説明

放射線撮影システム及び画像処理方法

【課題】プレ撮影と本撮影との間での走査位置のずれに起因するアーチファクトを補正する。
【解決手段】画像処理部14に、走査位置ズレ量算出56、走査位置補正部57、及び減算処理部52を設ける。走査位置ズレ量算出56は、プレ撮影と本撮影との間で、強度変調信号の差異を検出することにより、プレ撮影と本撮影との間での前記各走査位置のズレ量を算出する。走査位置補正部57は、本撮影時に位相微分像生成部50で位相微分像を生成する際に用いられる各走査位置を、走査位置ズレ量算出56により算出されたズレ量を用いて補正する。減算処理部52は、本撮影時に生成された第1の位相微分像から、プレ撮影時に生成された第2の位相微分像を減算する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、X線等の放射線により被検体の撮影を行う放射線撮影システム及び画像処理方法に関し、特に、縞走査法を用いた放射線撮影システム及び画像処理方法に関する。
【背景技術】
【0002】
X線は、物質を構成する元素の原子番号と、物質の密度及び厚さとに依存して減衰するといった特性を有することから、被検体の内部を透視するためのプローブとして用いられている。X線を用いた撮影は、医療診断や非破壊検査等の分野において広く普及している。
【0003】
一般的なX線撮影システムでは、X線を放射するX線源とX線を検出するX線画像検出器との間に被検体を配置して、被検体の透過像を撮影する。この場合、X線源からX線画像検出器に向けて放射された各X線は、X線画像検出器までの経路上に存在する物質の特性(原子番号、密度、厚さ)の差異に応じた量の減衰(吸収)を受けた後、X線画像検出器の各画素に入射する。この結果、被検体のX線吸収像がX線画像検出器により検出され画像化される。X線画像検出器としては、X線増感紙とフイルムとの組み合わせや輝尽性蛍光体のほか、半導体回路を用いたフラットパネル検出器(FPD:Flat Panel Detector)が広く用いられている。
【0004】
しかし、X線吸収能は、原子番号が小さい元素からなる物質ほど低くなるため、生体軟部組織やソフトマテリアルなどでは、X線吸収能が小さく、X線吸収像としての十分な画像の濃淡(コントラスト)が得られないといった問題がある。例えば、人体の関節を構成する軟骨部とその周辺の関節液は、いずれも殆どの成分が水であり、両者のX線の吸収量の差が小さいため、画像のコントラストが得られにくい。
【0005】
近年、被検体によるX線の強度変化に代えて、被検体の屈折率の違いによるX線の位相変化(角度変化)に基づいた画像(以下、位相コントラスト画像と称する)を得るX線位相イメージングの研究が盛んに行われている。X線が物体に入射したとき、X線の強度よりも位相のほうがより高い相互作用を示すため、位相差に基づいたX線位相イメージングでは、X線吸収能が低い弱吸収物体であっても高コントラストの画像を取得することができるが得られる。
【0006】
このようなX線位相イメージングとして、第1の格子と第2の格子とを所定の間隔で平行に配置し、第1の格子によるタルボ干渉効果によって、第2の格子の位置に第1の格子の自己像を形成し、この自己像を第2の格子によって強度変調することにより位相コントラス画像を取得する放射線撮影システムが提案されている(例えば、特許文献1、非特許文献1参照)。被検体の位相情報は、自己像を強度変調することにより得られる縞画像に反映される。
【0007】
上記縞画像から被検体の位相情報を求めるには種々の方法があり、縞走査法、モアレ干渉測定法、フーリエ変換法などが知られている。特許文献1では、縞走査法が用いられている。縞走査法は、第1の格子に対して第2の格子を、格子線方向にほぼ垂直な方向に、格子ピッチよりも細かい所定量ずつ相対的に並進移動(走査)させながら、各走査位置で撮影を行って複数の縞画像を取得し、各画素値の強度変化に基づいてX線の位相変化量に対応する位相微分値を取得する方法である。この位相微分値の2次元像(位相微分像)に基づいて位相コントラスト画像を生成することができる。この縞走査法は、X線の分野に限られず、レーザ光を利用した撮影装置でも用いられている(非特許文献2参照)。
【0008】
縞走査法では、第1及び第2の格子に製造誤差や歪み、配置ずれ等が生じると、各画素について取得される位相微分値には、被検体に関係のない値が加算されてしまう。特許文献1では、被検体を配置して行なう本撮影と、被検体を配置せずに行なうプレ撮影とのそれぞれで位相微分像を取得し、本撮影で得られた第1の位相微分像から、プレ撮影で得られた第2の位相微分像を減算することにより、被検体のみに起因した位相微分像を取得することが提案されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特許第4445397号公報
【非特許文献】
【0010】
【非特許文献1】C. David, et al., Applied Physics Letters, Vol.81, No.17, 2002年10月,3287頁
【非特許文献2】Hector Canabal, et al., Applied Optics, Vol.37, No.26, 1998年9月,6227頁
【発明の概要】
【発明が解決しようとする課題】
【0011】
しかしながら、特許文献1に記載の補正方法では、第1及び第2の格子の製造誤差や歪みのように、プレ撮影と本撮影との間で変動しない要因については精度よく補正が可能であるが、プレ撮影と本撮影との間で上記走査位置にずれが生じた場合には補正が不可能である。特許文献1には、本撮影時の第1の位相微分像とプレ撮影時の第2の位相微分像とを同一の計算式を用いて算出することが記載されているため、走査位置のずれについては明らかに考慮されていない。
【0012】
本発明は、上記課題を鑑みてなされたものであり、プレ撮影と本撮影との間での走査位置のずれに起因するアーチファクトを補正することを可能とする放射線撮影システム及び画像処理方法を提供することを目的とする。
【課題を解決するための手段】
【0013】
