説明

多点地盤注入工法および多点地盤注入装置

【課題】地盤中に未固結部が発生しない、信頼性の高い多点地盤注入工法および多点地盤注入装置を提供する。
【解決手段】各注入地点の地盤中に地盤注入材を注入するための複数の注入管1と、当該各注入管どうしを相互に接続するための複数の送液管4と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプU1〜U8と、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブ8と、前記地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置7と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置6と、各注入地点における地盤注入材の注入状況を監視するための注入監視装置とを備え、前記ユニットポンプは個々に動力源を備えて構成する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、軟弱地盤などの地盤中に地盤注入材を効率的に注入するための多点地盤注入工法および多点地盤注入装置に関し、主として地盤状況が各層ごとに異なる地盤に対しては各層ごとに最適量の地盤注入材を同時にあるいは選択的に注入することを可能とし、また注入地点(注入ポイント)を地盤中の鉛直向および水平方向へと移動して立体的な注入をも可能とし、さらに複数の注入管による複数の注入地点への注入を任意に制御することにより、複数の注入地点に地下水が排水されるように同時注入することを可能にし、これにより微細土層への浸透注入の信頼性が向上し、地下水が注入材によって閉じ込められて未改良部分が発生するのを防止でき、かつ急速施工によって工期の短縮化も可能になる。
【背景技術】
【0002】
通常、地盤は各層ごとに透水係数や間隙率が異なることから、当然地盤状況も各層ごとに異なる。このため、この種の地盤に対して薬液注入を行なうに際しては、従来、図示しないが地盤中に注入管を単独であるいは複数本間隔をあけて埋設し、これら注入管を介して注入ステージを上方または下方に移動し、層ごとに地盤注入材を注入していた。
【0003】
ところで、薬液注入の実施に際して最も大きな課題は、透水係数の小さい微細砂層に注入材を確実に浸透させること、地盤性状の異なる複数の土層からなる地盤に注入材を均質に浸透させること、そして改良領域内に発生している地下水を貯溜した地下水ポケットの存在による未改良部分が掘削に際して部分的な漏水を生じさせ、それが全体的な破壊をもたらすことであった。
【0004】
一般に、微細砂層の透水性は通常、k=10-3〜10-4cm/秒であり、このような土層に対して地盤の破壊を起こさないように薬液を注入するには、浸透理論上、一注入地点から毎分1リットル〜10数リットル以下の低吐出量で低圧注入しなければならない。
【0005】
しかし、上述の公知の注入工法では、一本の注入管に対してそれぞれ一セットの注入ポンプを使用し、しかも工期をできるだけ短くしたいという経済的な理由や注入ポンプの能力といった性能的な理由などから、注入材の注入量を毎分10〜20リットル程度とせざるを得ないため、注入圧が高くなって地盤が破壊することがあり、このため地盤が隆起したり微細な土層の浸透固結が充分に行なわれないでしまうという課題があった。
【0006】
また、地盤性状の異なる複数の土層からなる地盤に注入材を注入する際、土層の変化に対応して地盤注入材の注入速度を変えたり、注入量をコントロールすることは実際上難しく、このため、ある層では注入材が多量に拡がり、またある層では僅かしか浸透されない等の注入のむらが起こり、隣接する固結体どうしの連続性が得られないという課題があった。
【0007】
このような問題を解決するために、当出願人は先に特許文献1、2および3にそれぞれ開示するような地盤注入工法を開発し、これについて出願もしている。
【0008】
特許文献1に記載された注入工法は、複数の注入管を地盤中に設置し、当該複数の注入管を介して地盤中に地盤改良材を注入するに当たり、一プラント中に多数のユニットポンプを備え、これら多数のユニットポンプを一台の駆動源で同時に作動させる多連装ユニットポンプによって各注入管に改良材を圧送し地盤中に注入するものである。
【0009】
また、特許文献2に記載された注入工法は、上述したように前記低圧浸透注入による多点同時注入ポンプの利点を生かしながら、各注入管の注入状況に応じてそれぞれのユニットポンプが独立して作動し、かつ全体として一括管理することにより、地盤性状、注入状況に応じてそれぞれのユニットポンプの注入速度、注入圧、注入の中止、再開、ゲル化時間などを任意に管理し得、しかも多数のユニットポンプの作動を同時に管理して注入状況の全体を把握管理することによって、複数の注入地点に注入材を同時に注入する方法で、前者の公知技術の欠点を改良したものである。
【0010】
