説明

指向性パターン決定方法

【課題】可変指向性アンテナ装置を備えた無線通信装置において、電波伝搬環境の変動に追随して最適な指向性パターンを素早く決定できる指向性パターン決定方法を提供する。
【解決手段】複数の指向性パターンのうちで相互に相関が高い指向性パターンを同一グループとし、相互に相関が低い指向性パターンを異なるグループとするように、複数の指向性パターンを複数のグループに分類して指向性パターンメモリ104mに格納する。指向性パターンメモリ104mから、グループ毎に1つずつ指向性パターンを選択する。選択された指向性パターンを可変指向性アンテナ素子102−1〜102−3に設定する毎に受信される信号の通信品質に従って、選択された指向性パターンのうちの1つの指向性パターンを決定する。決定された指向性パターンを可変指向性アンテナ素子102−1〜102−3に設定する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線通信装置における指向性パターン決定方法に関し、特に、電波伝搬環境の変動に応じて可変指向性アンテナ装置の指向性パターンを変化させて最適な指向性パターンを決定する指向性パターン決定方法に関するものである。
【背景技術】
【0002】
情報端末を相互に接続するネットワーク形態の中で、無線通信装置は、有線通信と比較して、端末の可搬性や配置の自由度に優れていること、有線ケーブルを省くことによる軽量化を図れることなどの利点により、従来用途であったパーソナルコンピュータでのデータ伝送に利用されるだけでなく、現在では多くの家電製品にも搭載されて映像や音声の伝送に利用されるようになっている。一方で無線通信装置は、上記のような利点を有する反面、空間に電磁波を放射して通信を行うため、多数の反射物が設置されているような空間では物体に反射して到来する電波(遅延波)が引き起こすフェージングの影響により伝送特性の劣化が起こる場合が多い。その影響の軽減策のひとつとしては、送受信アンテナの指向性を電波伝搬環境に応じて制御する方法がある。
【0003】
従来、フェージングに対する対策として、送受信アンテナの指向性制御及び様々なダイバーシチ処理などの制御方法が提案されている。例えば特許文献1〜特許文献3には、電波伝搬環境の時間変化に応じて無線信号を受信する、従来技術に係る指向性パターン決定方法が記載されている。
【0004】
さらに、電波伝搬環境の時間変化に応じて無線信号を受信する従来技術に係る指向性パターン決定方法として、本願出願人によって出願された特願2008−137618号の発明が存在する。この発明では、複数の異なる指向性パターンを実現するためのデータを予めメモリに格納し、これらの指向性パターンは、比較的広いビーム幅をそれぞれ有する指向性パターンからなる弱電界グループと、比較的狭いビーム幅をそれぞれ有する指向性パターンからなる強電界グループとの2種類に分類されている。まず、測定した第1のパラメータ(例えば、受信信号強度表示:Received Signal Strength Indicator;以下、RSSIという。)の範囲に基づいていずれかのグループを選択し、次いで、選択されたグループの指向性パターンを順次に設定しながら測定した第2のパラメータ(例えば、信号電力対雑音電力比:Signal power to Noise power Ratio;以下、SNRという。)に基づいて最適な指向性パターンを決定する。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2000−134023号公報。
【特許文献2】特開2005−142866号公報。
【特許文献3】特開平8−172423号公報。
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、前述の特願2008−137618号の発明は、以下の課題を有する。この発明では、指向性パターンを複数のグループへ分類するために、例えばRSSIとビーム幅を関連付けて、狭いビーム幅を有するものを強電界グループとし、広いビーム幅を有するものを弱電界グループとしている。ここで、1つのグループにおいて、同じ指向方向を向き、指向性ビームが若干異なるだけの指向性パターンが2つ以上含まれる場合、これらの指向性パターンを順次に設定しながら測定する結果得られる第2のパラメータ(すなわちSNR)は、ほぼ同一になる可能性が高い。このため、第2のパラメータを測定するために、これらの似通った指向性パターンでの通信をすべて行う必要性は低いにもかかわらず、最適な指向性パターンを決定するまでにより多くの処理時間を浪費することになるので、電波伝搬環境の変動に対する指向性パターン切り換えの追随性が低下する。
【0007】
本発明の目的は、以上の課題を解決し、可変指向性アンテナ装置を備えた無線通信装置において、電波伝搬環境の変動に追随して最適な指向性パターンを素早く決定できる指向性パターン決定方法を提供することにある。
【課題を解決するための手段】
【0008】
本発明の態様に係る指向性パターン決定方法は、少なくとも1つの可変指向性アンテナ装置と、上記可変指向性アンテナ装置に設定可能な複数の指向性パターンのデータを格納する指向性パターンメモリとを備えた無線通信装置のための指向性パターン決定方法であって、
上記方法は、
上記複数の指向性パターンのうちで相互に相関が高い指向性パターンを同一グループとし、相互に相関が低い指向性パターンを異なるグループとするように、上記複数の指向性パターンを複数のグループに分類して上記指向性パターンメモリに格納するステップと、
上記指向性パターンメモリから、上記グループ毎に1つずつ指向性パターンを選択するステップと、
上記選択された指向性パターンを上記可変指向性アンテナ素子に設定する毎に受信される信号の第1の通信品質に従って、上記選択された指向性パターンのうちの1つの指向性パターンを決定するステップと、
上記決定された指向性パターンを上記可変指向性アンテナ素子に設定するステップとを含むことを特徴とする。
【0009】
上記指向性パターン決定方法において、
上記複数の指向性パターンは、上記分類されたグループ毎に、所定の第2の通信品質に基づいて順序付けられて上記指向性パターンメモリに格納され、
上記選択するステップは、所定の初期指向性パターンを上記可変指向性アンテナ素子に設定したときに受信された信号の上記第2の通信品質に従って、上記指向性パターンメモリから、上記グループ毎に1つずつ指向性パターンを選択するステップを含むことを特徴とする。
【0010】
また、上記指向性パターン決定方法において、
上記複数の指向性パターンを複数のグループに分類して上記指向性パターンメモリに格納するステップは、上記各指向性パターンを方向角度に関する関数として表し、上記複数の指向性パターンのうちの各2つの組み合わせの相関を、これら2つの指向性パターンをそれぞれ表す関数間の相互相関関数として計算するステップを含むことを特徴とする。
【0011】
さらに、上記指向性パターン決定方法において、
