い(50以上1000以下)、すなわち水が多い条件にすることにより、支持体上にCHA型ゼオライトが緻密な膜状に結晶化した分離性能の高いゼオライト膜複合体を得ることができる。
【0096】
さらに、本発明の製造方法においては、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で、水熱合成を行うことにより、ゼオライト膜が形成される。
【0097】
式(1)の(D90−D10)/D50の値は2.2以下であるが、好ましくは2.0以下、より好ましくは1.9以下、さらに好ましくは1.8以下であり、通常0.1以上、好ましくは0.2以上、より好ましくは0.3以上である。
【0098】
式(1)の値は、粒度分布の幅を示すものであり、この値が小さいほど、粒度分布の幅が狭いことを意味する。粒度分布の幅が狭い種結晶を用いると、欠陥が少なく緻密な膜が再現良く合成できる。これまで、種結晶の粒径、種結晶を付着させるときの方法や用いる種結晶スラリーの濃度を調整することでゼオライト膜を緻密にすることが試みられてきた。しかしながら、これら条件の制御には限界があり、欠陥のない緻密な膜を再現よく合成するためには、種結晶の粒度分布の幅を本発明における特定の範囲とすることが特に重要である。
【0099】
種結晶の粒度分布は上記のとおりであるが、D50(メジアン径)は、通常0.5nm以上、好ましくは1nm以上、より好ましくは2nm以上であり、通常20μm以下、好ましくは15μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。
【0100】
また、D90は、通常0.5nm以上、好ましくは1nm以上、より好ましくは2nm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは30μm以下、さらに好ましくは20μm以下である。
【0101】
さらに、D10は、通常0.1nm以上、好ましくは0.5nm以上、より好ましくは1nm以上であり、通常20μm以下、好ましくは15μm以下、より好ましくは10μm以下、さらに好ましくは5μm以下である。
【0102】
種結晶を加える方法としては、粉末のゼオライトの合成時のように、水性反応混合物中に加える方法、支持体上に種結晶を付着させておく方法などを用いることができるが、支持体上に種結晶を付着させておくことが好ましい。支持体上に予め種結晶を付着させておくことで緻密で分離性能良好なゼオライト膜が生成しやすくなる。
【0103】
使用する種結晶としては、結晶化を促進するゼオライトであれば種類は問わないが、効率よく結晶化させるためには形成するゼオライト膜と同じ結晶型であることが好ましい。CHA型ゼオライト膜を形成する場合は、CHA型ゼオライトの種結晶を用いることが好ましい。
【0104】
支持体上に種結晶を付着させる方法は特に限定されず、例えば、種結晶を水などの溶媒に分散させてその分散液に支持体を浸けて種結晶を付着させるディップ法や、種結晶を水などの溶媒と混合してスラリー状にしたものを支持体上に塗りこむ方法などを用いることができる。種結晶の付着量を制御し、再現性良く膜複合体を製造するにはディップ法が望ましい。
【0105】
種結晶を分散させる溶媒は特に限定されないが、特に水が好ましい。
分散させる種結晶の量は特に限定されず、分散液の全質量に対して、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.5質量%以上である。また、通常20質量%以下、好ましくは10質量%以下、より好ましくは5質量%以下、さらに好ましくは4質量%以下、とくに好ましくは3質量%以下である。
【0106】
分散させる種結晶の量が少なすぎると、支持体上に付着する種結晶の量が少ないため、水熱合成時に支持体上に部分的にゼオライトが生成しない箇所ができ、欠陥のある膜となる可能性がある。ディップ法によって支持体上に付着する種結晶の量は分散液中の種結晶の量がある程度以上でほぼ一定となるため、分散液中の種結晶の量が多すぎると、種結晶の無駄が多くなりコスト面で不利である。
【0107】
支持体にディップ法あるいはスラリーの塗りこみによって種結晶を付着させ、乾燥した後にゼオライト膜の形成を行うことが望ましい。
【0108】
支持体上に予め付着させておく種結晶の量は特に限定されず、基材1mあたりの質量で、通常0.01g以上、好ましくは0.05g以上、より好ましくは0.1g以上であり、通常100g以下、好ましくは50g以下、より好ましくは10g以下、更に好ましくは8g以下である。
【0109】
種結晶の量が下限未満の場合には、結晶ができにくくなり、膜の成長が不十分になる場合や、膜の成長が不均一になったりする傾向がある。また、種結晶の量が上限を超える場合には、表面の凹凸が種結晶によって増長されたり、支持体から落ちた種結晶によって自発核が成長しやすくなって支持体上の膜成長が阻害されたりする場合がある。何れの場合も、緻密なゼオライト膜が生成しにくくなる傾向となる。
【0110】
水熱合成により支持体上にゼオライト膜を形成する場合、支持体の固定化方法に特に制限はなく、縦置き、横置きなどあらゆる形態をとることができる。この場合、静置法でゼオライト膜を形成させてもよいし、水性反応混合物を攪拌させてゼオライト膜を形成させてもよい。
【0111】
ゼオライト膜を形成させる際の温度は特に限定されないが、通常100℃以上、好ましくは120℃以上、更に好ましくは150℃以上であり、通常200℃以下、好ましくは190℃以下、さらに好ましくは180℃以下である。反応温度が低すぎると、ゼオライトが結晶化しないことがある。また、反応温度が高すぎると、本発明におけるゼオライトとは異なるタイプのゼオライトが生成することがある。
【0112】
加熱時間は特に限定されないが、通常1時間以上、好ましくは5時間以上、更に好ましくは10時間以上であり、通常10日間以下、好ましくは5日以下、より好ましくは3日以下、さらに好ましくは2日以下である。反応時間が短すぎるとゼオライトが結晶化しないことがある。反応時間が長すぎると、本発明におけるゼオライトとは異なるタイプのゼオライトが生成することがある。