そして、特許文献3に記載された地盤注入工法は、一注入地点に対して一本の注入管に主材注入材(A液)を送液するための送液管と反応材注入材(B液)を送液するための送液管の2系統の送液管を接続し、この2系統の送液管から供給されたA液とB液の両液を注入管内で混合し、所定のゲル化タイムでゲル化するように地盤中に注入する方法、あるいは一注入地点に対して2本の注入管を用い、一方から浸透型注入材や浸透性の悪い注入材を注入し、他方の注入管から浸透性の良い注入材を注入する方法である。
【0011】
【特許文献1】特開平12−45259号公報
【特許文献2】特開2003−232020号公報
【特許文献3】特開平9−291526号公報
【発明の開示】
【発明が解決しようとする課題】
【0012】
しかし、特許文献1に記載された注入方法では、地盤中に設けた複数の注入孔に対して、一台の駆動源で一台の注入ポンプを駆動して注入地点を順次切換えながら注入するか、多連装注入ポンプを構成する多数のユニットポンプを同時に駆動するため、それぞれの吐出口における地盤条件が異なり、そのため最適の注入条件が異なるにもかかわらず、1セットのユニットポンプのすべてが同一条件で駆動するため、それぞれの注入地点に最適の注入を行うことができないという課題があった。
【0013】
また、1台のユニットポンプに詰まる等のトラブルや故障が発生した場合、一セット全体が作動しなくなり、またユニットポンプの台数が多くなるに伴なってトラブルや故障などが頻繁に発生しやすくなり、作業性を低下させるという課題があった。
【0014】
一方、特許文献2に記載された注入法では、数十ケ所の注入地点に地盤注入材を同時注入しようとする場合、それぞれ独立して稼動するユニットポンプを数十台必要とするため、その分だけトラブルが頻繁に発生することになるし、また大きさや重量が大きくなり、作業性が低下するという課題があった。
【0015】
また、複数の注入地点に注入材を同時注入する場合、地盤中の地下水が地盤改良領域内に閉じ込められ(地下水ポケット)、その領域への注入材の浸透が不可能になり、地盤改良が不十分になるという課題があった。
【0016】
特に特許文献2に記載された注入方法は、多数の注入地点に対する注入をそれぞれ一台のユニットポンプで注入することはできるものの、注入地点を多くするとその分ユニットポンプも多数台必要とする。すなわち、60地点の同時注入には60台のユニットポンプを必要とし、それだけトラブルが頻繁に発生しやすくなり、またメンテナンスにも手間がかかりコストも増大するという課題があった。
【0017】
また、地盤注入は、地下水と注入材とを置き換えることを地盤改良の基本とするにもかかわらず、複数の注入ポイントに対して地盤注入を同時に行なうと、注入材によって地下水を封じ込めてしまうという問題(地下水ポケット)があるため、特に特許文献2に示す注入工法の場合、注入材の浸透が不十分な部分、すなわち未改良部分が発生しやすいことから、地下水の移動に配慮して注入地点を選択しながら注入を行うと、使用されないポンプが生じて装置として無駄が生じるという問題があった。
【0018】
そして、特許文献3に記載された注入方法は、一本の注入管に当該注入管に接続された二本の送液管の一方から主材注入材(A液)を、他方の送液管から反応材注入材(B液)をそれぞれ送液し、注入管内においてA液とB液を合流し、所定のゲル化タイムでゲル化するように地盤中に注入する方法、あるいは一注入地点に対し、2本の注入管から二種類の注入材を注入する方法であり、複数の注入地点に同時注入する注入方法ではなく、注入地点ごとに切り換えながら注入する注入方法であることから、注入工程を大幅に短縮することができないという課題があった。
【0019】
本発明は、以上の課題を解決するためになされたもので、地盤状況が各層ごとに異なる地盤に対しては各層ごとに最適量の地盤注入材を同時にあるいは選択的に注入することを可能とし、また注入ステージを鉛直向および水平方向へと移動して立体的な注入をも可能とし、さらに複数の注入管による複数の注入地点への注入を任意に制御することにより、複数の注入地点に地下水を排水しつつ同時注入することを可能にして微細土層への浸透注入の信頼性を向上させると共に、地下水が注入材によって閉じ込められて未改良部分(地下水ポケット)が発生するのを防止し、さらに各注入地点に地盤注入材を送液するためのユニットポンプの設置台数が少ないながらも、効率的な地盤注入、急速施工によって工期の短縮化等をも可能した多点地盤注入工法および多点地盤注入装置を提供することを目的とするものである。
【課題を解決するための手段】
【0020】
本発明は、複数のユニットポンプを用いて複数の注入管による複数の注入地点への地盤注入材の同時・連続注入を可能にしたものであり、主として以下の2点の課題を解決すべく開発されたものである。
【0021】
その課題の一つは、ユニットポンプの設置台数が多くなればなるほど、それだけ1セットの多連装注入装置の重量が大きくなり、またユニットポンプの設置台数だけトラブルが発生しやくなり、それに伴ないその整備の工数が多くなり、作業性が低下する。
【0022】
