説明

多孔質炭素

【課題】結晶質の炭素であっても比表面積が極めて高い多孔質炭素を提供することを目的としている。
【解決手段】メソ孔とこのメソ孔の外郭を構成する炭素質壁とを備えた多孔質炭素であって、CuKα線(波長1.541Å)に対するX線回折スペクトルにおいて、ブラッグ角度2θの26.45°にピークを有することを特徴とする。また、上記炭素質壁は3次元網目構造を成すことが望ましく、比表面積は200m/g以上1500m/g以下であることが望ましい。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は多孔質炭素に関し、特に、メソ孔を備えた多孔質炭素に関するものである。
【背景技術】
【0002】
多孔質炭素の製造方法としては、木材パルプ、のこ屑、ヤシ殻、綿実殻、もみ殻等のセルロース質や粟、稗、とうもろこし等の澱粉質、リグニン、等の植物性原料、石炭やタール、石油ピッチ等の鉱物性原料、更にはフェノール樹脂やポリアクリロニトリル等の合成樹脂等を原料とし、これを非酸化性雰囲気下で加熱して炭素化する方法が周知であり、また、これらの炭素化物(活性炭)を薬剤で処理して賦活化する方法もよく知られている。
【0003】
また最近では、賦活用の薬剤として水酸化カリウムを使用し、これを有機質樹脂と混合して非酸化性雰囲気下で加熱すれば、3000m/gにも達する高い比表面積の活性炭が得られることが確認され、注目を集めている(下記特許文献1参照)。
【0004】
ところが、この方法では、有機質樹脂に対して4倍量以上の賦活剤を必要とすること、そのためカリウムの回収再利用が試みられているものの回収率が低くてコスト高となること、しかも、賦活のための加熱工程でアルカリ金属が揮発して加熱炉を汚染乃至損傷し、且つ各種工業材料として使用する際にも浸食を起こす原因になること、更にはアルカリ金属化合物で処理した活性炭は可燃性が高く発火し易いこと等、工業的規模での実用化には多くの問題を残している。
【0005】
このようなことを考慮して、有機質樹脂を、アルカリ土類金属の酸化物、水酸化物、炭酸塩、有機酸塩よりなる群から選択されるアルカリ土類金属化合物の少なくとも1種と混合し、非酸化性雰囲気で加熱焼成する工程を含む活性炭の製造方法が提案されている(下記特許文献2参照)。
【0006】
上記のように多孔質炭素は種々の方法により製造されるが、黒鉛化するために、この多孔質炭素をさらに加熱処理することが試みられている。しかしながら、多孔質炭素を加熱処理した場合、黒鉛化できないばかりか、比表面積が小さくなり、期待していた特性の改良どころか、もともとの特性よりも悪くなり、所望の特性を得られないという課題を有していた。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開平9−86914号公報
【特許文献2】特開2006−062954号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
そこで本発明は、結晶質の炭素であっても比表面積が極めて高い多孔質炭素を提供することを目的としている。
【課題を解決するための手段】
【0009】
上記目的を達成するために本発明は、メソ孔とこのメソ孔の外郭を構成する炭素質壁とを備えた多孔質炭素であって、CuKα線(波長1.541Å)に対するX線回折スペクトルにおいて、ブラッグ角度2θの26.45°にピークを有することを特徴とする。
X線回折スペクトルにおいて、ブラッグ角度2θの26.45°にピークを有していれば、炭素質壁は黒鉛化しているといえる。また、メソ孔が存在しているので、比表面積が小さくなるのを抑制できる。このように、比表面積がある程度大きな状態で黒鉛化させることが可能となるので、多様な分野(例えば、ガス吸着材料、非水電解質電池の負極材料、キャパシタの電極材料等)で用いることができる。
【0010】
尚、炭素質壁の全ての部分が黒鉛化している必要はなく、一部に黒鉛化していない非晶質部分が存在していても良い。また、本発明の多孔質炭素において、メソ孔は必須であるがミクロ孔は必須ではない。したがって、ミクロ孔は存在していても、存在していなくても良い。
ここで、本明細書においては、細孔径が2nm未満のものをミクロ孔、細孔径が2〜50nmのものをメソ孔と称することとする。
【0011】
上記炭素質壁は3次元網目構造を成すことが望ましい。
