説明

扁平形一次電池の製造方法及び扁平形一次電池

【課題】安価で良好な電池容量の扁平形一次電池の製造方法及び扁平形一次電池を提供する。
【解決手段】正極合剤5を正極缶2内に収容する扁平形一次電池1の製造方法において、オキシ水酸化ニッケル及び酸化銀を含む正極合剤5を正極缶2に収容し、当該正極缶2内でオキシ水酸化ニッケルと酸化銀とを反応させて、銀・ニッケル複合酸化物を生成させるとともに、酸化銀の質量比を、オキシ水酸化ニッケルに対して、1.2以上とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、扁平形一次電池の製造方法及び扁平形一次電池に関する。
【背景技術】
【0002】
電子腕時計等の小型電子機器に使用されるコイン形或いはボタン形等の扁平形一次電池としては、正極合剤に酸化銀を用いた酸化銀電池や、正極合剤に二酸化マンガンを用いたアルカリボタン電池等が既に生産されている。
【0003】
酸化銀電池は、体積エネルギー密度が高く、且つ負極活物質を亜鉛としたときの電池電圧が1.56ボルト付近で平坦であるため、終止電圧が1.2ボルト以上の電子腕時計等の小型電子機器用の電源として用いられている。
【0004】
しかしながら、酸化銀は、性能的に良好であるももの、貴金属である銀が主成分であるため高価であり、製造原価の低減や安定を図る上で使用し難い。
一方、二酸化マンガンは、質量当たりの価格が、酸化銀の100分の1以下と圧倒的に安価である利点を有する。しかし、二酸化マンガンは、酸化銀に比べ、体積エネルギー密度が低く、且つ放電電位の平坦性が劣る。従って、終止電圧が高めに設定されている機器に用いられる場合、二酸化マンガンの放電に伴う電圧降下から、機器の使用時間が極端に短くなってしまうという問題がある。
【0005】
これに対し、正極活物質にオキシ水酸化ニッケルを用いる電池が提案されている(例えば、特許文献1参照)。オキシ水酸化ニッケルは、酸化銀に比べ、高い放電電圧を有する。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2008−210719号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、オキシ水酸化ニッケルは、酸化銀に比べて、放電電圧の平坦性に劣るといった欠点を有している。また、オキシ水酸化ニッケルは、単位質量当たりの理論電気容量が、二酸化マンガンの1価当たりの理論電気容量よりも低く、その電池容量の向上が課題となっている。
【0008】
本発明は、上記問題点に鑑みてなされたものであり、その目的は、安価で良好な電池容量の扁平形一次電池の製造方法及び扁平形一次電池を提供することにある。
また、本発明の別の目的は、オキシ水酸化ニッケルと酸化銀との反応時間を短縮化することができる扁平形一次電池の製造方法及び扁平形一次電池を提供することにある。
【課題を解決するための手段】
【0009】
上記問題点を解決するために、本発明は、正極合剤を正極缶内に収容する扁平形一次電池の製造方法において、オキシ水酸化ニッケル及び酸化銀を含む前記正極合剤を、電解液とともに前記正極缶に収容し、当該正極缶内で前記オキシ水酸化ニッケルと前記酸化銀とを反応させることにより、銀・ニッケル複合酸化物を生成させ、前記酸化銀の質量比を、前記オキシ水酸化ニッケルに対して、1.2以上とする。
【0010】
これによれば、酸化銀の質量比を、オキシ水酸化ニッケルに対して1.2以上とするので、全てのオキシ水酸化ニッケルを、酸化銀と反応させる。
この扁平形一次電池の製造方法において、前記電解液の比率を、前記正極合剤に対して5質量%以上、10質量%以下とする。
【0011】
これによれば、電解液の比率を、正極合剤に対して5質量%以上10質量%以下としたため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、耐漏液性を向上することができる。
【0012】
この扁平形一次電池の製造方法において、前記電解液は、水酸化カリウム水溶液であって、その濃度が30%以上、45%以下である。
これによれば、電解液を、水酸化カリウム水溶液とし、その濃度を30%以上、45%以下とするので、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。
【0013】
この扁平形一次電池の製造方法において、前記電解液は、水酸化ナトリウム水溶液であって、その濃度が20%以上、35%以下である。
これによれば、電解液を、水酸化ナトリウム水溶液とし、その濃度を20%以上、35%以下とするので、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。
【0014】