残る課題の一つは、複数の注入地点に地盤注入材を同時に注入すると、注入材によって地下水が取り囲まれて排水されにくくなり、その結果として、地盤中の随所に地下水が閉じ込められることにより形成される、いわゆる「地下水のポケット」が発生して未改良部分ができ均質な地盤改良ができない。
【0023】
一括管理システムによって制御するユニットポンプの必要設置台数は、4台以上から100台以内であって、すなわち、4ヶ所の注入地点〜100ヶ所の注入地点に対し実用上は、4〜60台のユニットポンプを設置し、流路切換えバルブを連続的に切り換えながら注入領域を移行させて地下水を一定方向に押しやりながら注入材と置き換えることができる。
【0024】
本発明は、上記課題を解決するために注入材貯蔵槽から各注入地点に送液管を介し、ユニットポンプによって送液され、各注入地点の地盤中に注入管を介して注入される地盤注入材を、当該注入材の流路を送液管の各注入地点に接続された流路切換えバルブによって適宜切換えながら各注入地点に同時にまたは選択的に必要量を注入するようにしたものである。
【0025】
その際、各注入地点における注入材の流路の切換えは、地盤中に注入される注入材によって地下水が一定の方向に押しやられて排水されるように複数の注入地点で連続的に行うことができる。
【0026】
また、上述のユニットポンプと流路切換えバルブは複数台設置し、当該ユニットポンプおよび流路切換えバルブの作動は集中管理装置で一括して制御することができる。なお、流路切換えバルブには電磁バルブや流体圧などによって機械的に作動するもの、さらには手動で作動するもの等を用いることができる。
【0027】
このため、多数のユニットポンプは、一方では独立してそれぞれの注入地点に注入材を最適に注入する機能を有しながら、他方では多数の注入地点の注入を全体として一括管理する一セットの注入装置を構成して同時注入かつ他の注入地点への同時連続注入を可能にしている。
【0028】
本発明において、各注入地点の間隔は、平面的には0.5m〜4.0m程度、すなわち、一注入地点における浸透性固結径が0.5m〜4.0m程度である。また、縦断面的には0.3m〜4.0m程度で、場合によっては一層を固結層としてもよい。
【0029】
このように本発明は、複数のユニットポンプが複数の注入地点に、注入材を当該注入材の注入量、注入圧、および注入速度を管理しながら同時注入し、ユニットポンプは複数の流路切換えバルブを介して複数の注入地点に連続注入することができ、しかも各注入地点ごとの注入状況の把握と管理を可能とし、それぞれのユニットポンプにおける圧力、注入地点ごとに圧力性状を検出することができ、かつ注入地点を任意に選択し、かつ切り換えながら連続注入することにより小規模の注入装置でありながら、1セットで大吐出量の注入で大容量土の急速注入が可能で施工時間が短縮し、地盤改良を効率的に、かつ確実に行なうことができる。
【0030】
また、流路切換えバルブの作動による同時連続注入により、各注入地点における注入材の注入を、当該注入材によって地下水が一定方向に押しやられて、排水されるように行なうことにより、地下水の滞留部分(地下水ポケット)をなくして均一な地盤改良を行なうことができる。
【0031】
また、本発明によれば、可塑性ゲルを用いて具体例に示すように地下水を所定方向に押しやりながら可塑性ゲルそのものによる塊状固結体によって地盤改良を行なうことができる。
【0032】
また、地盤状況が各層ごとに異なる地盤に対しては、各層ごとに最適量の地盤注入材を同時にあるいは選択的に行なうことができ、また注入ステージを鉛直方向および/または横方向に適宜移動して地盤中の鉛直向および横方向への立体的な注入をも可能で、さらに複数の注入管による複数の注入地点への注入を任意に制御することを可能にして、複数の注入管を通して複数の注入地点に同時に注入することもできるため、これにより微細土層への浸透注入の信頼性を向上させ、かつ急速施工によって工期の短縮化も可能になる。
【0033】
また、複数の注入地点に横方向あるいは縦方向に同時にあるいは選択的にかつ連続的に注入することにより平面的かつ立体的に注入材の地下水との置き換えの方向性を制御して、これによって同時注入するにもかかわらず、注入領域内に地下水の貯留による未改良部分の形成を防ぎ、確実な注入効果を期待できる。
【0034】
さらに、以上を一括集中管理装置によって制御することにより、少ない台数のユニットポンプを用いて多数の注入地点に地盤注入材を効果的に注入できるようにし、かつ注入材によって地下水が閉じ込められることにより形成される未改良部分、いわゆる「地下水のポケット」の発生を防止して作業性のすぐれた注入効果が得られる。また、地中構造物に対する間隙水圧の上昇に伴なう変形や破壊にも対処することができる。
【0035】
なぜなら、地中構造物の周辺に注入地点を均等な間隔で配置し、複数の注入地点から注入材を同時注入することにより間隙水圧を均等に上昇させ、かつ流路切換えバルブを連続して切り換えて注入領域を地中構造物の外周部に移行させることによって間隙水圧を均等に低減させることができるため、地中構造物に間隙水圧が不均等に圧が加わることはないので、地中構造物に破壊や変位が生じにくい。