炭素質壁が3次元網目構造を成していれば、多孔質炭素の用途が弾力性を必要とする場合にも、本発明の多孔質炭素を適応することができる。また、本発明の多孔質炭素をガス吸着剤として用いる場合には、ガスの流れを阻害しないので、ガス吸着脳が向上し、更に、本発明の多孔質炭素を非水電解質電池の負極材料、キャパシタの電極材料として用いる場合には、リチウムイオン等の移動が円滑化する。
【0012】
比表面積は200m/g以上であることが望ましい。
比表面積が200m/g未満であると、気孔の形成量が不十分で、ガス吸着能が低下したり、三次元網目構造を形成し難いという問題がある。一方、比表面積が1500m/g以下であることが望ましい。比表面積が1500m/gを超えると、炭素壁の形状が保てなくなることがある。
【0013】
上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが望ましい。
上記構成であれば、本発明の多孔質炭素をガス吸着剤として用いた場合に、ガスの流れが円滑になるので、よりガスを補足し易くなる。また、非水電解質電池の負極材料や、キャパシタの電極材料として用いる場合には、リチウムイオン等が円滑に移動する。
【0014】
上記メソ孔の容量は0.2ml/g以上であることが望ましい。
メソ孔の容量が0.2ml未満であると、相対圧力が高い場合のガス吸着能が低下するからである。
【0015】
嵩密度は0.1g/cc以上1.0g/cc以下であることが望ましい。
嵩密度が0.1g/cc未満であると、炭素壁の形状が保てなくなりことがある一方、嵩密度が1.0g/cc以下を超えると、メソ孔の形成が不十分で、ガス吸着能が低下したり、三次元網目構造を形成し難いという問題がある。
【0016】
上記炭素質壁には層状構造を成す部分が存在することが望ましく、また比抵抗が1.0×10Ω・cm以下であることが望ましい。
【発明の効果】
【0017】
本発明によれば、黒鉛質の炭素であっても比表面積が極めて高い多孔質炭素を提供できるといった優れた効果を奏する。
【図面の簡単な説明】
【0018】
【図1】本発明の製造工程を示す図であって、同図(a)はポリアミック酸樹脂と酸化マグネシウムとを混合した状態を示す説明図、同図(b)は混合物を熱処理した状態を示す説明図、同図(c)は多孔質炭素を示す説明図である。
【図2】本発明炭素A1のSTEM(走査透過電子顕微鏡)写真。
【図3】参考炭素Y1のSTEM写真。
【図4】比較炭素Z1のSTEM写真。
【図5】本発明炭素A1及び比較炭素Z1のX線回折図。
【図6】本発明炭素A1、参考炭素Y1、Y2、及び比較炭素Z1の相対圧力とN吸着量との関係を示すグラフ。
【図7】本発明炭素A1の細孔径とその割合との関係を示すグラフ。
【図8】参考炭素Y1の細孔径とその割合との関係を示すグラフ。
【図9】比較炭素Z1の細孔径とその割合との関係を示すグラフ。
【発明を実施するための形態】
【0019】
以下、本発明の実施形態を以下に説明する。
本発明の多孔質炭素は、有機質樹脂を、酸化物(鋳型粒子)と溶液または粉末状態において湿式もしくは乾式混合し、混合物を非酸化雰囲気或いは減圧雰囲気で、たとえば500℃以上の温度で炭化した後、洗浄処理することで酸化物を取り除いて非晶質の多孔質炭素(炭素質焼成体)を作製し、しかる後、この非晶質の多孔質炭素を、非酸化雰囲気或いは減圧雰囲気で、非晶質の多孔質炭素が結晶化する温度以上(例えば、2000℃)で熱処理することにより得られる。
前記非晶質多孔質炭素は、大きさが略同等である多数のメソ孔を有しており、このメソ孔間に形成された炭素質壁におけるメソ孔に臨む位置には、ミクロ孔が形成されるような構造となっていることが好ましい。この非晶質の多孔質炭素の熱処理においては、多数のメソ孔が存在した状態は維持されており、しかも、炭素部分(炭素質壁)の少なくとも一部は層状構造を形成する。したがって、この熱処理により、結晶性の発達した多孔質炭素が得られることになる。
【0020】
上記有機質樹脂としては、単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドもしくは炭素化収率が40重量%以上85重量%以下の樹脂、例えばフェノール樹脂やピッチが好ましく用いられる。
ここで、上記単位構造中に少なくとも一つ以上の窒素もしくはフッ素原子を含むポリイミドは、酸成分とジアミン成分との重縮合により得ることができる。但し、この場合、酸成分及びジアミン成分のいずれか一方又は両方に、一つ以上の窒素原子もしくはフッ素原子を含む必要がある。