【0113】
ゼオライト膜形成時の圧力は特に限定されず、密閉容器中に入れた水性反応混合物を、この温度範囲に加熱したときに生じる自生圧力で十分である。さらに必要に応じて、窒素などの不活性ガスを加えても差し支えない。
【0114】
水熱合成により得られたゼオライト膜複合体は、水洗した後に、加熱処理して、乾燥させる。ここで、加熱処理とは、熱をかけてゼオライト膜複合体を乾燥又はテンプレートを使用した場合にテンプレートを焼成することを意味する。
【0115】
加熱処理の温度は、乾燥を目的とする場合は通常50℃以上、好ましくは80℃以上、より好ましくは100℃以上、通常200℃以下、好ましくは150℃以下である。加熱処理の温度はテンプレートの焼成を目的とする場合、通常350℃以上、好ましくは400℃以上、より好ましくは430℃以上、更に好ましくは480℃以上であり、通常900℃以下、好ましくは850℃以下、さらに好ましくは800℃以下、特に好ましくは750℃以下である。
【0116】
加熱時間は、ゼオライト膜が十分に乾燥、またはテンプレートが焼成する時間であれば特に限定されず、好ましくは0.5時間以上、より好ましくは1時間以上である。上限は特に限定されず、通常200時間以内、好ましくは150時間以内、より好ましくは100時間以内である。
【0117】
水熱合成を有機テンプレートの存在下で行った場合、得られたゼオライト膜複合体を、水洗した後に、例えば、加熱処理や抽出などにより、好ましくは加熱処理、すなわち焼成により有機テンプレートを取り除くことが適当である。
【0118】
焼成温度は、通常350℃以上、好ましくは400℃以上、より好ましくは430℃以上、更に好ましくは480℃以上であり、通常900℃以下、好ましくは850℃以下、さらに好ましくは800℃以下、特に好ましくは750℃以下である。焼成温度が低すぎると有機テンプレートが残っている割合が多くなる傾向があり、ゼオライトの細孔が少なく、そのために分離濃縮の際の透過流束が減少する可能性がある。焼成温度が高すぎると支持体とゼオライトの熱膨張率の差が大きくなるためゼオライト膜に亀裂が生じやすくなる可能性があり、ゼオライト膜の緻密性が失われ分離性能が低くなることがある。
【0119】
焼成時間は、昇温速度や降温速度により変動するが、有機テンプレートが十分に取り除かれる時間であれば特に限定されず、好ましくは1時間以上、より好ましくは5時間以上である。上限は特に限定されず、例えば、通常200時間以内、好ましくは150時間以内、より好ましくは100時間以内、最も好ましくは24時間以内である。焼成は空気雰囲気で行えばよいが、酸素を付加した雰囲気で行ってもよい。
【0120】
焼成の際の昇温速度は、支持体とゼオライトの熱膨張率の差がゼオライト膜に亀裂を生じさせることを少なくするために、なるべく遅くすることが望ましい。昇温速度は、通常5℃/分以下、好ましくは2℃/分以下、さらに好ましくは1℃/分以下、特に好ましくは0.5℃/分以下である。通常、作業性を考慮し0.1℃/分以上である。
【0121】
また、焼成後の降温速度もゼオライト膜に亀裂が生じることを避けるためにコントロールする必要がある。昇温速度と同様、遅ければ遅いほど望ましい。降温速度は、通常5℃/分以下、好ましくは2℃/分以下、より好ましくは1℃/分以下、特に好ましくは0.5℃/分以下である。通常、作業性を考慮し0.1℃/分以上である。
【0122】
ゼオライト膜は、必要に応じてイオン交換しても良い。イオン交換は、テンプレートを用いて合成した場合は、通常、テンプレートを除去した後に行う。イオン交換するイオンとしては、プロトン、Na、K、Liなどのアルカリ金属イオン、Ca2+、Mg2+、Sr2+、Ba2+などのアルカリ土類金属イオン、Fe、Cu、Znなどの遷移金属のイオンなどが挙げられる。これらの中で、プロトン、Na、K、Liなどのアルカリ金属イオンが好ましい。
【0123】
イオン交換は、焼成後(テンプレートを使用した場合など)のゼオライト膜を、NHNO、NaNOなどアンモニウム塩あるいは交換するイオンを含む水溶液、場合によっては塩酸などの酸で、通常、室温から100℃の温度で処理後、水洗する方法などにより行えばよい。さらに、必要に応じて200℃〜500℃で焼成してもよい。
【0124】
かくして得られる多孔質支持体−ゼオライト膜複合体(加熱処理後のゼオライト膜複合体)の空気透過量[L/(m・h)]は、通常1400L/(m・h)以下、好ましくは1000L/(m・h)以下、より好ましくは700L/(m・h)以下、より好ましくは600L/(m・h)以下、さらに好ましくは500L/(m・h)以下、特に好ましくは300L/(m・h)以下、もっとも好ましくは200L/(m・h)以下である。透過量の下限は特に限定されないが、通常0.01L/(m・h)以上、好ましくは0.1L/(m・h)以上、より好ましくは1L/(m・h)以上である。
【0125】
ここで、空気透過量とは、実施例で詳述するとおり、ゼオライト膜複合体を絶対圧5kPaの真空ラインに接続した時の空気の透過量[L/(m・h)]である。
【0126】
本発明の方法により得られるゼオライト膜複合体は、上記のとおり優れた特性をもつものであり、本発明の分離方法における膜分離手段として好適に用いることができる。
【0127】
(分離方法)
本発明の分離方法は、有機物を含む気体または液体の混合物を、上記多孔質支持体―ゼオライト膜複合体に接触させて、該混合物から、透過性の高い物質を透過させて分離することに特徴をもつものである。この発明において、多孔質支持体―ゼオライト膜複合体は、上記と同様のものが用いられる。また、好ましいものも上記と同様である。
【0128】
