説明

導波路デバイス

【課題】有機電気光学材料を用いた導波路デバイスにおいて、ドリフト現象の発生を抑えた実用的な導波路デバイスを提供すること。
【解決手段】基板201上に、第1電極(下部電極202)、第1クラッド層(下部クラッド層203)、導波路204、第2クラッド層(上部クラッド層205)、及び第2電極(上部電極206)が順次積層され、前記下部クラッド層203、導波路204、上部クラッド層205のうち少なくともひとつの層が、金属若しくは金属イオンに対して配位可能な配位子化合物を含有して構成されていることを特徴とする導波路デバイスである。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、導波路デバイスに関するものである。
【背景技術】
【0002】
情報化社会の進展は著しく、特に最近では動画をはじめとする大容量の情報が企業間だけでなく個人の間でも頻繁にやり取りされるようになり、更なる大容量の高速通信手段が求められている。そのため、大容量高速情報通信が可能な光通信の重要性はますます高まっている。
【0003】
大容量高速通信を支える技術の一つに、光通信技術がある。光通信に用いられるデバイスとしては、光ファイバをはじめとして、光スイッチ素子、光変調器やルーターなどの様々な導波路デバイスがあり、これらのデバイスを組み合わせることにより、様々な機能を有する光回路が作製される。特に、光スイッチ素子や光変調器などの光素子には、電場によって屈折率が変化する「電気光学効果(EO効果)」を有する有機電気光学材料(非線形光学材料)がしばしば使用されている。特に、有機電気光学材料は、材料の誘電率が低いためにマイクロ波・ミリ波領域と光波領域との速度不整合がなく、応答速度を大幅に改善できる可能性があり、注目を集めている。さらに、有機電気光学材料は高分子材料に分散、又は結合させることで、スピンコート法などによって容易に大面積の薄膜を形成でき、加工性も向上するため、極めて安価に素子化できるという大きな利点を有している。具体的な電気光学材料の例としては、EO効果を有する低分子化合物を高分子材料に分散させたもの、EO分子を高分子材料に結合させたものの他、EO効果を有する低分子化合物であるDAST(4‐N,N‐dimethylamino‐4’‐N‐methyl‐stilbazolium tosylate)の結晶を用いた例が挙げられる(例えば、特許文献1及び2、非特許文献1参照。)。
【特許文献1】特開平8−87040号公報
【特許文献2】特開2003−202533号公報
【非特許文献1】J.Opt.Soc.Am.,B,4,968(1987).
【発明の開示】
【発明が解決しようとする課題】
【0004】
ところで、ニオブ酸リチウム(LiNbO3、以下「LN」と略す)に代表される無機強誘電体結晶を用いた導波路デバイスでは、駆動信号の動作点が温度や駆動時間によってシフトしてしまうことが知られている(この現象をドリフト現象という)。一方、有機電気光学材料(非線形光学材料)を用いる導波路デバイスにおいても、長期間駆動しつづけると同様にドリフト現象が起こることが確認されており、デバイスの実用化のためにはドリフト現象を抑える必要がある。
【0005】
本発明の課題は、有機電気光学材料を用いる導波路デバイスにおいて、ドリフト現象の発生を抑えた実用的な導波路デバイスを提供することにある。
【課題を解決するための手段】
【0006】
上記課題は、以下の手段により解決される。即ち、
請求項1に係る発明は、
基板上に、第1電極、第1クラッド層、導波路層、第2クラッド層、及び第2電極が順次積層され、前記第1クラッド層、導波路層、及び第2クラッド層のうち少なくとも一つが金属若しくは金属イオンに対して配位可能な配位子化合物を含有して構成されていることを特徴とする導波路デバイスである。
【0007】
請求項2に記載の発明は、
前記配位子化合物が、包接化合物であることを特徴とする請求項1に記載の導波路デバ
イスである。
【0008】
請求項3に記載の発明は、
前記包接化合物が、環状ポリエーテル構造を持つ化合物であることを特徴とする請求項
2に記載の導波路デバイスである。
【0009】
請求項4に記載の発明は、