具体的には、ポリイミドの前駆体であるポリアミド酸を成膜し、溶媒を加熱除去することによりポリアミド酸膜を得る。次に、得られたポリアミド酸膜を200℃以上で熱イミド化することによりポリイミドを製造することができる。
【0021】
前記ジアミンとしては、2,2−ビス(4−アミノフェニル)ヘキサフルオロプロパン〔2,2−Bis(4−aminophenyl)hexafluoropropane〕、2,2−ビス(トリフルオロメチル)−ベンジジン〔2,2’−Bis(trifluoromethyl)−benzidine〕、4,4’−ジアミノオクタフルオロビフェニルや、3,3’−ジフルオロ−4,4’−ジアミノジフェニルメタン,3,3’−ジフルオロ−4,4’−ジアミノジフェニルエーテル、3,3’−ジ(トリフルオロメチル)−4,4’−ジアミノジフェニルエーテル、3,3’−ジフルオロ−4,4’−ジアミノジフェニルプロパン、3,3’−ジフルオロ−4,4’−ジアミノジフェニルヘキサフルオロプロパン、3,3’−ジフルオロ−4,4’−ジアミノベンゾフェノン、3,3’,5,5’−テトラフルオロ−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラ(トリフルオロメチル)−4,4’−ジアミノジフェニルメタン、3,3’,5,5’−テトラフルオロ−4,4’−ジアミノジフェニルプロパン、3,3’,5,5’−テトラ(トリフルオロメチル)−4,4’−ジアミノジフェニルプロパン、3,3’,5,5’−テトラフルオロ−4,4−ジアミノジフェニルヘキサフルオロプロパン、1,3−ジアミノ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−メチル−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−2,4,6−トリフロオロー5−(パ−フルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−4−プブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−メチル−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−4−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2−ジアミノ−3,4,6−トリフルオロ−5−(パーフルオロノネニルオキシ)ヘンゼン、1,2−ジアミノ−4−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,2一ジアミノ−4−ブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−3−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2−メチル−5−(パーフルオロノネニルオキシ)ペンセン、1,4−ジアミノ−2−メトキシ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2,3,6−トリフルオロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4−ジアミノ−2−クロロ−5−(パーフルオロノネニルオキシ)ベンゼン、1,4一ジアミノ−2−プブロモ−5−(パーフルオロノネニルオキシ)ベンゼン、1,3−ジアミノ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−2,4,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,3−ジアミノ−4−ブロモ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−3,4,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,2−ジアミノ−4−ブロモ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−3−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−メチル−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−メトキシ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2,3,6−トリフルオロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−クロロ−5−(パーフルオロヘキセニルオキシ)ベンゼン、1,4−ジアミノ−2−プロモ−5−(パーフルオロヘキセニルオキシ)ベンゼンやフッ素原子を含まないp−フェニレンジアミン(PPD)、ジオキシジアニリン等の芳香族ジアミンが例示できる。また、上記ジアミン成分は上記各芳香族ジアミンを2種以上組み合わせて使用してもよい。