本発明の分離方法において、ゼオライト膜を備えた無機多孔質支持体を介し支持体側又はゼオライト膜側の一方の側に有機物を含む気体または液体の混合物を接触させ、その逆側を混合物が接触している側よりも低い圧力とすることによって混合物から、ゼオライト膜に透過性が高い物質(透過性が相対的に高い混合物中の物質)を選択的に、すなわち透過物質の主成分として透過させる。これにより、混合物から透過性の高い物質を分離することができる。その結果、混合物中の特定の有機物(透過性が相対的に低い混合物中の物質)の濃度を高めることで、特定の有機物を分離回収、あるいは濃縮することができる。
【0129】
例えば、水と有機物の混合物の場合、通常水がゼオライト膜に対する透過性が高いので、混合物から水が分離され、有機物は元の混合物中で濃縮される。パーベーパレーション法(浸透気化法)、ベーパーパーミエーション法(蒸気透過法)と呼ばれる分離・濃縮方法は、本発明の分離方法におけるひとつの実施形態である。
【0130】
前記多孔質支持体−ゼオライト膜複合体を分離膜として用いることにより、実用上も十分な処理量をもち、十分な分離性能をもつ膜分離が可能となる。
【0131】
ここで、十分な処理量とは、膜を透過する物質の透過流束が1kg/(m・h)以上であることをいう。また十分な分離の性能とは、次式で表される分離係数が100以上であること、あるいは透過液中の主成分の濃度が95質量%以上であることをいう。
【0132】
分離係数=(Pα/Pβ)/(Fα/Fβ)
[ここで、Pαは透過液中の主成分の質量パーセント濃度示し、Pβは透過液中の副成分の質量パーセント濃度を示し、Fαは透過液において主成分となる成分の被分離混合物中の質量パーセント濃度を示し、Fβは透過液において副成分となる成分の被分離混合物中の質量パーセント濃度を示す。]
【0133】
さらに具体的には、透過流束は、例えば、含水率30質量%の2−プロパノールと水の混合物を70℃において、1気圧(1.01×10Pa)の圧力差で透過させた場合、通常1kg/(m・h)以上、好ましくは3kg/(m・h)以上、より好ましくは、5kg/(m・h)以上であることをいう。透過流束の上限は特に限定されず、通常20kg/(m・h)以下、好ましくは15kg/(m・h)以下である。
【0134】
また、高い透過性能をパーミエンスで表す事もできる。パーミエンスとは、透過する物質の物質量を膜面積と時間と透過する物質の分圧差の積で割ったものである。パーミエンスの単位で表した場合、例えば、含水率30質量%の2−プロパノールと水の混合物を70℃において、1気圧(1.01×10Pa)の圧力差で透過させた場合の水のパーミエンスは、通常3×10−7mol/(m・s・Pa)以上、好ましくは5×10−7mol/(m・s・Pa)以上、より好ましくは1×10−6mol/(m・s・Pa)以上、とくに好ましくは2×10−6mol/(m・s・Pa)以上である。水のパーミエンスの上限は特に限定されず、通常1×10−4mol/(m・s・Pa)以下、好ましくは5×10−5mol/(m・s・Pa)以下である。
【0135】
さらに、分離係数は、例えば、含水率30質量%の2−プロパノールと水の混合物を70℃において、1気圧(1.01×10Pa)の圧力差で透過させた場合、通常1000以上、好ましくは4000以上、より好ましくは10000以上、特に好ましくは20000以上である。分離係数の上限は完全に水しか透過しない場合であり、その場合は無限大となるが、好ましくは10000000以下、より好ましくは1000000以下である。
【0136】
分離対象が、水と有機物の混合物(以下これを「含水有機化合物」ということがある。)の場合、混合物中の含水率は、通常20質量%以上、好ましくは30質量%以上、より好ましくは45質量%以上であり、通常95質量%以下、好ましくは80質量%以下、より好ましくは70質量%以下である。
【0137】
本発明の分離方法では、ゼオライト膜を透過する物質は、通常水であるため、含水率が少なくなると処理量が低下するため効率的でない。また含水率が多すぎると濃縮に必要な膜が大面積となり(膜が管状に形成されている場合は数が多くなり)経済的な効果が小さくなる。
【0138】
含水有機化合物としては、適当な水分調節方法により、予め含水率を調節したものであってもよい。この場合、好ましい含水率は上記と同様である。また、水分調節方法としては、それ自体既知の方法、例えば、蒸留、圧力スイング吸着(PSA)、温度スイング吸着(TSA)、デシカントシステムなどが挙げられる。
【0139】
さらに、ゼオライト膜複合体によって水が分離された含水有機化合物から、さらに水を分離してもよい。これにより、より高度に水を分離し、含水有機化合物をさらに高度に濃縮することができる。
【0140】
有機化合物としては、例えば、酢酸、アクリル酸、プロピオン酸、蟻酸、乳酸、シュウ酸、酒石酸、安息香酸などのカルボン酸類や、スルフォン酸、スルフィン酸、ハビツル酸、尿酸、フェノール、エノール、ジケトン型化合物、チオフェノール、イミド、オキシム、芳香族スルフォンアミド、第1級および第2級ニトロ化合物などの有機酸類;メタノール、エタノール、イソプロパノール(2−プロパノール)などのアルコール類;アセトン、メチルイソブチルケトン等のケトン類;アセトアルデヒドなどのアルデヒド類、ジオキサン、テトラヒドロフラン等のエーテル類;ジメチルホルムアミド、N−メチルピロリドン等のアミドなどの窒素を含む有機化合物(N含有有機化合物)、酢酸エステル、アクリル酸エステル等のエステル類などが挙げられる。
【0141】
これらの中で、特にアルコール、エーテル、ケトン、アルデヒド、アミドから選ばれる少なくとも一種を含有する有機化合物が望ましい。これら有機化合物の中で、炭素数が2から10のものが好ましく、炭素数が3から8のものがより好ましい。
【0142】
また有機化合物としては、水と混合物(混合溶液)を形成し得る高分子化合物でもよい。かかる高分子化合物としては、分子内に極性基を有するもの、例えば、ポリエチレングリコール、ポリビニルアルコールなどのポリオール類;ポリアミン類;ポリスルホン酸類;ポリアクリル酸などのポリカルボン酸類;ポリアクリル酸エステルなどのポリカルボン酸エステル類;グラフト重合等によってポリマー類を変性させた変性高分子化合物類;オレフィンなどの非極性モノマーとカルボキシル基等の極性基を有する極性モノマーとの共重合によって得られる共重合高分子化合物類などが挙げられる。
