説明

導電性の材料から成る層の厚さを無接触に突き止めるための方法

部品(17)の導電性材料から成る層(20)の厚さを無接触で突き止めるための方法において、コイル体(13)とコイル(14)とから成るセンサが測定すべき部品(17)の近傍に位置決めされる。この方法は誘導および渦電流原理の組み合わせに基づいている。コイル(14)に第1の交流電流周波数f1および第2の交流電流周波数f2が供給されかつそのインダクタンス変化が評価される複数の測定および評価ステップにより、層(20)の厚さが突き止められる。その際コイル体(13)、従ってまたコイル(14)と部品(17)との距離は第2の交流電流周波数f2が供給されるコイル(14)のインダクタンス値から導出される。

【発明の詳細な説明】
【技術分野】
【0001】
従来技術
本発明はDE19652750C2から公知の、導電性の材料から成る層、殊にクロム層の厚さを無接触に突き止めるための方法から出発している。この方法は誘導および渦電流原理の組み合わせに基づいている。この測定法を実施するために、コイルおよびコイル体から成っているセンサがばねを用いて測定すべき部品の表面に対して押し付けられる。コイルに交流電流が流れかつそのインダクタンス変化が評価されるという複数の測定および評価ステップにより層の厚さが突き止められることになる。その際、例えば部品の材料特性の変動によるまたは汚れまたは摩耗によって生じる、コイルと部品との間の距離の差異が原因で発生する測定エラーは、正規値を導入して低減することができる。これにより測定されたインダクタンス値と相応の層厚との間の一義的な対応付けも保証される。
【0002】
発明の利点
独立請求項の特徴部分に記載の構成を有する導電性の材料から成る層の厚さを突き止めるための本発明の方法は、無接触測定が可能になるという利点を有している。これにより測定対象に優しい、高速な方法が用意される。更にセンサおよび/または表面損傷の危険性が取り除かれる。
【0003】
更に従来の接触測定の場合には検査されるべき層を備えた測定対象はばね弾性的に支承されたコイル体上に載置されかるコイル体に向かって圧着されて、測定対象とコイル体との面平行な接触接続が保証されるようにされる。その際コイルに導かれているコイル接続ワイヤは自然と一緒に運動され、それ故に繰り返される測定後には著しい摩耗によって破断する可能性がある。本発明の無接触測定ではコイル体の運動、ひいてはコイル接続ワイヤの破断が回避される。
【0004】
無接触測定では基本的に、測定対象の無視することができない製造偏差が問題になる可能性がある。零にはならない製造偏差に基づいて空隙、すなわちコイル体と、ひいてはコイルと測定対象との間の距離が測定の度に変動する可能性がある。ここから生じる測定結果の歪みは本発明により大幅に低減され、その結果測定対象を測定サイクルの度にコイル体に圧着して、距離の変動が回避されるようにする必要はない。
【0005】
その際本発明の方法は、従来技術から提供されるすべての有利な特徴も持っている。殊に大量生産において製造される成層部品は連続的に循環的に行われる測定方法において検査されるようにすることができる。
【0006】
従属請求項および明細書に記載された構成によって、独立請求項に記載された方法を有利に発展および改善することができる。
【0007】
図面
次に、図面を参照しながら実施例に基づき本発明について詳しく説明する。
【0008】
図1には測定装置の構成が略示されている。
【0009】
図2において、測定コイルのインダクタンスLの特性が突き止めるべき層の厚さaに関して、種々異なっている距離についておよび突き止めるべき層の下方にある材料の種々異なっている材料特性αもしくはβについて図示されている。
【0010】
図3には、図2に使用されている、測定コイルと測定対象との間種々異なっている距離の比が図示されている。
【0011】
図4にはコイルインダクタンスの、空隙(コイル体−測定対象間距離)、層厚および使用される周波数に対する依存性が示されている。
【0012】
図5には、コイルのインダクタンスおよびコイル体−測定対象間距離についてコイルインダクタンスおよび特性量が図示されている。
【0013】
図6には、複数の較正特性曲線を有する較正特性曲線群が示されており、ここでそれぞれ個々のものは具体的な、相互に異なっている距離dに対して該当している。
【0014】
実施例の説明