【0022】
一方、酸成分としては、フッ素原子を含む4,4−ヘキサフルオロイソプロピリデンジフタル酸無水物(6FDA)、およびフッ素原子を含まない3,4,3’,4’−ビフェニルテトラカルボン酸二無水物(BPDA)、ピロメリット酸二無水物(PMDA)等が挙げられる。
また、ポリイミド前駆体の溶媒として用いる有機溶媒は、N−メチル−2−ピロリドン、ジメチルホルムアミド等が挙げられる。
【0023】
イミド化の手法としては公知の方法〔例えば高分子学会編「新高分子実験学」共立出版、1996年3月28日、第3巻高分子の合成・反応(2)158頁参照〕に示されるように、加熱あるいは化学イミド化のどちらの方法に従ってもよく、本発明はこのイミド化の方法には左右されない。
更に、ポリイミド以外の樹脂としては、石油系タールピッチ、アクリル樹脂等40%以上の炭素収率を持つものが使用できる。
【0024】
一方、上記酸化物として用いる原料はアルカリ土類金属酸化物(酸化マグネシウム、酸化カルシウム等)の他に、熱処理により熱分解過程で酸化マグネシウムへと状態が変化する、金属有機酸(クエン酸マグネシウム、シュウ酸マグネシウム、クエン酸カルシウム、シュウ酸カルシウム等)を使用することもできる。
また、酸化物を取り除く洗浄液としては、塩酸、硫酸、硝酸、クエン酸、酢酸、ギ酸など一般的な無機酸を使用し、2mol/l以下の希酸として用いるのが好ましい。また、80℃以上の熱水を使用することも可能である。
【0025】
更に、前記混合物の炭化は、非酸化雰囲気或いは減圧雰囲気で、500℃以上、1500℃以下の温度で炭化することが好ましい。高炭素収率の樹脂は高分子であるため、500℃未満では炭素化が不十分で細孔の発達が十分ではない場合がある一方、1500℃以上では収縮が大きく、酸化物が焼結し粗大化するため、細孔サイズが小さくなって比表面積が小さくなるからである。非酸化性雰囲気とは、アルゴン雰囲気或いは窒素雰囲気等であり、減圧雰囲気とは133Pa(1torr)以下の雰囲気である。
【0026】
前記非晶質の多孔質炭素を熱処理する場合、非酸化性雰囲気又は減圧雰囲気で行う必要があるが、この場合の非酸化性雰囲気とは、上記と同様、アルゴン雰囲気或いは窒素雰囲気等であり、減圧雰囲気とは、上記と同様、133Pa(1torr)以下の雰囲気をいう。更に、熱処理温度は、非晶質の炭素が結晶化する温度以上であれば問題ないが、円滑且つ短時間で結晶化するには、800℃以上が好ましく、2000℃以上の温度であることが望ましい。但し、余り温度が高いとエネルギーの無駄が生じるので、熱処理温度は2500℃以下で行うのが好ましい。
【実施例】
【0027】
(実施例1)
先ず、図1(a)に示すように、炭素前駆体としてのポリアミック酸樹脂(イミド系樹脂)1と、鋳型粒子としての酸化マグネシウム(MgO、平均結晶子径は100nm)2とを、90:10の重量比で混合した。次に、図1(b)に示すように、この混合物を窒素雰囲気中1000℃で1時間熱処理して、ポリアミック酸樹脂を熱分解させることにより炭素質壁3を備えた焼成物を得た。次いで、図1(c)に示すように、得られた焼成物を1mol/lの割合で添加された硫酸溶液で洗浄して、MgOを完全に溶出させることにより多数のメソ孔4を有する非晶質の多孔質炭素5を得た。最後に、この非晶質の多孔質炭素を、窒素雰囲気中2500℃で1時間熱処理して、多孔質炭素を得た。
このようにして作製した多孔質炭素を、以下、本発明炭素A1と称する。
【0028】
本発明炭素A1のSTEM(走査透過電子顕微鏡)写真を図2に示す。図2から明らかなように、本発明炭素A1の炭素部分の少なくとも一部は層状を成しており、これによって、炭素部分の少なくとも一部の結晶性が発達していることがわかる。つまり、本発明炭素A1は、炭素質壁3の少なくとも一部の結晶性が発達していることがわかる。尚、隣接する層の層間距離は0.33nm程度であるので、11層構造であれば、層状を成す炭素部分の厚みは3.3nm(0.33nm×〔11−1〕)となる。また、本発明炭素A1は3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが認められた。
