説明

建設機械のメンテナンス方法およびメンテナンスシステム

【課題】異なる機種の建設機械同士の間でデータを同一の基準で比較できるようにして、「いずれか一方の機種の建設機械を他の機種の建設機械よりも優先してメンテナンスすべき」という判断ができるようにする。
【解決手段】建設機械の種類毎に、判定すべき複数の異常の判定項目を設定するとともに、各異常の判定項目毎に点数を割り当てておく(101)。異常と判定される毎に、対応する異常の判定項目に割り当てられている点数を、対応する建設機械に設定されている全異常の判定項目数に対する一の異常の判定項目の割合に換算した数値を求め、求められた数値を過去に得られた累積点数に加算することで、当該建設機械の現在の累積点数を求める(103)。複数の建設機械それぞれで得られた現在の累積点数の順位付けを行い(104)、現在の累積点数の順位に応じたメンテナンス優先順位で、建設機械をメンテナンスする(105)。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、建設機械をメンテナンスする方法およびメンテナンスシステムに関するものである。
【背景技術】
【0002】
建設機械は、定期的あるいは適切な時期にメンテナンスを行うことが必要である。なぜならば、適切な時期に必要な建設機械のメンテナンスを怠ることで重大な故障に至ってしまった場合には、修理費(部品代、作業工賃)が嵩むとともに大幅なダウンタイムを余儀なくされるからである。逆に、適切な時期に必要な建設機械のメンテナンスを実施した場合には、重大な故障を回避でき、トータルとしてかかる修理費(メンテナンス費用)を安く抑えることができるとともにダウンタイムを極力抑えることができる。このため建設機械は、定期的あるいは適切な時期にメンテナンスを行うことが必要である。
【0003】
(従来の実施技術)
建設機械のエンジン油温、排気温度などの内部状態を建設機械に設けられた各センサにより検出し、検出されたセンサ検出値のデータを建設機械内部のコントローラに保存し、建設機械から遠隔地の管制事務所のコンピュータに送信することにより、あるいは建設機械にパーソナルコンピュータを接続することにより、コントローラに保存されたデータを収集し、収集したデータを解析することにより建設機械の「健康状態」を診断して適切な時期に必要なメンテナンスを実施することは、現在行われている。
【0004】
(特許文献にみられる従来技術1)
下記特許文献1には、建設機械に持ち点を付与しておき、オーバーヒートなどの異常現象が発生する毎に異常現象に対応づけられた減算点数を持ち点から減算して、持ち点が所定の点数になった時点でメンテナンスを実施するという発明が記載されている。
【0005】
(特許文献にみられる従来技術2)
下記特許文献2には、異なる機種を含む各建設機械から内部状態のデータを収集するとともに、建設機械の機種毎にメンテナンス条件のデータを記憶し、ある建設機械のメンテナンスが必要となる部品およびメンテナンス時期を、その建設機械の内部状態のデータとその建設機械の機種に対応するメンテナンス条件のデータから抽出するという発明が記載されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開平11−36381号公報
【特許文献2】特開2002−23831号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
一つの作業現場で異なる機種を含む複数の建設機械が稼動する場合がある。現在、そのような多くの作業現場では、異なる機種を含む複数の建設機械を計画的にメンテナンスして、ダウンタイム短縮を図るようにしている。例えば、広域鉱山などの作業現場では、複数のダンプトラックに対して一台の油圧ショベルが割り当てられて、積込作業が行われる。ここで、その油圧ショベルがメンテナンスに入り休車状態になったにもかかわらず代替えの車両の都合がつかないとすると作業現場全体が操業できない状況に至り、大幅なダウンタイムを招く。このような事態を回避するために、異なる機種を含む複数の建設機械同士の間でメンテナンス時期を調整して、代替車両の都合がつく適切な時期にメンテナンスを実施できるようにするなど、ダウンタイムを招くことのないメンテナンス計画を策定することが重要となっている。
【0008】
しかしながら、従来にあっては、異なる機種の建設機械同士の間でメンテナンス時期の調整をするに際して、特に基準となるべきものがなかった。また、メンテナンス計画を策定する者の経験に頼ったメンテナンス計画の策定が行われることもあった。
【0009】
例えば、従来の実施技術にあっては、同一機種の建設機械同士の間であれば、センサ検出値のデータを同一の基準で比較して解析が行われるため、メンテナンスの優先度を定めることができる。同一機種とは、同じ型式や車格あるいは仕様の油圧ショベル同士、あるいは同じ型式や車格あるいは仕様のダンプトラック同士といった同様な機能や構成の建設機械同士を意味する。しかしながら、異なる機種の建設機械同士の間には、そのデータを比較する上で同一の基準たるべきものがなく「いずれか一方の機種の建設機械を他の機種の建設機械よりも優先してメンテナンスすべき」という判断はできなかった。異なる機種とは、油圧ショベルとブルドーザ、あるいは油圧ショベルとダンプトラックといった異なる機能や構成の建設機械同士を意味する。
【0010】
すなわち、建設機械の機種が異なれば、判定すべき異常の判定項目数や異常の判定項目自体が異なり、それが「同一の基準」で異なる機種の建設機械のデータを比較することを阻害している。たとえば、油圧ショベルには、一般的には油圧クラッチで構成されたトランスミッションはないが、ダンプトラックには油圧クラッチで構成されたトランスミッションがあり、油圧クラッチに異常が生じたダンプトラックと、油圧ポンプに異常が発生した油圧ショベルとを対比したときに、両者に優劣をつけメンテナンスの優先度を定めることは困難であった。このことは「特許文献にみられる従来技術1」、「特許文献にみられる従来技術2」についても同様である。
【0011】
本発明は、こうした実情に鑑みてなされたものであり、異なる種類の建設機械同士の間でデータを同一の基準で比較できるようにして、「いずれか一方の種類の建設機械を他の種類の建設機械よりも優先してメンテナンスすべき」という判断ができるようにすることを解決課題とするものである。
【課題を解決するための手段】
【0012】
第1発明は、
異なる種類を含む複数の建設機械をメンテナンスする方法であって、
建設機械の種類毎に、判定すべき複数の異常の判定項目を設定しておき、
建設機械の種類毎に設定されている全異常の判定項目数に対する異常発生回数の割合を、各建設機械同士で対比して、
前記割合が高い建設機械ほど高くなるメンテナンスの優先順位を、各建設機械に備えた表示装置又は各建設機械と有線あるいは無線で通信可能な表示装置に表示し、建設機械をメンテナンスすること
を特徴とする。
【0013】
第2発明は、第1発明において、
各建設機械の運転室内に設けられた表示装置あるいは各建設機械の外側に設けられた表示装置に前記優先順位を表示することことを特徴とする。
【0014】
第3発明は、
異なる種類を含む複数の建設機械をメンテナンスする方法であって、
建設機械の種類毎に、判定すべき複数の異常の判定項目を設定するとともに、各異常の判定項目毎に点数を割り当てておき、
異常と判定される毎に、対応する異常の判定項目に割り当てられている点数と、対応する建設機械に設定されている全異常の判定項目数に対する一の異常の判定項目の割合とを乗算した数値を求め、求められた数値を過去に得られた数値に加算し、得られた数値を当該建設機械の現在の累積点数とし、
複数の建設機械毎に得られた、現在の累積点数の順位付けを行い、現在の累積点数の順位に応じたメンテナンス優先順位で、建設機械をメンテナンスすること
を特徴とする。
第4発明は、
異なる種類を含む複数の建設機械をメンテナンスするメンテナンスシステムであって、
建設機械の種類毎に、判定すべき複数の異常の判定項目が設定されるとともに、各異常の判定項目毎に点数が予め割り当てられ、これらデータが記憶されている記憶手段と、
建設機械の内部状態を検出する複数の検出手段と、
建設機械または建設機械の外部に設けられ、前記検出手段の検出結果に応じて異常を判定する異常判定手段と、
異常判定手段で異常と判定される毎に、対応する異常の判定項目に割り当てられている点数と、対応する建設機械に設定されている全異常の判定項目数に対する一の異常項目の割合とを乗算した数値を求め、求められた数値を過去に得られた数値に加算し、得られた数値を当該建設機械の現在の累積点数とする累積点数演算手段と、
複数の建設機械毎に得られた現在の累積点数の順位付けを行い、現在の累積点数の
順位に応じたメンテナンス優先順位を求めるメンテナンス優先順位演算手段と
を備え、求められたメンテナンス優先順位で、建設機械をメンテナンスすること
を特徴とする。
第5発明は、第4発明において、
各建設機械に備えられた第一表示装置と、
各建設機械と有線あるいは無線で通信可能な第二表示装置と
が備えられ、
求められた前記メンテナンス優先順位が前記第一表示装置又は/および第二表示装置に表示されることを特徴とする。
第6発明は、第5発明において、
前記各建設機械には、
建設機械同士で無線通信可能な通信手段と、
前記累積点数演算手段とが備えられ、
前記各建設機械または前記各建設機械のうち特定の建設機械には、
前記メンテナンス優先順位演算手段が備えられ、
前記現在の累積点数は、前記通信手段を介して各建設機械または特定の建設機械で取得され、
前記各建設機械の前記メンテナンス優先順位演算手段でメンテナンス優先順位が求められるか、あるいは前記特定の建設機械の前記メンテナンス優先順位演算手段でメンテナンス優先順位が求められて前記通信手段を介して各建設機械でメンテナンス優先順が取得されることにより、
当該メンテナンス優先順位が、前記各建設機械に備えられた表示装置に表示されることを特徴とする。
第7発明は、第4発明において、
異常の判定項目毎に割り当てられている点数は、
各建設機械の部位に対応する部位ポイントと、
前記部位に関連する前記検出手段に対して割り当てられる重みポイントと、
前記検出手段の検出結果に応じて生成されるエラーコードに割り当てられる重みポイントとで構成されることを特徴とする。
【発明の効果】
【0015】
本発明において「異なる種類」とは、「異なる機種、異なる型式、異なる車格、異なる仕様」を含む概念であり、例えば油圧ショベルとダンプトラックのように機種が異なるものばかりでなく、油圧ショベルという同一機種の中でも型式、車格、仕様が異なるものも「異なる種類」であるとする。
【0016】
建設機械の種類が異なれば、判定すべき異常の判定項目数が異なる。しかし、異常の判定項目数が多い種類の建設機械であれば、異常を発生(検出)しやすく、異常の判定項目数が少ない種類の建設機械であれば、異常を発生(検出)しにくいといえる。よって異常の判定項目数が多い種類の建設機械ほど、個々の異常の重要度が小さく、メンテナンスの優先度を低く見積もり優先順位を低くする必要がある。また、異常発生回数が多い建設機械ほど、メンテナンスの優先度を高く見積もり優先順位を高くする必要がある。
【0017】
第1発明はこうした知見に基づくものであり、建設機械の種類毎に、判定すべき複数の異常の判定項目を設定しておき、建設機械で設定されている全異常の判定項目数に対する異常発生回数の割合を、各建設機械同士で対比して、その割合が高い建設機械ほど高くなる優先順位で建設機械をメンテナンスするというものである。したがって、たとえば、同じ異常発生回数であったとしても異常項目数の小さい種類の建設機械の方が優先度が高くなりメンテナンスの優先順位が高くなる。逆に、異常発生回数が他の種類の建設機械よりも多くても、全異常項目数が少なければ、メンテナンスの優先順位が他の建設機械よりも低くなることがある。
【0018】
第1発明によれば、異なる種類の建設機械同士の間のデータを同一の基準で比較することができるようになり、「いずれか一方の種類の建設機械を他の種類の建設機械よりも優先してメンテナンスすべき」という判断ができるようになる。
第2発明では、各建設機械の運転室内に設けられた表示装置に優先順位が表示されるため、オペレータ自身が運転操作する建設機械のメンテナンスの優先度を知ることができたり、オペレータ自身が運転操作する建設機械以外の他の建設機械のメンテナンスの優先度を知ることができる。また各建設機械の外側に設けられた表示装置に優先順位が表示されるため、建設機械の周囲の人間、たとえばサービスマンが作業現場で稼動する各建設機械のメンテナンスの優先度を知ることができ、メンテナンスの計画を策定することができるようになる。
【0019】