【0143】
さらに、含水有機化合物としては、水とポリマーエマルジョンとの混合物でもよい。ここで、ポリマーエマルジョンとは、接着剤や塗料等で通常使用される、界面活性剤とポリマーとの混合物である。ポリマーエマルジョンに用いられるポリマーとしては、例えば、ポリ酢酸ビニル、ポリビニルアルコール、アクリル樹脂、ポリオレフィン、エチレン−ビニルアルコール共重合体などのオレフィン−極性モノマー共重合体、ポリスチレン、ポリビニルエーテル、ポリアミド、ポリエステル、セルロース誘導体等の熱可塑性樹脂;尿素樹脂、フェノール樹脂、エポキシ樹脂、ポリウレタン等の熱硬化性樹脂;天然ゴム、ポリイソプレン、ポリクロロプレン、スチレン−ブタジエン共重合体などのブタジエン共重合体等のゴム等が挙げられる。また界面活性剤としては、それ自体既知のものを用いればよい。
【0144】
本発明のゼオライト膜複合体は、耐酸性を有するため、水と酢酸など有機酸の混合物からの水分離、エステル化反応促進のための水分離などにも有効に利用できる。
【0145】
本発明の分離方法は、前記ゼオライト膜複合体を用いて、適当な分離装置を作製し、それに有機化合物を含む気体または液体の混合物を導入することにより行えばよい。これら分離装置は、それ自体既知の部材により作製することができる。
【実施例】
【0146】
以下、実施例に基づいて本発明を更に具体的に説明するが、本発明はその要旨を越えない限り、以下の実施例に限定されるものではない。
なお、以下の実施例及び比較例において、物性や分離性能等の測定は、次のとおり行った。
【0147】
(1)粒度分布の測定
種結晶の粒度分布の測定を、以下の条件で行った。
・装置名:レーザー回折式粒度分布計測装置LA−500(堀場製作所社製)
・測定方式:フランホーファ回折理論とミー散乱理論の併用
・測定範囲:0.1〜200μm
・光源:He−Neレーザー(632.8nm)
・検出器:リング状シリコンフォトダイオード
・分散溶媒:水
【0148】
種結晶の粒度分布を測定するための分散液は、計測装置の超音波分散バスに水を入れて撹拌機で撹拌しながら、分散液をフローセルに循環させ、分散液を透過した光の強度が装置に表示される適正な光強度の範囲に入るように、超音波分散バス中の水に種結晶を加えることで調製した。このときの分散溶媒である水の量は通常250ml、分散させる種結晶は通常0.01gである。種結晶を入れた後、超音波を10分間かけて分散液中の種結晶の凝集を取き、フロー方式で測定した。
【0149】
得られた累積分布図(体積基準、粒子径の小さいものから積算)で、50%の高さを与える直径(メジアン径)をD50、10%の高さを与える直径をD10、90%の高さを与える直径をD90とした。
【0150】
(2)X線回折(XRD)の測定
ゼオライト膜のXRD測定を、以下の条件で行った。
・装置名:オランダPANalytical社製X’PertPro MPD
・光学系仕様 入射側:封入式X線管球(CuKα)
Soller Slit (0.04rad)
Divergence Slit (Valiable Slit)
試料台:XYZステージ
受光側:半導体アレイ検出器(X’ Celerator)
Ni−filter
Soller Slit (0.04rad)
ゴニオメーター半径:240mm
・測定条件 X線出力(CuKα):45kV、40mA
走査軸:θ/2θ
走査範囲(2θ):5.0−70.0°
測定モード:Continuous
読込幅:0.05°
計数時間:99.7sec
自動可変スリット(Automatic−DS):1mm(照射幅)
横発散マスク:10mm(照射幅)
【0151】
なお、X線は円筒管の軸方向に対して垂直な方向に照射した。またX線は、できるだけノイズ等がはいらないように、試料台においた円筒管状の膜複合体と、試料台表面と平行な面とが接する2つのラインのうち、試料台表面ではなく、試料台表面より上部にあるもう一方のライン上に主にあたるようにした。
【0152】
(3)空気透過量
ゼオライト膜複合体の一端を封止し、他端を、密閉状態で5kPaの真空ラインに接続して、真空ラインとゼオライト膜複合体の間に設置したマスフローメーターで空気の流量を測定し、空気透過量[L/(m・h)]とした。マスフローメーターとしてはKOFLOC社製8300、Nガス用、最大流量500ml/min(20℃、1気圧換算)を用いた。KOFLOC社製8300においてマスフローメーターの表示が10ml/min(20℃、1気圧換算)以下であるときはLintec社製MM−2100M、Airガス用、最大流量20ml/min(0℃、1気圧換算)を用いて測定した。
【0153】
(4)SEM−EDX測定
SEM−EDX測定は以下の条件に基づき行った。
・装置名:SEM:FE−SEM Hitachi:S−4800
EDX:EDAX Genesis
・加速電圧:10kV
倍率5000倍での視野全面(25μm×18μm)を走査し、X線定量分析を行った。
【0154】
(5)パーベーパレーション法
パーベーパレーション法に用いた装置の概略図を図1に示す。図1において、ゼオライト膜複合体5は真空ポンプ9によって内側が減圧され、被分離液4が接触している外側と圧力差が約1気圧になっている。この圧力差によって被分離液4中透過物質の水がゼオライト膜複合体5に浸透気化して透過する。透過した物質はトラップ7で捕集される。一方、被分離液4中の有機化合物は、ゼオライト膜複合体5の外側に滞留する。
【0155】
一定時間ごとに、トラップ7に捕集した透過液の質量測定および組成分析、被分離液4の組成分析を行い、それらの値を用いて各時間の分離係数、透過流束、水のパーミエンスなどを前記のとおり算出した。なお、組成分析はガスクロマトグラフにより行った。
【0156】
[実施例1]
(種結晶1の合成)
組成(モル比)が、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.033/0.1/0.06/40/0.07の水熱合成用の反応混合物を次のとおり調製した。なお、上記組成中のTMADAOHは、有機テンプレートとして用いたN,N,N−トリメチル−1−アダマンタンアンモニウムヒドロキシドである(以下同様)。