【0036】
なお、地盤注入材には軟弱地盤等の地盤を強化ないしは止水するための地盤固結用注入材、産業廃棄物等、公害物質の固化のための注入材、軟弱地盤に固結材そのものによる塊状固化物を造成してその周辺地盤を圧縮して強化するための可塑性グラウト、公害物質からの有害物質の漏出を防止する止水層を形成するための固結材、公害物質の無公害化のための化学物質を含む注入薬材、あるいは重金属等を化学的に不活性化する重金属固定材などを利用することができ、本発明は、使用し得る地盤注入材が溶液型注入材のみならず、懸濁型注入材も可能であり、これにより注入地点ごとのの地盤状況に応じた任意注入材を選択することができる。
【0037】
請求項1記載の地盤注入工法は、吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入する多点地盤注入工法であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、送液される地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置を備えた多連注入装置を用い、前記ユニットポンプを作動させ、当該ユニットポンプおよび流量・圧力計測装置を前記集中管理装置によって制御しつつ、地盤注入材を当該地盤注入材の流路を切換えながら複数の注入地点に同時にかつ連続的に注入することを特徴とするものである。
【0038】
請求項2記載の地盤注入工法は、請求項1記載の地盤注入工法において、地盤注入材の流路切換えは、地盤中に注入された地盤注入材によって地下水が押しやられて排水されるように複数の注入地点において行なうことを特徴とするものである。
【0039】
請求項3記載の地盤注入工法は、請求項1または2記載の地盤注入工法において、複数の注入管の吐出口が平面方向の異なる注入地点および/または鉛直方向の異なる注入地点に設置されてなることを特徴とするものである。
【0040】
請求項4記載の地盤注入工法は、請求項1〜3のいずれかに記載の地盤注入工法において、送液管に流量・圧力計測装置を接続し、当該流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を集中管理装置に送信し、当該情報に基づいて複数の注入地点に地盤注入材を注入することを特徴とするものである。
【0041】
請求項5記載の地盤注入工法は、請求項1〜4のいずれかに記載の地盤注入工法において、集中管理装置に注入監視盤を接続し、当該注入監視盤に流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を画面表示して、地盤注入材の注入状況の一括監視を行うことにより、各注入地点におけるそれぞれの注入圧力および/または流量を所定の範囲に維持しながら注入するとともに、上記データの情報に基づき、注入の完了、中止、継続あるいは流路切替えバルブの操作を行うことを特徴とするものである。
【0042】
請求項6記載の地盤注入装置は、吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入する多点地盤注入装置であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、前記地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置と、各注入地点における地盤注入材の注入状況を監視するための注入監視装置を備え、前記ユニットポンプは個々に動力源を備えてなることを特徴とするものである。
【0043】
請求項7記載の地盤注入工法は、請求項6記載の地盤注入装置において、各ユニットポンプには、集中管理装置から送信された地盤注入材の流量および/または圧力データの信号に基づいて制御され、各注入地点に送液される地盤注入材の流量および/または圧力を調整するための変速機構が備えつけられていることを特徴とするものである。
【発明の効果】
【0044】
本発明は、各注入地点の地盤中に注入管を介して注入される地盤注入材を、当該注入材の流路を路切換えバルブによって切換えながら各注入地点に同時にまたは選択的に必要量を注入することが可能なため、地盤中に注入される注入材によって地下水が一定の方向に押しやられて排水されるように注入材の注入を行うことにより、いわゆる「地下水のポケット」の発生を防止して地盤全体を均一に地盤改良することができる等の効果を有する。
【0045】
また、複数のユニットポンプが注入材を当該注入材の注入量、注入圧、および注入速度を管理しながら複数の注入地点に同時注入し、かつ少なくとも1ケ以上のユニットポンプは複数の流路切換えバルブを介して複数の注入地点に連続注入することができ、しかも各注入地点ごとの注入状況の把握と管理が可能なため、それぞれのユニットポンプにおける圧力、注入地点ごとに圧力性状を検出することができ、注入地点を任意に選択でき、かつ注入材の流路を任意に切り換えることが可能なことにより、小規模の注入装置でありながら1セットで大吐出量の注入で大容量土の急速注入が可能で施工時間が短縮し、地盤改良を効率的に、かつ確実に行なうことができる等の効果を有する。