建設機械の種類が異なれば異常の判定項目が異なるものであったり、異常の判定項目が同じてあっても建設機械の種類に応じて重要度が異なることがある。たとえば、エンジンという同じ部位で発生する異常であったとしてもダンプトラックと油圧ショベルでは重要度が異なる。
【0020】
このことを考慮して、第3発明では、建設機械の種類毎に、各異常の判定項目毎に、重要度の違いに応じた適切な点数を割り当てることを可能ならしめている。第3発明では、こうして各異常の判定項目毎に点数が割り当てられ、その点数を、第1発明と同様の「割合」に応じて換算した数値を求め、その数値の累積点数を求め、その累積点数の順位に応じたメンテナンスの優先順位でメンテナンスを行うようにしている。これにより、異なる機種を含む建設機械同士の間でメンテナンス優先順位を正確に定めることができる。
【0021】
第4発明は、第3発明の方法をシステムに置換した発明であり、第3発明と同様の効果が得られる。
第5発明によれば、各建設機械の第一表示装置にメンテナンス優先順位が表示されるため、第2発明と同様に各建設機械のオペレータあるいは建設機械の周囲の人間が各建設機械のメンテナンスの優先度を知ることができる。また各建設機械と有線あるいは無線で通信可能な第二表示装置にメンテナンス優先順位が表示されるため、たとえば作業現場から遠隔の地にある管制事務所にて各建設機械のメンテナンスの優先度を知ることができ、メンテナンスの計画を策定することができるようになる。
第6発明によれば、各建設機械同士で相互に通信することでメンテナンス優先順位が求められ、各建設機械の表示装置に表示される。
第7発明によれば、異常の判定項目毎に割り当てられている点数を、部位ポイントと、重みポイントと、重みポイントとで構成するようにしてので、各異常の判定項目毎に、重要度の違いに応じた適切な点数を割り当てることができ、異なる機種を含む建設機械同士の間でメンテナンス優先順位を正確に定めることができる。
【図面の簡単な説明】
【0022】
【図1】図1は、実施例に述べる建設機械のメンテナンスシステムを示す図である。
【図2】図2は、建設機械の内部の構成を示す図である。
【図3】図3は、実施例に述べる処理の流れを示すフローチャートである。
【図4】図4は、油圧ショベルとして構成された建設機械の異常の判定項目を示す図である。
【図5】図5は、ダンプトラックとして構成された建設機械の異常の判定項目を示す図である。
【図6】図6は、建設機械の外部に表示装置を設置した場合のメンテナンス優先順位を表示する例を示す図である。
【図7】図7は、表示装置の表示画面にメンテナンス優先順位に関連する情報が表示されている表示画面の例を示す図である。
【発明を実施するための形態】
【0023】
(第1実施例)
以下、図面を参照して本発明に係る建設機械のメンテナンス方法およびメンテナンスシステムの実施の形態について説明する。
【0024】
図1は、本発明に係る建設機械のメンテナンスシステム1を示す。
【0025】
作業現場2には、異なる種類である場合を含む複数の建設機械11、12、13、14…が稼動している。例えば、建設機械11は、ダンプトラックであり、建設機械12は、油圧ショベルであり、建設機械13は、ホイールローダであり、建設機械14は、ブルドーザであり、それぞれ異なる種類の建設機械である。なお、同じ種類の建設機械、例えば、同じ油圧ショベルであっても、型式、車格、仕様等の異なるものは「異なる種類」の建設機械として扱う。例えば、同じ油圧ショベルであっても砕石仕様の油圧ショベル、標準仕様の油圧ショベル、ブレーカ仕様の油圧ショベルは、それぞれ「異なる種類」の建設機械である。
【0026】
以下、建設機械12(油圧ショベル)を例にとり、図2を参照して建設機械12の内部の構成について説明する。
【0027】
建設機械12の車体12a内には、後述する各種センサから得られる検出データ等を記録するための記録用コントローラ20と、表示用コントローラ21と、この建設機械12の機能に対応する各種コントローラ22、23、24…とが車体内ネットワーク29(例えばCAN(Controller Area Network))を介して相互にデータを送受信可能に接続されている。例えば、油圧ショベルである建設機械12には、油圧ショベルの機能に対応するエンジンコントローラ22、ポンプコントローラ23、作業機コントローラ24…が設けられている。作業機コントローラ24はポンプコントローラ23と一体であってもよい。コントローラ22、23、24…は、各建設機械11、12、13、14…の機能の違いによって数や種類などの仕様が異なるコントローラであるとする。例えばダンプトラックである建設機械11には、図示しないトランスミッションコントローラが設けられる。
【0028】
建設機械12には、各センサ40a、40b…からなるセンサ群40が設けられている。各センサ40a、40b…は、建設機械12の内部状態を検出する。各センサ40a、40b…についても、各建設機械11、12、13、14…の機能の違いによって数や種類などの仕様が異なる。
【0029】
各センサ40a、40b…はそれぞれ、対応する各コントローラ22、23、24…に接続されている。
【0030】
例えば、エンジン回転数センサ40a、エンジン油温センサ40b、エンジン水温センサ40c等は、エンジンコントローラ22に接続されている。エンジン回転数センサ40aでは、図示しないエンジンの回転数が検出され、エンジン回転数を示す検出信号がエンジンコントローラ22に入力される。エンジン油温センサ40bでは、エンジンを冷却あるいは潤滑するためのエンジンオイルの油温(エンジン油温)が検出され、エンジン油温を示す検出信号がエンジンコントローラ22に入力される。エンジン水温センサ40cでは、エンジンを冷却するため冷却水(クーラント)の水温(エンジン水温)が検出され、エンジン水温を示す検出信号がエンジンコントローラ22に入力される。
【0031】
建設機械12が油圧ショベルである場合は、作業機がバケット、アーム、ブームで構成され、それぞれが油圧シリンダで駆動する。その油圧シリンダへの作動油を供給する油圧ポンプは一つであっても各々の油圧シリンダ毎に設けられた油圧ポンプであっても本実施例は実現可能である。また、ブーム(あるいはアームやバケット)シリンダ用ポンプ圧センサ40d、ファンポンプ圧センサ40e、ブーム(あるいはアームやバケット)シリンダ用ポンプ指令電流センサ40f、ファンポンプ指令電流センサ40g等は、ポンプコントローラ23に接続されている。ブーム(あるいはアームやバケット)シリンダ用ポンプ圧センサ40dでは、図示しないブーム(あるいはアームやバケット)シリンダ用ポンプから吐き出される作動油の吐出圧が検出され、ブーム(あるいはアームやバケット)シリンダ用ポンプの吐出圧を示す検出信号がポンプコントローラ23に入力される。ファンポンプ圧センサ40eでは、図示しないファンポンプから吐き出される作動油の吐出圧が検出され、ファンポンプの吐出圧を示す検出信号がポンプコントローラ23に入力される。なお、ブーム(あるいはアームやバケット)シリンダ用ポンプとファンポンプは連結されており、両者ともエンジンによって駆動されるものとする。ブーム(あるいはアームやバケット)シリンダ用ポンプは、図示しないブームシリンダを駆動する油圧ポンプ(例えば斜板式油圧ポンプ)であり、ファンポンプは、図示しないエンジンのラジエ−タに送風するファンを回転駆動する油圧ポンプである。ブーム(あるいはアームやバケット)シリンダ用ポンプ指令電流センサ40fでは、ブーム(あるいはアームやバケット)シリンダ用ポンプを駆動制御するための指令電流が検出され、この指令電流を示す検出信号がポンプコントローラ23に入力される。ファンポンプ指令電流センサ40gでは、ファンポンプを駆動制御するための指令電流が検出され、この指令電流を示す検出信号がポンプコントローラ23に入力される。
【0032】
また、ブーム(あるいはアームやバケット)シリンダ上昇圧センサ40h、ブーム(あるいはアームやバケット)シリンダ下降圧センサ40i等は、作業機コントローラ24に接続されている。ブーム(あるいはアームやバケット)シリンダ上昇圧センサ40hでは、図示しないブーム(あるいはアームやバケット)シリンダが伸びる際の油圧配管内の油圧の上昇圧が検出され、このブーム(あるいはアームやバケット)シリンダの上昇圧を示す検出信号が作業機コントローラ24に入力される。ブーム(あるいはアームやバケット)シリンダ下降圧センサ40iでは、ブーム(あるいはアームやバケット)シリンダが縮む際の油圧配管内の油圧の下降圧が検出され、このブーム(あるいはアームやバケット)シリンダの下降圧を示す検出信号が作業機コントローラ24に入力される。
【0033】
車体12aには、他に大気温度を検出する大気温度センサ40j、エンジンの排気温度を検出するエンジン排気温度センサ40k等が設けられている。なお、例えばエンジン排気温度センサ40kは、エンジンの4箇所(以下NO.1、NO.2、NO.3、NO.4とする)の排気マニホールドそれぞれに設けられている。これらのセンサ40j・・・40kように、車体内ネットワーク29を介さずに、信号線31を経由して記録用コントローラ29に接続されているセンサもある。
【0034】
エンジンコントローラ22は、建設機械12のオペレータによる、図示しない燃料調整ダイヤルや操作レバーの操作に応じた操作信号および各センサ40a、40b、40c等の検出信号に基づいて制御指令信号を生成してエンジンの出力を制御する。また、エンジンコントローラ22では、接続されている各センサ40a、40b、40c等の検出信号に基づいて建設機械12の内部状態が正常か異常かどうかを判定し異常であった場合には異常の程度に応じたエラー内容を示すエラーコードを生成する。エンジンコントローラ22に入力された各センサ40a、40b、40c等の検出信号およびエンジンコントローラ22で生成されたエラーコードは、車体内ネットワーク29を介して記録用コントローラ20に送出される。また、エラーコードは、表示用コントローラ21を介して表示装置36の表示画面36aに文字や記号で表示される。
【0035】
ポンプコントローラ23は、建設機械12のオペレータによる、図示しない操作レバーの操作に応じた操作信号および各センサ40d、40e、40f、40g等の検出信号に基づいて制御指令信号を生成してブーム(あるいはアームやバケット)シリンダ用ポンプ、ファンポンプ等の各種油圧ポンプを制御する。また、ポンプコントローラ23では、対応する各センサ40d、40e、40f、40g等の検出信号に基づいて建設機械12の内部状態が正常か異常かどうかを判定し異常であった場合には異常の程度に応じたエラーメッセージを示すエラーコードを生成する。ポンプコントローラ23に入力された各センサ40d、40e、40f、40g等の検出信号およびポンプコントローラ23で生成されたエラーコードは、車体内ネットワーク29を介して記録用コントローラ20に送出される。エラーコードは、表示用コントローラ21を介して表示装置36の表示画面36aに文字や記号で表示される。
【0036】
作業機コントローラ24は、対応する各センサ40h、40i等の検出信号に基づいて制御指令信号を生成してブーム(あるいはアームやバケット)シリンダ等の各作業機用アクチュエータを制御する。また、作業機コントローラ24では、対応する各センサ40h、40i等の検出信号に基づいて建設機械12の内部状態が正常か異常かどうかを判定し異常であった場合には異常の程度に応じたエラーメッセージを示すエラーコードを生成する。作業機コントローラ24に入力された各センサ40h、40i等の検出信号および作業機コントローラ24で生成されたエラーコードは、車体内ネットワーク29を介して記録用コントローラ20に送出される。エラーコードは、表示用コントローラ21を介して表示装置36の表示画面36aに文字や記号で表示される。
【0037】
大気温度センサ40j、エンジン排気温度センサ40k等の検出信号についても信号線31を介して記録用コントローラ20に入力される。
【0038】
ここまでは、油圧ショベルである建設機械12について説明したが、ダンプトラックである建設機械11では、図示しないトランスミッションコントローラが設けられている。トランスミッションは、各変速用クラッチ(たとえば1速用クラッチ、2速用クラッチ、3速用クラッチ、4速用クラッチ)などの各油圧クラッチで構成されており、各変速用クラッチに選択的にクラッチ圧を供給することにより選択された変速用クラッチを係合して変速を行う。変速は、クラッチ圧を所定のトリガー時間だけ供給し、所定のフィリング時間だけ供給することで行われる。また、各変速用クラッチのクラッチ圧を検出する図示しないクラッチ圧センサや、トランスミッションの出力軸の回転数を検出する図示しないトランスミッション出力軸回転センサなどが設けられており、これら各センサがトランスミッションコントローラに接続されている。トランスミッションコントローラでは同様にしてエラーコードが生成され、トランスミッションコントローラに入力された各センサの検出信号およびトランスミッションコントローラで生成されたエラーコードは車体内ネットワーク29を介して記録用コントローラ20に送出される。