上記目的を達成するために、本発明の放射線撮影システムは、格子線方向が一致するように対向配置された第1及び第2の格子と、前記第1の格子に対する第2の格子の相対位置を格子線方向に直交する方向に変更し、複数の走査位置に順に設定する走査手段と、前記各走査位置において、放射線源から放射された放射線を、前記第1及び第2の格子を介して撮影して画像データを生成する放射線画像検出器と、前記画像データの画素値の前記走査位置に対する変化を表す強度変調信号の位相ズレ量を求めることにより位相微分像を生成する位相微分像生成手段と、被検体を配置せずに撮影を行うプレ撮影と、被検体を配置して撮影を行う本撮影との間で、前記強度変調信号の差異を検出することにより、前記プレ撮影と前記本撮影との間での前記各走査位置のズレ量を算出する走査位置ズレ量算出手段と、前記位相微分像生成手段により位相微分像を生成する際に用いられる前記各走査位置を、前記走査位置ズレ量算出手段により算出されたズレ量を用いて、前記本撮影または前記プレ撮影のいずれか一方の場合に補正する走査位置補正手段と、前記本撮影時に前記位相微分像生成手段により生成された第1の位相微分像から、前記プレ撮影時に前記位相微分像生成手段により生成された第2の位相微分像を減算する減算手段と、を備えることを特徴とする。
【0014】
なお、走査位置ズレ量算出手段は、前記放射線画像検出器の複数の画素に対応する強度変調信号を用いて前記各走査位置のズレ量を統計的に算出することが好ましい。この場合には、前記放射線画像検出器は、前記放射線源から放射された放射線が被検体を透過せずに入射する素抜け領域が区分されており、前記複数の画素は、前記素抜け領域に属するものであることがさらに好ましい。
【0015】
また、前記走査位置ズレ量算出手段は、前記複数の画素について前記各走査位置のズレ量を算出し、該ズレ量に対する画素数の度数分布のピーク位置、平均値、または中央値を検出することにより、前記各走査位置のズレ量を決定することが好ましい。
【0016】
また、前記走査位置ズレ量算出手段は、同一画素における前記本撮影時及び前記プレ撮影時の強度変調信号について、一方の強度変調信号について隣接する走査位置間を補間し、この補間された強度変調信号を基準として、他方の強度変調信号とのズレ量を前記各走査位置ごとに算出することが好ましい。特に、前記補間は、線形補間であることが好ましい。
【0017】
さらに、前記走査位置ズレ量算出手段は、前記一方の強度変調信号について外挿を行い、1周期以上の信号とすることが好ましい。
【0018】
前記位相微分像生成手段は、最小二乗に基づく計算式を用いて強度変調信号の位相ズレ量を算出することが好ましい。
【0019】
前記位相微分像生成手段により生成された位相微分像を、前記相対位置の変更方向に沿って積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成手段をさらに備えてもよい。
【0020】
前記第1の格子は、吸収型格子であり、前記放射線源から入射した放射線を幾何光学的に前記第2の格子に投影するものであることが好ましい。これに代えて、前記第1の格子は、位相型格子であり、タルボ干渉効果により前記放射線源から入射した放射線にタルボ干渉効果を生じさせ、前記第2の格子の位置に自己像を形成するものであることも好ましい。
【0021】
さらに、本発明の画像処理方法は、格子線方向が一致するように対向配置された第1及び第2の格子と、前記第1の格子に対する第2の格子の相対位置を格子線方向に直交する方向に変更し、複数の走査位置に順に設定する走査手段と、前記各走査位置において、放射線源から放射された放射線を、前記第1及び第2の格子を介して撮影して画像データを生成する放射線画像検出器と、前記画像データの画素値の前記走査位置に対する変化を表す強度変調信号の位相ズレ量を求めることにより位相微分像を生成する位相微分像生成手段と、を備えた放射線撮影システムに用いられる画像処理方法において、被検体を配置せずに撮影を行うプレ撮影と、被検体を配置して撮影を行う本撮影との間で、前記強度変調信号の差異を検出することにより、前記プレ撮影と前記本撮影との間での前記各走査位置のズレ量を算出し、前記位相微分像生成手段により位相微分像を生成する際に用いられる前記各走査位置を、前記ズレ量を用いて、前記本撮影または前記プレ撮影のいずれか一方の場合に補正し、前記本撮影時に前記位相微分像生成手段により生成された第1の位相微分像から、前記プレ撮影時に前記位相微分像生成手段により生成された第2の位相微分像を減算することを特徴とする。
【発明の効果】
【0022】
本発明によれば、プレ撮影と本撮影との間で強度変調信号の差異を検出することにより、プレ撮影と本撮影との間での各走査位置のズレ量を算出し、位相微分像を生成する際に用いられる各走査位置を、算出したズレ量を用いて、本撮影またはプレ撮影のいずれか一方の場合に補正し、そして、本撮影時に生成された第1の位相微分像から、プレ撮影時に生成された第2の位相微分像を減算するので、プレ撮影と本撮影との間での走査位置のずれに起因するアーチファクトを補正することができる。
【図面の簡単な説明】
【0023】
【図1】X線撮影システムの構成を示すブロック図である。
【図2】撮影部の筐体を示す概略斜視図である。
【図3】X線画像検出器の構成を示す模式図である。
【図4】第1及び第2の吸収型格子の構成を示す概略側面図である。
【図5】縞走査法を説明する説明図である。
【図6】画像処理部の構成を示すブロック図である。
【図7】本撮影時及びプレ撮影時に得られる素抜け領域の強度変調信号を例示するグラフである。
【図8】走査位置のズレ量の算出方法を説明するグラフである。
【図9】走査位置ズレ量算出部により算出されるズレ量を例示するグラフである。
【図10】走査位置のズレ量に対する画素数の度数分布を例示するグラフである。
【発明を実施するための形態】
【0024】
図1において、X線撮影システム10は、X線源11、撮影部12、メモリ13、画像処理部14、画像記録部15、撮影制御部16、コンソール17、及びシステム制御部18を備えている。X線源11は、例えば、回転陽極型のX線管と、X線の照射野を制限するコリメータとを有し、被検体HにX線を放射する。
【0025】