前記環状ポリエーテル構造を持つ化合物が、クラウンエーテル類であることを特徴とする請求項3に記載の導波路デバイスである。
【0010】
請求項5に記載の発明は、
前記配位子化合物が、配位子化合物を主鎖又は側鎖に有するポリマーであることを特徴とする請求項1乃至4に記載の導波路デバイスである。
【発明の効果】
【0011】
本発明によれば、有機電気光学材料を用いる導波路デバイスにおいて、ドリフト現象の
発生を抑えた実用的な導波路デバイスを提供することができる。
【発明を実施するための最良の形態】
【0012】
以下、本発明の実施形態について図面を参照しつつ説明する。なお、実質的に同一の機
能・作用を持つ部材には、全図面を通して同じ符合を付与し、重複する説明を省略する場
合がある。
【0013】
図1は、実施形態に係る導波路デバイスを示す概略断面図である。
実施形態に係る導波路デバイス100は、図1に示すように、基板201上に、下部電極202(第1電極)、下部クラッド層203(第1クラッド層)、導波路204、上部クラッド層205(第2クラッド層)、及び上部電極206(第2電極)を順次積層した積層体で構成されている。
【0014】
以下、導波路デバイス100を、その作製プロセスと共に詳細に説明する。以下に示す作製プロセスは一例であり、デバイスの構造や使用する材料などに合わせて変更しても構わない。
【0015】
ここで、図2には、基板201上に、下部電極202、下部クラッド層203、導波路204、上部クラッド層205、及び上部電極206を形成して導波路デバイスを作製する工程を順次示している。
【0016】
[基板]
まず、基板201を準備する。基板としては特に限定されないが、平坦性に優れたものが好ましい。例えば、金属基板、シリコン基板、透明基板等が挙げられ、導波路型光変調素子の形態によって適宜選択可能である。金属基板の好ましい例としては、金、銀、銅、アルミニウム、シリコン等の基板が挙げられ、透明基板の好ましい例としては、石英、ガラス、プラスチック等の基板が挙げられる。
【0017】
[下部電極]
次に、図2(A)に示すように、基板201上に下部電極202(電気配線)を形成する。下部電極202としては、例えば、金属蒸着層、透明電極層等が適用される。蒸着する金属の好ましい例としては、金、銀、銅、アルミニウム等が挙げられる。また、透明電極層の好ましい例としては、インジウムスズ酸化物(ITO)、フッ素ドープスズ酸化物(FTO)、アンチモンドープスズ酸化物等が挙げられる。
【0018】
[下部クラッド層]
次に、図2(B)に示すように、下部電極202上に下部クラッド層203を形成する。下部クラッド層203の材料としては、ポリイミド、フッ素化ポリイミドの他、光硬化性のアクリル樹脂やエポキシ樹脂が好ましい例として挙げられる。材料の塗布法としては周知の手法、例えば、スピンコーティング法、ディップコーティング法、スプレーコーティング法、印刷コーティング法等を採用することができ、特にスピンコーティング法が簡便である。
【0019】
[導波路]
次に、図2(C)に示すように、下部クラッド層203上に導波路層204Aを形成する。導波路層204Aの形成は、構成材料を有機溶剤に溶解、又は熱で溶融させた状態において下部クラッド層203上に塗布する。塗布法としては周知の手法、例えばスピンコーティング法、ディップコーティング法、スプレーコーティング法、印刷コーティング法等を採用することができ、特にスピンコーティング法が簡便である。
【0020】
次に、図2(D)に示すように、導波路層204Aを形成した後、反応性イオンエッチング(RIE)、フォトリソグラフィ、電子線リソグラフィ等の半導体プロセス技術を用いた公知の方法により導波路層204Aをパターニングし、リッジ型の導波路204を形成する。また、導波路層204Aの一部にUV光、電子線等をパターニングして照射することにより、照射部分の屈折率を変化させて導波路204を形成してもよい。なお、本実施形態では、リッジ型の導波路204を形成した形態を示しているが、これに限られず、例えば、チャネル型の導波路、逆リッジ型の導波路、正逆リッジ型の導波路(厚み方向の双方に凸部を持つ導波路)であってもよい。
【0021】