【0039】
またダンプトラックである建設機械11においても、建設機械12と同様のエンジン排気温度センサ40b等が設けられており、エンジン排気温度センサ40b等の検出信号が信号線31を介して記録用コントローラ20に入力される。
【0040】
記録用コントローラ20は、入出力部20aと記憶部20bと演算処理部20cとを備えている。例えば、入出力部20aは入出力ポートといった入出力端子であり、記憶部20bはROMやRAMなどのメモリで構成され、演算処理部20cはCPUなどの数値演算プロセッサで構成される。
【0041】
車体内ネットワーク29および信号線31を介して記録用コントローラ20に送出されたデータ(各センサから送られた検出信号や各コントローラから送られたエラーコード)は、入出力部20aを介して記憶部20bに取り込まれる。また、記録用コントローラ20に送出されたデータとしては、演算処理部20cで所定の演算が行われた後に記憶部20bに記憶されるものがある一方、記録用コントローラ20に送出されたデータは、演算処理部20cが、記憶部20bに記憶されたデータを読み出し所定のプログラムにしたがい演算処理が行われるものもある。以下、記憶部20bに記憶されたデータとは、特別な指定がない限り、演算処理部20cで演算されたデータと演算処理部20cで演算されていないデータの両者を言う。記憶部20bに記憶されたデータは、入出力部20aを介して送受信機32に送出される。
【0042】
送受信機32は、外部の送受信装置と送受信可能となっている。なお、送受信機32は、建設機械12のみならず他の建設機械11、13、14…にも同様に備えられている。
【0043】
ただし、送受信機32の機能、通信インフラ、システムの目的などによってデータの送受信は、次のような各パターンに分けられる。
【0044】
パターン1)送受信機32が無線LANに代表される限定領域内の無線通信が可能な機能を備えている場合には、送受信機32は、図1に示すように、例えば作業現場2の周辺に設置されている監視局50の送受信装置51と相互にデータの送受信が行われる。建設機械11、12、13、14…の送受信機32から監視局50に送信されたデータは、監視局50の送受信装置51で受信されて監視局50のコンピュータ52に取り込まれコンピュータ52でデータの処理が行われる。監視局50のコンピュータ52は、例えば建設機械11、12、13、14…のユーザや管理者によって操作される。これにより、建設機械11、12、13、14…のユーザは、後述するように作業現場1内で稼動する各建設機械11、12、13、14…のメンテナンスの優先度を知ることができ、メンテナンスの計画を策定することができる。
【0045】
パターン2)送受信機32が通信衛星37、インターネット38に代表される遠隔距離の(全世界との)無線あるいは有線の通信が可能な機能を備えている場合には、送受信機32は、たとえば作業現場2から遠隔の地にある工場、事務所、建設機械のメーカ、販売会社(これら総称して以下、管制事務所60という)に設置されている管制事務所60の送受信装置61と相互にデータの送受信が行われる。建設機械11、12、13、14…の送受信機32から管制事務所60に送信されたデータは、管制事務所60の送受信装置61で受信されて管制事務所60のコンピュータ62に取り込まれデータベース63に蓄積され、コンピュータ62でデータの処理が行われる。管制事務所60のコンピュータ62は、例えば建設機械11、12、13、14…を整備する工場の管理者によって操作される。これにより、建設機械11、12、13、14…を整備する工場の管理者は、後述するように作業現場1内で稼動する各建設機械11、12、13、14…のメンテナンスの優先度を知ることができ、メンテナンスの計画を策定することができる。
【0046】
パターン3)送受信機32を備えていない場合、つまり外部の施設との送受信ができない構造の建設機械11、12、13、14…である場合には、記録用コントローラ20の入出力部20aに専用のツール33を介して外部のパーソナルコンピュータ34と接続することができる。専用のツール33とは、建設機械11、12、13,14・・・に設けられた入出力端子に適合するアダプター、通信ケーブル、パーソナルコンピュータ34に設けられた入出力端子に適合するアダプターの3つの部材で構成され、さらに記録用コントローラ20に記録されたデータをダウンロードするためのプログラムを含んだものである。建設機械11、12、13,14・・・に設けられた入出力端子は、記憶部20bに電気的に接続されている。これにより記録用コントローラ20に記録されたデータがパーソナルコンピュータ34にダウンロードされ、パーソナルコンピュータ34でデータの処理が行われる。パーソナルコンピュータ34は、例えば建設機械11、12、13、14…を点検するサービスマンによって操作される。これにより、建設機械11、12、13、14…を点検するサービスマンは、後述するように作業現場1内で稼動する各建設機械11、12、13、14…のメンテナンスの優先度を知ることができ、メンテナンスの計画を策定することができる。
【0047】
図2に示すように記録用コントローララ20の記憶部20bに記憶されているデータは、入出力部20aを介して車両間通信用送受信機35に送出される。
【0048】
車両間通信用送受信機35は、赤外線通信などの近距離通信手段で構成されており、作業現場2内における他の建設機械(車両)との送受信が可能となっている。なお、車両間通信用送受信機35は、建設機械12のみならず他の建設機械11、13、14…にも同様に備えられている。なお、作業現場2内を巡回するような、図示しない建設機械以外の車両(例えば自動車)に赤外線通信可能な近距離通信手段を備えておき、建設機械12と建設機械以外の車両との通信を図ることも可能である。そのようにすることで、建設機械以外の車両がデータを取得し、取得されたデータを監視局50のコンピュータ52や管制事務所60のコンピュータ62にダウンロードすることで、後述するようなメンテナンスの優先順位の演算処理を行うことができる。
【0049】
表示用コントローラ21は、表示装置36を制御するコントローラである。表示装置36は、表示画面36aを備えている。表示画面36aは、液晶パネルなどの表示ディスプレイである。記録用コントローラ20の記憶部20bに記憶されたデータは、入出力部20aから車体内ネットワーク29を介して表示用コントローラ21に送出され、表示用コントローラ21に取り込まれる。表示用コントローラ21からは表示指令信号が表示装置36に出力され、表示装置36の表示画面36aに、記録用コントローラ20の記憶部20bに記憶されたデータの内容が表示される。表示装置36は、建設機械12の運転室内あるいは建設機械12の車体12aの外側の外部から見える場所に設置される。表示装置36は、建設機械12の運転室内および建設機械12の車体12aの外側の外部から見える場所の両方に設置してもよい。表示装置36を、建設機械12の運転室内に設置した場合には、建設機械12のオペレータは、後述するように自身が運転操作する建設機械12のメンテナンスの優先度などを知ることができる。また表示装置36を、建設機械12の車体12aの外側の外部から見える場所の設置した場合には、他の建設機械11、13、14…等のオペレータあるいは建設機械11、13、14・・・等の管理者が建設機械12のメンテナンスの優先度などを知ることができる。なお、表示装置36は、建設機械12のみならず他の建設機械11、13、14…にも同様に備えられている。よって、同様にして建設機械11、13、14…のオペレータはそれぞれ、後述するように自身が運転操作する建設機械11、13、14…のメンテナンスの優先度を知ることができたり、自身が運転操作する建設機械以外の他の建設機械のメンテナンスの優先度を知ることができる。なお、表示装置36が、運転室内に設置される場合、液晶パネルやタッチパネルあるいは複数のLED(発光ダイオード)で構成されるものであってもよく、それらの表示装置36に文字や記号、図形などを用いてメンテナンスの優先度を表示する。また、表示装置36が、建設機械の外部から見える場所に設置される場合、具体的には、図6に示すように、液晶パネルや複数のLED(発光ダイオード)で構成されて、文字や記号、図形などの表現形態でメンテナンスの優先度を表示する。図6に示すように、メンテナンスの優先順位が高い順にA,B,Cと表示されるように設定しておき、後述するように演算処理部20cで求められたメンテナンス優先順位に対応する信号を表示装置36が受信し、例えば表示画面36aが複数のLED(発光ダイオード)で構成する場合は、受信した信号に応答して、AやBといった文字を表示させるようにLED(発光ダイオード)を点灯あるいは点滅させる。なお、この場合の表示装置36の構造は、外部からの視認が可能な大きさで、かつ、防水構造で、表示画面36aに岩石等が衝突し表示画面36aが破損しないように、表示画面36aの前面に図示しないガード網や強化ガラスが設けられたものが好ましい。
【0050】
以下、図3のフローチャートを参照して第1実施例の処理の流れについて説明する。以下では、断りのない限り油圧ショベルである建設機械12とダンプトラックである建設機械11を例にとり説明する。
【0051】
第1実施例では、メンテナンスの優先順位の演算までが建設機械11、12の内部で行われ、メンテナンス優先順位を示すデータが車体外部に送出される場合を例にとる。また上記パターン1にしたがい建設機械11、12から外部の監視局50にデータが送られる場合を例にとる。
【0052】
(建設機械毎に異常の判定項目を設定して異常の判定項目毎に点数(ポイント)を割り当てる処理;ステップ101)
建設機械11、12の記憶部20bには、自己の建設機械の全異常の判定項目が設定されており、異常の判定項目毎に点数(ポイント)のデータが予め記憶されておかれる。すなわち記憶部20bは、本発明の記憶手段を構成する。
【0053】
建設機械12の異常の判定項目を図4に示し、建設機械11の異常の判定項目を図5に示す。
【0054】
異常の判定項目とは、異常を判定すべき項目のことであり、各センサ40a、40b…の検出値としきい値との比較により異常判定が行われるセンサ異常の判定項目と、エラーコードの生成をもって異常判定が行われるエラーコード異常の判定項目の両方を含む。
【0055】
センサ異常の判定項目とは、各センサ40a、40b…の各検出値にそれぞれ、正常か異常かを判定できるしきい値を設定し、検出値としきい値と比較することで、検出値がしきい値以上(あるいは以下)である場合に異常と判定される異常の判定項目のことである。
【0056】
例えば、建設機械12に設けられたブーム(あるいはアームやバケット)シリンダ用ポンプ圧センサ40dの検出値がしきい値以下である場合には、「ブーム(あるいはアームやバケット)シリンダ用ポンプ圧が異常(異常に低い値である)」と判断され、異常の判定項目は、「ブーム(あるいはアームやバケット)シリンダ用ポンプ圧」となる(図4参照)。
【0057】
エラーコード異常の判定項目は、エラーコードが生成された時点で異常と判定する異常の判定項目のことである。各センサ40a、40b…の検出信号に基づいて正常かエラーかが判断され、エラーである場合にはそのエラーの程度に応じた内容のエラーコートが生成され、そのエラーコードに示されるエラー内容がエラーコード異常の判定項目となる。すなわち、例えば、建設機械12に設けられた4箇所NO.1、NO.2、NO.3、NO.4のエンジン排気温度センサ40kの検出信号に基づき生成されるエラーコード異常の判定項目は、その重要度に応じて「排気温度が非常に高い(即座にメンテナンスを実行せよ)」、「排気温度が中程度に高い(出力をセーブして使用し、停車後にメンテナンス実施せよ)」、「排気温度が小程度に高い(次回の定期メンテナンスを実施せよ)」というものである。例えば、4箇所のエンジン排気温度センサ40kから得られるエラーコード異常の判定項目はそれぞれ「NO.1排気温度非常に高い」、「NO.2排気温度非常に高い」、「NO.3排気温度非常に高い」、「NO.4排気温度非常に高い」となる(図4参照)。
【0058】
異常の判定項目は、建設機械11についても同様にして定められる(図5参照)。
【0059】
異常の判定項目への点数(ポイント)の割り当てについても、建設機械11、12毎に行われる。
【0060】
点数(ポイント)は、次の点を考慮して割り当てられる。
【0061】
1)異常の判定項目が属する関連部位