【0029】
(参考例1)
非晶質の多孔質炭素を熱処理する際の温度を2000℃とした他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、参考炭素Y1と称する。
参考炭素Y1のSTEM写真を図3に示す。図3から明らかなように、参考炭素Y1の炭素部分の少なくとも一部は層状を成しており、これによって、炭素部分の少なくとも一部は結晶化して黒鉛特性を有するということがわかる。また、参考炭素Y1は3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが認められた。
【0030】
(参考例2)
非晶質の多孔質炭素を熱処理する際の温度を1400℃とした他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、参考炭素Y2と称する。
図示しないが、参考炭素Y2についてSTEMで調べたところ、炭素部分は層状を成しておらず、したがって、炭素部分が非晶質のままで存在していることがわかった。
【0031】
(比較例1)
非晶質の多孔質炭素を熱処理する際の温度を900℃とした他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、比較炭素Z1と称する。
比較炭素Z1のSTEM(走査透過電子顕微鏡)写真を図4に示す。図4から明らかなように、比較炭素Z1の炭素部分の少なくとも一部は層状を成しており、これによって、炭素部分の少なくとも一部の結晶性が発達していることがわかる。また、比較炭素Z1は3次元網目構造(スポンジ状のカーボン形状)を成し、更に、上記メソ孔は開気孔であって、気孔部分が連続するような構成となっていることが認められた。
【0032】
(参考例3)
熱処理前の炭素材料として、非晶質の多孔質炭素に代えて活性炭(和光純薬工業株式会社製試薬)を用い、且つ、その活性炭を2000℃で熱処理した他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、参考炭素Y3と称する。
【0033】
(参考例4)
熱処理前の炭素材料として、非晶質の多孔質炭素に代えて活性炭(和光純薬工業株式会社製試薬)を用い、且つ、その活性炭を1400℃で熱処理した他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、参考炭素Y4と称する。
【0034】
(参考例5)
熱処理前の炭素材料として、非晶質の多孔質炭素に代えて活性炭(和光純薬工業株式会社製試薬)を用い、且つ、その活性炭を熱処理しなかった他は、上記実施例1と同様にして多孔質炭素を作製した。
このようにして作製した多孔質炭素を、以下、参考炭素Y5と称する。
【0035】
(実験1)
本発明炭素A1と比較炭素Z1とのX線回折(線源はCuKα)を行ったので、その結果を図5に示す。
図5から明らかなように、本発明炭素A1では、ブラッグ角度(2θ±0.2°)=26.45°において、黒鉛のピーク(002面)が顕著にみられるのに対して、比較炭素Z1では、ブラッグ角度=26.45°において、黒鉛のピーク(002面)がみられないことが認められる。したがって、本発明炭素A1では炭素が黒鉛化しているが、比較炭素Z1では炭素が黒鉛化していないことがわかる。
尚、X線回折結果のピークの半値幅からシェラーの式を用いて微結晶サイズを求めたところ、微結晶径は約30nmであった。
【0036】
(実験2)
上記本発明炭素A1、比較炭素Z1、及び参考炭素Y1、Y2における圧力とN吸着量との関係を調べたので、その結果を図6に示す。尚、実験方法は、比表面積測定装置(Bellsorp 18、(株)日本ベル)を用い窒素吸着法により測定した。試料は、約0.1gをセルに採取して装置の試料前処理部で、300℃で約5時間脱ガス処理をした後に測定した。
【0037】
図6から明らかなように、相対圧力が0〜0.1の範囲においては、参考炭素Y2、比較炭素Z1ではNガス吸着量が多くなっているのに対して、参考炭素Y1では参考炭素Y2、比較炭素Z1と比べてNガス吸着量が減少し、本発明炭素A1では殆どNガスを吸着していないことが認められる。一方、相対圧力が0.1を超える範囲では、本発明炭素A1、参考炭素Y1は参考炭素Y2、比較炭素Z1に比べてNガス吸着量は少ないものの、十分にNガスを吸着していることが認められる。このような実験結果となった理由を調べるべく、下記実験3を行った。