導波路204としては光波工学(コロナ社、1988年発行)、第107章、204頁に記載されている周知の導波路、例えば分岐導波路型、マッハツェンダー型、方向性結合器型、交差導波路型等が採用される。
【0022】
有機EO材料としては、下部クラッド層203や上部クラッド層205よりも屈折率が高い材料が選択される。有機電気光学材料としては、ポリマー中に電気光学効果を有する低分子化合物を分散させた系や、側鎖又は主鎖にEO効果を有する低分子化合物が結合したポリマーが挙げられる。ポリマーとしては、例えば、ポリイミド、フッ素化ポリイミド、ポリカーボネート、ポリサルホン、ポリアクリレート、ポリメタクリレート、ポリエーテルイミド、ポリエーテルサルホンなどが挙げられ、中でも光の伝搬損失が少ないフッ素化ポリイミドが好適に挙げられる。なお、Chemical Reviews,Vol.94 No.1 31頁(1994)によれば、非線形光学材料をポリマー中に分散させて導波路として用いる場合には、デバイスの長期信頼性の観点からポリマーのガラス転移点が200℃以上のものを選ぶことが望ましい。
【0023】
また、EO効果を示す低分子化合物として好適に使用可能な具体例としては、電子供与性基と電子求引性基を有するアゾ色素や、メロシアニン系の色素などが挙げられ、中でも好適な例としては、Disperse Red 1(DR1)や、2−メチル−6−(4−N,N−ジメチルアミノベンジリデン)−4H−ピラン−4−イリデンプロパンジニトリル、4−{[4−(ジメチルアミノ)フェニル]イミノ}−2,5−シクロヘキサジエン−1−オンなどが挙げられる。
【0024】
[上部クラッド層]
次に、図2(E)に示すように、導波路204上に、上部クラッド層205を形成する。導波路204の上に作製される上部クラッド層205としては、導波路204よりも屈折率の低い材料であれば、いかなる材料を用いても構わない。具体的な上部クラッド層205の材料としては、ポリイミド、フッ素化ポリイミドの他、光硬化性のアクリル樹脂やエポキシ樹脂が好ましい例として挙げられる。材料の塗布法としては周知の手法、例えばスピンコーティング法、ディップコーティング法、スプレーコーティング法、印刷コーティング法等を採用することができ、特にスピンコーティング法が簡便である。
【0025】
ここで、下部クラッド層203、導波路層路204、及び上部クラッド層205のうち、少なくともひとつの層は金属もしくは金属イオンに対して配位可能な配位子化合物を含有させる。金属若しくは金属イオンに対して配位可能な配位子化合物としては、孤立電子対を有する酸素原子、窒素原子、硫黄原子、リン原子を含有する化合物を挙げることができる。また、配位子化合物は単量体でも十分適用できるが、主鎖又は側鎖に配位子化合物の構造を有する高分子化合物(配位子化合物を主鎖又は側鎖に有するポリマー)でもよい。配位子化合物を具体的に挙げれば、単座配位子化合物では例えば、ピリジン、トリフェニルホスフィン、トリエチルアミン等が、二座配位子化合物では例えば、エチレンジアミン、ビピリジン、フェナントロリン、BINAP(2,2’−ビス(ジフェニルホスフィノ)−1,1’−ビナフチル))などが、三座以上の多座配位子化合物では例えば、ターピリジン、エチレンジアミン四酢酸、ポルフィリン、クラウンエーテル、シクロデキストリン、カリックスアレーン(シクロファン)などが挙げられる。これらの中でも、二座以上の多座配位子化合物は、金属若しくは金属イオンとの結合定数が大きく、金属若しくは金属イオンの移動を抑えるという観点から、ドリフト現象抑制効果の点から好適である。
【0026】
また、配位子化合物は、包接化合物(例えば、クラウンエーテル、クリプタンド、シクロデキストリン、カリックスアレーン(シクロファン)など)であることが望ましく、特にポリエーテル構造を持つ化合物であることが、やはりドリフト現象抑制効果の点から好適である。このような、包接化合物であり、環状ポリエーテル構造を持つ化合物としては、クラウンエーテル類(例えば12−クラウン−4、15−クラウン−5、18−クラウン−6など)が代表的なものとして挙げられる。
【0027】
なお、包接化合物とは、分子内に一次元乃至三次元の分子規模の空間を有する化合物にその空間に適合しうる他の化合物が取り込まれることにより生じる化合物を指すが、本明細書における「包接化合物」とは、分子内に空間を有し、包接化合物を形成しうる所謂ホスト化合物を指すものとする。