異常の判定項目が属する関連部位が、その建設機械にとって重要であるどうかを考慮して部位ポイントを設定する。ここで異常の判定項目が属する関連部位とは、異常と判定された場合に、点検、修理が必要とされる部位のことである。関連部位の重要度が高くメンテナンスの優先度が高いほど大きな部位ポイントを付与する。本実施例では、部位の重要度を3段階に分け、重要度が高くなるほど部位ポイントを「1ポイント」(重要度低)、「2ポイント」(重要度中)、「3ポイント」(重要度高)と大きく付与している。エンジンやトランスミッションなど動作に関連する部位ほど重要な部位と考え部位ポイント「3ポイント」若しくは「2ポイント」を付与し、他の部位には部位ポイント「1ポイント」を付与する。
【0062】
油圧ショベルである建設機械12は、エンジン、油圧機器、車体という各部位からなるものとして区分けする。
【0063】
エンジン回転数センサ40a、エンジン油温センサ40b、エンジン水温センサ40c、4つのエンジン排気温度センサ40kの検出信号としきい値との比較により異常と判定されるセンサ異常の判定項目「エンジン回転数」、「エンジン油温」、「エンジン水温」、「NO.1排気温度」、「NO.2排気温度」、「NO.3排気温度」、「NO.4排気温度」等は、「エンジン」という部位に属する異常の判定項目である。異常の判定は、エンジンコントローラ22によって行われる。よって、これら各センサ異常の判定項目には、「エンジン」という部位の重要度を考慮して、たとえば「2ポイント」の部位ポイントが付与される(図4参照)。
【0064】
建設機械12の「エンジン」という部位に属するセンサ異常の判定項目は、図4に示すように全部で12項目ある。よって、建設機械12の「エンジン」部位に設定されている全センサ異常の判定項目数に対する一のセンサ異常の判定項目の割合(以下、割合R1という)は、
R1=1/12 …(1)
となる。
【0065】
ブーム(あるいはアームやバケット)シリンダ用ポンプ圧センサ40d、ファンポンプ圧センサ40e、ブーム(あるいはアームやバケット)シリンダ用ポンプ指令電流センサ40f、ファンポンプ指令電流センサ40g、ブーム(あるいはアームやバケット)シリンダ上昇圧センサ40h、ブーム(あるいはアームやバケット)シリンダ下降圧センサ40iの検出信号としきい値との比較により異常と判定されるセンサ異常の判定項目「ブームシリンダ用ポンプ圧」、「ファンポンプ圧」、「ブームシリンダ用ポンプ指令電流」、「ファンポンプ指令電流」、「ブームシリンダ上昇圧」、「ブームシリンダ下降圧」等は、「油圧機器」という部位に属する異常の判定項目である。よって、これら各センサ異常の判定項目には、「油圧機器」という部位の重要度を考慮して、例えば「3ポイント」の部位ポイントが付与される(図4参照)。
【0066】
建設機械12の「油圧機器」という部位に属するセンサ異常の判定項目は、図4に示すように全部で21項目ある。よって、建設機械12の「油圧機器」部位に設定されている全センサ異常の判定項目数に対する一のセンサ異常項目の割合(以下、割合R2という)は、
R2=1/21 …(2)
となる。
【0067】
建設機械12の「車体」という部位に属するセンサ異常の判定項目についても、同様に「車体」という部位の重要度を考慮して、例えば「1ポイント」の部位ポイントが付与される。
【0068】
建設機械12の「車体」という部位に属するセンサ異常の判定項目は、図4に示すように全部で2項目ある。
【0069】
一方、建設機械12のエラーコード異常の判定項目についても、センサ異常の判定項目と同様に関連部位に応じた部位ポイントが付与される。
【0070】
「NO.1排気温度が非常に高い」、「NO.2排気温度が非常に高い」、「NO.3排気温度が非常に高い」「NO.4排気温度が非常に高い」、「エンジン水温オーバーヒート」といったエラーコード異常の判定項目は、「エンジン」という部位に属する異常の判定項目である。よって、これら各エラーコード異常の判定項目には、「エンジン」という部位の重要度を考慮して、例えば「2ポイント」の部位ポイントが付与される(図4参照)。
【0071】
建設機械12の「エンジン」という部位に属するエラーコード異常の判定項目は、図4に示すように全部で117項目ある。よって、建設機械12の「エンジン」部位に設定されている全エラーコード異常の判定項目数に対する一のエラーコード異常の判定項目の割合(以下、割合R3という)は、
R3=1/117 …(3)
となる。
【0072】
「ファンポンプ圧が非常に高い」といったエラーコード異常の判定項目は、「油圧機器」という部位に属する異常項目である。よって、これら各エラーコード異常の判定項目には、「油圧機器」という部位の重要度を考慮して、例えば「3ポイント」の部位ポイントが付与される(図4参照)。
【0073】
建設機械12の「油圧機器」という部位に属するエラーコード異常の判定項目は、図4に示すように全部で92項目ある。よって、建設機械12の「油圧機器」部位に設定されている全エラーコード異常の判定項目数に対する一のエラーコード異常の判定項目の割合(以下、割合R4という)は、
R4=1/92 …(4)
となる。
【0074】
ダンプトラックである建設機械11は、エンジン、トランスミッション、作業機、ブレーキ、車体という各部位からなるものとして区分けする。
【0075】
センサ異常の判定項目「NO.1排気温度」、「NO.2排気温度」、「NO.3排気温度」、「NO.4排気温度」等は、「エンジン」という部位に属する異常の判定項目である。よって、これら各センサ異常の判定項目には、「エンジン」という部位の重要度を考慮して、たとえば「3ポイント」の部位ポイントが付与される(図5参照)。
【0076】
建設機械11の「エンジン」という部位に属するセンサ異常の判定項目は、図5に示すように全部で11項目ある。よって、建設機械11の「エンジン」部位に設定されている全センサ異常の判定項目数に対する一のセンサ異常の判定項目の割合(以下、割合R5という)は、
R5=1/11 …(5)
となる。
【0077】
「2速用クラッチフィリング時間」は、トランスミッションの2速用クラッチのフィリング時間の異常を示すセンサ異常の判定項目である。また「2速用クラッチトリガー時間」は、トランスミッションの2速用クラッチのトリガー時間の異常を示すセンサ異常の判定項目である。
【0078】
センサ異常の判定項目「2速用クラッチフィリング時間」、「2速用クラッチトリガー時間」等は、「トランスミッション」という部位に属する異常の判定項目である。よって、これら各センサ異常の判定項目には、「トランスミッション」という部位の重要度を考慮して、例えば「3ポイント」の部位ポイントが付与される(図5参照)。
【0079】
建設機械11の「トランスミッション」という部位に属するセンサ異常の判定項目は、図5に示すように全部で16項目ある。よって、建設機械11の「トランスミッション」部位に設定されている全センサ異常の判定項目数に対する一のセンサ異常の判定項目の割合(以下、割合R6という)は、
R6=1/16 …(6)
となる。
【0080】
建設機械11の「作業機」という部位に属するセンサ異常の判定項目についても、同様に「作業機」という部位の重要度を考慮して、例えば「2ポイント」の部位ポイントが付与される。
【0081】
建設機械11の「作業機」という部位に属するセンサ異常の判定項目は、図5に示すように全部で3項目ある。
【0082】
建設機械11の「ブレーキ」という部位に属するセンサ異常の判定項目についても、同様に「ブレーキ」という部位の重要度を考慮して、例えば「3ポイント」の部位ポイントが付与される。
【0083】
建設機械11の「ブレーキ」という部位に属するセンサ異常の判定項目は、図5に示すように全部で3項目ある。
【0084】
建設機械11の「車体」という部位に属するセンサ異常の判定項目についても、同様に「車体」という部位の重要度を考慮して、例えば「1ポイント」の部位ポイントが付与される。
【0085】
建設機械11の「車体」という部位に属するセンサ異常の判定項目は、図5に示すように全部で5項目ある。
【0086】
一方、建設機械11のエラーコード異常の判定項目についても同様に関連部位に応じた部位ポイントが付与される。
【0087】
「NO.1排気温度が非常に高い」、「NO.2排気温度が非常に高い」、「NO.3排気温度が非常に高い」「NO.4排気温度が非常に高い」といったエラーコード異常の判定項目は、「エンジン」という部位に属する異常の判定項目である。よって、これら各エラーコード異常の判定項目には、「エンジン」という部位の重要度を考慮して、たとえば「3ポイント」の部位ポイントが付与される(図5参照)。
【0088】
建設機械11の「エンジン」という部位に属するエラーコード異常の判定項目は、図5に示すように全部で114項目ある。よって、建設機械11の「エンジン」部位に設定されている全エラーコード異常の判定項目数に対する一のエラーコード異常の判定項目の割合(以下、割合R7という)は、
R7=1/114 …(7)
となる。
【0089】
「変速用クラッチの二重係合」は、トランスミッションの変速用クラッチが二重に係合するというエラーコード異常の判定項目である。このエラーは、各変速用クラッチのクラッチ圧センサの検出信号に基づいて判断される。また「2速用クラッチのスリップ」は、トランスミッションの2速用クラッチがスリップしているというエラーコード異常の判定項目である。このエラーは、エンジン回転数センサ40aで検出されるエンジン回転数と、図示しないトランスミッション出力軸回転センサで検出されるトランスミッション出力軸回転数とを比較することにより判断される。
【0090】
「変速用クラッチの二重係合」、「2速用クラッチのスリップ」といったエラーコード異常の判定項目は、「トランスミッション」という部位に属する異常の判定項目である。よって、これら各エラーコード異常の判定項目には、「トランスミッション」という部位の重要度を考慮して、たとえば「3ポイント」の部位ポイントが付与される(図5参照)。
【0091】
建設機械11の「トランスミッション」という部位に属するエラーコード異常の判定項目は、図5に示すように全部で106項目ある。よって、建設機械11の「トランスミッション」部位に設定されている全エラーコード異常の判定項目数に対する一のエラーコード異常の判定項目の割合(以下、割合R8という)は、
R8=1/106 …(8)
となる。
【0092】
以上のように建設機械の種類が異なれば部位の種類が異なり、同じ部位であっても重要度が異なる。このことを考慮して部位ポイントが建設機械の種類毎に定められる。例えば、エンジンという同じ部位で発生する異常であったとしてもダンプトラックと油圧ショベルでは重要度が異なるため、部位ポイントを異ならせている。
【0093】
2)異常の判定項目の重み
異常の判定項目が、その建設機械にとって重要であるどうかを考慮して重みポイントを設定する。異常の判定項目の重要度が高くメンテナンスの優先度が高いほど大きな重みポイントを付与する。本実施例では、異常の判定項目の重要度を3段階に分け、重要度が高くなるほど重みポイントを「1ポイント」(重要度低)、「2ポイント」(重要度中)、「3ポイント」(重要度高)と大きく付与している。
【0094】
各異常の判定項目毎の重みポイントを図4、図5に列挙する。例えば建設機械12の「NO.1排気温度」、「NO.2排気温度」、「NO.3排気温度」、「NO.4排気温度」というセンサ異常の判定項目には、重みポイント「3ポイント」を付与する(図4)。
【0095】
エラーコード異常の判定項目については、エラーコードのエラー内容に応じて重要度を3段階に分けている。例えば建設機械12の「NO.1排気温度が非常に高い」、「NO.2排気温度が非常に高い」、「NO.3排気温度が非常に高い」、「NO.4排気温度が非常に高い」というエラーコード異常の判定項目には、重みポイント「3ポイント」を付与する(図4)。
【0096】
3)経過時間
前回にメンテナンスを実施してからの経過時間を考慮して経過時間ポイントを設定する。経過時間が長い時点で発生した異常ほど重要度が高くメンテナンスの優先度が高いとして、異常の判定項目に、より大きい経過時間ポイントを付与する。経過時間(H;アワー)は、建設機械11、12に設けられた図示しないサービスメータで計時される稼動時間のデータを用いる。なお、定期的なメンテナンスは、例えば平均的には10000H毎に実施されるとして、本実施例では、経過時間を3段階に分け、経過時間が平均的なメンテナンス時間(10000H)に近づきメンテナンスの優先度が高くなるほど、経過時間ポイントを「1ポイント」(優先度低)、「2ポイント」(優先度中)、「3ポイント」(優先度高)と大きく付与している。例えば前回のメンテナンスからの経過時間が5000H未満であれば経過時間ポイントを「1ポイント」とし、前回のメンテナンスからの経過時間が5000H以上8000H未満であれば経過時間ポイントを「2ポイント」とし、前回のメンテナンスからの経過時間が8000H以上であれば経過時間ポイントを「3ポイント」とする。
【0097】