上記計算するステップは、上記複数の指向性パターンのうちの各2つの組み合わせについて、そのXY平面における相互相関関数と、そのYZ平面における相互相関関数と、そのZX平面における相互相関関数とを計算し、上記計算された相互相関関数に所定の重み付けを行って合成された相互相関関数を計算するステップを含むことを特徴とする。
【0012】
またさらに、上記指向性パターン決定方法において、
上記計算するステップは、上記複数の指向性パターンのうちの各2つの組み合わせについて、その垂直偏波成分の相互相関関数と、その水平偏波成分の相互相関関数とを計算し、上記計算された相互相関関数に所定の重み付けを行って合成された相互相関関数を計算するステップを含むことを特徴とする。
【0013】
また、上記指向性パターン決定方法において、
上記指向性パターンのそれぞれは、複数の可変指向性アンテナ装置の個別の指向性パターンからなる合成指向性パターンであり、
上記計算するステップは、上記複数の指向性パターンのうちの各2つの組み合わせについて、上記可変指向性アンテナ装置毎に個別に相互相関関数を計算し、上記計算された相互相関関数に所定の重み付けを行って合成された相互相関関数を計算するステップを含むことを特徴とする。
【0014】
さらに、上記指向性パターン決定方法は、
上記指向性パターンを上記可変指向性アンテナ素子に設定する毎に受信される信号の第3の通信品質を測定し、上記第3の通信品質に係る複数の異なる測定値について、測定値毎の達成回数の累積分布を取得するステップと、
上記複数の指向性パターンのうちで上記累積分布の相関が相互に高い指向性パターンを同一グループとし、相関が相互に低い指向性パターンを異なるグループとするように、上記指向性パターンメモリに格納された上記指向性パターンのグループを更新するステップとをさらに含むことを特徴とする。
【発明の効果】
【0015】
実現可能な複数の合成指向性パターンのうちで、相互に相関が高い合成指向性パターンを同一グループとし、相互に相関が低い合成指向性パターンを別グループとするように分類し、各グループから1つずつの合成指向性パターンを最適な合成指向性パターンの候補として選択して指向性パターンを切り換えることで、同じ伝送特性をもたらすと予想される合成指向性パターンを候補から効率的に省くことができ、最適な合成指向性パターンの決定までに要する時間を短縮し、電波伝搬環境の変動に対する指向性パターン切り換えの追随性を高めることが可能である。さらに、相互に相関が低い合成指向性パターンを選択して指向性パターンを切り換えることで、それぞれの合成指向性パターンで異なった伝送特性を得ることができ、指向性パターン切り換えの効果を増大させることが可能である。
【図面の簡単な説明】
【0016】
【図1】本発明の第1の実施形態に係る無線通信装置100の構成を示すブロック図である。
【図2】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第1の合成指向性パターンPaを示すパターン図である。
【図3】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第2の合成指向性パターンPbを示すパターン図である。
【図4】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第3の合成指向性パターンPcを示すパターン図である。
【図5】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第4の合成指向性パターンPdを示すパターン図である。
【図6】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第5の合成指向性パターンPeを示すパターン図である。
【図7】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第6の合成指向性パターンPfを示すパターン図である。
【図8】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第7の合成指向性パターンPgを示すパターン図である。
【図9】図1の可変指向性アンテナ素子102−1〜102−3に設定可能な第8の合成指向性パターンPhを示すパターン図である。
【図10】図2〜図9の合成指向性パターンPa〜Ph相互の相関を示す表である。
【図11】図1の合成指向性パターンメモリ104mの内容を示す表である。
【図12】図1のコントローラ104によって実行される指向性パターン決定処理を示すフローチャートである。
【図13】図12のステップS4における関数f(RSSI1,RSSI2,RSSI3)の出力範囲と、各グループG1〜G4から選択される合成指向性パターンとの関係を示す図である。
【図14】本発明の第2の実施形態に係る合成指向性パターンの分類方法を説明するための図であり、(a)は、可変指向性アンテナ素子102−1〜102−3に設定される例示的な第1の合成指向性パターンPxを示すパターン図であり、(b)は、(a)の合成指向性パターンPxに対応する合成指向性パターンベクトルPx’を示す図である。
【図15】本発明の第2の実施形態に係る合成指向性パターンの分類方法を説明するための図であり、(a)は、可変指向性アンテナ素子102−1〜102−3に設定される例示的な第2の合成指向性パターンPyを示すパターン図であり、(b)は、(a)の合成指向性パターンPyに対応する合成指向性パターンベクトルPy’を示す図である。
【図16】本発明の第2の実施形態に係る合成指向性パターンの分類方法を説明するための図であり、(a)は、可変指向性アンテナ素子102−1〜102−3に設定される例示的な第3の合成指向性パターンPzを示すパターン図であり、(b)は、(a)の合成指向性パターンPzに対応する合成指向性パターンベクトルPz’を示す図である。
【図17】図14(b)の合成指向性パターンベクトルPx’及び図15(b)の合成指向性パターンベクトルPy’の相互相関関数R1を示す図である。
【図18】図15(b)の合成指向性パターンベクトルPy’及び図16(b)の合成指向性パターンベクトルPz’の相互相関関数R2を示す図である。
【図19】図16(b)の合成指向性パターンベクトルPz’及び図14(b)の合成指向性パターンベクトルPx’の相互相関関数R3を示す図である。
【図20】本発明の第3の実施形態に係るアンテナ制御処理を示すフローチャートである。
【図21】図20のステップS13の指向性パターンメモリ更新処理のサブルーチンを示すフローチャートである。
【図22】図20及び図21の処理によって測定される通信品質の測定値毎の達成回数の累積分布を示す表である。
【図23】図20及び図21の処理によって更新された合成指向性パターンメモリ104mの内容を示す表である。
【図24】図20及び図21の処理を行う際に設定される合成指向性パターンと、測定される通信品質とを説明するための図である。
【発明を実施するための形態】
【0017】
以下、図面を参照して、本発明の好ましい実施形態について説明する。
【0018】
第1の実施形態.