【0157】
1mol/L−NaOH水溶液15gと1mol/L−KOH水溶液9gと水64gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)0.94gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)8.9gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)22.5gを加えて2時間撹拌し、反応混合物とした。
【0158】
上記反応混合物の入ったテフロン(登録商標)製内筒(200ml)を、オートクレーブに入れて密閉し、160℃で5日間、自生圧力下で加熱した。オートクレーブを、所定時間、15rpmで撹拌後に放冷した。反応混合物を取り出して濾過、洗浄し、100℃で5時間以上乾燥させた。得られたゼオライト結晶は10gであった。
【0159】
上記で得られたゼオライト結晶0.2gを、種結晶として透明溶液に加えた以外は、上記と同様に水熱合成用の反応混合物を調製した。
【0160】
上記反応混合物の入ったテフロン(登録商標)製内筒(200ml)を、オートクレーブに入れて密閉し、160℃で48時間、自生圧力下で加熱した。オートクレーブを、所定時間、15rpmで撹拌した後に放冷した。反応混合物を取り出して濾過、洗浄し、100℃で5時間以上乾燥させ、ゼオライト結晶10gを得た。このゼオライト結晶を、メノウ乳鉢を用いて粉砕し、種結晶1とした。種結晶1のD90は5.0μm、D10は1.5μm、D50(メディアン径)は2.6μm、(D90−D10)/D50は1.4であった。
【0161】
(多孔質支持体−CHA型ゼオライト膜複合体1の作製と物性測定)
水熱合成用の反応混合物を次のとおり調製した。
1mol/L−NaOH水溶液13.2gと1mol/L−KOH水溶液13.2gと水90.2gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)1.39gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)2.98gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)13.2gを加えて2時間撹拌し、反応混合物とした。
【0162】
この反応混合物の組成(モル比)は、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.083/0.15/0.15/80/0.04、SiO/Al=12である。
【0163】
無機多孔質支持体として、ニッカトー社製のムライトチューブPM(外径12mm、内径9mm)を、80mmの長さに切断した後、超音波洗浄機で洗浄し、乾燥させたものを用いた。
【0164】
上記で合成した種結晶1を0.6質量%で水に分散させたスラリーに、上記支持体を浸漬した後、100℃で5時間以上乾燥させて種結晶を付着させた。付着した種結晶の質量は0.7g/mであった。
【0165】
種結晶を付着させた支持体を、上記反応混合物の入ったテフロン(登録商標)製内筒(200ml)に垂直方向に浸漬してオートクレーブを密閉し、静置状態で、160℃で48時間、自生圧力下で加熱した。所定時間経過後に放冷し、支持体−ゼオライト膜複合体を反応混合物から取り出し、洗浄後、100℃で5時間以上乾燥させた。
【0166】
テンプレート焼成前のゼオライトの膜複合体を電気炉に入れ、500℃で5時間焼成した。焼成後のゼオライト膜複合体1の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は180g/mであった。
【0167】
ゼオライト膜複合体1の空気透過量は460L/(m・h)であった。
【0168】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0169】
[実施例2]
(種結晶2の合成)
組成(モル比)が、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.033/0.1/0.06/60/0.07の水熱合成用の反応混合物を次のとおり調製した。
【0170】
1mol/L−NaOH水溶液40gと1mol/L−KOH水溶液24gと水314gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)2.5gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)23.7gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)60gを加えて2時間撹拌し、反応混合物とした。
【0171】
上記反応混合物の入ったテフロン(登録商標)製内筒(1L)を、1Lの誘導攪拌式オートクレーブに入れて密閉し、アンカー翼を用いて150rpmで攪拌し、160℃で48時間、自生圧力下で加熱した。所定時間経過後に放冷し、反応混合物を取り出して濾過、洗浄し、100℃で5時間以上乾燥させ、ゼオライト結晶28gを得た。このゼオライト結晶を、メノウ乳鉢を用いて粉砕し、種結晶2とした。種結晶2のD90は12.1μm、D10は3.5μm、D50(メディアン径)は7.2μm、(D90−D10)/D50は1.2であった。
【0172】
(多孔質支持体−CHA型ゼオライト膜複合体2の作製と物性測定)
実施例1と同様の組成の水熱合成用の反応混合物を調製した。無機多孔質支持体としてニッカトー社製のムライトチューブPM(外径12mm、内径9mm)を、80mmの長さに切断した後、外表面を#800の紙やすりを用いて研磨し、研磨した多孔質支持体を超音波洗浄機で洗浄したのち120℃で2時間乾燥させたものを用いた。
【0173】