【0028】
下部クラッド層203、導波路層204、及び上部クラッド層205のうち、少なくともひとつの層において、配位子化合物の含有量は、全固形分に対して0.001質量%以上10質量%以下であることが望ましく、より望ましくは0.01質量%以上3質量%以下である。
【0029】
[上部電極]
次に、図2(F)に示すように、上部クラッド層205上の全面、又は一部には、必要に応じて上部電極206(電気配線)を配する。上部電極を形成する材料は下部電極と同様、特に限定されない。例えば、金属であれば、金、銀、銅、アルミニウム等を用いることができる。上部電極はこれらの材料を蒸着した電極であることが好ましい。
【0030】
なお、上述のプロセスでは述べなかったが、前記導波路デバイス100に非線形光学効果を発現させるために、分極配向処理を施すことがよい。分極配向処理は、試料の軟化状態もしくは流動状態において、試料に電極を装着し直流電場を印加するか、コロナ放電による帯電電荷を利用することができる。試料の固化は、冷却による場合や高分子の熱硬化による場合があるが、いずれも、電場印加状態又は帯電状態で行うことが望ましい。この工程は、導波路形成後であればいつ実行してもよいが、後の工程で加熱の必要がある場合には、非線形光学効果の低下が起こってしまうため、分極配向処理を最終工程として行うことが好ましい。
【0031】
このようにして作製された導波路デバイス100は、ダイシングやへき開によりウエハーからチップを切出すことで、デバイスとして完成する。
【0032】
ここで、本実施形態に係る導波路デバイスの型については、特に制限はなく、例えば図3(A)乃至(D)に示す型のデバイスが挙げられる。図3(A)〜(D)は、それぞれの導波路デバイスを真上から見た平面図であり、図1と同じ構成要素には同じ符合を付し、内部の導波路部分を視認できるように描いている。図3(A)はマッハ−ツェンダ型の導波路デバイス、(B)はモード変換型の導波路デバイス、(C)は分岐スイッチ型の導波路デバイスであり、(D)はMulti−Mode Interferometer型の導波路デバイスである。
【0033】
以上説明した実施形態に係る導波路デバイス100では、下部クラッド層203、導波路層204、及び上部クラッド層205のうち少なくともひとつの層が、金属若しくは金属イオンに対して配位可能な配位子化合物を含有して構成されている。この構成により、ドリフト現象の発生を抑えた実用的な導波路デバイスとなる。
【実施例】
【0034】
以下、本発明を実施例によりさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0035】
[実施例1]
有機電気光学材料(非線形光学材料)の溶液として、シクロヘキサノン、ポリスルホン、及び[3−シアノ−2−ジシアノメチリデン−4−{trans,trans−[3−(2−(4−N,N−ジエチルアミノフェニル)ビニル)シクロヘク−2−エチリデン]−1−プロペニル}−5−メチル−5−(4−シクロヘキシルフェニル)−2,5−ジヒドロフランを、前記すべての材料の総質量を100質量部としてそれぞれ、83質量部、14質量部、及び3質量部からなる溶液(以下、PSI溶液)を調製した。PSI溶液に、当該溶液10gに対して0.02gの18−クラウン−6を添加し、PSI−E溶液を調整した。
【0036】
ここで、PSI−E溶液を石英基板上に塗布し、120℃で加熱したサンプルを作製し、屈折率をプリズムカップリング法により測定したところ、屈折率は1.65であった。
【0037】
次に、下部電極として金をスパッタしたシリコン基板上に、下部クラッド層として屈折率1.54のアクリル系紫外線硬化樹脂を塗布し、紫外線を照射して膜厚3.5μmの樹脂硬化膜を得た。
【0038】
次に、下部クラッド層上に前記PSI−E溶液を塗布した後、加熱・硬化させて、膜厚3.3で屈折率1.64の導波路層を形成した。そして、導波路層に対し、フォトリソグラフィに続くエッチングを施し、マッハ−ツェンダ型の導波路(リッジ型)をパターニングした。導波路の膜厚は3.3μmであり、リッジ高さは0.7μm、リッジ幅は5μmであった。