例えば建設機械12の「NO.1排気温度」、「NO.2排気温度」、「NO.3排気温度」、「NO.4排気温度」というセンサ異常の判定項目について、前回のメンテナンスから6000Hで異常と判定されれば、経過時間ポイント「2ポイント」を付与する。
【0098】
4)環境負荷
建設機械11、12が稼動する作業現場2の環境による負荷を考慮した環境負荷ポイントを付与することができる。
【0099】
例えば、
a)走行経路の上り、下りの頻度に応じた環境負荷ポイント
b)作業現場2の平均気温に応じた環境負荷ポイント
c)作業現場2の土質(石灰石、軟質土、硬質土など)に応じた環境負荷ポイント
d)作業現場2へのサービスマンのアプローチ距離、時間などのアクセスのし易さ(し難さ)に応じた環境負荷ポイント
e)メンテナンスに必要な部品(バケットケース、作動油、フィルタなど)のストック量に応じた環境負荷ポイント
が挙げられる。
【0100】
一例を挙げると、走行経路の起伏が大きく上りと下りの走行が頻繁に行われる作業現場2で稼動する建設機械11は、平坦路を走行する建設機械11よりもエンジンへの負荷が大きいことから、a)の「走行経路の上り、下りの頻度に応じた環境負荷ポイント」を、平坦路を走行する建設機械11の「環境負荷ポイント」に比して高い点数に設定する。
【0101】
5)管理状態
建設機械11、12の管理状態を考慮した管理ポイントを付与することができる。
【0102】
例えば、広域鉱山などの作業現場2では、複数のダンプトラックに対して一台の油圧ショベルが割り当てられて、土砂等の積込作業が行われる。ここで、油圧ショベルがメンテナンスに入り休車状態になったにもかかわらず代替えの車両の都合がつかないとすると作業現場全体が操業できない状況に至り、大幅なダウンタイムを招く。このような事態を回避するために、代車を用意できない管理状態のときには建設機械12(この場合、油圧ショベル)の「管理ポイント」を、代車を用意できる管理状態のときの建設機械12の「管理ポイント」に比して低い点数に設定する。
【0103】
なお、作業現場2の環境や建設機械11、12の管理状態は、流動的なものであることから、環境負荷ポイント、管理ポイントについては、建設機械のオペレータの操作によって、あるいは建設機械の外部(例えば管理者)から通信手段を介して、環境負荷ポイントと管理ポイントの点数データの書き換えが可能となるように構成しておくことが望ましい(ステップ101)。このオペレータによる書き換えは、オペレータが表示装置36に付設された操作ボタンを操作することで表示用コントローラ21から記録用コントローラ20の記憶部20bの既存データを書き換える指令信号が送信されることによって行われる。また、外部からの通信手段による書き換えは、監視局50にあるコンピュータ52や作業現場に持ち込んだパーソナルコンピュータ34や管制事務所60にあるコンピュータ62を使用して、無線通信あるいは有線通信を介して、新しい点数データを建設機械11、12の記録用コントローラ20の記憶部20bに送信することで既存の点数データを書き換えることもできる。
【0104】
(異常の判定処理;ステップ102)
建設機械11、12の演算処理部20cではそれぞれ、異常の判定処理が行われる。よって演算処理部20cは、本発明の異常判定手段を構成する。
【0105】
センサ異常の判定項目については、各センサ40a、40b…の検出値と、対応するしきい値と比較して、検出値がしきい値以上(あるいは以下)である場合に、異常であると判定される。また、各コントローラ22、23、24において、受信された各センサの検出値に対して、各コントローラ22、23、24内でしきい値との比較を行い異常の判断を行い、その結果を演算処理部20cに送信してもよい。この場合、各々のしきい値は、あらかじめ各コントローラ22、23、24に記憶されている。
【0106】
エラーコード異常の判定項目については、エラーコードが生成された時点で異常と判定される(ステップ102)。
【0107】
(累積点数の演算処理;ステップ103)
建設機械12の演算処理部20cでは、建設機械12で異常が判定される毎に、対応するセンサ異常あるいはエラーコードの異常の判定項目に割り当てられている点数(ポイント)と、対応する建設機械12に設定されている全異常の判定項目数に対する一の異常の判定項目の割合R1(またはR2またはR3…)とを乗算した数値Pを求め、求められた数値Pを過去に得られた累積点数TPoに加算することで、現在の累積点数TPnを求める。建設機械11についても同様にして現在の累積点数TPn´が求められる。よって、演算処理部20cは、本発明の累積点数演算手段を構成する。
【0108】
すなわち、異常と判定される毎に得られる数値Pは、次式で与えられる。
【0109】
P=(経過時間ポイント)×(部位ポイント)×(重みポイント)×(環境負荷ポイント)×(管理ポイント)×(割合R1(またはR2またはR3…)) …(9)´
なお、本実施例では、環境負荷、管理状態を考慮しないとして「環境負荷ポイント」、「管理ポイント」については一律に「1ポイント」を付与している。よって、上記(9)´式の代わりに下記(9)式を用いるものとする。
【0110】
P=(経過時間ポイント)×(部位ポイント)×(重みポイント)×(割合R1(またはR2またはR3…)) …(9)
現在の累積点数TPnは、異常と判定され、上記(9)式で数値Pが取得される毎に、下記(10)式により、過去の累積点数TPoから更新される。
【0111】
TPn←TPo+P …(10)
なお、メンテナンスが実施される毎に、累積点数TPnはゼロ値にリセットされる。このリセットは、各建設機械の運転席内に設けられた、図示しないリセットスイッチの操作によって、リセット信号が記憶部20bに送信されて行われる。また、リセット信号は、監視局50あるいは管制事務所60から送信されて、各建設機械の送受信機32がリセット信号を受信し、記憶部20bに転送されて行われてもよい。
【0112】
(累積点数Pの計算例)
ここで、油圧ショベルである建設機械12については、前回のメンテナンスから6000H経過した時点で、以下のような異常が発生しているとして本実施例を説明する。ブームシリンダ用ポンプからの作動油の吐出圧が低下し、バケットにより1回に掘削できる土砂の積込める掘削量が低下してしまうという異常が発生したとする。ブームシリンダ用ポンプの吐出圧が低下し、センサによって検出される「ブームシリンダ用ポンプ圧」が異常に低い値となっているとする。また、ブームシリンダ用ポンプに連結されているファンポンプの出力も低下し、ファンポンプ圧が異常に低い値となっているとする。また、エンジンの排気マニホールド各部(NO.1、NO.2、NO.3、NO.4)の排気温度が異常な高温となっているとする。エンジン油温が異常な高温となるとともに、エンジン水温が異常な高温となっているとする。
【0113】
また、ブームシリンダ上昇圧、ブームシリンダ下降圧が異常に低い値となっているとする。さらに、ブームシリンダ用ポンプ指令電流が異常に上昇しているとする。ファンポンプ指令電流が異常に上昇しているとする。なお、以上に述べた異常が必ずしも同時に発生するとは限らず、本実施例では、所定の期間内に検出された異常をまとめて取り扱う場合として説明するものとする。所定の期間は、あらかじめ設定されており、建設機械12のサービスメータと連携して、所定の期間(例えば、100時間毎)に検出された(発生した)異常を記憶コントローラ20で下記に述べるような処理(図3に示すステップ103〜105)を実行することができる。所定の期間は、予め通信コントローラ20の演算処理部20cに設定しておいてもよいが、監視局50あるいは管制事務所60から設定変更信号を各建設機械へ送信することで設定あるいは変更されるものである。
【0114】
一方、ダンプトラックである建設機械11については、前回のメンテナンスから6000H経過した時点で、以下に述べるような異常が発生したとする。
【0115】
エンジンの排気マニホールド各部(NO.1、NO.2、NO.3、NO.4)の排気温度が異常な高温となっているとする。
【0116】
また、2速用クラッチのフィリング時間、2速用クラッチのトリガー時間が異常な値となっているとする。また、変速用クラッチの二重係合、2速用クラッチのスリップという現象が現れているとする。建設機械12と同様に、以上に述べた異常が必ずしも同時に発生するとは限らず、本実施例では、所定の期間に検出された(発生した)異常をまとめて取り扱う場合として説明するものとする。
【0117】
まず、建設機械12で異常が発生した場合について図4を参照して説明する。
【0118】
センサ異常の判定項目「NO.1排気温度」で異常と判定されると、上記(9)式より、数値PをP1とすると、
P1=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R1)=1.00
により数値1.00が取得される。なお、数値Pは、小数点第3位を四捨五入して求めるものとする。
【0119】
同様に、センサ異常の判定項目「NO.2排気温度」で異常と判定されると、上記(9)式より、数値PをP2とすると、
P2=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R1)=1.00
と数値1.00が取得される。
【0120】
同様に、センサ異常の判定項目「NO.3排気温度」で異常と判定されると、上記(9)式より、数値PをP3とすると、
P3=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R1)=1.00
と数値1.00が取得される。
【0121】
同様に、センサ異常の判定項目「NO.4排気温度」で異常と判定されると、上記(9)式より、数値PをP4とする。
【0122】
すると、P4=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R1)=1.00
と数値1.00が取得される。
【0123】
また、センサ異常の判定項目「エンジン油温」で異常と判定されると、上記(9)式より、数値PをP5とすると、
P5=2(経過時間ポイント)×2(部位ポイント)×2(重みポイント)×(割合R1)=0.67
により数値0.67が取得される。数値0.67は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0124】
また、センサ異常の判定項目「エンジン水温」で異常と判定されると、上記(9)式より、数値PをP6とすると、
P6=2(経過時間ポイント)×2(部位ポイント)×2(重みポイント)×(割合R1)=0.67
により数値0.67が取得される。数値0.67は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0125】
また、センサ異常の判定項目「ブームシリンダ用ポンプ圧」で異常と判定されると、上記(9)式より、数値PをP7とすると、
P7=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R2)=0.86
により数値0.86が取得される。数値0.86は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0126】
また、センサ異常の判定項目「ファンポンプ圧」で異常と判定されると、上記(9)式より、数値PをP8とすると、
P8=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R2)=0.57
により数値0.57が取得される。数値0.57は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0127】
また、センサ異常の判定項目「ブームシリンダ用ポンプ指令電流」で異常と判定されると、上記(9)式より、数値PをP9とすると、
P9=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R2)=0.57
により数値0.57が取得される。数値0.57は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0128】
また、センサ異常の判定項目「ファンポンプ指令電流」で異常と判定されると、上記(9)式より、数値PをP10とすると、
P10=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R2)=0.57
により数値0.57が取得される。数値0.57は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0129】
また、センサ異常の判定項目「ブームシリンダ上昇圧」で異常と判定されると、上記(9)式より、数値PをP11とすると、
P11=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R2)=0.57