撮影部12は、X線画像検出器20と、第1及び第2の格子21,22とからなる。第1及び第2の格子21,22は、吸収型格子であり、X線照射方向であるz方向に関してX線源11に対向配置されている。X線源11と第1の格子21との間には、被検体Hが配置可能な間隔が設けられている。X線画像検出器20は、例えば、半導体回路を用いたフラットパネル検出器であり、第2の格子22の背後に、検出面がz方向に直交するように配置されている。
【0026】
X線画像検出器20の検出面は、主として被検体Hを透過したX線が第1及び第2の格子21,22を介して入射する被検体検出領域20aと、被検体Hを透過せずにその周囲を通過したX線が第1及び第2の格子21,22を介して入射する素抜け領域20bとに区分されている。
【0027】
第1の格子21は、z方向に直交する面内の一方向であるy方向に延伸された複数のX線吸収部21a及びX線透過部21bを備えている。X線吸収部21a及びX線透過部21bは、z方向及びy方向に直交するx方向に沿って交互に配列されており、縞状のパターンを形成している。第2の格子22は、第1の格子21と同様にy方向に延伸され、かつx方向に沿って交互に配列された複数のX線吸収部22a及びX線透過部22bを備えている。X線吸収部21a,22aは、金(Au)、白金(Pt)等のX線吸収性を有する金属からなる。X線透過部21b,22bは、シリコン(Si)や樹脂等のX線透過性を有する材料からなる。
【0028】
メモリ13は、撮影部12から読み出された画像データを一時的に記憶する。画像処理部14は、メモリ13に記憶される複数の画像データに基づいて位相コントラスト画像を生成する。画像記録部15は、画像処理部14により生成された位相コントラスト画像を記録する。撮影制御部16は、X線源11及び撮影部12の制御を行う。
【0029】
コンソール17は、撮影条件や、後述するプレ撮影や本撮影の実行指示等の入力を可能とする操作部17aや、撮影情報や画像等の表示を行うモニタ17bを備えている。システム制御部18は、操作部17aから入力される信号に応じて、各部を統括的に制御する。
【0030】
撮影部12には、第2の格子22をx方向に並進移動させ、第1の格子21に対する第2の格子22の相対的な位置を変化させる走査機構23が設けられている。走査機構23は、例えば、圧電素子等のアクチュエータにより構成される。走査機構23は、後述する縞走査の際に、撮影制御部16の制御に基づいて駆動される。詳しくは後述するが、メモリ13には、縞走査の各走査位置でX線画像検出器20により撮影される画像データがそれぞれ記憶される。
【0031】
以上のように構成された撮影部12は、図2に示す矩形状の筐体30の内部に保持されている。筐体30のX線入射面31には、x方向及びy方向に関する中心位置を示す中心線32,33と、X線画像検出器20の被検体検出領域20aと素抜け領域20bとの境界を示す矩形状の枠線34が印刷形成されている。枠線34の外側が素抜け領域20bに対応する。
【0032】
図3において、X線画像検出器20は、X線を電荷に変換して蓄積する複数の画素40が、x方向及びy方向に沿ってアクティブマトリクス基板上に2次元配列されてなる受像部41と、画素40からの電荷の読み出しタイミングを制御する走査回路42と、画素40から電荷を読み出し、電荷を画像データに変換して出力する読み出し回路43とから構成されている。走査回路42と各画素40とは、行ごとに走査線44によって接続されており、読み出し回路43と各画素40とは、列ごとに信号線45によって接続されている。画素40の配列ピッチは、x方向及びy方向にそれぞれ100μm程度である。
【0033】
画素40は、アモルファスセレン等の変換層(図示せず)によりX線を電荷に直接変換し、変換された電荷を変換層の下部の電極に接続されたキャパシタ(図示せず)に蓄積する直接変換型のX線検出素子である。各画素40には、TFTスイッチ(図示せず)が設けられ、TFTスイッチのゲート電極が走査線44、ソース電極がキャパシタ、ドレイン電極が信号線45に接続されている。走査回路42からの駆動パルスによってTFTスイッチがオン状態になると、キャパシタに蓄積された電荷が信号線45に読み出される。
【0034】
なお、画素40は、酸化ガドリニウム(Gd)やヨウ化セシウム(CsI)等からなるシンチレータ(図示せず)でX線を一旦可視光に変換し、変換された可視光をフォトダイオード(図示せず)で電荷に変換して蓄積する間接変換型のX線検出素子としてもよい。また、X線画像検出器20には、TFTパネルをベースとしたFPDに限られず、CCDセンサやCMOSセンサ等の固体撮像素子をベースとした放射線画像検出器を用いることも可能である。
【0035】
読み出し回路43は、積分アンプ、A/D変換器、補正回路(いずれも図示せず)等により構成されている。積分アンプは、各画素40から信号線45を介して出力された電荷を積分して電圧信号である画像信号に変換する。A/D変換器は、積分アンプにより変換された画像信号を、デジタルの画像データに変換する。補正回路は、画像データを構成する各画素値に対して、暗電流補正、ゲイン補正、及びリニアリティ補正等を行い、補正済みの画像データをメモリ13に入力する。
【0036】
走査回路42及び読み出し回路43は、撮影制御部16を介してシステム制御部18により制御される。受像部41は、前述のように被検体検出領域20aと素抜け領域20bとに区分されている。被検体検出領域20aと素抜け領域20bとに含まれる画素40は同一構成である。システム制御部18は、走査線44と信号線45とのアドレスにより、被検体検出領域20aに含まれる画素40と、素抜け領域20bに含まれる画素40とを識別する。
【0037】
図4において、X線源11から照射されるX線は、X線焦点11aを発光点としたコーンビームであり、第1の格子21を通過することにより生成されるX線の第1の周期パターン像(以下、G1像という)は、X線焦点11aからの距離に比例して拡大される。第2の格子22のX線吸収部22aのx方向の配列ピッチp及び幅dは、X線焦点11aと第1の格子21との間の距離L、第1の格子21と第2の格子22との間の距離L、及び第1の格子21のX線吸収部21aの配列ピッチp及び幅dを用いて下式(1)及び(2)に示すように決定される。
【0038】
【数1】