【発明を実施するための最良の形態】
【0046】
図1は、本発明の多点地盤注入装置の一例を示す概念図である。図において、符号1は地盤注入材が注入される地盤の各注入地点(注入ポイント)に設置された注入管である。
【0047】
図示するように、各注入管1は、例えば地盤面上に複数の横軸X1,X2,X3,…と縦軸Y1,Y2,Y3,…とからなる格子枠を想定したときの横軸X1,X2,X3,…と縦軸Y1,Y2,Y3,…との各交点に鉛直に埋設されている。
【0048】
注入管1には先端に地盤注入材の吐出口を供えた単管構造のものや二重管構造のもの、あるいは一個乃至複数の吐出口を備えた外管にダブルパッカーやマルチパッカー(3ヶ以上のパッカー)を備えた内管を挿入することにより構成された二重管構造のもの、さらには軸方向の異なる位置に吐出口を有する細管を複数束ねたもの、あるいは外管に当該外管の軸方向に複数の袋パッカーとこの袋パッカー間に位置して複数の吐出口を設けることにより構成されたものを用いることができる。
【0049】
そして、例えば、外管に複数の袋パッカーと吐出口を供えた注入管1を用いて地盤中に注入材を注入するには、地盤中で袋パッカーを当該袋パッカー内にモルタル等の固化材を地上から供給して膨張させた後、注入管1内に地上から地盤注入材を供給する。
【0050】
そうすると、地盤注入材は注入管1の吐出口から地盤中に吐出され、注入管1の周囲で柱状または球状の固結体を形成することにより周囲の地盤を押し広げ圧縮することで地盤強度は高められる。
【0051】
また、地下水の排水方向に配慮して複数の注入地点に対して同時に注入材を注入することにより、注入材の固結体によって地下水が一定方向に押しやられるため、注入材の注入と同時に地下水を一定方向に押しやって排水することができる。
【0052】
なお、注入工法は特に、限定されるものではなく、例えば注入材を地盤中に均等に浸透させて地盤全体を均等に固結する浸透注入工法を採用することもできる。
【0053】
複数の注入地点に設けられる隣接する各注入管1,1間の間隔は地盤の性状等に応じて0.5m〜4.0m程度の範囲で適宜設定されている。
【0054】
符号2は、各注入地点の地盤中に注入される地盤注入材が貯蔵された注入材貯蔵槽、3と4は注入材貯蔵槽2から各注入地点の注入管1に地盤注入材を送液するための送液管であり、送液管3はY軸方向に沿って各注入地点の間に設置され、送液管4はX軸方向に沿って各注入地点の間に設置されており、したがって送液管3と送液管4はX軸方向とY軸方向に格子状に配置されている。
【0055】
符号U1〜8は、注入材貯蔵2から各注入地点に地盤注入材を送液管3と送液管4を介して送液すると共に、各注入地点の地盤中に注入管1を介して地盤注入材を注入するユニットポンプ、5は各ユニットポンプU1〜8を駆動させる動力源である。
【0056】
ユニットポンプU1〜8はそれぞれ個々に動力源5を備え、後述する集中管理装置6のコントローラ6aによって制御され、各注入地点に必要量の地盤注入材を送液し、かつ注入管1を介して各注入地点の地盤中に必要量の地盤注入材を注入可能なように送液管3に接続されている。
【0057】
符号7は各送液管3にそれぞれ接続され、各注入地点における地盤注入材の注入時の注入量と注入圧を計測するための流量・圧力計測装置であり、当該流量・圧力計測装置7は後述する集中管理装置6のコントローラ6bによって制御され、各注入地点の地盤中に注入される地盤注入材の注入量、注入圧および注入速度をリアルタイム測定できるように送液管3に接続されている。
【0058】
ユニットポンプU1〜8と当該ユニットポンプU1〜8を駆動する動力源5と流量・圧力計測装置7はそれぞれ一台ずつ組み合わさって一系統(1セット)の注入装置を構成し、複数系統が配置され、かつ系統が送液管3および4を介して注入材貯蔵槽2と各注入地点の注入管1に接続されている。
【0059】
したがって、注入材の注入中に一部のユニットポンプにトラブルが発生して稼動不可能になったとしても、他の注入系統から注入材を継続して送液できるようになっている。
【0060】
符号8は、送液管3または送液管4によって注入材貯蔵槽2から各注入地点に送液される地盤注入材の流路を、各注入地点において切り換える流路切換えバルブであり、当該流路切換えバルブ8は各注入地点の送液管3と送液管4との接続部に接続されている。
【0061】
そして、注入材貯蔵槽2から各注入地点に送液された地盤注入材は、流路切換えバルブ8によって流路を切り換えられ、例えば流路切換えバルブ8の接続された注入管1を通って地盤中に注入されるか、あるいは送液管3または4を介して他の注入地点に送液される。
【0062】
また、各注入地点の流路切換えバルブ8は、後述する集中管理装置6のコントローラ6cによって制御され、それぞれの注入地点ごとあるいは複数の注入地点ごとに注入材の流路を自由に切り換えられるようになっている。