により数値0.57が取得される。数値0.57は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0130】
また、センサ異常の判定項目「ブームシリンダ下降圧」で異常と判定されると、上記(9)式より、数値PをP12とすると、
P12=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R2)=0.57
により数値0.57が取得される。数値0.57は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0131】
以上のように建設機械12のセンサ異常の判定項目については、数値P1〜P12を合計すると、合計値が9.05点となり、上記(10)式にしたがい、この合計値の数値9.05点が過去の累積点数TPoに加算されて累積点数TPが更新される。
【0132】
また、「NO.1排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe1とすると、
Pe1=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R3)=0.10
により求められる数値0.10を10回分乗算した数値1.00(=0.10×10)が取得される。取得された数値1.00は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0133】
同様に、「NO.2排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe2とすると、
Pe2=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R3)=0.10
により求められる数値0.10の10回分の数値1.00が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0134】
同様に、「NO.3排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe3とすると、
Pe3=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R3)=0.10
により求められる数値0.10の10回分の数値1.00が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0135】
同様に、「NO.4排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe4とすると、
Pe4=2(経過時間ポイント)×2(部位ポイント)×3(重みポイント)×(割合R3)=0.10
により求められる数値0.10の10回分の数値1.00が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0136】
また、「エンジン水温オーバーヒート」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe5とすると、
Pe5=2(経過時間ポイント)×2(部位ポイント)×2(重みポイント)×(割合R3)=0.07
により求められる数値0.07の10回分の数値0.70が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0137】
また、「ファンポンプ圧が非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe6とすると、
Pe6=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R4)=0.20
により求められる数値0.20の10回分の数値2.00が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0138】
以上のように建設機械12のエラーコード異常の判定項目については、数値Pe1〜Pe6を合計すると、合計値が6.70点となり、センサ異常の判定項目の合計値である9.05点と合わせて合計15.75点となる。よって前回のメンテナンスから所定の期間内における建設機械12の現在の累積点数TPnは、15.75点となる。
【0139】
次に、建設機械11で異常が発生した場合について図5を参照して説明する。
【0140】
センサ異常の判定項目「NO.1排気温度」で異常と判定されると、上記(9)式より、数値PをP1´とすると、
P1´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R5)=1.64
により数値1.64が取得される。なお、数値Pは、演算された値の小数点第3位を四捨五入して求めるものとする。
【0141】
同様に、センサ異常の判定項目「NO.2排気温度」で異常と判定されると、上記(9)式より、数値PをP2´とすると、
P2´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R5)=1.64
と数値1.64が取得される。
【0142】
同様に、センサ異常の判定項目「NO.3排気温度」で異常と判定されると、上記(9)式より、数値PをP3´とすると、
P3´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R5)=1.64
と数値1.64が取得される。
【0143】
同様に、センサ異常の判定項目「NO.4排気温度」で異常と判定されると、上記(9)式より、数値PをP4´とする。
【0144】
すると、P4´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R5)=1.64
と数値1.64が取得される。
【0145】
また、センサ異常の判定項目「2速用クラッチフィリング時間」で異常と判定されると、上記(9)式より、数値PをP5´とすると、
P5´=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R6)=0.75
により数値0.75が取得される。数値0.75は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0146】
また、センサ異常の判定項目「2速用クラッチトリガー時間」で異常と判定されると、上記(9)式より、数値PをP6´とすると、
P6´=2(経過時間ポイント)×3(部位ポイント)×2(重みポイント)×(割合R6)=0.75
により数値0.75が取得される。数値0.75は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0147】
以上のように建設機械11のセンサ異常の判定項目については、数値P1´〜P6´を合計すると合計値が8.06点となり、上記(10)式にしたがい、この合計の数値8.06点が過去の累積点数TPoに加算されて累積点数TPが更新される。
【0148】
また、「NO.1排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe1´とすると、
Pe1´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R7)=0.16
により求められる数値0.16を10回分乗算した数値1.60(=0.16×10)が取得される。取得された数値1.60は、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0149】
同様に、「NO.2排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe2´とすると、
Pe2´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R7)=0.16
により求められる数値0.16の10回分の数値1.60が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0150】
同様に、「NO.3排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe3´とすると、
Pe3´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R7)=0.16
により求められる数値0.16の10回分の数値1.60が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0151】
同様に、「NO.4排気温度非常に高い」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe4´とすると、
Pe4´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R7)=0.16
により求められる数値0.16の10回分の数値1.60が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0152】
また、「変速用クラッチの二重係合」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe5´とすると、
Pe5´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R8)=0.17
により求められる数値0.17の10回分の数値1.70が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0153】
また、「2速用クラッチのスリップ」というエラーコード異常の判定項目が10回生成されると、上記(9)式より、数値PをPe6´とすると、
Pe6´=2(経過時間ポイント)×3(部位ポイント)×3(重みポイント)×(割合R8)=0.17
により求められる数値0.17の10回分の数値1.70が、過去の累積点数TPoに加算されて、累積点数TPが更新される。
【0154】
以上のように建設機械11のエラーコード異常の判定項目については、数値Pe1´〜Pe6´を合計すると、合計値が9.80点となり、センサ異常の判定項目の合計値である8.06点と合わせて合計17.86点となる。よって、前回のメンテナンスから所定の期間における建設機械11の現在の累積点数TPnは、17.86点となる(ステップ103)。
【0155】
(メンテナンス優先順位を演算する処理;ステップ104)
以上のようにして各建設機械11、12で現在の累積点数TPnが求められると、車両間通信用送受信機35を介して相互に、現在の累積点数TPnを示すデータが送受信される。なお、車両間通信用送受信機35を介して相互に、現在の累積点数TPnを示すデータが送受信される処理は、一日に一回あるいは一週間に一回といった所定の間隔で実行されてもよいし、監視局50からのトリガー信号あるいは管制事務所60からのトリガー信号を受けて実行されてもよい。
【0156】
したがって、建設機械12には、他の建設機械11で求められた現在の累積点数TPnを示すデータが取り込まれることになる。なお、建設機械13、14…でも同様にして現在の累積点数TPnを演算する処理が行われ、これら建設機械13、14…を含む建設機械相互の間で現在の累積点数TPnを示すデータを相互に送受信する処理が行われる。よって、建設機械12には、他の建設機械11、13、14…で求められた現在の累積点数TPnを示すデータが取り込まれることになる。
【0157】
建設機械12の演算処理部20cでは、自己の建設機械12の現在の累積点数TPnと他の建設機械11、13、14…の現在の累積点数TPnとを比較して、点数の大きい順に累積点数TPnを並び換える処理を行う。すなわち、複数の建設機械11、12、13、14…それぞれで得られた現在の累積点数TPnの順位付けを行う。そして現在の累積点数TPnが高くなるほど上位となるメンテナンス優先順位を演算する。よって、演算処理部20cは、本発明のメンテナンス優先順位演算手段を構成する。
【0158】
上述した例でいえば、建設機械12の現在の累積点数TPnは、15.75点であり、建設機械11の現在の累積点数TPnは、17.86点であるから、メンテナンス優先順位は、累積点数TPが高い方の建設機械11、すなわちダンプトラックが、累積点数TPnが低い方の建設機械12、すなわち油圧ショベルよりも上位となる。
【0159】