【数2】

【0039】
例えば、配列ピッチpは5μmであり、幅dはその半分の2.5μmである。X線吸収部21aのz方向の厚みは、X線源11から放射されるコーンビーム状のX線のケラレを考慮して、例えば100μm程度となっている。
【0040】
第1及び第2の格子21,22は、X線透過部21b,22bを通過したX線を幾何光学的に投影するように構成される。具体的には、x方向に関するX線透過部21b,22bの幅(幅d,dと同一)を、X線源11から照射されるX線のピーク波長より十分大きな値とすることで、第1及び第2の格子21,22は、大部分のX線を回折させずに、直進性を保ったまま通過させる。例えば、X線源11のX線管の回転陽極としてタングステンを用い、管電圧を50kVとした場合には、X線のピーク波長は約0.4Åである。この場合には、X線透過部21b,22bの幅として、1〜10μm程度の範囲が許容される。
【0041】
距離Lは、タルボ干渉計の場合にはタルボ干渉距離に制約されるが、本実施形態では、第1及び第2の格子21,22がX線を幾何光学的に投影するため、距離Lをタルボ干渉距離とは無関係に設定することができる。
【0042】
上記のように本実施形態の撮影部12は、タルボ干渉計を構成するものではないが、第1の格子21でX線の回折が生じ、タルボ干渉が生じた場合のタルボ干渉距離Zは、配列ピッチp,p、X線の波長λ、及び正の整数mを用いて、下式(3)で表される。
【0043】
【数3】