【0063】
符号6はユニットポンプU1〜8、動力源5、流量・圧力測定装置7および流路切換えバルブ8をそれぞれ集中的に制御するための集中管理装置であって、各ユニットポンプU1〜8とその動力源5を制御するためのコントローラ7a、各圧力・流量測定装置7を制御するためのコントローラ6bおよび各流路切換えバルブ8を制御するためのコントローラ6cをそれぞれ備えて構成されている。
【0064】
そして、たとえば、コントローラ6bがある注入地点の流量・圧力測定装置7から送信されたその注入地点における注入材の流量および/または圧力に関する情報を得ると、コントローラ6bはその注入地点に所定の圧力範囲、注入速度の範囲で注入材を送液するようにユニットポンプUと動力源5をコントロール(回転変則機構によって回転数を変える等)する。
【0065】
そして、当該注入地点の注入材の注入量が所定量に達すると、コントローラ6cにその旨の情報が送信され、そうするとコントローラ6cはその注入地点の流路切換えバルブ8を作動させて次の注入地点の注入管に注入液を送液するようにコントローラ6bに情報を送信する。このような制御によって各注入地点、または複数の注入地点に必要量の注入材を注入材貯蔵槽2から連続的にかつ同時に送液することができる。
【0066】
符号9は注入材の注入地点、各注入地点における注入材の注入状況さらには各注入地点への注入材の送液状況などを監視するための監視盤であって、集中管理装置6に接続されている。当該監視盤9には実際の各注入地点と各注入地点間の送液管3と送液管4の配置形態などが液晶表示方式などによって表示されている。
【0067】
そして、この監視盤9を通して注入材の注入地点、各注入地点における注入材の注入状況、さらには各注入地点までの注入材の流路などが人目で確認できるようになっている。さらに、監視盤9を見ながら注入地点、注入地点までの注入材の流路などを自由に設定し、また変更できるようになっている。
【0068】
このような構成において、注入材貯蔵槽2から送液管3および4を介して各注入地点に送液された注入材は、注入地点ごとに注入管1を介し、コントローラ6aによって制御されたユニットポンプU1〜8によって各注入地点の地盤中に注入される。
【0069】
またその際、コントローラ6bによって制御された流量・圧力計測装置7によって最適な注入量および/または注入圧が注入地点ごとに設定され、各注入地点の地盤性状に応じて最適量の注入材が注入される。
【0070】
さらに、各注入地点の流路切換えバルブ8がコントローラ6bによって制御され、注入管1ごとにあるいは複数の注入管1ごとに作動することにより、注入材が注入地点ごとに、あるいは複数の注入地点ごとに注入管1を介して地盤中に注入される。
【0071】
また、流量・圧力測定装置7によって注入地点ごとの注入材の注入量、注入圧および注入速度が計測され、その情報はコントローラ6にリアルタイムで送信される。
【0072】
なお、図1に図示する多点地盤注入装置においては、8台のユニットポンプU1〜8が配置され、それぞれが個々に動力源5を備え、かつそれぞれが送液管3と送液管4を介して注入材貯蔵槽2と各注入地点の注入管1に接続されている。また注入管1は、Y1〜8軸の各軸に沿ってそれぞれ配置された各送液管3に流路切換えバルブ8を介して8本接続されている。したがって、8台のユニットポンプU1〜8により計8×8=64本の注入管1によって注入材の同時・連続注入が集中管理装置6による一括管理の下に可能になるため、装置の軽量化と作業性の飛躍的向上が可能になる。
【0073】
また、各注入地点の流路切換えバルブ8を連続的に作動することにより各Y軸上の任意の注入管1への選択的かつ連続的送液が可能になり、これにより地下水を所定の方向に押しやり排水しながら、注入材を注入して土粒子間の地下水を注入材と置き換えることができる。
【0074】
さらに、複数の各Y軸方向の送液管3と各X軸方向の送液管4を平面格子状に配置すると共に、送液管3と送液管4との各交点に注入管1を設置することにより、注入管1の選択が可能になり、地盤に対応した、あるいは地中構造物の存在にも考慮した地下水の周辺への排水も可能になり、緻密な地盤改良を行なうことができる。
【0075】
また、上記による送液管の回路を注入装置を構成する一部分として各注入管1からユニットポンプU1〜8に至るまでの任意の位置に送液回路盤として設けて回路盤の交点から各注入管へ送液管を繋ぐことによってコンパクトな注入装置を構成することができる。
【0076】
次に、図2に基づいて、本発明の多点地盤注入工法の施工手順の一例を地盤中の地下水をX8軸側からX1軸方向に(図面上、上側から下側方向に)排水しながら行う場合について説明する。
【0077】
最初に、各ユニットポンプU1〜U8にそれぞれ接続されたY1〜Y8軸上の送液管3とX8軸上の送液管4との各交点(注入地点)に接続された流路切換えバルブ8をX8軸上の各注入地点の注入管1側と各ユニットポンプU1〜8側にのみ開く。そして、各ユニットポンプU1〜U8を作動させてX8軸上の各注入地点に注入管1を介して注入材を注入する。