【0038】
(実験3)
上記本発明炭素A1、比較炭素Z1及び参考炭素Y1、Y2におけるBET比表面積と、メソ孔容量と、ミクロ孔容量とについて調べたので、その結果を表1に示す。尚、BET比表面積は、吸着等温線の結果からBET法を用いて算出した。また、メソ孔容量はBJH(Berret−Joyner−Halenda)法で調べた。更に、ミクロ孔容量はHK(Horbath-Kawazoe)法で調べた。
【0039】
【表1】

【0040】
表1から明らかなように、熱処理前の炭素材料として多孔質炭素を用い、これを900℃又は1400℃で熱処理した参考炭素Y2、比較炭素Z1では、相対圧力が高い場合のガス吸着能が高いメソ孔と、このメソ孔に臨む位置に配置され相対圧力が低い場合のガス吸着能が高いミクロ孔との容量が、共に大きい。したがって、参考炭素Y2、比較炭素Z1では、相対圧力の高低に関わらずガス吸着能が高くなる。
【0041】
これに対して、熱処理前の炭素材料として多孔質炭素を用い、これを2000℃で熱処理した参考炭素Y1では、参考炭素Y2、比較炭素Z1と比べて、メソ孔とミクロ孔との容量が若干小さくなっているので、相対圧力の高低に関わらずガス吸着能が若干低下する。また、熱処理前の炭素材料として多孔質炭素を用い、これを2500℃で熱処理した本発明炭素A1では、参考炭素Y2、比較炭素Z1のみならず参考炭素Y1と比べても、メソ孔とミクロ孔との容量が小さくなっており、特に、ミクロ孔との容量が著しく小さくなっている。したがって、相対圧力の高低に関わらずガス吸着能が低下し、特に、ミクロ孔の容量が著しく小さくなっているので、相対圧力が低い場合のガス吸着能が特に低下する。
さらに、参考炭素Y3、Y4と、参考炭素Y5を比べてみると、熱処理により、ミクロ孔が著しく減少していることがわかる。これに対して、参考炭素Y1、Y2、比較炭素Z1を比べてみれば、メソ孔を有していることにより、熱処理温度が上昇しても、ミクロ孔の減少が抑制されていることがわかる。ただし、熱処理温度を2500℃まで上げた本発明炭素A1ではミクロ孔の減少が認められる。
以上の理由により、実験2のような結果となったものと考えられる。
【0042】
以上の如く、本発明炭素A1、参考炭素Y1は参考炭素Y2、比較炭素Z1と比べてガス吸着能が低下するが、熱処理前の炭素材料として活性炭を用い、これを熱処理した場合と比べるとガス吸着能は格段に高くなると考えられる。なぜなら、熱処理前の炭素材料として活性炭を用い、これを2000℃で熱処理した参考炭素Y3ではメソ孔とミクロ孔との容量が極めて小さくなっているので、ガス吸着能は著しく低くなると考えられるからである。
以上のことから、本発明炭素A1、参考炭素Y1では、少なくとも一部の炭素を結晶化したにも関わらず、メソ孔を有していることにより多孔質状態が維持されるので、ガス吸着能等の炭素が有する利点をより十分に発揮することができると考えられる。
【0043】
尚、参考炭素Y1では、参考炭素Y2、比較炭素Z1と比べて、メソ孔とミクロ孔との容量が若干小さくなっているので、BET比表面積も若干小さくなっている。また、本発明炭素A1では、メソ孔とミクロ孔との容量が更に小さくなっているので、BET比表面積も一層小さくなっている。但し、メソ孔とミクロ孔との容量が極めて小さな参考炭素Y3と比べると、本発明炭素A1、参考炭素Y1はBET比表面積が格段に大きくなっている。
【0044】
加えて、ガス吸着能の向上等を図るためには、メソ孔容量は大きいことが望ましいが、本発明炭素A1の0.55ml/g以上に限定されるものではなく、0.2ml/g以上であれば良い。尚、このように小さなメソ孔容量となるのは、多孔質炭素を2500℃を超える温度で熱処理した場合であると考えられる。
【0045】
(実験4)
本発明炭素A1、参考炭素Y1、比較炭素Z1の嵩密度について調べたので、その結果を表2に示す。
【0046】
【表2】

【0047】
表2から明らかなように、本発明炭素A1、参考炭素Y1は比較炭素Z1に比べて、嵩密度が大きくなっていることが認められ、特に、本発明炭素A1の嵩密度が大きくなっていることが認められる。これは、上述の如く、本発明炭素A1、参考炭素Y1は比較炭素Z1に比べて、メソ孔とミクロ孔との容量が小さくなり(炭素部分の容積が大きくなり)、特に、本発明炭素A1ではメソ孔とミクロ孔との容量が非常に小さくなるということに起因するものと考えられる。