本発明の扁平形一次電池は、上記の製造方法で製造される。
これによれば、酸化銀の質量比を、オキシ水酸化ニッケルに対して1.2以上とするので、全てのオキシ水酸化ニッケルを、酸化銀と反応させることができる。
【図面の簡単な説明】
【0015】
【図1】本実施形態の扁平形一次電池の断面図。
【図2】実施例及び比較例の検討結果を示す表。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図1〜図2に従って説明する。図1は、扁平形一次電池の概略断面図である。図1において、扁平形一次電池1はボタン形の一次電池であって、有底円筒状の正極缶2及び有蓋円筒状の負極缶3を有している。正極缶2は、ステンレススチール(SUS)にニッケルメッキを施した構成であって、正極端子を兼ねている。
【0017】
負極缶3は、ニッケルよりなる外表面層3Aと、ステンレススチール(SUS)よりなる金属層3Bと、銅よりなる集電体層3Cとの3層クラッド材がカップ状にプレス加工されて形成されている。また、負極缶3は、その開口部が、外周面に沿って折り曲げて形成されており、その折り曲げられた開口部には、例えば、ナイロン製のリング状のガスケット4が装着されている。
【0018】
そして、正極缶2の円形の開口部に、負極缶3を、ガスケット4を装着した開口部側から嵌合させ、該正極缶2の開口部を該ガスケット4に向かってかしめて封口することによって、正極缶2と負極缶3は、互いに連結固定されている。正極缶2と負極缶3を連結固定することによって、ガスケット4を介して正極缶2と負極缶3の間には、密閉空間が形成される。
【0019】
この密閉空間には、正極合剤5、セパレータ6、負極合剤7が収容されている。正極合剤5は、円柱状のペレットに形成され、正極缶2の底面2bに載置されている。この正極合剤5は、オキシ水酸化ニッケル及び酸化銀が正極缶内で反応することにより生成された
銀・ニッケル複合酸化物(AgNiO)を含有する正極活物質と、結着剤等から構成されている。
【0020】
詳述すると、扁平形一次電池1の製造工程において、正極缶2に、オキシ水酸化ニッケル、酸化銀及び結着剤等を混合したペレットを、アルカリ電解液とともに収容する。これにより、オキシ水酸化ニッケル及び酸化銀が正極缶内で反応し(式1参照)、銀・ニッケル複合酸化物が生成される。
【0021】
2NiOOH+AgO → 2AgNiO+HO・・・(1)
銀・ニッケル複合酸化物は、正極において活物質として機能し、その電池電圧は、平均1.35V程度であり、終止電圧が1.2Vの機器にも十分使用できる。また、銀・ニッケル複合酸化物は、その理論エネルギー密度が酸化銀に比べ高く、容量に優れた電池を得ることができるといった利点を有する。さらに、銀・ニッケル複合酸化物は、高導電率を有するとともに、高い結着力を有し、正極合剤内の各粒子を結着させて膨潤を抑制する。
【0022】
この銀・ニッケル複合酸化物の加工費は、オキシ水酸化ニッケルの加工費に対し10倍程度、酸化銀の加工費と比べても数倍と高い。このため、電池内でオキシ水酸化ニッケルと酸化銀とから銀・ニッケル複合酸化物を生成させることにより、電池特性に優れた銀・ニッケル複合酸化物を、安価に作製することができる。
【0023】
また、正極合剤5におけるオキシ水酸化ニッケルと酸化銀との質量比は、1:1.2を下限として、酸化銀を増加させることが好ましい。換言すると、酸化銀は、オキシ水酸化ニッケルに対し、1.2(倍)以上の質量比で含まれていることが好ましい。正極合剤5におけるオキシ水酸化ニッケルと酸化銀の質量比を上記範囲とすることにより、正極合剤5に含まれる全てのオキシ水酸化ニッケルを、酸化銀と残さず反応させることができる。
【0024】
酸化銀に対する比率が、1.2を下回ると、反応完了後に、正極合剤中に未反応のオキシ水酸化ニッケルが残留する可能性がある。正極合剤中に未反応のオキシ水酸化ニッケルが残る場合、扁平形一次電池1の放電カーブに、オキシ水酸化ニッケルの1.6V付近の電位が現れる。従って、1.56V付近の酸化銀の電位との間に、電位の段差が生じ、例えば扁平形一次電池1を時計に用いた場合に、時計に内蔵された水晶発振器の動作が不安定となり、時計の進度が変化してしまうおそれがある。
【0025】
また、正極缶2の収容凹部10に収容され、正極合剤5に含浸させる電解液は、正極合剤5に対する質量比が、5質量%以上、10質量%以下であることが好ましい。電解液を、この範囲内で加えることにより、オキシ水酸化ニッケルと酸化銀との反応を円滑にして、銀・ニッケル複合酸化物の生成を促進することができる。電解液の質量比率が、正極合剤5に対して5質量%未満である場合、全てのオキシ水酸化ニッケルが反応するまでの反応時間が、質量比率が上記範囲である場合に比べて数倍長くなる傾向が見られる。或いは、全てのオキシ水酸化ニッケルが反応しきれずに、未反応のオキシ水酸化ニッケルが残ることもある。また、電解液を、正極合剤5に対して、10質量%以上加えると、電池からの電解液の漏液性が高まる傾向がある。