【0044】
上式(3)は、X線源11から照射されるX線がコーンビーム状である場合のタルボ干渉距離を表す式であり、「Atsushi Momose, et al., Japanese Journal of Applied Physics, Vol.47, No.10, 2008年10月, 8077頁」により知られている。
【0045】
本実施形態では、距離Lをタルボ干渉距離Zと無関係に設定することができるため、撮影部12の薄型化を目的とし、距離Lを、m=1の場合の最小のタルボ干渉距離Zより短い値に設定する。すなわち、距離Lは、下式(4)を満たす範囲に設定される。
【0046】
【数4】

【0047】
以上のように構成された撮影部12では、第1の格子21により生成されたG1像が第2の格子22との重ね合わせにより強度変調されることにより第2の周期パターン像(以下、G2像という)が生成され、X線画像検出器20で撮像される。第2の格子22の位置におけるG1像のパターン周期と、第2の格子2の格子周期(配列ピッチp)とに、配置誤差などによる若干の差異が生じると、G2像にモアレ縞が生じる。このモアレ縞が発生した場合でも、モアレ縞の周期が画素40のX線受光領域のサイズと異なっていれば、後述する強度変調信号の取得には特に問題はない。
【0048】
X線源11と第1の格子21との間に被検体Hを配置するとG2像が被検体Hにより変調を受ける。この変調量には、被検体Hでの屈折によって偏向したX線の角度が反映される。
【0049】
次に、縞走査法について説明する。同図には、被検体Hのx方向に関する位相シフト分布Φ(x)に応じて屈折するX線の1つの経路が例示されている。符号X1は、被検体Hが存在しない場合にX線が直進する経路を示している。この経路X1を進むX線は、第1及び第2の格子21,22を通過してX線画像検出器20に入射する。符号X2は、被検体Hが存在する場合に、被検体Hにより屈折したX線の経路を示している。この経路X2を進むX線は、第1の格子21を通過した後、第2の格子22のX線吸収部22aにより吸収される。
【0050】
被検体Hの位相シフト分布Φ(x)は、被検体Hの屈折率分布をn(x,z)として、下式(5)で表される。ここで、説明の簡略化のため、y座標は省略している。
【0051】
【数5】

【0052】
第1の格子21により第2の格子22の位置に形成されたG1像は、被検体Hを透過する際のX線の屈折により、その屈折角φに応じた量だけx方向に変位する。この変位量Δxは、X線の屈折角φが微小であることに基づいて、近似的に下式(6)で表される。
【0053】
【数6】

【0054】
ここで、屈折角φは、X線の波長λと位相シフト分布Φ(x)を用いて、下式(7)で表される。
【0055】
【数7】

【0056】
このように、変位量Δxは、被検体Hの位相シフト分布Φ(x)に関連している。また、変位量Δx及び屈折角φは、X線画像検出器20で検出される各画素40の強度変調信号の被検体Hによる位相ズレ量ψと、次式(8)に示すように関連している。詳しくは後述するが、強度変調信号とは、第1の格子21に対する第2の格子22の走査位置に対する画素値の変化を表す波形信号である。
【0057】
【数8】