上記で合成した種結晶2を3質量%で水に分散させたスラリーに、上記支持体を浸漬した後、実施例1と同様の条件で乾燥させて種結晶を付着させた。付着した種結晶の質量は1.8g/mであった。
【0174】
種結晶2を付着させた支持体上に、実施例1と同様の条件で、ゼオライト膜を形成させた後に、焼成することにより、ゼオライト膜複合体2を得た。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は160g/mであった。
【0175】
ゼオライト膜複合体2の空気透過量は、430L/(m・h)であった。
【0176】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0177】
[実施例3]
実施例2で得たゼオライト膜複合体2を用いて、パーベーパレーション法により70℃の水/酢酸混合溶液(50/50質量%)から水を選択的に透過させる分離を行った。
【0178】
透過開始から5時間後の透過成績は、透過流束:3.4kg/(m・h)、分離係数:300、透過液中の水の濃度:99.62質量%であった。水のパーミエンスで表すと、2.1×10−6mol/(m・s・Pa)であった。
【0179】
[実施例4]
(種結晶3の合成)
組成(モル比)が、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.066/0.15/0.1/100/0.1の水熱合成用の反応混合物を次のとおり調製した。
【0180】
1mol/L−NaOH水溶液48gと1mol/L−KOH水溶液32gと水447gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)4.0gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH)水溶液(TMADAOH25質量%含有、セイケム社製)27gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)48gを加え、さらに実施例1で種結晶1を合成するために使用した種結晶を0.007g加え2時間撹拌し、反応混合物とした。
【0181】
上記反応混合物の入ったテフロン(登録商標)製内筒を、1Lの誘導攪拌式オートクレーブに入れて密閉し、アンカー翼を用いて200rpmで攪拌し、160℃で48時間、自生圧力下で加熱した。所定時間経過後に放冷し、反応混合物を取り出して濾過、洗浄したのち100℃で5時間以上乾燥させ、ゼオライト結晶22gを得た。このゼオライト結晶を、メノウ乳鉢を用いて粉砕し、種結晶3とした。種結晶3のD90は6.1μm、D10は1.8μm、D50(メディアン径)は3.5μm、(D90−D10)/D50は1.3であった。
【0182】
(多孔質支持体−CHA型ゼオライト膜複合体3の作製と物性測定)
水熱合成用の反応混合物を次のとおり調製した。
1mol/L−NaOH水溶液10.5gと1mol/L−KOH水溶液7.0gと水100gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)0.88gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)2.38gを加え、さらにコロイダルシリカ(日産化学社製スノーテック−40)10.5gを加えて2時間撹拌し、反応混合物とした。
【0183】
この反応混合物の組成(モル比)は、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.066/0.15/0.1/100/0.04、SiO/Al=15であった。
【0184】
支持体として、実施例2と同様のものを、同様に処理して用いた。
上記で合成した種結晶3を4質量%で水に分散させたスラリーに、上記支持体を浸漬した後、実施例1と同様の条件で乾燥させて種結晶を付着させた。付着した種結晶の質量は5.2g/mであった。
【0185】
種結晶3を付着させた支持体上に、実施例1と同様の条件で、ゼオライト膜を形成させた後に焼成することにより、ゼオライト膜複合体3を得た。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は130g/mであった。
【0186】
ゼオライト膜複合体3の空気透過量は50L/(m・h)であった。
【0187】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0188】
SEM−EDXにより測定した、ゼオライト膜のSiO/Alモル比は17であった。
【0189】
[実施例5]
実施例4で得たゼオライト膜複合体3を用いて、パーベーパレーション法により70℃の水/2−プロパノール混合溶液(30/70質量%)から水を選択的に透過させる分離を行った。
【0190】
透過開始から4時間後の透過成績は、透過流束:5.3kg/(m・h)、分離係数:31000、透過液中の水の濃度:99.99質量%であった。水のパーミエンスであらわすと、3.1×10−6mol/(m・s・Pa)であった。
【0191】
[実施例6]
実施例4で得たゼオライト膜複合体3を用いて、パーベーパレーション法により70℃の水/N−メチル−2−ピロリドン混合溶液(30/70質量%)から水を選択的に透過させる分離を行った。
【0192】
透過開始から4時間後の透過成績は、透過流束:4.3kg/(m・h)、分離係数:23100、透過液中の水の濃度:99.99質量%であった。水のパーミエンスであらわすと、3.1×10−6mol/(m・s・Pa)であった。
【0193】
[実施例7]
(種結晶4の合成)
組成(モル比)が、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.033/0.1/0.06/40/0.07の水熱合成用の反応混合物を次のとおり調製した。
【0194】