本発明の測定方法はいわゆるインダクタンス−渦電流測定原理に基づいている。この方法を実施するための装置の1形態はDE19652750C2から公知である。図1にはこのために使用されるセンサ10の構造が図示されている。この公報において部品17はコイル体13上に載置され、これに対して本発明の方法では無接触の測定が可能である。センサ10は基体12の切り欠き11に配置されておりかつコイル体13から成っており、コイル体に交流電流が流れるコイル14が取り付けられている。コイル14は例えばフラットコイルまたはリングコイルとして実現されていてよい。コイル体13は有利には非導電性でかつ非強磁性材料、例えば合成樹脂から成っており、かつほぼ摩擦なく切り欠き11にガイドされる。監視すべき部品17はガイド体18に挿入され、該ガイド体が部品17とコイル14を相互に位置整定する。ばね19を用いてコイル体13、従ってコイル14は部品17の表面に対して圧縮されるが、このことは本願発明の方法では必要ない。表面は突き止めるべき層20を有している。部品17は例えば噴射弁の管部であり、その場合には層20はクロム層である。コイル14に交流電流が流れると、交番磁場が生成される。この磁場はクロム層並びにその下方にある、部品17の強磁性の材料から成る材料層をも貫通する。
【0015】
その場合クロム層には渦電流効果のみが作用し、一方部品17の強磁性材料においては誘導および渦電流効果が有効である。次に、それぞれの別の部分が存在しないとした場合に生じるはずのそれぞれの測定効果について詳細に検討したい。コイル14に交流電流が貫流しかつコイル14の交番磁場が良導電性だが非強磁性の材料のみを検出する、すなわちクロム層10だけがコイル14の交番磁場によって捕捉検出されると、いわゆる渦電流効果だけが作用する。良導電性だが非強磁性の材料において形成される渦電流に基づいてコイル14のインダクタンスの低減が生じる。
【0016】
次に交流電流が貫流するコイル14の磁場の、コイルに対向している強磁性材料、すなわち部品17の材料に対する作用について説明する。交流電流が貫流するコイル14の交番磁場は部品17の材料を捕捉検出する。導電性であってかつ強磁性の材料においては強磁性効果も渦電流効果も作用することを指摘しておく。渦電流効果が測定コイル14のインダクタンスの低減を引き起こす一方、本明細書ではインダクティブ効果とも称される強磁性効果が測定コイル14のインダクタンスを高めるように働く。2つの効果のいずれが優勢であるかは主に、コイル14を貫流する交流電流の周波数と、部品17の材料特性とに依存している。これら2つの測定効果がクロム層を有する部品17に対してどのように作用するかを考えると、クロム層が厚くなればなるほど磁場はますます弱く形成され、ひいてはコイル14のインダクタンスはますます弱くなる。図2にはα1で、クロム層の増加していく厚さに関して測定コイル14のインダクタンスの低下していく特性経過を示している相応の測定曲線が図示されている。
【0017】
しかし層厚aに関するインダクタンスLの測定曲線の特性経過は部品17の材料特性、すなわち例えば電気抵抗、材料の透磁性およびコイル体13もしくはコイル14と測定されるべき表面との間の距離に依存している。例えば汚れまたはコイル体13の摩耗が原因で測定コイル14とクロム層との間の距離が変化すると、層厚aに関してインダクタンスLの特性経過に種々様々な曲線が生じる。図2には、種々の信号経過特性例が描かれている。ここで特性曲線α1,α2,α3およびα4は、測定コイル14と監視すべきであるクロム層との間の距離が種々様々であるが、部品17の材料特性は同じであるとした場合の、インダクタンスLの経過特性を層厚aに関して示している。この場合図3にはコイル14と監視すべきであるクロム層との間の距離αの大きさが図示されている。距離がα1からα4にかけてますます大きくなることが分かる。特性曲線β1ないしβ4の方は、部品17の材料特性が第2の場合の、測定コイルと監視すべきクロム層との間の距離の変化を表している。図2の線図から、測定されたインダクタンス値Lに多数の可能な層厚を割り当てることができることが分かる。インダクタンスの代わりにコイル14の交流電流抵抗値が評価されるようにすることもできる。
【0018】
従来技術から、求められたインダクタンス値から正規化を実施して、一義的に割り当て可能な測定値を提供しかつ上述した測定エラーが生じないようにすることが公知である。このために全体として3つの測定が実施される、つまり測定対象によるそれぞれ1回の前測定および後測定と専ら導電性の材料から成る層に対する正規化のための1回の測定。正規化のための測定はそれぞれの実例に対して実施される必要はない。そうではなくて原則的には、正規化のための測定はセンサ交代の際にだけ実施されかつ場合によっては測定装置を時間的に間をおいて較正することで十分である。