図1は、本発明の第1の実施形態に係る無線通信装置100の構成を示すブロック図である。無線通信装置100は、複数の可変指向性アンテナ素子102−1〜102−N及び指向性制御回路103−1〜103−Nから成る可変指向性アレーアンテナ装置101と、高周波処理回路105−1〜105−Nと、ベースバンド処理回路106と、MAC(Media Access Control)処理回路107と、コントローラ104と、合成指向性パターンメモリ104mとを備えて構成される。
【0019】
各可変指向性アンテナ素子102−1〜102−Nの指向性パターンは、対応する指向性制御回路103−1〜103−Nによってそれぞれ制御され、よって、可変指向性アンテナ素子102−1〜102−N及び指向性制御回路103−1〜103−Nは、複数の可変指向性アンテナ装置として動作する。各可変指向性アンテナ素子102−1〜102−Nの指向性パターンは、例えば可変指向性アンテナ素子が給電アンテナ素子及び1つ以上の無給電素子を備えた構成を有する場合、給電アンテナ素子に近接した無給電素子のオン/オフを切り換えることなどにより変化する。本実施形態では、可変指向性アンテナ素子102−1〜102−Nにそれぞれ設定される複数N個の指向性パターンからなる組を「合成指向性パターン」と称し、合成指向性パターンメモリ104mは、異なる指向性パターンからなる複数の異なる合成指向性パターンをそれぞれ設定するためのデータを格納している。よって、可変指向性アンテナ素子102−1〜102−Nには、合成指向性パターンメモリ104mに格納された合成指向性パターンのいずれかが選択的に設定される。
【0020】
ここで、無線通信装置100の動作について説明する。送信側無線端末装置(図示せず。)からMIMO伝送方式により送信された複数のデータストリームに係る各パケットは、複数N個の可変指向性アンテナ素子102−1〜102−Nに到来して受信される。受信されたデータストリームは、次いで、高周波処理回路105−1〜105−Nにより増幅及びA/D変換などの処理が行われた後に、ベースバンド処理回路106に入力される。ベースバンド処理回路106は、N個のデータストリームを多重分離して元の1つのデータストリームを復元し、復元されたデータストリームは、MAC処理回路107によってMAC処理が行われた後に、出力信号として無線端末装置100から出力される。送信すべき入力信号がMAC処理回路に到来した場合には、信号は無線通信装置100において逆方向に処理され、最終的に、MIMO伝送方式により送信される複数のデータストリームの無線信号が可変指向性アンテナ素子102−1〜102−Nから放射される。コントローラ104は、合成指向性パターンメモリ104mに格納された合成指向性パターンのいずれかに対応する制御信号を指向性制御回路103−1〜103−Nに入力し、これにより、当該合成指向性パターンを実現するように、可変指向性アンテナ素子102−1〜102−Nの指向性パターンを指向性制御回路103−1〜103−Nにそれぞれ制御させる。特に、コントローラ104は後述の指向性パターン決定処理(図12参照)を実行し、これにより、合成指向性パターンメモリ104mに格納された合成指向性パターンのうちで最適な合成指向性パターンを決定して可変指向性アンテナ素子102−1〜102−Nに設定させる。コントローラ104はまた、指向性パターン決定処理を実行するために、高周波処理回路105−1〜105−N、ベースバンド処理回路106及びMAC処理回路107のうちの少なくとも1つから、電波伝搬環境及び/又は通信品質に関する情報(例えば、RSSI、SNR、及び/又はPHYレート)を取得して参照する。
【0021】
以下、図1の無線通信装置100が3つの可変指向性アンテナ素子102−1〜102−3、3つの指向性制御回路103−1〜104−3及び3つの高周波処理回路105−1〜105−3を備えて構成され、MIMO伝送方式によるパケットの受信を行う場合を例に、本発明の実施形態に係る指向性パターン決定方法について説明する。
【0022】
図2〜図9は、図1の可変指向性アンテナ素子102−1〜102−3に設定可能な合成指向性パターンPa〜Phを示すパターン図である。図2〜図9は、可変指向性アレーアンテナ装置101が設けられた平面におけるある偏波成分、例えば、XY平面における垂直偏波成分の合成指向性パターンを概念的に示す。可変指向性アンテナ素子102−1〜102−3のそれぞれに指向性パターンB1〜B3が設定され、各合成指向性パターンPa〜Phは、これら3つの指向性パターンB1〜B3からなる組である。図2〜図9に示すように8状態の合成指向性パターンを設定する場合には、3ビットの制御信号Sa〜Shを利用可能である。これら8つの合成指向性パターンPa〜Phは、合成指向性パターン相互の相関によって所定個数(本実施形態では4つ)のグループに分類される。例えば、合成指向性パターンPa及びPdのいずれにおいても、各指向性パターンB1〜B3が、可変指向性アンテナ素子102−1〜102−3のそれぞれに対して、ある方向と、その反対方向との両方に広がっているので、合成指向性パターンPa及びPdは相関が高いと言える。また、合成指向性パターンPbとPc、PeとPg、PfとPhのそれぞれの組み合わせは、指向性パターンB1〜B3のそれぞれの主ビーム方向が同じであって、ビーム幅が違うだけなので、相関が高いと言える。図10は、図2〜図9の合成指向性パターンPa〜Ph相互の相関を示す表である。図10では簡単化のために、相関が高い組み合わせを「1」で示し、相関が低い組み合わせを「0」で示している。図10に示すような相関の高低に基づいて、8つの合成指向性パターンPa〜Phを4つのグループに分類し、分類結果を合成指向性パターンメモリ104mに格納する。図11は、図1の合成指向性パターンメモリ104mの内容を示す表である。同一グループにあるもの、例えば、グループG1の合成指向性パターンPaとPdは相関が高く、グループが違うもの、例えば、グループG1の合成指向性パターンPaとグループG2からG4にある6つの合成指向性パターンとは相関が低い。本実施形態の合成指向性パターンメモリ104mは、これらグループに分類された合成指向性パターンPa〜Phを実現する制御信号Sa〜Shを格納している。合成指向性パターンをグループに分類する方法については、本発明の第2の実施形態として後述する。
【0023】