【0078】
次に、Y1〜Y8軸上の各送液管3とX8軸上の送液管4との各交点(注入地点)に接続された各流路切換えバルブ8、およびY1〜Y8軸上の各送液管3とX7軸上の送液管4との各交点(注入地点)に接続された各流路切換えバルブ8をX7軸上の各注入管1側と各ユニットポンプU1〜8側にのみ開く。そして、各ユニットポンプU1〜8を作動させてX7軸上の各注入地点に注入材を注入する。
【0079】
以下、同様にして、Y1〜Y8軸上の各送液管3とX6〜X1軸上の各送液管4との各交点(注入地点)に接続された各流路切換えバルブ8をX1軸方向に順に切換えながら各注入地点に注入材を注入する。
【0080】
このように地盤注入材を注入することにより、地盤中の地下水は各注入地点に注入された注入材によってX8軸側からX1軸側に押しやられながらX1軸方向に排水される(図中太い矢印方向)。
【0081】
次に、図3と図4に基づいて、本発明の多点地盤注入工法の他の施工手順を、地盤中の地下水をY4軸からその両方向(図面上、Y4軸の左右方向)に排水しながら行う場合について説明する。
【0082】
最初に、Y4軸上の各注入地点に接続された各流路切換えバルブ8をY4軸上の各注入管1側にのみ開く。また、各ユニットポンプU1〜U8とY4軸上の各注入地点の注入管1をそれぞれ最短の送液管3と送液管4によって接続する。例えば、ユニットポンプU1と注入地点P5の注入管1、ユニットポンプU2と注入地点P6の注入管1、ユニットポンプU3と注入地点P7の注入管1というように、ユニットポンプU1〜8と注入地点P1〜P8の注入管1をそれぞれ接続する。この場合、各ユニットポンプUと注入地点Pの最短の流路となる各注入地点の流路切換えバルブ8をその二方向にのみ開放するだけで接続は完了する。
【0083】
そして、各ユニットポンプU1〜U8を作動させることにより、Y4軸上の8ヶ所の注入地点に注入材を同時に注入することができる。なお、図3において太い線で図示した線が各注入地点の注入管1とユニットポンプ間の注入材流路を示す。
【0084】
こうして、Y4軸上の各注入地点に対して注入材の注入が完了したら、Y4軸の図左側のY3軸〜Y1軸方向に注入地点を順次切り替えながら注入材を注入し、Y4軸より左側の各注入地点に対する注入が完了したら、次にY4軸より右側のY5軸〜Y8軸へと注入地点を順に切り換えながら各Y軸上の注入地点に対して地盤注入を行う。
【0085】
例えば、Y3軸上の各注入地点に注入材を注入するには、最初にY3軸上の各注入地点に接続された各流路切換えバルブ8をY3軸上の各注入管1側にのみ開く。また、各ユニットポンプU1〜8とY3軸上の各注入地点をそれぞれ最短の送液管3と送液管4によって接続する。すなわち、ユニットポンプU1と注入地点P6の注入管1、ユニットポンプU2と注入地点P7の注入管1、ユニットポンプU3と注入地点P8の注入管1というように、ユニットポンプU1〜8と注入地点P1〜P8の注入管1をそれぞれ接続する(図4参照)。この場合、各ユニットポンプUと各注入地点Pの最短の流路となる各注入地点の流路切換えバルブ8をその二方向にのみ開放するだけで接続は完了する。
【0086】
そして、各ユニットポンプU1〜U8を作動させることにより、Y3軸上の8ヶ所の注入地点に注入材を同時に注入することができる。
【0087】
このようにして地盤注入を行なうことにより、地下水は注入材によってY4軸の左方向、そして右方向にそれぞれ押しやられて排水される。図中、矢印は地下水の排水方向を示している。
【0088】
図5は、基礎杭などの地中構造物の周辺地盤に対して地盤注入材を注入する注入工法を示したものであり、地中構造物10の周囲地盤上に注入地点を設定し、各注入地点の地盤中に注入管1をそれぞれ埋設して注入材の注入を行なう。 この場合の注入地点は、地盤の性状や地下水の位置などを適宜参酌して決定する。したがって、注入管1の設置間隔は必ずしも等間隔である必要はない。
【0089】
注入管1の設置が完了したら、ユニットポンプU1〜8を作動させて注入材貯蔵槽2から注入材を各注入地点に送液する。そして、各注入管1を介して各注入地点の地盤中に注入材を注入する。この場合、注入材によって地下水が地中構造物10側から外方向に押しやられるように各注入地点に注入材を順に注入するのとする。すなわち、注入地点を地中構造物10側から外方向に移動しながら地盤注入を行なう。
【0090】
注入材の同時連続注入によって、地下水は矢印のように外側、即ち地中構造物10の外方向に押しやられながら注入材と置き換わって固結領域を広げていく。この結果不均質な間隙水圧の上昇によって地中構造物に不均質な圧力作用による変形や破壊を生ずることもなく、また同時連続注入による地下水の外側方向への移動によって地中構造物に加わる圧力を均等に低減して地中構造物の破壊や変位を防ぐという効果を有する。
【0091】