【0058】
したがって、各画素40の強度変調信号の位相ズレ量ψを求めることにより、上式(8)から屈折角φが求まり、上式(7)を用いて位相シフト分布Φ(x)が求まる。
【0059】
縞走査法では、強度変調信号を得るために、第1及び第2の格子21,22の一方を他方に対して相対的にx方向に並進移動(走査)させながら、所定の走査位置でG2像の撮影を行う。本実施形態では、第1の格子21を固設し、走査機構23により第2の格子22をx方向に移動させる。G2像に生じるモアレ縞は、第2の格子22の移動に伴って移動し、移動距離が第2の格子22の格子周期(配列ピッチp)に達すると、元の位置に戻る。
【0060】
図5は、配列ピッチpをM(2以上の整数)個に分割した値(p/M)を走査ピッチとし、この走査ピッチごとに第2の格子22を並進移動させる様子を模式的に示している。走査機構23は、k=0,1,2,・・・,M−1のM個の各走査位置に、第2の格子22を順に移動させる。
【0061】
k=0の位置では、主として、被検体Hにより屈折しなかったX線が第2の格子22を通過する。k=1,2,・・・と順に第2の格子22を移動させていくと、第2の格子22を通過するX線は、被検体Hにより屈折されなかった成分が減少する一方で、被検体Hにより屈折された成分が増加する。特に、k=M/2の位置では、第2の格子22を通過するX線は、ほぼ被検体Hにより屈折された成分のみとなる。k=M/2の位置を超えると、第2の格子22を通過するX線は、被検体Hにより屈折された成分が減少する一方で、被検体Hにより屈折されなかった成分が増加する。
【0062】
k=0,1,2,・・・,M−1の各走査位置で、X線画像検出器20によりG2像の撮影を行うと、メモリ13にM枚の画像データが記憶される。各画素40について得られるM個の画素値が上記強度変調信号を構成する。この縞走査によるM枚の画像データの取得は、被検体Hを配置して行われる本撮影と、被検体Hを配置せずに行われるプレ撮影とのそれぞれにおいて実行され、メモリ13に記憶される。
【0063】
次に、画像処理部14の構成について説明する。図6において、画像処理部14は、位相微分像生成部50、補正データ記憶部51、減算処理部52、位相コントラスト画像生成部53、素抜け領域データ抽出部54、素抜け領域データ記憶部55、走査位置ズレ量算出部56、及び走査位置補正部57により構成されている。矢印に付した“A”は、本撮影時に動作する構成部間の各種データの移動経路を表し、“B”は、プレ撮影時に動作する構成部間の各種データの移動経路を表し、“A/B”は、本撮影時及びプレ撮影時に動作する構成部間の各種データの移動経路を表している。
【0064】
位相微分像生成部50には、本撮影時及びプレ撮影時に、縞走査により取得されメモリ13に記憶されたM枚の画像データが読み出される。位相微分像生成部50は、後述する方法によりM枚の画像データから位相微分像を生成する。本撮影時に生成される第1の位相微分像は、減算処理部52に入力される。一方、プレ撮影時に生成される第2の位相微分像は、補正データとして補正データ記憶部51に入力される。補正データ記憶部51は、入力された第2の位相微分像を記憶し、本撮影が行われた際に、記憶している第2の位相微分像を減算処理部52に入力する。
【0065】
減算処理部52は、本撮影時に入力された第1の位相微分像から第2の位相微分像を減算する補正処理を行い、補正後の位相微分像(以下、補正済み位相微分像という)を位相コントラスト画像生成部53に入力する。位相コントラスト画像生成部53は、補正済み位相微分像をx方向に沿って積分処理を行うことにより、位相コントラスト画像を生成し、画像記録部15に入力する。
【0066】
素抜け領域データ抽出部54は、本撮影時及びプレ撮影時に、メモリ13に記憶されたM枚の各画像データから、素抜け領域20bに対応するデータ(以下、素抜け領域データという)を抽出する。本撮影時に抽出される第1の素抜け領域データは、走査位置ズレ量算出部56に入力される。一方、プレ撮影時に抽出される第2の素抜け領域データは、素抜け領域データ記憶部55に入力される。素抜け領域データ記憶部55は、入力された第2の素抜け領域データを記憶し、本撮影が行われた際に、記憶している第2の素抜け領域データを走査位置ズレ量算出部56に入力する。
【0067】
走査位置ズレ量算出部56は、詳しくは後述するが、入力された第1及び第2の素抜け領域データに基づき、本撮影時のプレ撮影時に対する走査位置kのズレ量αを統計的に算出し、算出したズレ量αを走査位置補正部57に入力する。走査位置補正部57は、本撮影時の走査位置kにズレ量αを付加する補正を行い、補正後の走査位置k+αを位相微分像生成部50に供給する。
【0068】
位相微分像生成部50は、プレ撮影時には、配列ピッチpをM分割した等間隔の走査位置kに基づいて強度変調信号の位相ズレ量ψを算出することにより第2の位相微分像の生成を行なうが、本撮影時には、非等間隔の走査位置k+αを用いて強度変調信号の位相ズレ量ψを算出することにより第1の位相微分像を生成する。
【0069】
以下に、走査位置ズレ量算出部56によるズレ量αの算出方法を説明する。図7は、本撮影時及びプレ撮影時に得られる第1及び第2の素抜け領域データに基づく、ある1つの画素40における強度変調信号を例示している。同図は、M=10の場合であり、各強度変調信号は、走査位置kが等間隔であると仮定して画素値をプロットしたものである。同図における本撮影時とプレ撮影時との強度変調信号のズレは、主として、本撮影とプレ撮影との間で生じる走査位置kのズレに起因している。
【0070】
走査位置ズレ量算出部56は、プレ撮影時の強度変調信号を基準とし、本撮影時の各画素値のズレ量を算出することにより、走査位置kのズレ量αを算出する。具体的には、図8に示すように、まず、プレ撮影で得られた第2の素抜け領域データの各画素40におけるM個の画素値に基づき、隣接する走査位置間を線形補間することにより、連続した強度変調信号を生成する。次いで、本撮影で得られた第1の素抜け領域データの各画素40におけるM個の画素値について、線形補間されたプレ撮影時の強度変調信号との各走査位置kのズレ量αを算出する。なお、上記補間は、線形補間に限られず、曲線による補間であってもよい。
【0071】
走査位置ズレ量算出部56により算出されるズレ量αは、−1から1の範囲であることが望ましいが、0≦k≦M−1の範囲外にはプレ撮影時の強度変調信号が存在しないため、補間(内挿)のみでは、ズレ量αまたはαM−1が−1から1の範囲外となってしまう。図7に示した例では、ズレ量αが−1から1の範囲外となる。このため、走査位置ズレ量算出部56は、プレ撮影時の強度変調信号を、0≦k≦M−1の範囲外に直線または曲線を用いて外挿し、該強度変調信号を1周期以上としたうえでズレ量αを算出する。
【0072】
図9は、図7に示した強度変調信号の場合に、走査位置ズレ量算出部56により算出されるズレ量αを矢印で示している。この例では、プレ撮影時の強度変調信号が本撮影時の強度変調信号よりkの正側にシフトしているため、プレ撮影時の強度変調信号をk≧M−1の範囲へ外挿することにより、ズレ量αが0から1の範囲の値として算出される。なお、上記外挿に代えて、プレ撮影時に1周期分以上の走査を行って、0≦k≦M−1の範囲を超える強度変調信号を実際に取得するようにしてもよい。
【0073】
さらに、走査位置ズレ量算出部56は、素抜け領域20bの全ての画素40について同一のズレ量αが算出されるとは限らないため、素抜け領域20bの全ての画素40についてズレ量αを算出したうえで、統計的に1組のズレ量αを決定する。具体的には、図10に示すように、ズレ量αに対する画素数の度数分布を作成して、度数分布のピーク値(最頻値)を検出し、このピーク値をズレ量αとして決定する。この処理は、各走査位置kについて行う。なお、度数分布のピーク値に限られず、度数分布の平均値や中央値を検出してもよい。
【0074】
次に、補正された走査位置k+αを用いて強度変調信号の位相ズレ量ψ(x)を算出する方法を説明する。まず、走査位置k+αにおける画素値I(x)を、下式(9)のように表す。
【0075】
【数9】