図12は、図1のコントローラ104によって実行される指向性パターン決定処理を示すフローチャートである。以下、本フローチャートを参照して、合成指向性パターンメモリ104mを利用した指向性パターン決定方法について説明する。まずステップS1において、コントローラ104は、ある基準によって、指向性パターン決定処理を開始する。処理を開始する判断基準は、例えば無線通信装置100の電源が投入された場合、もしくは、MAC処理回路107から通知される単位時間あたりの自端末宛の受信データパケット数がしきい値を超えた場合などにすればよい。次にステップS2において、コントローラ104は、可変指向性アンテナ素子102−1〜102−3にある特定の初期合成指向性パターン、例えば図2の合成指向性パターンPaを設定させるために指向性制御回路103−1〜103−3に対して制御信号Saを入力し、制御信号Saが入力された指向性制御回路103−1〜103−3は、合成指向性パターンPaを実現するように可変指向性アンテナ素子102−1〜102−3を制御する。続いてステップS3において、コントローラ104は、高周波処理回路105−1〜105−3、ベースバンド処理回路106及びMAC処理回路107の少なくとも1つから、パケットの受信時に測定される通信品質に関する情報を取得する。本実施形態では、通信品質に関する情報として、3つの高周波処理回路105−1〜105−3のそれぞれで測定される、各可変指向性アンテナ素子102−1〜102−3での受信電界強度RSSI1、RSSI2、RSSI3を利用する。ステップS4において、コントローラ104は、取得されたRSSI1〜RSSI3を所定の関数f(RSSI1,RSSI2,RSSI3)に入力し、関数fの出力値を得る。関数fは、現状の伝搬環境での性能を大まかに予測するためのものであり、厳密な計算を要するものではない。関数fとして、例えば、3つのRSSI1〜RSSI3の平均値、最大値、最小値、中央値(すなわち、最大値及び最小値以外のもの)のいずれかを利用可能である。そしてステップS5において、コントローラ104は、関数fの出力値の範囲に基づいて合成指向性パターンメモリ104mを参照し、グループG1〜G4のそれぞれから、最適な合成指向性パターンの候補となる合成指向性パターンを1つずつ選択する。
【0024】
図13は、図12のステップS4における関数f(RSSI1,RSSI2,RSSI3)の出力範囲と、各グループG1〜G4から選択される合成指向性パターンとの関係を示す図である。図13の関係に対応するデータは、コントローラ104が保持しても、合成指向性パターンメモリ104mが保持してもよい。グループG1〜G4のそれぞれに含まれる合成指向性パターンは、所定の基準で順序付けられるとともに、関数fの出力値のためのしきい値T0〜T3に対して関連付けられている。図13によると、しきい値T0〜T3で決まる複数の範囲のうちのいずれに関数fの出力値が含まれるかに基づき、グループG1〜G4毎に、2つの合成指向性パターンのうち1つの合成指向性パターンのみが選択される。例えば、関数fの出力値がT0以上T1未満の場合、図11のグループG1からは合成指向性パターンPdが選択され、グループG2からは合成指向性パターンPbが選択され、グループG3からは合成指向性パターンPeが選択され、グループG4からは合成指向性パターンPfが選択される。同一グループに属する合成指向性パターンは、相互に相関が高く、伝送特性も同程度になることが予想されるので、グループ毎にそのうち1つの合成指向性パターンのみを選択して通信を試行すれば、最適な合成指向性パターンを決定するための通信品質の測定を行うには十分である。グループG1〜G4のそれぞれにおける合成指向性パターンの順序は、例えば以下のように決定される。例えば、グループG1であれば、受信電力が弱い状況(f<T0)には、より多くの電波を受信できるように広い指向性を有する合成指向性パターンPaを選択し、逆に受信電力が強い状況(f>T3)には、送信側無線端末装置が近いと考えられるので、指向性パターンB1〜B3相互の相関が低くなるように狭い指向性を有する合成指向性パターンPdを選択するように合成指向性パターンの順序を決定する。しきい値T0〜T3で決まる他の範囲では、例えば、複数のテスト環境で事前測定を行ってどちらの方が良好な特性を示す確率が高いかに基づいて合成指向性パターンの順序を決めればよい。図13は、f>T0で合成指向性パターンPdの方が良好な特性を示した場合を示す。合成指向性パターンPa及びPdは相関が高いので同じ状況では同じような特性を示す可能性が高いものの、上述のように、わずかな差に基づいて事前に順序を決定しておく。合成指向性パターンPa及びPdの順序は、初期に設定したままではなく、実際に通信を行いながら、いずれを優先すべきかについて特性を学習して順序を変更してもよい。他のグループG2〜G4についても、合成指向性パターンの順序を同様に決定することができる。
【0025】
ステップS5で最適な合成指向性パターンの候補となる合成指向性パターンを選択した後、コントローラ104は、ステップS6において、選択された候補となる合成指向性パターンを順次に設定するように指向性制御回路103−1〜103−3に対して制御信号を入力し、制御信号が入力された指向性制御回路103−1〜103−3は、各合成指向性パターンを実現するように可変指向性アンテナ素子102−1〜102−3を制御する。このとき、コントローラ104は、異なる合成指向性パターンが設定される毎に、高周波処理回路105−1〜105−3、ベースバンド処理回路106及びMAC処理回路107の少なくとも1つから、パケットの受信時に測定される通信品質に関する情報、例えばSNRやパケット誤り率(Packet Error Rate;以下、PERとする)を取得する。次いでステップS7において、コントローラ104は最適な合成指向性パターンを決定し、決定された合成指向性パターンを設定するように指向性制御回路103−1〜103−3に対して制御信号を入力し、制御信号が入力された指向性制御回路103−1〜103−3は、その合成指向性パターンを実現するように可変指向性アンテナ素子102−1〜102−3を制御する。最適な合成指向性パターンを決定するとき、例えば、ステップS5で選択された合成指向性パターンのすべてについてパケット通信を試行してそれぞれ測定された通信品質に関する情報を比較することで、最高の伝送特性を有するものを最適な合成指向性パターンとして決定してもよい。それに代わって、決定に要する時間を短縮する目的で、ステップS5で選択された合成指向性パターンを順次に設定してパケット通信をそれぞれ試行し、所望のアプリケーションに必要な通信品質を満たすものが見つかった時点で、そのとき設定されていた合成指向性パターンを最適な合成指向性パターンとして決定してもよい。
【0026】
本実施形態の無線通信装置100において、指向性制御回路103−1〜103−N、コントローラ104、合成指向性パターンメモリ104mは、それぞれハードウエアにより実現してもソフトウエアにより実現してもよい。また、各可変指向性アンテナ素子102−1〜102−Nの指向性パターンは、当業者に知られた任意の方法で変化させることができる。
【0027】
可変指向性アンテナ素子102−1〜102−Nの指向性パターンは、複数N個の指向性パターンからなる組である「合成指向性パターン」として取り扱われる実施形態に限定するものではなく、それぞれ別個に取り扱われてもよい。例えば、少なくとも1つの可変指向性アンテナ素子のそれぞれに複数の指向性パターンを設定するときに、本実施形態の原理を適用することができる。
【0028】
以上、かかる構成によれば、最適な合成指向性パターンを決定する際に、実現可能な多くの合成指向性パターンのうちで、同様の伝送特性をもたらすと予想できる複数の合成指向性パターンを設定することによる処理時間の浪費を防止することで、最適な合成指向性パターンを決定するまでの通信試行時間を短縮することができる。このように、本発明の実施形態によれば、電波伝搬環境の変動に対する指向性パターン切り換えの追随性が高い指向性パターン決定方法を実現することが可能である。
【0029】
第2の実施形態.