【0019】
そこで本発明の方法により、無接触測定も可能になる。無接触測定における基本的な問題は、コイル体13、ひいてはコイル14と測定対象との間の距離の変動である。本明細書においてコイル体13−測定対象間距離は短縮形「距離」または「エアギャップ」とも称される。零とは異なっている、測定対象としての部品の製造偏差が距離の変動に関わってくる。実際には製造偏差は例えば噴射弁管部の場合0.2mmである。測定装置が0.1mmの最小許容偏差を有していると仮定して、距離、すなわちコイル体13と部品17との間のエアギャップがサンプル毎に0.1mmないし0.3mm変動する可能性がある。ここでは最小距離は0.1mmでかつ最大距離は0.3mmである。層厚を無接触に突き止めるために従来技術から公知の測定および評価ステップによる方法が実施されると、上に説明した距離変動は有利な測定条件の場合にはほんの僅かだけ測定精度を悪くする可能性がある。けれども前および後測定を含めて、それぞれの測定において正規化のための測定が付加的に実施されなければならない。2周波数測定法の以下に行う説明によって、変動するエアギャップにも拘わらず層厚をどのようにして満足できる程度に正確に突き止めることができ、しかもその場合にそれぞれの測定サイクルにおいてセンサにおける正規部品を位置決めしたり、正規化のための測定を実施する必要もないのかを明らかにする。
【0020】
本発明の、層の厚さを突き止めるための方法は、従来技術から公知であるように、複数の測定および評価ステップにおいて実施される。部品17の成膜の前に所謂第1の前測定においてコイル14のインダクタンス値L0,d,f1が求められる。ここでインダクタンス値L0,d,f1の第1のインデックス「0」は成膜(層)の厚さを意味し(0=成膜されていない)、第2のインデックス「d」はコイル体13との間の距離の瞬間値(dはこれから突き止めるべきもの)、および最後に第3のインデックス「fl」はコイル14に供給する交流電流周波数fl(flは調整設定される)を意味している。測定期間の間コイル14は部品17の、コイル14の方を向いているまだ成膜されていない表面(測定面)に配向されており、その際コイル体13と部品17の表面との間に距離dが形成される。距離の正確な値dはこの時点でまだ分かっておらずかつそれ故にこれから求められなければならない。測定は成膜されていない部品17の材料に対してだけ行われる。コイル14に供給される交流電流周波数flは高周波領域の周波数であり、適当な値は例えば4MHzである。インダクタンス値L0,d,f1の大きさは更に、部品17の性質、殊にその磁気および電気的な特性に依存している。部品17のこの性質は大量生産において変動する可能性がある。それ故にインダクタンス値L0,d,f1はそれぞれ個々の部品17に対する測定方法の開始時に求められるべきでありかつデータメモリに対応付けされて記憶しておくべきものである。
【0021】
第1の高周波の前測定は正規値を求めるために用いられる。次にこれに対して補足的に、従来技術の方法とは異なって、第2の交流電流周波数f2を用いた第2の前測定が実施される。第2の交流電流周波数f2は低周波領域の周波数であり、適当な値は例えば5kHzである。第1および第2の前測定は同じ装置により実際には同時に実施される。というのは、交流電流周波数flから交流電流周波数f2への変化は秒の僅か分数部分で実施されるからである。ここから結果として得られるインダクタンス値L0,d,f1はコイル体13と部品17との間の距離dを求めるために用いられる。
【0022】
図4に基づいて、種々様々な目的のための種々の周波数領域からの2つの周波数の選択について説明する。図4から、コイル14の測定されたインダクタンスLの、コイル体13と測定対象との間の距離、層厚aおよび使用の交流電流周波数fに対する依存性が読み取れる。曲線対1,2,3および4は距離値がd=0mm、0.1mm、0.2mmおよび0.3mmと種々異なっている場合のインダクタンスねの特性経過を示している。それぞれの距離値dにおいて成膜のない場合の測定およびa=7μmのクロムが成膜されている場合の測定が実施され、その際図4において成膜されていない場合の測定を表している曲線にはポイントまたは類似のマークが曲線上に施されている。それぞれ成膜されてないおよび7μmのクロムが成膜されている部品17において距離dが異なっている4つの場合の広範な周波数領域に関するコイル14のインダクタンス値の経過特性は、主として低周波領域、例えば30kHzの領域において、距離が変わると測定ストロークが大きくなりかつ高周波領域、例えば3MHzにおいて層厚が変化すると測定ストロークが大きくなることを示している。