【0076】
ここで、xは、画素40のx座標を表す。Aは入射X線の強度に対応し、Aは強度変調信号の振幅に対応する値である。nは正の整数、iは虚数単位である。また、δは、下式(10)で表される。
【0077】
【数10】

【0078】
上式(9)において、n≧2以上の高次の項を無視すると、画素値I(x)は、正弦波として下式(11)で表される。
【0079】
【数11】

【0080】
上式(11)を満たす画素値I(x)は理論値であり、X線画像検出器20により実際に得られる実測値は誤差を含んでいる。画素値I(x)の実測値から位相ズレ量ψ(x)を算出するには、まず、上式(11)を下式(12)のように変形する。
【0081】
【数12】

【0082】
ここで、パラメータa,a,aは、それぞれ下式(13)〜(15)で表される。
【0083】
【数13】

【数14】

【数15】

【0084】
そして、最小二乗法等を用いて、画素値I(x)の理論値と実測値との差を最小にするパラメータa,a,aの値を求めれば、下式(16)に示すように、位相ズレ量ψ(x)が算出される。
【0085】
【数16】

【0086】
最小二乗法を用いた位相ズレ量の方法は、「応用光学 光計測入門 谷田貝豊彦著 第二版 平成17年2月15日発行 丸善株式会社 (第196頁〜第198頁)」に開示されている。この最小二乗法により導かれる行列式(17)を解くことにより、パラメータa,a,aを決定することができる。
【0087】
【数17】

【0088】
ここで、行列a,A(δ),B(δ)は、それぞれ下式(18)〜(20)で表される。
【0089】
【数18】

【数19】

【数20】

【0090】
以上の説明では、画素40のy座標を考慮していないが、画素40のy座標を考慮して同様の演算を行うことにより、xy方向に関する2次元的な位相ズレの分布ψ(x,y)が得られる。この分布ψ(x,y)が位相微分像である。
【0091】
また、上記説明では、上式(9)からn≧2以上の高次の項を無視して上式(11)に変形しているが、n≧2以上の項は、線形結合として付加される項であるため、n≧2以上の項を含めた場合においても同様に上式(16)〜(20)が成立する。
【0092】
本撮影時には、位相微分像生成部50は、上式(16)〜(20)に基づく演算により第1の位相微分像ψ(x,y)を算出する。プレ撮影時には、位相微分像生成部50は、α=0として同様に上式(16)〜(20)に基づく演算を行い第2の位相微分像ψ(x,y)を算出してもよいが、α=0の場合には、より簡便な式を用いて演算が可能である。
【0093】
以下に、α=0の場合の演算方法を説明する。α=0の場合には、δが等間隔の値を取るため、上式(19)の右辺の行列の非対角成分がすべて0となり、上式(19)は、下式(21)に変形される。
【0094】
【数21】