本発明の第2の実施形態では、複数の合成指向性パターンをグループに分類する方法について説明する。図14(a)は、可変指向性アンテナ素子102−1〜102−3に設定される例示的な第1の合成指向性パターンPxを示すパターン図であり、図14(b)は、図14(a)の合成指向性パターンPxに対応する合成指向性パターンベクトルPx’を示す図である。図15(a)は、可変指向性アンテナ素子102−1〜102−3に設定される例示的な第2の合成指向性パターンPyを示すパターン図であり、図15(b)は、図15(a)の合成指向性パターンPyに対応する合成指向性パターンベクトルPy’を示す図である。図16(a)は、可変指向性アンテナ素子102−1〜102−3に設定される例示的な第3の合成指向性パターンPzを示すパターン図であり、図16(b)は、図16(a)の合成指向性パターンPzに対応する合成指向性パターンベクトルPz’を示す図である。図14(a)、図15(a)及び図16(a)の合成指向性パターンは、例えばXY平面における垂直偏波成分である。合成指向性パターンPxは0度方向に10dBの鋭い指向性を有し、合成指向性パターンPyは10度方向に10dBの鋭い指向性を有し、合成指向性パターンPzは120度方向に10dBの鋭い指向性を有するものとする。図14(a)、図15(a)及び図16(a)の合成指向性パターンを簡単化してベクトルとして概念的に図示したものが、図14(b)、図15(b)及び図16(b)の合成指向性パターンベクトルである。合成指向性パターンベクトルPx’は、0度で10dBであり、その他の方向角度では0dBである。また、合成指向性パターンベクトルPy’は、10度で10dBであり、その他の方向角度では0dBである。さらに、合成指向性パターンベクトルPz’は、120度で10dBであり、その他の方向角度では0dBである。
【0030】
図14(a)、図15(a)及び図16(a)の合成指向性パターンをグループに分類するために、これらの合成指向性パターンの相互相関関数を計算する。以下の説明では、簡単化のために、合成指向性パターンに代えて合成指向性パターンベクトルの相互相関関数R(τ)を計算する。図17は、図14(b)の合成指向性パターンベクトルPx’及び図15(b)の合成指向性パターンベクトルPy’の相互相関関数R1を示す図であり、図18は、図15(b)の合成指向性パターンベクトルPy’及び図16(b)の合成指向性パターンベクトルPz’の相互相関関数R2を示す図であり、図19は、図16(b)の合成指向性パターンベクトルPz’及び図14(b)の合成指向性パターンベクトルPx’の相互相関関数R3を示す図である。相互相関関数R1,R2及びR3は、それぞれ正規化されている。これら合成指向性パターンベクトルの相互相関関数R(τ)は、合成指向性パターンベクトルPx’及びPy’及びPz’を0度から360度(すなわち、−180度から180度)までの周期関数として、一般に知られた数学的な算出式により導出することが可能である。一般に相互相関関数は、R(τ)とR(−τ)が等しい偶関数であるので、図17〜図19では、方向角度変数τが正のときに値を取るものを示した。図17〜図19の相互相関関数R1及びR2及びR3は正規化しているので、その値が「0」に近づくほど2つの合成指向性パターンベクトルは相関が低く、その値が「1」に近づくほど相関が高い。τ=0のときの相互相関関数R1及びR2及びR3の値は、図14(b)、図15(b)及び図16(b)の合成指向性パターンベクトルのうちの2つを互いに重ね合わせたときの類似性、つまり相関を示している。図17〜図19において、τ=0のときの相互相関関数R1及びR2及びR3の値はすべて「0」であり、合成指向性パターンベクトルPx’及びPy’及びPz’は相互に相関を持たない。このため、合成指向性パターンPx及びPy及びPzを可変指向性アンテナ素子102−1〜102−3に設定してそれぞれ通信を行った場合の伝送特性は互いに異なると予想されるので、合成指向性パターンPx、Py、Pzは相互に違うグループに属するように分類されて、合成指向性パターンメモリ104mに格納される。
【0031】
一方で、τ=10のときの相互相関関数R1及びR2及びR3の値は、2つの合成指向性パターンベクトルのうちのどちらかを10度回転させて互いに重ね合わせたときの類似性、つまり相関を示している。図18及び図19において、τ=10のときの相互相関関数R2及びR3の値は「0」であるが、図17において、τ=10のときの相互相関関数R1の値は「1」である。これは、合成指向性パターンベクトルPx’とPz’、Py’とPz’では、どちらかの合成指向性パターンベクトルを10度ずらしても相関が生じないが、合成指向性パターンベクトルPx’とPy’では、どちらかの合成指向性パターンベクトルを10度ずらすと合成指向性パターンが完全に一致し、相関があることを示している。例えば、衛星通信システムなどでは、送信側と受信側の無線端末装置が十分に離れ、受信側無線端末装置には電波が大きな広がりを持って到来するので、合成指向性パターンPxとPyを可変指向性アンテナ素子102−1〜102−3に設定してそれぞれ通信を行う場合の伝送特性に差はないと考えられる。このような場合、±θ度までの方向角度のずれを許容し、その範囲内での相互相関関数の最大値により合成指向性パターン相互の相関の有無を判断して、合成指向性パターンをグループに分類すればよい。具体的に、許容ずれ方向角度θを30度とした無線通信システムの場合、−30≦τ≦30の範囲内における相互相関関数R1の最大値は1であるので、合成指向性パターンベクトルPx’とPy’は相関があると判断する一方、−30≦τ≦30の範囲内における相互相関関数R2及びR3の最大値は「0」であるので、合成指向性パターンベクトルPx’とPz’は相関を持たず、合成指向性パターンベクトルPy’とPz’は相関を持たないと判断する。このため、合成指向性パターンPxとPyは同じグループに属するように分類され、合成指向性パターンPzは合成指向性パターンPxとPyが属するグループとは違うグループに属するように分類されて、合成指向性パターンメモリ104mに格納される。
【0032】
上記例では、相関値が「0」もしくは「1」の値をとり、「1」のときに相関があると判断し、「0」のときに相関を持たないと判断したが、一般には正規化された相関値は0から1までの連続値であるので、相関値にしきい値を設けて、しきい値以上であれば相関があると判断し、しきい値未満であれば相関を持たないと判断することも可能である。
【0033】