【0026】
さらに、この電解液は、濃度20〜35%(w/v)の水酸化ナトリウム水溶液か、濃度30〜45%(w/v)の水酸化カリウム水溶液とすることが好ましい。この濃度範囲にすると、銀・ニッケル複合酸化物が生成した後の電池内の電解液の導電性を好適な範囲とし、閉路電圧特性及び耐漏液性に優れた電池を得ることができる。また、電解液を、水酸化ナトリウム水溶液及び水酸化カリウム水溶液を混合して生成する場合にも、上記濃度範囲の水酸化ナトリウム水溶液及び水酸化カリウム水溶液を混合することが好ましい。
【0027】
電解液の濃度が上記範囲未満である場合、電解液の粘性が不足するため、正極缶内で流動しやすくなり、その結果、漏液性が高まる傾向がある。さらに、電解液の濃度が上記範囲未満である場合、オキシ水酸化ニッケルと酸化銀との反応時間が長くなる傾向が見られる。また、電解液の質量比率が、上記範囲外を超える場合、電解液の粘性が高すぎて、正極合剤5に対する吸収性が低下し、これも漏液性が高まる傾向がある。
【0028】
また、オキシ水酸化ニッケルの表面は、導電性に優れるオキシ水酸化コバルト(CoOOH)で被覆することが好ましい。オキシ水酸化ニッケルの表面をオキシ水酸化コバルトで被覆することにより、グラファイト等の放電容量に寄与しない導電剤を正極合剤中に添加する必要が無く、その分、容量に優れた電池を得ることができるためである。
【0029】
次に、扁平形一次電池1の製造方法について説明する。正極合剤5を形成する際は、オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケルと、酸化銀とを上記した質量比とし、結着剤であるフッ素樹脂粉末とともにブレンダーで混合した後、打錠機にてペレット状に成型する。
【0030】
さらに、成型した正極合剤5を正極缶2内に挿入し、電解液を注入して正極合剤5に電解液を吸収させる。このときの電解液の濃度は、上記濃度範囲とする。
また、正極合剤5上に、微多孔膜と不織布の2層構造の円形状に打ち抜いたセパレータ6を装填し、水酸化カリウム水溶液を含むアルカリ電解液を滴下して、セパレータ6に含浸させる。
【0031】
このセパレータ6上に、亜鉛を負極活物質とするジェル状の負極合剤7を載置する。具体的には、亜鉛合金粉、酸化亜鉛、高架橋型ポリアクリル酸ソーダ、カルボキシメチルセルロース、電解液である水酸化カリウム水溶液を混合して、負極合剤7とする。そして、負極缶3と正極缶2とをガスケット4を介してかしめることで密封する。
【0032】
次に、密封した扁平形一次電池1を、予め設定された反応時間だけ保管して、オキシ水酸化ニッケルと酸化銀とを反応させる。反応時間は、常温では600〜700時間、60℃の温度下では50時間程度である。その結果、全てのオキシ水酸化ニッケルが酸化銀と反応し、未反応のオキシ水酸化ニッケルが残らない状態となる。
【0033】
このように、電池使用前にオキシ水酸化ニッケルと酸化銀とを正極缶内で反応させることで、加工費の高い銀・ニッケル複合酸化物を、低コストで製造することができる。
次に、前述した正極合剤の組成を種々変更した実施例を行い、当該発明の効果を検証した。
(実施例1)
正極合剤5の質量比率を、γ−オキシ水酸化コバルトで被覆されたオキシ水酸化ニッケル40.0質量%、酸化銀59.0質量%、結着剤であるフッ素樹脂粉末1.0質量%とした。また、オキシ水酸化ニッケルに対するγ−オキシ水酸化コバルトの質量比率は3質量%としたため、オキシ水酸化ニッケルの質量比率は37.0質量%である。
【0034】
これらの組成物を、ブレンダーで混合した後、打錠機にて質量140mgのペレット状の正極合剤5を形成した。
そして、この正極合剤5を、正極缶内に収容し、濃度37%水酸化カリウム水溶液10mgを注入して正極合剤5に吸収させた。
【0035】
また負極合剤7の質量比率を、亜鉛合金粉64質量%、酸化亜鉛2.48質量%、高架橋型ポリアクリル酸ソーダ0.68質量%、カルボキシメチルセルロース2.04質量%、45%水酸化カリウム水溶液30.80質量%とした。そして、負極缶3と正極缶2と
をガスケット4を介してかしめることで密封し、60℃の温度下で50時間保存して扁平形一次電池1を作製した。
(実施例2)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。その他の構成は、実施例1と同様とした。
(実施例3)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、正極合剤5に対して5質量%とした。その他の構成は、実施例1と同様とした。