1mol/L−NaOH水溶液50gと1mol/L−KOH水溶液30gと水213gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)3.15gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)29.6gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)75gを加えて2時間撹拌し、反応混合物とした。
【0195】
上記反応混合物の入ったテフロン(登録商標)製内筒(1L)を、1Lの誘導攪拌式オートクレーブに入れて密閉し、アンカー翼を用いて150rpmで攪拌し、160℃で48時間、自生圧力下で加熱した。所定時間経過後に放冷し、反応混合物を取り出して濾過、洗浄したのち100℃で5時間以上乾燥させ、ゼオライト結晶35gを得た。このゼオライト結晶を、メノウ乳鉢を用いて粉砕し、種結晶4とした。種結晶4のD90は12.6μm、D10は4.2μm、D50(メディアン径)は7.4μm、(D90−D10)/D50は1.1であった。
【0196】
(無機多孔質支持体CHA型ゼオライト膜複合体4の作製)
水熱合成用の反応混合液は、実施例4と同様に調製した。多孔質支持体は、実施例2と同様のものを、同様に処理して用いた。
【0197】
上記で合成した種結晶4を3質量%で水に分散させたスラリーに、上記支持体を浸漬した後、実施例1と同様の条件で乾燥させて種結晶を付着させた。付着した種結晶の質量は3.4g/mであった。
【0198】
種結晶4を付着させた支持体上に、実施例1と同様の条件で、ゼオライト膜を形成させた後に焼成することにより、ゼオライト膜複合体4を得た。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は140g/mであった。
【0199】
ゼオライト膜複合体4の空気透過量は290L/(m・h)であった。
【0200】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0201】
[実施例8]
実施例7で得たゼオライト膜複合体4を用いて、パーベーパレーション法により70℃の水/酢酸混合溶液(50/50質量%)から水を選択的に透過させる分離を行った。
【0202】
透過開始から5時間後の透過成績は、透過流束:5.6kg/(m・h)、分離係数:960、透過液中の水の濃度:99.89質量%であった。水のパーミエンスであらわすと、3.6×10−6mol/(m・s・Pa)であった。
【0203】
[実施例9]
(種結晶5の合成)
組成(モル比)が、SiO/Al/NaOH/KOH/HO/TMADAOH=1/0.033/0.1/0.06/40/0.07の水熱合成用の反応混合物を次のとおり調製した。
【0204】
1mol/L−NaOH水溶液50gと1mol/L−KOH水溶液30gと水213gを混合したものに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)3.2gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)29.6gを加え、さらにコロイダルシリカ(日産化学社製 スノーテック−40)75gを加えさらに実施例1で種結晶1を合成するために使用した種結晶を0.6g加え2時間撹拌し、反応混合物とした。
【0205】
上記反応混合物の入ったテフロン(登録商標)製内筒(1L)を、1Lの誘導攪拌式オートクレーブに入れて密閉し、アンカー翼を用いて100rpmで攪拌し、160℃で48時間、自生圧力下で加熱した。所定時間経過後に放冷し、反応混合物を取り出して濾過、洗浄し、100℃で5時間以上乾燥させ、ゼオライト結晶35gを得た。このゼオライト結晶を、メノウ乳鉢を用いて粉砕し、種結晶5とした。種結晶5のD90は7.2μm、D10は1.2μm、D50(メディアン径)は3.3μm、(D90−D10)/D50は1.8であった。
【0206】
(無機多孔質支持体CHA型ゼオライト膜複合体5の作製)
水熱合成用の反応混合液は、実施例4と同様に調製した。多孔質支持体は、実施例1と同様のものを、同様に処理して用いた。
【0207】
上記で合成した種結晶5を1質量%で水に分散させたスラリーに、上記支持体を浸漬した後、実施例1と同様の条件で乾燥させて種結晶を付着させた。付着した種結晶の質量は0.9g/mであった。
【0208】
種結晶5を付着させた支持体上に、実施例1と同様の条件で、ゼオライト膜を形成させた後に焼成することにより、ゼオライト膜複合体5を得た。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は130g/mであった。
【0209】
ゼオライト膜複合体5の空気透過量は50L/(m・h)であった。
【0210】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0211】
[実施例10]
実施例9で得たゼオライト膜複合体5を用いて、パーベーパレーション法により70℃の水/酢酸混合溶液(50/50質量%)から水を選択的に透過させる分離を行った。
【0212】
透過開始から5時間後の透過成績は、透過流束:5.5kg/(m・h)、分離係数:2100、透過液中の水の濃度:99.95質量%であった。水のパーミエンスであらわすと、3.5×10−6mol/(m・s・Pa)であった。
【0213】
[比較例1]
(種結晶6の合成)
組成(モル比)が、SiO/Al/NaOH/HO/TMADAOH=1/0.066/0.2/40/0.1の水熱合成用の反応混合物を次のとおり調製した。
【0214】
1mol/L−NaOH水溶液80gに水182.5gを加え、さらに水酸化アルミニウム(Al 53.5質量%含有、アルドリッチ社製)5.0gを加えて撹拌し溶解させ、透明溶液とした。これにTMADAOH水溶液(TMADAOH25質量%含有、セイケム社製)34gを加え、さらにヒュームドシリカ(日本アエロジル社製 アエロジル200)24gを加え、さらに実施例1に記載した種結晶を0.5g加えて2時間撹拌し、反応混合物とした。
【0215】