また、一般にアンテナには、3種類の平面(すなわち、XYZ座標を導入した場合ではXY平面、YZ平面及びZX平面)と、2種類の偏波成分(すなわち垂直偏波成分及び水平偏波成分)との組み合わせで、6種類の指向性パターンが存在するので、これらの指向性パターンについて上記方法により相互相関関数を計算し、平面及び偏波成分のいずれかに関して重み付けした相互相関関数を用いることも可能である。例えば、図14(a)の合成指向性パターンPx及び図15(a)の合成指向性パターンPyを可変指向性アンテナ素子102−1〜102−3にそれぞれ設定し、合成指向性パターンPx及びPyの相互相関関数を計算するとき、XY平面における垂直偏波成分の相互相関関数をR1とし、XY平面における水平偏波成分の相互相関関数をR4とし、YZ平面における垂直偏波成分の相互相関関数をR5とし、YZ平面における水平偏波成分の相互相関関数をR6とし、ZX平面における垂直偏波成分の相互相関関数をR7とし、XY平面における水平偏波成分の相互相関関数をR8とする。無線通信装置100としてXY平面における電波の広がりが重要であるならば、合成指向性パターンPx及びPyの相互相関関数は、R=(R1+R4)/2など、XY平面における相互相関関数に重み付けして合成したものを用いる。また、無線通信装置100として垂直偏波成分が重要であるならば、合成指向性パターンPx及びPyの相互相関関数は、R=(R1+R5+R7)/3など、垂直偏波成分の相互相関関数に重み付けして合成したものを用いる。
【0034】
さらに、可変指向性アンテナ素子毎に、その可変指向性アンテナ素子に設定される異なる指向性パターンの相互相関関数を計算し、計算された可変指向性アンテナ素子毎の相互相関関数を重み付けして合成することで、合成指向性パターンの相互相関関数とすることも可能である。例えば、図14(a)の合成指向性パターンPx及び図15(a)の合成指向性パターンPyを可変指向性アンテナ素子102−1〜102−3にそれぞれ設定し、合成指向性パターンPx及びPyの相互相関関数を計算するとき、可変指向性アンテナ素子102−1の指向性パターンの相互相関関数をR9とし、可変指向性アンテナ素子102−2の指向性パターンの相互相関関数をR10とし、可変指向性アンテナ素子102−3の指向性パターンの相互相関関数をR11とする。このとき、無線通信装置100がMIMO通信を行うために、受信時に可変指向性アンテナ素子102−1〜102−3のすべてを使用し、送信時に可変指向性アンテナ素子102−1〜102−3のうちの2つのみ(例えば102−1及び102−2)を使用している場合を想定する。受信専用の可変指向性アンテナ素子102−3の受信感度が伝送特性に大きく影響するのであれば、合成指向性パターンPx及びPyの相互相関関数は、R=(R9+R10)/4+R11/2など、可変指向性アンテナ素子102−3の指向性パターンの相互相関関数R11に重み付けして合成したものを用いる。
【0035】
相互相関関数の計算は、以上に説明したものに限定されるものではなく、平面に関して重み付けすること、偏波成分に関して重み付けすること、可変指向性アンテナ素子に関して重み付けすること、及びその他の重み付け方法を組み合わせてもよい。また、XY平面、YZ平面及びZX平面とは異なる他の平面に関して重み付けしてもよい。
【0036】
本実施形態に係る相互相関関数の計算は、例えば工場出荷などの初期設定時に実施することができる。例えば、無線通信装置100を電波暗室で評価することにより合成指向性パターンを測定することができる。
【0037】
以上の方法により、合成指向性パターンの相互相関関数を事前に計算することで、複数の合成指向性パターンを客観的にグループに分類することができ、本発明の実施形態に係る指向性パターン決定方法を容易に実現することが可能である。
【0038】
第3の実施形態.
さらに、合成指向性パターンメモリ104mの内容は、電波伝搬環境に応じて更新することが望ましい。このために、無線通信装置100は、候補として選択されたいくつかの合成指向性パターンから最適な合成指向性パターンを決定する際に、選択された合成指向性パターンでそれぞれ測定された通信品質を比較して通信品質の相関(すなわち通信品質の類似性)を計算する。ことにより、無線通信装置100は、当該無線通信装置100が設置された電波伝搬環境を学習し、この結果に従って合成指向性パターンメモリ104mを更新する。
【0039】
本実施形態では、図11の合成指向性パターンメモリ104mに格納された合成指向性パターンのうちで、合成指向性パターンPa,Pb,Pe,Pfを候補1とし、合成指向性パターンPd,Pc,Pg,Phを候補2とし、各グループG1〜G4から候補1及び候補2のいずれかの合成指向性パターンをそれぞれ選択する。コントローラ104は、電波伝搬環境の変動を検知したときに候補1又は候補2の4つの合成指向性パターンを選択して試行し、最適な合成指向性パターンを決定する一方で、合成指向性パターンメモリ104mの更新に必要な情報を取得する。従って、合成指向性パターンメモリ104mを更新するための各合成指向性パターンについての情報を、4つ分ずつ取得することになる。
【0040】
図20は、本発明の第3の実施形態に係るアンテナ制御処理を示すフローチャートである。図20のアンテナ制御処理は、図1の無線通信装置100のコントローラ104によって通信中に実行される。ステップS11において通信を開始したとき、コントローラ104は、ステップS12において、反復回数Nを「0」に初期化し、候補1及び候補2のいずれかの合成指向性パターンを選択するためのフラグflagを「0」に初期化する。次いで、ステップS13において指向性パターンメモリ更新処理を実行する。
【0041】