表示装置36が、建設機械12の運転室内に設置されている場合には、その表示画面36aに複数の建設機械11、12、13、14…のメンテナンス優先順位が表示される。図7は、建設機械11、12、13、14…の運転室内に設置されている表示装置36の表示画面36aにメンテナンス優先順位を表示した例である。図7に示すように、メンテナンス優先順位に関連する情報は、自車の欄、機種の欄、型式の欄、車格の欄、仕様の欄、メンテナンス優先順位の欄、メンテナンス関連部位の欄で構成されている。また、この情報には、どの作業現場2で稼動している建設機械11、12、13、14…に関するものであるかを示すために、作業現場の名称(図7ではAAA鉱山)を表示している。さらに、メンテナンス優先順位が演算された日付も、メンテナンス優先順位算出日として表示している。自車の欄に丸印がついている行の情報が、自車に関連する情報である。機種の欄は、建設機械の種類を表示し、図7に示すような名称でも、各建設機械の外形をモチーフとしたアイコン表示でもよい。さらに、型式の欄は各建設機械の型式の番号等を表示する。車格の欄は、各建設機械の大きさを示す数字等を表示する。仕様の欄は、各建設機械の仕様を示し、砕石仕様や解体仕様、標準仕様、湿地仕様といった言葉を表示する。メンテナンス優先順位は、優先度の高さを文字や記号等で表示する。図7の場合は、Aが最も優先的にメンテナンスを行わなければならないことを示し、順にB、C・・・といくにつれてメンテナンス優先順位は下位となる。図7では、アルファベットでメンテナンス優先順位を表現しているが、他の文字や数値、記号あるいは色表示であってもよい。メンテナンス関連部位の欄には、メンテナンス優先順位に特に強く影響しているメンテナンス関連部位を記録用コントローラ20で求めて表示するが、このメンテナンス関連部位の欄は必ずしも表示させる必要はない。このようなメンテナンス優先順位に関連する情報を表示画面36aにさせることにより、建設機械12のオペレータは、自身が運転操作する建設機械12の他車との相対的なメンテナンスの優先度を把握することができる。図7の例では、建設機械12(油圧ショベル)のオペレータは、この作業現場(AAA鉱山)で稼働中の建設機械のなかでは、メンテナンス優先順位が二番目に高いということを把握することができる。他の建設機械11、13、14…についても同様に運転室の表示装置36の表示画面36aに複数の建設機械11、12、13、14…のメンテナンス優先順位が表示されることから、同様に自身が運転操作する建設機械の相対的なメンテナンスの優先度を把握することができる。つまり、自身が運転操作する建設機械と相手の車両のメンテナンス時期が把握できるため、自身が運転操作する車両にかかる負荷を調整したり相手の車両にかかる負荷を調整したりすることができる。例えば、油圧ショベルである建設機械12とダンプトラックである建設機械11がペアを組んで土砂の積込作業を行っている場合を想定すると、図7の例で示すように、型式3型で車格Xのダンプトラックである建設機械11のメンテナンスが最優先となっているが、出来る限り作業を継続したい場合には、建設機械12(油圧ショベル)のオペレータは相手のダンプトラックへの積込量を減らして負荷を軽減して故障を回避しつつダンプトラックのメンテナンス時期を遅らせるように調整することができる。このようにして作業のスケジュール管理を有効に行いつつ故障回避を図ることができる。
【0160】
表示装置36が、建設機械12の車体12aの外側の外部から見える場所に設置されている場合には、その表示画面36aに、複数の建設機械11、12、13、14…のメンテナンス優先順位が表示される。図6は、建設機械の外部に表示装置36を設置した場合のメンテナンス優先順位を表示する例を示す。図6は、建設機械11がダンプトラックであって、建設機械12が油圧ショベルの場合の例を示す。図6に示すように、ダンプトラックの荷台の前方上方に表示装置36を備え、演算処理部20cで求められたメンテナンス優先順位を信号として表示装置36に送信し、Aという文字を表示し、一方、油圧ショベルの運転室の上方に表示装置36を備え、演算処理部20cで求められたメンテナンス優先順位を信号として表示装置36に送信し、Bという文字を表示する。表示された、AとBは、Aのほうが優先的にメンテナンスを行わなければならないことを示し、順にB、C・・・といくにつれてメンテナンス優先順位は下位となる。なお、図6では、アルファベットでメンテナンス優先順位を表現しているが、他の文字や数値、記号あるいは色表示であってもよい。他の建設機械11、13、14…についても同様に車体外側の表示画面36aに、複数の建設機械11、12、13、14…のメンテナンス優先順位が表示される。これにより建設機械11、12、13、14…外にいる作業現場2の管理者等は、作業現場2で稼動している各建設機械を一目見ることで、複数の建設機械11、12、13、14…のメンテナンス優先順位を容易に把握することができる。つまり、建設機械の種類や車格を考慮することなく、メンテナンス優先順位だけで、どの建設機械を優先的にメンテナンスすべきかの判断を行うことができる。また、各建設機械11、12、13、14のオペレータ同士で表示装置36の表示画面36aに表示されたメンテナンス優先順位を視認して把握することができる。なお、表示装置36によって文字等の情報でメンテナンス優先順位を表示するかわりに、複数種類の色を発光するライトを建設機械の外部に備えて、色の違いでメンテナンス優先順位を表示してもよい。
【0161】
なお、メンテナンス優先順位の順位付けに係る演算処理は、各建設機械がそれぞれ他の建設機械の現在の累積点数TPnのデータを収集してそれぞれの建設機械で行ってもよく、複数の建設機械11、12、13、14…のうち特定の建設機械(例えば建設機械12)のみが他の建設機械の11、13、14…の現在の累積点数TPnのデータを収集して行うこととして、その特定の建設機械12で演算されたメンテナンス優先順位のデータを車両間通信用送受信機35を介して他の建設機械11、13、14…に送信してもよい。
【0162】
建設機械12で演算された複数の建設機械11、12、13、14…のメンテナンス優先順位を示すデータは、建設機械12の送受信機32から監視局50に無線送信される。送信された複数の建設機械11、12、13、14…のメンテナンス優先順位を示すデータは、監視局50の送受信装置51で受信されて監視局50のコンピュータ52に取り込まれる(ステップ104)。
【0163】
(メンテナンスの実施;ステップ105)
監視局50のコンピュータ52に取り込まれた複数の建設機械11、12、13、14…のメンテナンスの優先順位を示すデータはコンピュータ52でデータ処理され、例えばコンピュータ52の表示画面52aに表示される。表示は、各建設機械の識別番号とメンテナンスの優先順位をリスト表示するものでもよいし、各建設機械を図柄で表示し、図柄の横にメンテナンスの優先順位を表示してもよい。メンテナンスの優先順位は、順位を単に数値で示しても記号や文字で示してもよく、視覚的に認識することができる表現形態であればよい。また、メンテナンスの優先順位が最も高い建設機械の識別番号等をコンピュータ52に付設するスピーカから音声で出力するようにして、監視局50にいる各建設機械11、12、13、14…のユーザや管理者に知らせてもよい。これにより、監視局50にいる建設機械11、12、13、14…のユーザあるいは管理者は、作業業現場2内で稼動する各建設機械11、12、13、14…のメンテナンスの優先順位を把握することができる。さらに各建設機械11、12、13、14…のメンテナンスの優先順位に基づいてメンテナンスの計画を策定することができる。このためユーザあるいは管理者は、メンテナンス計画に示される適切な時期に各建設機械11、12、13、14…のメンテナンスを指示することができる。各建設機械11、12、13,14…は、それぞれの現在の累積点数TPnの順位に応じたメンテナンス優先順位で、適切な時期にメンテナンスされることなり、重大な故障を回避しつつダウンタイムを飛躍的に低減させることができる(ステップ105)。つまり、作業現場2で稼動する複数種類の建設機械の稼動効率を高めることが可能となる。
【0164】
以上のように第1実施例によれば、異なる種類の建設機械11、12…同士の状態を同一の基準で比較することができるようになり、「いずれか一方の種類の建設機械を他の種類の建設機械よりも優先してメンテナンスすべき」という判断ができるようになる。また、メンテナンス計画の策定を行う者の経験が浅くても、どの建設機械が優先してメンテナンスすべきかという判断(メンテナンス計画の策定)を容易に行うことができる。
【0165】
すなわち、上述した建設機械11、12のように互いに種類が異なれば、判定すべき異常の判定項目数が異なる。しかし、異常の判定項目数が多い種類の建設機械であれば、異常が発生しやすく、異常の判定項目数が少ない種類の建設機械であれば、異常が発生しにくいといえる。よって異常の判定項目数が多い種類の建設機械ほど、個々の異常の重要度が小さく、メンテナンスの優先度を低く見積もる必要がある。また、異常発生回数が多い建設機械ほど、メンテナンスの優先度を高く見積もる必要がある。
【0166】
そこで、第1実施例では、「全異常の判定項目数に対する一の異常の判定項目の割合」(R1、R2…)という概念を導入し、各異常の判定項目毎に点数(部位ポイント、重みポイント、経過時間ポイント等)を割り当て、異常と判定された場合に、その異常の判定項目の点数と、上記「割合」とを乗算した数値Pを求め、その数値の累積点数TPを求め、その累積点数TPの順位に応じてメンテナンスの優先順位を定めるようにしている。このようにして異なる種類を含む建設機械11、12…同士の間でメンテナンスの優先順位を正確に定めることが可能となる。したがって、例えば、同じ異常発生回数であったとしても異常の判定項目数が少ない種類の建設機械の方がメンテナンスの優先順位は高くする。逆に、異常発生回数が他の種類の建設機械よりも多くても、全異常の判定項目数が少なければ、メンテナンスの優先順位が他の建設機械よりも低くなることがある。
【0167】
第1実施例では各異常の判定項目毎に点数(部位ポイント、重みポイント、経過時間ポイント等)を割り当てているが、点数を定めない、点数を一律に設定する実施も可能である。すなわち、建設機械の種類毎に、判定すべき複数の異常の判定項目を設定しておき、建設機械で設定されている全異常の判定項目数に対する異常発生回数の割合を、各建設機械同士で対比して、その割合が高い建設機械ほど高くなる優先度で建設機械をメンテナンスする実施も可能である。
【0168】
(第2実施例)
第1実施例では、メンテナンスの優先順位の演算までを建設機械11、12…の内部で行い、メンテナンス優先順位を示すデータを外部に送出する場合を例にとり説明したが、現在の累積点数TPnの演算までを建設機械11、12…の内部で行い、現在の累積点数TPnを示すデータを外部に送出して、外部でメンテナンス優先順位を決定する実施も可能である。なお、第1実施例と共通するところについては、説明を省略して本実施例を説明する。
【0169】
第2実施例では、ステップ101からステップ103までの処理が第1実施例と同様に行われ、建設機械12で自己の建設機械12の現在の累積点数TPnが求められる。そして、表示装置36が、建設機械12の運転室内に設置されている場合には、その表示画面36aに自己の建設機械12の現在の累積点数TPnが表示される。これにより建設機械12のオペレータは、自身が運転操作する建設機械12の現在の累積点数TPnを把握することができる。他の建設機械11、13、14…においても同様の処理が行われ、運転室の表示装置36の表示画面36aにそれぞれ自己の建設機械11、13、14…のメンテナンス優先順位が表示されることから、同様に自身が運転操作する建設機械の現在の累積点数TPnを把握することができる。
【0170】
表示装置36が、建設機械12の車体12aの外側の外部から見える場所に設置されている場合には、その表示画面36aに、自己の建設機械12の現在の累積点数TPnが表示される。他の建設機械11、13、14…についても同様に車体外側の表示画面36aに、それぞれ自己の建設機械の現在の累積点数TPnが表示される。これにより、ある建設機械のオペレータは、運転室の表示画面36aに表示された自己の建設機械の現在の累積点数TPnと、他の建設機械の車体外側の表示画面36aに表示された他の建設機械の現在の累積点数TPnを比較することが可能となり、相対的なメンテナンスの優先度を把握することができる。また、建設機械11、12、13、14…外にいる作業現場2の管理者等は、作業現場2で稼動している各建設機械11、12、13、14…の現在の累積点数TPnを一目見ることで、複数の建設機械11、12、13、14…のメンテナンス優先順位を容易に把握することができる。
【0171】
建設機械12で演算された自己の建設機械12の現在の累積点数TPnを示すデータは、建設機械12の送受信機32から監視局50に送信される。送信された建設機械12の現在の累積点数TPnを示すデータは、監視局50の送受信装置51で受信されて監視局50のコンピュータ52に取り込まれる。同様にして他の建設機械11、13、14から、それぞれの自己の建設機械の現在の累積点数TPnを示すデータが監視局50に送られ、監視局50のコンピュータ52に取り込まれる。