【0023】
例として層厚変化が原因で生じる、距離d=0mmの場合の測定ストローク5および距離d=0.3mmの場合の測定ストローク6が図示されている。
【0024】
センサ交換を容易にするために、第2の前測定から求められたインダクタンス値L0,d,f1を直接距離値に変換せずに、まずアルゴリズムを用いてディメンジョンのない特性値Kに変えることが有意味でありかつ有用である。それからこの特性値Kは既に調べられかつ記憶されている距離特性曲線を用いて具体的な距離値dに変換される。特性値Kは式(1)を用いて求められる:
【数1】

ここで
0,d,f2=第2の前測定のインダクタンス値,
0,min,f2=コイル13と測定対象との間の最小の距離におけるインダクタンス値,
0,max,f2=コイル13と測定対象との間の最大の距離におけるインダクタンス,
値A=一定の係数。
【0025】
コイル14の両極のインダクタンス値L0,min,f2およびL0,max,f2は、コイル体13と部品17または一般に測定対象との間の最小もしくは最大の距離dにおいて結果生じるものである。例えば最小距離は0.1mmをとることができ、最大距離は0.3mmをとることができる。図5にはコイル14のインダクタンスLおよび式(1)から求められた特性値Kが距離dに関してプロットされている。インダクタンス7もしくは距離特性曲線8から分かるように、インダクタンスもしくは特性値は最小距離のところで最大でありかつ距離が大きくなるにつれて徐々に低下していく。
【0026】
第2の前測定において距離dの値が最大距離であるとき、勿論L0,d,f2−L0,max,f2は消失しかつ特性値は零に等しい。距離特性曲線がいったん調べられた後では、それは常に特性値Kを距離dの値に変換するために用いることができる。殊に、センサ10、従ってまたコイル14の交換時でさえ、測定技術的に重要な、幾何学的なコイルサイズがある程度の範囲内でしか異なっていないときには、新しい距離特性曲線を調べる必要はない。このような場合、L0,max,f2およびL0,min,f2を求めるための測定だけを実施しかつ値を記憶することで十分である。一定の係数Aは任意の正の数であってよく、実際にはAは10の倍数、例えば100である。
【0027】
引き続いて部品17は相応の成膜装置においてクロム層を備えられる。その後に、上述した前測定と、部品17の同じ箇所で実施される第3の、すなわち所謂後測定が行われる。その際測定装置は、前測定および後測定における距離dが同じ大きさであるように構成されていなければいけない。その際測定コイル14のインダクタンス値Lx,d,f1が生じ、その際第1のインデックス「x」は層厚aの突き止めるべき値を表し、第2のインデックス「d」はコイル体13と成膜された部品17との間の距離を表しかつ第3のインデックス「fl」はコイル14に供給される交流電流周波数を表している。インダクタンス値Lx,d.f1の大きさはとりわけ、クロム層の厚さおよび部品17の材料特性によって定められる。2つの求められたインダクタンス値L0,d、f1もしくはLx,d,f1がそれぞれ一義的に同一の部品17に対応付けできることが保証されなければならない。
【0028】
これら2つのインダクタンス値L0,d,f1もしくはLx,d,f1は次いで、アルゴリズムを用いて正規値に、すなわち相応の層厚aに対応付けることが可能であるディメンジョンのない特性数に変換される。この正規値はここでは測定値Mと称される。この正規値形成を実施することができるように、インダクタンス値L∞,AB,f1およびL0,AB,f1が求められるもしくはこれら値は予め測定されかつ記憶されている。インダクタンス値L∞,AB,f1は、測定対象においてクロム層に対してだけ1回の測定が実施されるときに得られ、その際コイル体13と測定対象との間の距離dの値はABである。その際測定対象の表面は、それが実際にコイル14の全体の磁場を遮蔽する程度の厚さのクロム層を有していなければならず、そうしておけば測定対象の強磁性の基本材料において誘導効果も渦電流効果も作用するおそれはない。場合によっては測定対象においてクロムに代わって別の導電性だが、非強磁性の材料を代替として使用してもよかろう。インダクタンス値L0,AB,f1は、強磁性材料から成る測定対象においてだけ1回の測定が実施されるときに得られ、その際コイル体13と測定対象との間の距離dの値はABである。2つのインダクタンス値L∞,AB,f1およびL0,AB,f1に対して高周波の交流電流周波数flが使用される。次に式(2)に相応して正規値または測定値Mが次のように求められる:
【数2】

ここで
x,d,f1=後測定のインダクタンス値、
0,d,f1=第1の前測定のインダクタンス値、
∞,AB,f1=導電性材料から成る測定対象に対してのみの1回の測定におけるコイル14のインダクタンス値、ここでコイル体13と測定対象との間の距離dはABであり、
0,AB,f1=強磁性材料から成る測定対象に対してのみの1回の測定におけるコイル14のインダクタンス値、ここでコイル体13と測定対象との間の距離dはABであり、
B=一定の係数である。
【0029】
一定の係数Bは任意の正の数であってよく、実際にはBは10の倍数、例えば1000である。コイル体13と測定対象との間の距離dの可能な値ABとして、コイル体13と測定対象との間の最小および最大の距離の合計の1/2を選択することができる。典型的な値は実際にはAB=0.2mmである。一定の係数BおよびABおよび測定されたインダクタンス値に対するこれらの具体的な値により、上に示した式(2)に従って−従来技術の唯一の較正曲線を用いるこれまでの測定方法とは異なって−具体的な、相互に相異している距離dに対してそれぞれ当てはまる複数の較正曲線が調べられる。その際パラメータとして距離が用いられる。例えば12の較正曲線全体が、図6に示された較正曲線群を形成している。それぞれ個々の較正曲線は所定の距離値を表しておりかつこれらの距離値に対して層厚aの徳江畏敬かを正規値の領域に関して示している。測定値Meが層厚aに変換されると勿論、距離パラメータ値は距離dの求められた値に対して最も僅かな偏差を有しているところの較正曲線が選択される。理想の場合最小の偏差は零に等しい。
【0030】
この測定方法は、測定すべき部材が−サンプルに関連して−十分に一定であるとき、使用することができる。この変わりなさをチェックすることが望ましい。
【0031】
誘導的な交流電流−層厚測定において、測定装置は、これが接触するまたは電磁入力結合によって変化する(アース問題が考慮されるべきである)とき、誘導または容量結合インピーダンスによる測定信号の歪みが生じないように構成されていなければならない。重要な接触エラーが生じているかどうかは、測定装置の構造形式および搬送波周波数に依存している。その際次のような傾向がある:搬送波周波数が高ければ高いほど、接触エラーの発生の危険は大きくなる。(これらの関係はDE19652750C2およびその他の特許明細書に記載されている、同じ物理的な基本原理により動作する測定方法に対しても言えることである)。
【0032】
最後に以下の点を付記しておく:測定装置およびセンサの直接的な接触だけが測定エラーを引き起こすのではなく、間接的な接触もその原因になる。間接的な接触に対する例:測定装置からセンサへのリードケーブルは金属プレート上またはその近傍にある。この金属プレートが接触すると、接触箇所がケーブル位置から比較的離れているときでも、測定エラーを引き起こす可能性がある。場合によってはこの種の測定エラーの発生は公知のメソッドを用いて妨げられるようにする必要がある。
【図面の簡単な説明】
【0033】
【図1】測定装置の構成の略図
【図2】種々異なっている距離についておよび突き止めるべき層の下方にある材料の種々異なっている材料特性αもしくはβについての測定コイルのインダクタンスLの特性図
【図3】図2に使用されている、測定コイルと測定対象との間の種々異なっている距離の比を示す図
【図4】コイルインダクタンスの、空隙(コイル体−測定対象間距離)、層厚および使用される周波数に対する依存性を示す図
【図5】コイルのインダクタンスおよびコイル体−測定対象間距離についてコイルインダクタンスおよび特性量を示す図
【図6】複数の較正特性曲線を有する較正特性曲線群の図

【特許請求の範囲】
【請求項1】
強磁性材料から成る部品(17)に被膜されている、導電性の材料から成る層(20)の厚さを無接触に突き止めるための方法であって、
交流電流が流れかつコイル体(13)に取り付けられている少なくとも1つの測定コイル(14)を用いて該測定コイルのインダクタンス値変化を評価するという形式の方法において、