図21は、図20のステップS13の指向性パターンメモリ更新処理のサブルーチンを示すフローチャートである。ステップS21〜S23は、図12のステップS2〜S4と同様である。ステップS24において、コントローラ104は、フラグflagが「0」であるか否かを判断し、YesのときはステップS25以降の候補1を用いた処理に進み、Noのとき(すなわち1のとき)はステップS30以降の候補2を用いた処理に進む。ステップS25において、コントローラ104は、指向性制御回路103−1〜103−3を制御して、候補1の合成指向性パターンを可変指向性アンテナ素子102−1〜102−3に順次に設定させる。このとき、コントローラ104は、異なる合成指向性パターンが設定される毎に、高周波処理回路105−1〜105−3、ベースバンド処理回路106及びMAC処理回路107の少なくとも1つから、通信品質に関する情報(例えば複数のPHYレートのうちのいずれであるか)を取得する。ここで、コントローラ104は、合成指向性パターンメモリ104mの更新のために、取得された通信品質の複数の異なる測定値について、測定値毎の達成回数の累積分布を記録する(詳細後述)。次いでステップS26において、コントローラ104は、最適な合成指向性パターンを決定し、指向性制御回路103−1〜103−3を制御して、決定された合成指向性パターンを可変指向性アンテナ素子102−1〜102−3に設定させる。次いでステップS27において、コントローラ104は、反復回数Nを1だけインクリメントし、次いでステップS28において、コントローラ104は、反復回数Nが所定の最大反復回数Nmaxに達したか否かを判断し、YesのときはステップS29に進み、Noのときは図20のステップS14に進む。
【0042】
図20のステップS14において電波伝搬環境の変動(例えば通信品質の劣化)を検知したとき、ステップS13を繰り返す。従って、ステップS14で電波伝搬環境の変動を検知したとき、反復回数Nが最大反復回数Nmaxに達するまでは図21のステップS21〜S28の処理を繰り返し、最適な合成指向性パターンを再決定するとともに、候補1の合成指向性パターンに係る通信品質の測定値毎の達成回数の累積分布を記録する。
【0043】
図21のステップS28がYesのとき、ステップS29において、コントローラ104は、フラグflagを「1」に設定し、反復回数Nを「0」に初期化して、図20のステップS14に進む。ステップS14において電波伝搬環境の変動を再び検知したとき、コントローラ104は、図21のステップS21〜S23を実行し、次いでステップS24においてフラグflagが0であるか否かを判断し、これは上述のように「1」であるのでステップS30に進む。ステップS30〜S33は、候補1の合成指向性パターンに代えて候補2の合成指向性パターンを用いることのほかは、ステップS25〜S28と同様である。反復回数Nが所定の最大反復回数Nmaxに達するまでは図21のステップS21〜S24,S30〜S33の処理を繰り返し、最適な合成指向性パターンを再決定するとともに、候補2の合成指向性パターンに係る通信品質の測定値毎の達成回数の累積分布を記録する。
【0044】
図22は、図20及び図21の処理によって測定される通信品質の測定値毎の達成回数の累積分布を示す表である。本実施形態では、各合成指向性パターンの通信品質(ここではPHYレートを用いる。)の測定値毎の達成回数の累積分布を記録するとき、ステップS23で計算される関数fの出力値に基づくいくつかの場合に分けて行う。ここでは、関数fの出力値が、−60〜−50[dB]である場合と、−70〜−60[dB]である場合と、−80〜−70[dB]である場合とを用いるが、これらに限定されるものではない。本実施形態ではまた、PHYレートは、54Mpbs,108Mbps,216Mbps,300Mbpsのいずれかの値をとるが、これらに限定されるものではない。測定された通信品質を記録するとき、所定の関数fの出力値と所定の合成指向性パターンのもとで、所定のPHYレートが何回観測されたかを累算する。図22の表によれば、例えば、関数fの出力値が−60〜−50[dB]になる環境下で、合成指向性パターンPaが設定されているときには、54MbpsのPHYレートが3回観測されたことがわかる。
【0045】
図24は、図20及び図21の処理を行う際(特に、図21のステップS21〜S28を繰り返すとき)に設定される合成指向性パターンと、測定される通信品質とを説明するための図である。図24における試行の回数は、ステップS13の指向性パターンメモリ更新処理を実行する回数に対応する。図24を参照すると、試行1回目において、ステップS21で設定された所定の初期合成指向性パターン(例えばPa)のもとで関数fの出力値(ステップS23)を取得し、例えば、これが−50dBであったとする。次いでステップS25において候補1からの合成指向性パターンPaを可変指向性アンテナ素子102−1〜102−3に設定し、所定間隔で数パケット分のPHYレートを測定し、PHYレートとパケット数の関係をカウントする。ここでは、例えば4つのパケットについて測定し、54Mbpsが0回観測され、108Mbpsが1回観測され、216Mbpsが3回観測され、300Mbpsが0回観測されたとする。これらのPHYレートのカウント値に従って、図22の表の−60〜−50[dB]の場合における、合成指向性パターンPaの該当するPHYレートの項目をインクリメントする。候補1からの他の合成指向性パターンPb,Pe,Pfについても同様にPHYレートを測定し、これらのPHYレートのカウント値に従って、図22の表の−60〜−50[dB]の場合における、合成指向性パターンPb,Pe,Pfの該当するPHYレートの項目をインクリメントする。ステップS25の実行後、ステップS26で設定された合成指向性パターンを用いて通信を継続し、ステップS14において電波伝搬環境の変動を検知したときには、次の試行に進む(すなわちステップS13を繰り返す)。各試行において、ステップS21で設定された合成指向性パターンのもとで取得される関数fの出力値は異なる可能性があり、この関数fの出力値に応じて、図22の表の−60〜−50[dB]の場合と、−70〜−60[dB]の場合と、−80〜−70[dB]の場合とのいずれかにおいてPHYレート毎の達成回数の累算を行う。以上のようなPHYレート毎の達成回数の累算を、候補1の合成指向性パターンについて最大反復回数Nmaxまで繰り返し、同様に、候補2の合成指向性パターンについて最大反復回数Nmaxまで繰り返し、これにより図22の表が得られる。
【0046】
図22の表において、各合成指向性パターンに係るPHYレート毎の達成回数の累積分布(すなわち表の列方向の内容)が似ていれば、同じ環境で通信品質の差異が小さいということを意味し、従って、通信品質の相関が高いと判断することができる。図22の表では、合成指向性パターンPa及びPeの累積分布が類似し、合成指向性パターンPb及びPcの累積分布が類似し、合成指向性パターンPf及びPgの累積分布が類似し、合成指向性パターンPd及びPhの累積分布が類似している。ここで、最大反復回数Nmaxは、候補1及び候補2のそれぞれの合成指向性パターンについて、通信品質の相関を判断するのに十分な累積分布を取得できる値に設定される。
【0047】