また、注入材が可塑性ゲルの場合でも、地下水の間隙水圧の上昇が少なくてすむため、大きな固結体が形成され、かつ固結体の周辺の砂の密度増加が均等に行なわれるため、地中構造物に不均等な荷重が作用することがない利点がある。
【産業上の利用可能性】
【0092】
本発明は、複数の注入管からの注入を任意に制御し得るとともに、複数の注入管を通して複数の注入ポイントに同時にかつ連続的に注入することができ、これにより微細土層への浸透注入の信頼性が向上し、地中構造物に対する間隙水圧の上昇による変形や破壊などの危険を防止し、かつ小規模な注入装置で急速施工によって注入工期も短縮される。
【図面の簡単な説明】
【0093】
【図1】本発明の多点地盤注入装置を示す概念図である。
【図2】地盤注入材の注入方法の一例を示す概念図である。
【図3】地盤注入材の注入方法の一例を示す概念図である。
【図4】地盤注入材の注入方法の一例を示す概念図である。
【図5】地中構造物の周囲地盤中に地盤注入材を注入する方法を示す概念図である。
【符号の説明】
【0094】
1 注入管
2 注入材貯蔵槽
3 送液管
4 送液管
5 ユニットポンプの動力源
6 集中管理装置
7 流量・圧力計測装置
8 流路切換えバルブ
9 監視盤
10 地中構造物
U1〜U8 ユニットポンプ
P 注入地点(ポイント)

【特許請求の範囲】
【請求項1】
吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入する多点地盤注入工法であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、送液される地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプ、流路切換えバルブおよび流量・圧力計測装置を制御するための集中管理装置を備えた多連注入装置を用い、前記ユニットポンプを作動させ、当該ユニットポンプおよび流量・圧力計測装置を前記集中管理装置によって制御しつつ、地盤注入材を当該地盤注入材の流路を切換えながら複数の注入地点に同時にかつ連続的に注入することを特徴とする多点地盤注入工法。
【請求項2】
地盤注入材の流路切換えは、地盤中に注入された地盤注入材によって地下水が押しやられて排水されるように複数の注入地点において行なうことを特徴とする請求項1記載の多点地盤注入工法。
【請求項3】
複数の注入管の吐出口が平面方向の異なる注入地点および/または鉛直方向の異なる注入地点に設置されてなることを特徴とする請求項1または2に記載の多点地盤注入工法。
【請求項4】
送液管に流量・圧力計測装置を接続し、当該流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を集中管理装置に送信し、当該情報に基づいて複数の注入地点に地盤注入材を当該地盤注入材の流路を流路切換えバルブによって切換えながら注入することを特徴とする請求項1〜3のいずれかに記載の多点地盤注入工法。
【請求項5】
集中管理装置に注入監視盤を接続し、当該注入監視盤に流量・圧力計測装置で計測された地盤注入材の流量および/または圧力データの信号を画面表示して、地盤注入材の注入状況の一括監視を行うことにより、各注入地点におけるそれぞれの注入量および/または注入圧を所定の範囲に維持しながら注入するとともに、上記データの情報に基づき、注入の完了、中止、継続あるいは流路切換えバルブの操作を行うことを特徴とする請求項4記載の多点地盤注入工法。
【請求項6】
吐出口を有する複数の注入管を介して複数の注入地点に地盤注入材を注入するための多点地盤注入装置であって、各注入地点の地盤中に地盤注入材を注入するための複数の注入管と、当該各注入管どうしを相互に接続するための複数の送液管と、当該送液管を介して各注入地点に地盤注入材を液送すると共に、前記注入管を介して地盤中に地盤注入材を注入するための複数のユニットポンプと、各注入地点において地盤注入材の流路を切り換えるための複数の流路切換えバルブと、前記地盤注入材の流量および/または圧力を計測するための流量・圧力計測装置と、前記ユニットポンプおよび流量・圧力計測装置を制御するための集中管理装置と、各注入地点における地盤注入材の注入状況を監視するための注入監視装置を備えてなることを特徴とする多点地盤注入装置。
【請求項7】
各ユニットポンプには、集中管理装置から送信された地盤注入材の流量および/または圧力データの信号に基づいて制御され、各注入地点に送液される地盤注入材の流量および/または圧力を調整するための変速機構が備えていることを特徴とする請求項6記載の多点地盤注入装置。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2008−231709(P2008−231709A)
【公開日】平成20年10月2日(2008.10.2)
【国際特許分類】
【出願番号】特願2007−69873(P2007−69873)
【出願日】平成19年3月19日(2007.3.19)
【出願人】(000162652)強化土エンジニヤリング株式会社 (116)
【Fターム(参考)】