(実施例4)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、正極合剤5に対して10質量%とした。その他の構成は、実施例1と同様とした。
(実施例5)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が30%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(実施例6)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が45%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(実施例7)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が20%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
(実施例8)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル45質量%、酸化銀54質量%とした。また、正極合剤5に吸収させる電解液を、濃度が35%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例1)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。その他の構成は、実施例1と同様とした。
(比較例2)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液の正極合剤5に対する比率を、1質量%とした。その他の構成は、実施例1と同様とした。
(比較例3)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液の正極合剤5に対する比率を、15質量%とした。その他の構成は、実施例1と同様とした。
(比較例4)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液を、濃度が25%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例5)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液を、濃度が50%の水酸化カリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例6)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化
銀40質量%とした。また、電解液を、濃度が15%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
(比較例7)
オキシ水酸化コバルト(3質量%)で被覆したオキシ水酸化ニッケル59質量%、酸化銀40質量%とした。また、電解液を、濃度が40%の水酸化ナトリウム水溶液とした。その他の構成は、実施例1と同様とした。
<検証>
そして、前記した実施例1〜8、比較例1〜7のアルカリ電池を、それぞれ130個作製し、以下の検証を行った。
【0036】
具体的には、作製した電池のうち20個ずつを、30kΩで定抵抗放電させ、1.2Vの終止電圧とした時の放電容量〔mAh〕を、図2の表に示した。
また、定抵抗放電させて得られた放電カーブにて、オキシ水酸化ニッケルの放電電位の有無を、図2の表に示した。
【0037】
さらに、作成した電池のうち、100個ずつを、温度45℃、相対湿度93%の過酷環境下で保存し、80日後及び100日後の漏液発生率を、図2の表に示した。
また、作製した電池のうち、10個ずつを、−10℃の環境下、DoD(放電深度80%)、負荷抵抗2kΩといった条件で、7.8m秒後の閉路電圧(放電特性)〔V〕を測定し、その結果を、図2の表に示した。
【0038】
図2の表に基づき、実施例1〜8は、比較例1〜7に比べ、大きい初期容量が得られた。また、比較例1〜7は、オキシ水酸化ニッケルの放電電位が見られたのに対し、実施例1〜8は、オキシ水酸化ニッケルの放電電位が見られなかった。これは、酸化銀の比率を、オキシ水酸化ニッケルに対し、1.2倍以上とすることにより、容量が小さいオキシ水酸化ニッケルが、全て酸化銀と反応し、高容量の銀・ニッケル複合酸化物となったためである。
【0039】