候補2の合成指向性パターンに係る反復回数Nが最大反復回数Nmaxに達したとき(ステップS33がYesのとき)、ステップS34において、コントローラ104は、フラグflagを「0」に設定し、反復回数Nを「0」に初期化して、ステップS35に進む。ステップS35において、コントローラ104は、記録された通信品質の測定値毎の達成回数の累積分布に基づいて合成指向性パターンメモリ104mを更新する。図23は、図20及び図21の処理によって更新された合成指向性パターンメモリ104mの内容を示す表である。合成指向性パターンメモリ104mを更新した後、再び電波伝搬環境の変動を検知するまではそのまま通信を継続し、検視したときにはステップS13を繰り返す一方、通信終了時にはアンテナ制御処理を終了する。
【0048】
以上説明したように、本実施形態によれば、指向性パターンメモリ104mの更新を行うことにより、無線通信装置100が指向性パターンを切り換えることによる効果を向上させることができる。また、一度にすべての合成指向性パターンを試行することなく、候補1又は候補2の4つずつの合成指向性パターンを試行することにより、最適な合成指向性パターンを決定するまでの速度を犠牲にすることなく、合成指向性パターンメモリ104mを更新することができる。
【産業上の利用可能性】
【0049】
本発明に係る指向性パターン決定方法は、電波伝搬環境の変動に追随するアンテナ制御を素早く行うことでデータを高速かつ安定して送信することが可能であり、リアルタイム性が要求されるデータを転送する機器などに有用である。
【符号の説明】
【0050】
100…無線通信装置、
101…可変指向性アレーアンテナ装置、
102−1〜102−N…可変指向性アンテナ素子、
103−1〜103−N…指向性制御回路、
104…コントローラ、
104m…合成指向性パターンメモリ、
105−1〜105−N…高周波処理回路、
106…ベースバンド処理回路、
107…MAC処理回路、
B1,B2,B3…指向性パターン、
Pa〜Ph,Px,Py,Pz…合成指向性パターン、
Px’,Py’,Pz’…合成指向性パターンベクトル、
R1,R2,R3…相互相関関数。

【特許請求の範囲】
【請求項1】
少なくとも1つの可変指向性アンテナ装置と、上記可変指向性アンテナ装置に設定可能な複数の指向性パターンのデータを格納する指向性パターンメモリとを備えた無線通信装置のための指向性パターン決定方法であって、
上記方法は、
上記複数の指向性パターンのうちで相互に相関が高い指向性パターンを同一グループとし、相互に相関が低い指向性パターンを異なるグループとするように、上記複数の指向性パターンを複数のグループに分類して上記指向性パターンメモリに格納するステップと、
上記指向性パターンメモリから、上記グループ毎に1つずつ指向性パターンを選択するステップと、
上記選択された指向性パターンを上記可変指向性アンテナ素子に設定する毎に受信される信号の第1の通信品質に従って、上記選択された指向性パターンのうちの1つの指向性パターンを決定するステップと、
上記決定された指向性パターンを上記可変指向性アンテナ素子に設定するステップとを含むことを特徴とする指向性パターン決定方法。
【請求項2】
上記複数の指向性パターンは、上記分類されたグループ毎に、所定の第2の通信品質に基づいて順序付けられて上記指向性パターンメモリに格納され、
上記選択するステップは、所定の初期指向性パターンを上記可変指向性アンテナ素子に設定したときに受信された信号の上記第2の通信品質に従って、上記指向性パターンメモリから、上記グループ毎に1つずつ指向性パターンを選択するステップを含むことを特徴とする請求項1記載の指向性パターン決定方法。
【請求項3】
上記複数の指向性パターンを複数のグループに分類して上記指向性パターンメモリに格納するステップは、上記各指向性パターンを方向角度に関する関数として表し、上記複数の指向性パターンのうちの各2つの組み合わせの相関を、これら2つの指向性パターンをそれぞれ表す関数間の相互相関関数として計算するステップを含むことを特徴とする請求項1又は2記載の指向性パターン決定方法。
【請求項4】
上記計算するステップは、上記複数の指向性パターンのうちの各2つの組み合わせについて、そのXY平面における相互相関関数と、そのYZ平面における相互相関関数と、そのZX平面における相互相関関数とを計算し、上記計算された相互相関関数に所定の重み付けを行って合成された相互相関関数を計算するステップを含むことを特徴とする請求項3記載の指向性パターン決定方法。
【請求項5】
上記計算するステップは、上記複数の指向性パターンのうちの各2つの組み合わせについて、その垂直偏波成分の相互相関関数と、その水平偏波成分の相互相関関数とを計算し、上記計算された相互相関関数に所定の重み付けを行って合成された相互相関関数を計算するステップを含むことを特徴とする請求項3記載の指向性パターン決定方法。
【請求項6】
上記指向性パターンのそれぞれは、複数の可変指向性アンテナ装置の個別の指向性パターンからなる合成指向性パターンであり、
上記計算するステップは、上記複数の指向性パターンのうちの各2つの組み合わせについて、上記可変指向性アンテナ装置毎に個別に相互相関関数を計算し、上記計算された相互相関関数に所定の重み付けを行って合成された相互相関関数を計算するステップを含むことを特徴とする請求項3記載の指向性パターン決定方法。
【請求項7】
上記指向性パターン決定方法は、
上記指向性パターンを上記可変指向性アンテナ素子に設定する毎に受信される信号の第3の通信品質を測定し、上記第3の通信品質に係る複数の異なる測定値について、測定値毎の達成回数の累積分布を取得するステップと、
上記複数の指向性パターンのうちで上記累積分布の相関が相互に高い指向性パターンを同一グループとし、相関が相互に低い指向性パターンを異なるグループとするように、上記指向性パターンメモリに格納された上記指向性パターンのグループを更新するステップとをさらに含むことを特徴とする請求項1記載の指向性パターン決定方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate


【公開番号】特開2010−258579(P2010−258579A)
【公開日】平成22年11月11日(2010.11.11)
【国際特許分類】
【出願番号】特願2009−103991(P2009−103991)
【出願日】平成21年4月22日(2009.4.22)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】