【0048】
(実験5)
本発明炭素A1、参考炭素Y1及び比較炭素Z1の気孔サイズ分布(メソ孔のサイズ分布)をBJH法で調べたので、その結果を図7〜図9(図7は本発明炭素A1、図8は参考炭素Y1、図9は比較炭素Z1)に示す。
図7〜図9から明らかなように、本発明炭素A1、参考炭素Y1及び比較炭素Z1におけるメソ孔のサイズのピークは3〜5nmであることから、熱処理温度の違いによって、メソ孔のサイズのピークは変化しないことがわかる。
【0049】
(実験6)
上記本発明炭素A1、比較炭素Z1、及び参考炭素Y1〜参考炭素Y5における比抵抗を調べたので、その結果を表3に示す。実験は、各炭素とバインダーとしてのポリテトラフルオロエチレン(デュポン社製テフロン(登録商標)6J)とを重量比で80:20の割合で物理的に混合したものに、溶剤としてのアセトンを添加し、シート状へと加工した。溶媒を乾燥させるため120℃で5時間乾燥させることにより、100mm×100mm×1mmのシートを作製した。そして、このシートの比抵抗を、四端子法を用いて測定した。
【0050】
【表3】

【0051】
表3から明らかなように、熱処理前の炭素材料として多孔質炭素を用いた場合について考察すると、熱処理温度が2000℃以上の本発明炭素A1、参考炭素Y1では比抵抗が2.0〜3.1×10Ω・cmであるのに対して、熱処理温度が2000℃未満の参考炭素Y2、比較炭素Z1では比抵抗が1.0×10〜3.5×10Ω・cmとなっていることが認められる。したがって、本発明炭素A1、参考炭素Y1は参考炭素Y2、比較炭素Z1に比べて、比抵抗が格段に小さくなっていることがわかる。
【0052】
一方、熱処理前の炭素材料として活性炭を用いた場合について考察すると、熱処理温度が2000℃以上の参考炭素Y3では比抵抗が8.0×10Ω・cmであるのに対して、熱処理温度が2000℃未満の参考炭素Y4、参考炭素Y5では比抵抗が3.8×10〜2.4×10Ω・cmとなっていることが認められる。したがって、参考炭素Y3は参考炭素Y4、参考炭素Y5に比べて、比抵抗が小さくなっている。但し、本発明炭素A1、参考炭素Y1と比較すると比抵抗が大きいことがわかる。この理由は定かではないが、本発明炭素A1、参考炭素Y1ではメソ孔が十分に存在し、層状構造が発達するのに対して、参考炭素Y3ではメソ孔が殆ど無く、層状構造が殆ど発達しないことに起因するものと考えられる。
尚、比抵抗は小さいほど好ましいが、3.1×10Ω・cm以下となっている必要はなく、1.0×10Ω・cm以下であれば多様な分野で使用することができる。
【産業上の利用可能性】
【0053】
本発明はガス吸着材料、非水電解質電池の負極材料、キャパシタの電極材料等として用いることができる。
【符号の説明】
【0054】
1:ポリアミック酸樹脂(イミド系樹脂)
2:酸化マグネシウム
3:炭素質壁
4:メソ孔
5:多孔質炭素

【特許請求の範囲】
【請求項1】
メソ孔とこのメソ孔の外郭を構成する炭素質壁とを備えた多孔質炭素であって、
CuKα線(波長1.541Å)に対するX線回折スペクトルにおいて、ブラッグ角度2θの26.45°にピークを有することを特徴とする多孔質炭素。
【請求項2】
上記炭素質壁は3次元網目構造を成す、請求項1に記載の多孔質炭素。
【請求項3】
比表面積は200m/g以上である、請求項1又は2に記載の多孔質炭素。
【請求項4】
上記メソ孔は開気孔であって、気孔部分が連続するような構成となっている、請求項1〜3の何れか1項に記載の多孔質炭素。
【請求項5】
上記メソ孔の容量は0.2ml/g以上である、請求項1〜4の何れか1項に記載の多孔質炭素。
【請求項6】
嵩密度は0.1g/cc以上1.0g/cc以下である、請求項1〜5の何れか1項に記載の多孔質炭素。
【請求項7】
上記炭素質壁には層状構造を成す部分が存在する、請求項1〜6の何れか1項に記載の多孔質炭素。
【請求項8】
比抵抗が1.0×10Ω・cm以下である、請求項1〜7の何れか1項に記載の多孔質炭素。


【図1】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2012−188310(P2012−188310A)
【公開日】平成24年10月4日(2012.10.4)
【国際特許分類】
【出願番号】特願2011−51831(P2011−51831)
【出願日】平成23年3月9日(2011.3.9)
【出願人】(000222842)東洋炭素株式会社 (198)
【Fターム(参考)】