【0172】
監視局50のコンピュータ52に取り込まれた各建設機械11、12、13、14…の現在の累積点数TPnを示すデータは、コンピュータ52にあらかじめ記憶されているプログラムを実行することでデータ処理され、上述したステップ104と同様の処理が行われ、複数の建設機械11、12、13、14…のメンテナンス優先順位が求められる。さらに、ステップ105と同様にして、メンテナンスの計画が策定され、メンテナンス優先順位にしたがいメンテナンスが実施される。コンピュータ52に記憶されているプログラムは、ステップ104の処理を行い、コンピュータの表示装置52aに各建設機械の優先度を数字や記号などを用いて表示する処理を実行する。このコンピュータの表示装置52aに表示される情報の例は、図7に示す。なお、メンテナンスの優先順位のデータを監視局50から各建設機械11、12、13、14に送信して各建設機械11、12、13、14の表示装置36の表示画面36aに表示させることでオペレータにメンテナンスの優先順位を知らしめてもよい。
【0173】
(第3実施例)
第1実施例では、メンテナンスの優先順位の演算までを建設機械11、12…の内部で行い、メンテナンス優先順位を示すデータを外部に送出する場合を例にとり説明したが、建設機械11、12…それぞれで得られたセンサ検出値およびエラーコードのデータを外部に送出し、外部で、センサ検出値の異常判定処理、累積点数TPの演算処理、メンテナンスの優先順位を演算する処理を行う実施も可能である。なお、第1実施例や第2実施例と共通するところについては、説明を省略して本実施例を説明する。
【0174】
この場合、ステップ101に示される記憶処理、つまり建設機械毎に異常の判定項目を設定して異常の判定項目毎に点数を割り当てて予め記憶しておく処理は、外部の監視局50のコンピュータ52で行われ、コンピュータ52の記憶手段に予め記憶されている。
【0175】
建設機械12のセンサ検出値およびエラーコードのデータは、建設機械12の送受信機32から監視局50に送信される。なお、センサ検出値およびエラーコードのデータの監視局50への送信は、一週間に一回といった定期的な送信でも、異常値検出やエラーコードの生成があれば随時送信するものでもよい。送信された建設機械12のセンサ検出値およびエラーコードのデータは、監視局50の送受信装置51で受信されて監視局50のコンピュータ52に取り込まれる。同様にして他の建設機械11、13、14からそれぞれ、自己の建設機械のセンサ検出値およびエラーコードのデータが監視局50に送られ、監視局50のコンピュータ52に取り込まれる。
【0176】
監視局50のコンピュータ52では、建設機械12のセンサ検出値およびエラーコードのデータが取り込まれると、建設機械12について設定された異常の判定項目について異常判定を行う。すなわち建設機械12から送られたセンサ検出値と、対応するしきい値と比較して、検出値がしきい値以上(あるいは以下)である場合に、異常と判定する。建設機械12からエラーコードが送られた場合にはその時点で異常と判定する。他の建設機械11、13、14…についても同様にして、それぞれの建設機械11、13、14…について設定された異常の判定項目について異常判定を行う。以後、ステップ103と同様にして、異常と判定される毎に数値Pを演算し、現在の累積点数TPnが各建設機械11、12、13、14…毎に演算され、ステップ104と同様にして複数の建設機械11、12、13、14…のメンテナンス優先順位が演算され、ステップ105と同様にして、メンテナンス優先順位にしたがいメンテナンスが実施される。このコンピュータの表示画面52aに表示される情報の例は、図7に示す。なお、メンテナンスの優先順位のデータを監視局50から各建設機械11、12、13、14に送信して各建設機械11、12、13、14の表示装置36の表示画面36aに表示させることでオペレータにメンテナンスの優先順位を知らしめてもよい。
【0177】
(第4実施例)
第1実施例、第2実施例、第3実施例では、上記パターン1にしたがい建設機械11、12…から外部の監視局50にデータが送られる場合を例にとり説明した。しかし、パターン2にしたがい建設機械11、12…から外部の管制事務所60にセンサ検出値およびエラーコードのデータを送る実施も可能である。なお、第1実施例〜第3実施例と共通するところについては、説明を省略して本実施例を説明する。
【0178】
建設機械11、12、13、14…の送受信機32から管制事務所60に送信されたセンサ検出値およびエラーコードのデータは、管制事務所60の送受信装置61で受信されて管制事務所60のコンピュータ62に取り込まれデータベース63に蓄積され、コンピュータ62でデータの処理が行われる。管制事務所60のコンピュータ62は、例えば建設機械11、12、13、14…を整備する工場の管理者によって操作される。コンピュータ62の表示画面62aには、複数の建設機械11、12、13、14…のメンテナンスの優先順位が表示される。このコンピュータの表示画面62aに表示される情報の例は、図7に示す。これにより、建設機械11、12、13、14…を整備する工場の管理者は、作業現場2内で稼動する各建設機械11、12、13、14…のメンテナンスの優先度を把握することができ、メンテナンスの計画を策定して、各建設機械11、12、13、14…をメンテナンス優先順位にしたがい適切な時期にメンテナンスすることができる。なお、データベース63には、作業現場2のみならず、通信衛星37などの通信インフラが有効に機能する地域で稼動する建設機械のデータを蓄積することができる。したがって、作業現場2のみならず、それよりも広い範囲内で稼動している複数の建設機械のメンテナンス優先順位を決定してメンテナンスを適切に実施することが可能となる。
【0179】
(第5実施例)
第1実施例、第2実施例、第3実施例では、上記パターン1にしたがい建設機械11、12…から外部の監視局50にセンサ検出値およびエラーコードのデータが送られる場合を例にとり説明した。しかし、パターン3にしたがい建設機械11、12…から、上述した専用ツール33を介して外部のパーソナルコンピュータ34にセンサ検出値およびエラーコードのデータをダウンロードする実施も可能である。なお、第1実施例〜第4実施例と共通するところについては、説明を省略して本実施例を説明する。
【0180】
建設機械12から専用ツール33を介して外部のパーソナルコンピュータ34に建設機械12の内部(記憶部20b)のセンサ検出値およびエラーコードのデータがダウンロードされ、パーソナルコンピュータ34に取り込まれる。さらに他の建設機械11、13、14…内部(記憶部20b)のセンサ検出値およびエラーコードのデータについても同様にしてダウンロードされ、パーソナルコンピュータ34に取り込まれる。パーソナルコンピュータ34ではステップ102〜ステップ104までのデータ処理が行われ、パーソナルコンピュータ34の表示画面34aには、複数の建設機械11、12、13、14…のメンテナンスの優先順位が表示される。このコンピュータの表示画面34aに表示される情報の例は、建設機械11、12、13、14…の運転室内に設置されている表示装置にメンテナンス優先順位を表示した例で説明したものと同様なものである。これにより、建設機械11、12、13、14…を点検するサービスマンは、作業現場2内で稼動する各建設機械11、12、13、14…のメンテナンスの優先順位を把握することができ、メンテナンスの計画を策定して、各建設機械11、12、13、14…をメンテナンス優先順位にしたがい適切な時期にメンテナンスすることができる。なおパーソナルコンピュータ34に取り込まれたセンサ検出値およびエラーコードのデータを更にインターネット38等を介して管制事務所60のコンピュータ62に送りデータベース63に蓄積させて、管制事務所60でステップ102〜ステップ104までのデータ処理を行う実施も可能である。
【符号の説明】
【0181】
1 建設機械のメンテナンスシステム 2 作業現場 11、12、13、14 建設機械 20b 記憶部 20c 演算処理部

【特許請求の範囲】
【請求項1】
異なる種類を含む複数の建設機械をメンテナンスする方法であって、
建設機械の種類毎に、判定すべき複数の異常の判定項目を設定しておき、
建設機械の種類毎に設定されている全異常の判定項目数に対する異常発生回数の割合を、各建設機械同士で対比して、
前記割合が高い建設機械ほど高くなるメンテナンスの優先順位を、各建設機械に備えた表示装置又は各建設機械と有線あるいは無線で通信可能な表示装置に表示し、建設機械をメンテナンスすること
を特徴とする建設機械のメンテナンス方法。
【請求項2】
各建設機械の運転室内に設けられた表示装置あるいは各建設機械の外側に設けられた表示装置に前記優先順位を表示することことを特徴とする請求項1に記載の建設機械のメンテナンス方法。
【請求項3】
異なる種類を含む複数の建設機械をメンテナンスする方法であって、
建設機械の種類毎に、判定すべき複数の異常の判定項目を設定するとともに、各異常の判定項目毎に点数を割り当てておき、
異常と判定される毎に、対応する異常の判定項目に割り当てられている点数と、対応する建設機械に設定されている全異常の判定項目数に対する一の異常の判定項目の割合とを乗算した数値を求め、求められた数値を過去に得られた数値に加算し、得られた数値を当該建設機械の現在の累積点数とし、
複数の建設機械毎に得られた、現在の累積点数の順位付けを行い、現在の累積点数の順位に応じたメンテナンス優先順位で、建設機械をメンテナンスすること
を特徴とする建設機械のメンテナンス方法。
【請求項4】
異なる種類を含む複数の建設機械をメンテナンスするメンテナンスシステムであって、
建設機械の種類毎に、判定すべき複数の異常の判定項目が設定されるとともに、各異常の判定項目毎に点数が予め割り当てられ、これらデータが記憶されている記憶手段と、
建設機械の内部状態を検出する複数の検出手段と、
建設機械または建設機械の外部に設けられ、前記検出手段の検出結果に応じて異常を判定する異常判定手段と、
異常判定手段で異常と判定される毎に、対応する異常の判定項目に割り当てられている点数と、対応する建設機械に設定されている全異常の判定項目数に対する一の異常項目の割合とを乗算した数値を求め、求められた数値を過去に得られた数値に加算し、得られた数値を当該建設機械の現在の累積点数とする累積点数演算手段と、
複数の建設機械毎に得られた現在の累積点数の順位付けを行い、現在の累積点数の
順位に応じたメンテナンス優先順位を求めるメンテナンス優先順位演算手段と
を備え、求められたメンテナンス優先順位で、建設機械をメンテナンスすること
を特徴とする建設機械のメンテナンスシステム。
【請求項5】
各建設機械に備えられた第一表示装置と、
各建設機械と有線あるいは無線で通信可能な第二表示装置と
が備えられ、
求められた前記メンテナンス優先順位が前記第一表示装置又は/および第二表示装置に表示されることを特徴とする請求項4に記載の建設機械のメンテナンスシステム。
【請求項6】
前記各建設機械には、
建設機械同士で無線通信可能な通信手段と、
前記累積点数演算手段とが備えられ、
前記各建設機械または前記各建設機械のうち特定の建設機械には、
前記メンテナンス優先順位演算手段が備えられ、
前記現在の累積点数は、前記通信手段を介して各建設機械または特定の建設機械で取得され、
前記各建設機械の前記メンテナンス優先順位演算手段でメンテナンス優先順位が求められるか、あるいは前記特定の建設機械の前記メンテナンス優先順位演算手段でメンテナンス優先順位が求められて前記通信手段を介して各建設機械でメンテナンス優先順が取得されることにより、
当該メンテナンス優先順位が、前記各建設機械に備えられた表示装置に表示されることを特徴とする
請求項5に記載の建設機械のメンテナンスシステム。
【請求項7】
異常の判定項目毎に割り当てられている点数は、
各建設機械の部位に対応する部位ポイントと、
前記部位に関連する前記検出手段に対して割り当てられる重みポイントと、
前記検出手段の検出結果に応じて生成されるエラーコードに割り当てられる重みポイントとで構成される
請求項4に記載の建設機械のメンテナンスシステム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2012−160085(P2012−160085A)
【公開日】平成24年8月23日(2012.8.23)
【国際特許分類】
【出願番号】特願2011−20145(P2011−20145)
【出願日】平成23年2月1日(2011.2.1)
【出願人】(000001236)株式会社小松製作所 (1,686)
【Fターム(参考)】