上記反応混合物の入ったテフロン(登録商標)製内筒(1L)を、1Lの誘導攪拌式オートクレーブに入れて密閉し、アンカー翼を用いて150rpmで攪拌し、160℃で48時間、自生圧力下で加熱した。所定時間経過後に放冷し、反応混合物を取り出して濾過、洗浄したのち100℃で5時間以上乾燥させ、ゼオライト結晶30gを得た。このゼオライト結晶を、メノウ乳鉢を用いて粉砕し、種結晶6とした。種結晶6のD90は8.2μm、D10は0.9μm、D50(メディアン径)は3.0μm、(D90−D10)/D50は2.4であった。
【0216】
(無機多孔質支持体CHA型ゼオライト膜複合体6の作製)
実施例1と同様の組成の水熱合成用の反応混合物を調製した。多孔質支持体は、実施例2と同様のものを、同様に処理して用いた。
【0217】
上記で合成した種結晶6を4質量%で水に分散させたスラリーに、上記支持体を浸漬した後、実施例1と同様の条件で乾燥させて種結晶を付着させた。付着した種結晶の質量は3.6g/mであった。
【0218】
種結晶6を付着させた支持体上に、実施例1と同様の条件で、ゼオライト膜を形成させた後に焼成することにより、ゼオライト膜複合体6を得た。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は120g/mであった。
【0219】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0220】
ゼオライト膜複合体6の空気透過量2500L/(m・h)であった。このゼオライト膜は、空気の透過量が多いため欠陥があると推測された。
【0221】
[比較例2]
(無機多孔質支持体CHA型ゼオライト膜複合体7の作製)
実施例4と同様の組成の水熱合成用(ゼオライト膜形成用)の反応混合物を調製した。多孔質支持体は、実施例2と同様のものを、同様に処理して用いた。
【0222】
比較例1で合成した種結晶6を4質量%で水に分散させたスラリーに、上記支持体を浸漬した後、実施例1と同様の条件で乾燥させて種結晶を付着させた。付着した種結晶の質量は4.0g/mであった。
【0223】
種結晶6を付着させた支持体上に、実施例1と同様の条件で、ゼオライト膜を形成させた後に焼成することにより、ゼオライト膜複合体7を得た。焼成後の膜複合体の質量と支持体の質量の差から求めた、支持体上に結晶化したCHA型ゼオライトの質量は110g/mであった。
【0224】
ゼオライト膜複合体7の空気透過量は1500L/(m・h)であった。このゼオライト膜は、空気の透過量が多いため欠陥があると推測された。
【0225】
生成した膜のXRDを測定したところCHA型ゼオライトが生成していることがわかった。
【0226】
比較例1、2のとおり、粒度分布[(D90−D10)/D50]が2.2を超える種結晶を用いると、焼成後の空気透過量が多い、すなわち欠陥の存在するゼオライト膜が生成すると推測される。
【産業上の利用可能性】
【0227】
本発明は産業上の任意の分野に使用可能であるが、例えば、化学プラント、発酵プラント、精密電子部品工場、電池製造工場等の、含水有機化合物から水を分離し、有機化合物の回収などが必要とされる分野において、特に好適に使用できる。
【符号の説明】
【0228】
1 スターラー
2 湯浴
3 撹拌子
4 被分離液
5 ゼオライト膜複合体
6 ピラニゲージ
7 透過液捕集用トラップ
8 コールドトラップ
9 真空ポンプ

【特許請求の範囲】
【請求項1】
多孔質支持体上に、水熱合成によりゼオライト膜を形成して多孔質支持体―ゼオライト膜複合体を製造する方法であって、水熱合成が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で行われることを特徴とする多孔質支持体―ゼオライト膜複合体の製造方法。
【請求項2】
種結晶のメジアン径(D50)が20μm以下であることを特徴とする請求項1に記載の方法。
【請求項3】
多孔質支持体に予め種結晶を付着させ、種結晶の付着した多孔質支持体上にゼオライト膜を形成することを特徴とする請求項1または2に記載の方法。
【請求項4】
ゼオライト膜が、CHA型ゼオライトを含むものであることを特徴とする請求項1ないし3のいずれか1項に記載の方法。
【請求項5】
請求項1ないし4のいずれか1項に記載の方法により製造されたことを特徴とする多孔質支持体―ゼオライト膜複合体。
【請求項6】
多孔質支持体上に、水熱合成によりゼオライト膜を形成して得られる多孔質支持体―ゼオライト膜複合体であって、該ゼオライト膜複合体を、絶対圧5kPaの真空ラインに接続した時の空気透過量が1400L/(m・h)以下であることを特徴とする多孔質支持体―ゼオライト膜複合体。
【請求項7】
ゼオライト膜が、CHA型ゼオライトを含むものであることを特徴とする請求項6に記載のゼオライト膜複合体。
【請求項8】
ゼオライト膜が、下記式(1):
(D90−D10)/D50 (1)
[式(1)中、D90、D10およびD50は、それぞれ、粒度分布測定により得られた累積分布図(体積基準、粒子径の小さいものから積算)で、90%の高さを与える直径、10%の高さを与える直径および50%の高さを与える直径(メジアン径)を示す。]
で表される値が2.2以下の粒度分布をもつ種結晶の存在下で、水熱合成により形成されたものであることを特徴とする請求項6または7に記載のゼオライト膜複合体。
【請求項9】
請求項5ないし8のいずれか1項に記載の多孔質支持体―ゼオライト膜複合体に、有機物を含む気体または液体の混合物を接触させて、該混合物から、透過性の高い物質を透過させて分離することを特徴とする分離方法。

【図1】
image rotate


【公開番号】特開2012−45483(P2012−45483A)
【公開日】平成24年3月8日(2012.3.8)
【国際特許分類】
【出願番号】特願2010−189654(P2010−189654)
【出願日】平成22年8月26日(2010.8.26)
【出願人】(000005968)三菱化学株式会社 (4,356)
【Fターム(参考)】