強磁性の材料から成る測定対象としての部品(17)に対してだけの測定においてコイル(14)のインダクタンス値L0,d,f1が求められ、ここでコイル(14)には第1の交流電流周波数f1が供給されかつコイル体(13)と測定対象との間の距離はdであり
〔正規値算出のための第1の前測定〕、
強磁性の材料から成る測定対象としての部品(17)に対してだけの測定においてコイル(14)のインダクタンス値L0,d,f2が求められ、ここでコイル(14)には第2の交流電流周波数f1が供給されかつコイル体(13)と測定対象との間の距離はdであり
〔距離算出のための第2の前測定〕、
求められたインダクタンス値L0,d,f1がディメンジョンのない特性値Kに変換され
〔特性値決定〕、
前記特性値Kが距離特性曲線を用いて距離dの値に変換され
〔距離決定〕、
突き止めるべき層(20)に対する測定の際にコイル(14)のインダクタンス値Lx,d,f1が求められ、ここでコイル(14)には第1の交流電流周波数f1が供給されかつコイル体(13)と測定対象との間の距離はdであり
〔正規値算出のための後測定〕、
求められたインダクタンス値L0,d,f1およびLx,d,f1がディメンジョンのない測定値Mに変換され
〔正規値決定〕、
測定値Mは距離dの求められた値を考慮して較正曲線群を用いて層厚値aに変換される
〔層厚決定〕
という上記測定ステップが実施される方法。
【請求項2】
ディメンジョンのない特性値Kが次式(1)を用いて求められ:
【数1】

ここで
0,d,f2=第2の前測定のインダクタンス値、
0,min,f2=コイル(13)と測定対象との間の最小の距離におけるインダクタンス値、
0,max,f2=コイル13と測定対象との間の最大の距離におけるインダクタンス値、
A=一定の係数
である
請求項1記載の方法。
【請求項3】
係数Aは100である
請求項2記載の方法。
【請求項4】
ディメンジョンのない測定値Mは次式(2)を用いて求められる:
【数2】

ここで
x,d,f1=後測定のインダクタンス値、
0,d,f1=第1の前測定のインダクタンス値、
∞,AB,f1=導電性材料から成る測定対象に対してのみの1回の測定におけるコイル(14)のインダクタンス値、ここでコイル体13と測定対象との間の距離dはABであり、
0,AB,f1=強磁性材料から成る測定対象に対してのみの1回の測定におけるコイル(14)のインダクタンス値、ここでコイル体(13)と測定対象との間の距離dはABであり、
B=一定の係数
である
請求項1から3までのいずれか1項記載の方法。
【請求項5】
一定の係数Bは1000である
請求項4記載の方法。
【請求項6】
第1の交流電流周波数f1は高周波領域の周波数、例えば4MHzである
請求項1から5までのいずれか1項記載の方法。
【請求項7】
第2の交流電流周波数f2は低周波領域の周波数、例えば5kHzである
請求項1から6までのいずれか1項記載の方法。
【請求項8】
距離dの値ABとして、コイル体(13)と測定対象との間の最小距離と最大距離との和の1/2が選択される
請求項4から7までのいずれか1項記載の方法。
【請求項9】
較正曲線群は複数の較正曲線を有しており、該較正曲線はそれぞれ、具体的な、相互に異なっている距離に該当している
請求項1から8までのいずれか1項記載の方法。
【請求項10】
較正曲線群から、測定値Mを層厚値aに変換するために、距離パラメータ値が求められた距離dに対して最小の偏差を有している較正曲線が選択される
請求項9記載の方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公表番号】特表2008−506933(P2008−506933A)
【公表日】平成20年3月6日(2008.3.6)
【国際特許分類】
【出願番号】特願2007−520800(P2007−520800)
【出願日】平成17年6月23日(2005.6.23)
【国際出願番号】PCT/EP2005/052925
【国際公開番号】WO2006/005672
【国際公開日】平成18年1月19日(2006.1.19)
【出願人】(390023711)ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング (2,908)
【氏名又は名称原語表記】ROBERT BOSCH GMBH
【住所又は居所原語表記】Stuttgart, Germany
【Fターム(参考)】