【0039】
次に、導波路上に、下部クラッド層と同様にして紫外線硬化樹脂を塗布し、膜厚3.5μm厚の上部クラッド層を作製した。
【0040】
次に、上部クラッド層上に、上部電極をフォトリソグラフィに続くリフトオフによってマッハ−ツェンダ型の導波路の2つアームと重なるようにそれぞれ形成した後、ポーリング処理(分極配向処理)を施し、ダイシングによりウエハーからチップを切出すことで、電気光学効果を有するマッハ−ツェンダ型の導波路デバイスを作製した。
【0041】
得られたマッハ−ツェンダ型導波路デバイスの一方の上部電極に、交流電圧(条件:−20V〜+20V、10Hz)を印加することで、交流電場を付与し、応答特性のシフト時間変化(位相(Phase)rad変化)を測定した。その結果を図4に示す。図4に示すように、500時間にわたる測定の結果、動作点のシフトは殆どなく、ドリフト現象が抑制されていることがわかる。
【0042】
なお、本実施例では導波路層にのみ金属若しくは金属イオンに対して配位可能な配位子化合物18−クラウン−6を添加した例を示したが、本発明の効果は本実施例により限定されるものではない。例えば、配位子化合物を導波路層ではなく、第1クラッド層、又は第2クラッド層に添加した場合や、第1クラッド層、導波路層、及び第2クラッド層のうち複数の層に配位子化合物を添加した場合にも同様の効果を得ることができる。
【0043】
[比較例1]
上記PSI溶液を用いて導波路を形成した以外は、実施例1と同様にして導波路デバイスを作製した。なお、PSI溶液を石英基板上に塗布し、120℃で加熱したサンプルを作製し、屈折率をプリズムカップリング法により測定したところ、屈折率は1.66であった。
【0044】
得られたマッハ−ツェンダ型導波路デバイスの一方の上部電極に、交流電圧(条件:−20V〜+20V、10Hz)を印加することで、交流電場を付与し、応答特性のシフト時間変化(位相(Phase)rad変化)を測定した。その結果を図5に示す。図5に示すように、500時間にわたる測定の結果、実施例1に比べ短時間で動作点が大きくシフトしてしまった。
【図面の簡単な説明】
【0045】
【図1】実施形態に係る導波路デバイスを示す断面図である。
【図2】実施形態に係る導波路デバイスの作製プロセスを示す工程図である。
【図3】実施形態に係る導波路デバイスの型の一例を示す平面図である。
【図4】実施例1で作製した導波路デバイスの応答特性のシフトの時間変化(位相変化)を示すグラフである。
【図5】比較例1で作製した導波路デバイスの応答特性のシフトの時間変化(位相変化)を示すグラフである。
【符号の説明】
【0046】
100 導波路デバイス
201 基板
202 下部電極
203 下部クラッド層
204 導波路層
205 上部クラッド層
206 上部電極

【特許請求の範囲】
【請求項1】
基板上に、第1電極、第1クラッド層、導波路層、第2クラッド層、及び第2電極が順次積層され、前記第1クラッド層、導波路層、及び第2クラッド層のうち少なくとも一つが金属若しくは金属イオンに対して配位可能な配位子化合物を含有して構成されていることを特徴とする導波路デバイス。
【請求項2】
前記配位子化合物が、包接化合物であることを特徴とする請求項1に記載の導波路デバ
イス。
【請求項3】
前記包接化合物が、環状ポリエーテル構造を持つ化合物であることを特徴とする請求項
2に記載の導波路デバイス。
【請求項4】
前記環状ポリエーテル構造を持つ化合物が、クラウンエーテル類であることを特徴とする請求項3に記載の導波路デバイス。
【請求項5】
前記配位子化合物は、配位子化合物を主鎖又は側鎖に有するポリマーであることを特徴とする請求項1乃至4に記載の導波路デバイス。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2009−80464(P2009−80464A)
【公開日】平成21年4月16日(2009.4.16)
【国際特許分類】
【出願番号】特願2008−182712(P2008−182712)
【出願日】平成20年7月14日(2008.7.14)
【出願人】(000005496)富士ゼロックス株式会社 (21,908)
【Fターム(参考)】