また、水酸化カリウム水溶液の質量比率をそれぞれ5質量%及び10質量%とした実施例3〜4は、漏液が見られないのに対し、水酸化カリウム水溶液の質量比率を15質量%とした比較例3は、漏液が見られた。これは、電解液を10質量%を超えて注入すると、正極合剤5が電解液を吸収しきれずに、耐漏液性が低下するためである。また、水酸化カリウム水溶液の質量比率を1質量%とした比較例2は、閉路電圧が低く、オキシ水酸化ニッケルの放電電位が見られた。これは、電解液の質量比率が、5質量%を下回ると、オキシ水酸化ニッケルと酸化銀との反応が円滑に進まず、オキシ水酸化ニッケルが残留してしまうためである。
【0040】
さらに、水酸化カリウム水溶液の濃度をそれぞれ30%、45%とした実施例5〜6は、漏液が見られないのに対し、濃度をそれぞれ25%及び50%とした比較例4〜5は、漏液が見られた。つまり、濃度が30%を下回ると、銀・ニッケル複合酸化物に対して低すぎる粘性により、漏液が発生してしまう。また、濃度が45%を上回ると、銀・ニッケル複合酸化物に対して高すぎる粘性により、正極合剤中に電解液を吸収しきれず、漏液してしまう。また、実施例5〜6は、比較例4〜5に比べ、閉路電圧が高かった。これは、水酸化カリウム水溶液の濃度を上記範囲とすることにより、好適な導電性が得られるためである。
【0041】
また、水酸化ナトリウム水溶液の濃度をそれぞれ20%、35%とした実施例7〜8は、濃度をそれぞれ15%及び40%とした比較例6〜7に比べ、高い閉路電圧が得られた。これは、水酸化ナトリウム水溶液の濃度を上記範囲とすることにより、好適な導電性が得られるためである。
【0042】
上記実施形態によれば、以下のような効果を得ることができる。
(1)上記実施形態では、オキシ水酸化ニッケル及び酸化銀を含む正極合剤5を、正極缶2に収容し、その正極缶内でオキシ水酸化ニッケルと酸化銀とを反応させて、銀・ニッケル複合酸化物を生成するようにした。また、酸化銀の質量比を、オキシ水酸化ニッケルに対して、1.2(倍)以上としたため、電池使用前に、全てのオキシ水酸化ニッケルを酸化銀と正極缶内で反応させることができる。このため、高体積エネルギー密度且つ放電電位の平坦性に優れる扁平形一次電池1を安価に作製することができる。
【0043】
(2)上記実施形態では、電解液の比率を、正極合剤5に対して5質量%以上、10質量%以下とした。このため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、耐漏液性を向上することができる。
【0044】
(3)上記実施形態では、電解液は、水酸化カリウム水溶液であって、その濃度が、30%以上、45%以下である。このため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。
【0045】
(4)上記実施形態では、電解液は、水酸化ナトリウム水溶液であって、その濃度が20%以上、35%以下である。このため、酸化銀とオキシ水酸化ニッケルとの反応を円滑にするとともに、電池特性及び耐漏液性を向上することができる。
【符号の説明】
【0046】
1…扁平形一次電池、2…正極缶、3…負極缶、4…ガスケット、5…正極合剤、6…セパレータ、7…負極合剤。

【特許請求の範囲】
【請求項1】
正極合剤を正極缶内に収容する扁平形一次電池の製造方法において、
オキシ水酸化ニッケル及び酸化銀を含む前記正極合剤を、電解液とともに前記正極缶に収容し、当該正極缶内で前記オキシ水酸化ニッケルと前記酸化銀とを反応させることにより、銀・ニッケル複合酸化物を生成させるとともに、
前記酸化銀の質量比を、前記オキシ水酸化ニッケルに対して、1.2以上とすることを特徴とする扁平形一次電池の製造方法。
【請求項2】
請求項1に記載の扁平形一次電池の製造方法において、
前記電解液の比率を、前記正極合剤に対して5質量%以上、10質量%以下とすることを特徴とする扁平形一次電池の製造方法。
【請求項3】
請求項1又は2に記載の扁平形一次電池の製造方法において、
前記電解液は、水酸化カリウム水溶液であって、その濃度が30%以上、45%以下であることを特徴とする扁平形一次電池の製造方法。
【請求項4】
請求項1又は2に記載の扁平形一次電池の製造方法において、
前記電解液は、水酸化ナトリウム水溶液であって、その濃度が20%以上、35%以下であることを特徴とする扁平形一次電池の製造方法。
【請求項5】
請求項1〜4のいずれか1項に記載の製造方法で製造された扁平形一次電池。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2010−170909(P2010−170909A)
【公開日】平成22年8月5日(2010.8.5)
【国際特許分類】
【出願番号】特願2009−13425(P2009−13425)
【出願日】平成21年1月23日(2009.1.23)
【出願人】(000002325)セイコーインスツル株式会社 (3,629)
【Fターム(参考)】