【0095】
このA(δ)を上式(17)に適用すると、パラメータa,aは、それぞれ下式(22),(23)で表される。
【0096】
【数22】

【数23】

【0097】
したがって、位相微分像生成部50は、プレ撮影時には、上式(16),(22),(23)に基づいて第2の位相微分像ψ(x,y)を算出することができる。なお、第2の位相微分像ψ(x,y)は、プレ撮影と本撮影との間で変動しない要因である第1及び第2の格子21,22の製造誤差や歪みに起因するものである。
【0098】
減算処理部52は、第1の位相微分像ψ(x,y)から第2の位相微分像ψ(x,y)を減算する。プレ撮影と本撮影との間での走査位置のずれの影響は、走査位置の補正により除去されているため、減算処理部52により得られた補正済み位相微分像は、被検体の位相情報のみが反映された位相微分像であり、画質が向上する。
【0099】
次に、以上のように構成されたX線撮影システム10の作用を説明する。まず、被検体Hを配置せずに、操作部17aからプレ撮影指示が入力されると、走査機構23により第2の格子22が所定の走査ピッチ(p/M)ずつ並進移動されながら、各走査位置kにおいて、X線源11によるX線照射及びX線画像検出器20によるG2像の検出が行われる。この結果、M枚の画像データが生成され、メモリ13に格納される。
【0100】
次いで、画像処理部14によりメモリ13に格納されたM枚の画像データが読み出される。画像処理部14内では、位相微分像生成部50により第2の位相微分像ψ(x,y)が算出され、補正データとして補正データ記憶部51に入力される。また、同時に、素抜け領域データ抽出部54により、M枚の各画像データから、素抜け領域20bに対応する第2の素抜け領域データが抽出され、素抜け領域データ記憶部55に格納される。プレ撮影時の動作は以上で終了する。
【0101】
次いで、被検体Hを配置して、操作部17aから本撮影指示が入力されると、同様に第2の格子22が並進移動されながら、各走査位置kにおいて、X線照射及びG2像の検出の検出が行われ、M枚の画像データがメモリ13に格納される。
【0102】
次いで、画像処理部14によりメモリ13に格納されたM枚の画像データが読み出される。画像処理部14内では、まず、素抜け領域データ抽出部54により、M枚の各画像データから、素抜け領域20bに対応する第1の素抜け領域データが抽出され、走査位置ズレ量算出部56に入力される。このとき、素抜け領域データ記憶部55に記憶された第2の素抜け領域データが走査位置ズレ量算出部56に入力される。
【0103】
次いで、走査位置ズレ量算出部56により、本撮影時のプレ撮影時に対する走査位置kのズレ量αが統計的に算出され、走査位置補正部57に入力される。そして、走査位置補正部57により、本撮影時の走査位置kにズレ量αを付加する補正が行われ、補正後の走査位置k+αが位相微分像生成部50に入力される。
【0104】
次いで、位相微分像生成部50により、補正後の走査位置k+αを用いて、M枚の画像データから第1の位相微分像ψ(x,y)が生成され、減算処理部52に入力される。このとき、補正データ記憶部51に記憶された第2の位相微分像ψ(x,y)が減算処理部52に入力され、補正データ記憶部51により第1の位相微分像ψ(x,y)から第2の位相微分像ψ(x,y)を減算する処理が行われる。そして、補正済み位相微分像が位相コントラスト画像生成部53に入力され、x方向に沿って積分処理が施されることにより位相コントラスト画像が生成される。この位相コントラスト画像は、画像記録部15に記録された後、モニタ17bに表示される。
【0105】
なお、上記実施形態では、プレ撮影時の強度変調信号を基準として本撮影時の走査位置のズレ量を算出し、第1の位相微分像を生成する際に、このズレ量を用いて走査位置を補正する構成であるが、これとは逆に、本撮影時の強度変調信号を基準としてプレ撮影時の走査位置のズレ量を算出し、第2の位相微分像を生成する際に、このズレ量に基づいて走査位置を補正するよう構成してもよい。
【0106】
また、上記実施形態では、素抜け領域20bに属する画素40のデータを用いて走査位置のズレ量を統計的に算出しているが、被検体検出領域20aに属する画素40のデータも含めて、全画素40のデータでズレ量を統計的に算出してもよい。画素数が多い場合には、被検体Hによる影響は僅かであり、ズレ量の算出精度は許容範囲内に収まる。
【0107】
また、上記実施形態では、走査機構23により第2の格子を並進移動させる際に、走査位置の初期位置をk=0の位置としているが、初期位置として、k=0,1,2,・・・,M−1のうちのいずれの位置を選択してもよい。
【0108】
また、上記実施形態では、位相コントラスト画像を画像記録部15に記録してモニタに表示しているが、位相コントラスト画像に代えて、若しくは、位相コントラスト画像とともに、補正済み位相微分像を画像記録部15に記録してモニタに表示するように構成してもよい。
【0109】
また、上記実施形態では、強度変調信号の位相ズレ量の2次元分布を位相微分像として定義しているが、位相シフト分布Φ(x,y)の微分値と比例関係を有するものであれば、屈折角φ等、いかなる物理量の2次元分布を位相微分像としてもよい。
【0110】
また、上記実施形態では、被検体HをX線源11と第1の格子21との間に配置しているが、被検体Hを第1の格子21と第2の格子22との間に配置してもよい。
【0111】
また、上記実施形態では、X線源11の後に線源格子(マルチスリット)を設けていないが、X線源11の後に線源格子を設け、焦点を分散化してもよい。
【0112】
また、上記実施形態では、第1及び第2の格子21,22を、そのX線透過部を通過したX線を線形的に投影するように構成しているが、本発明はこの構成に限定されるものではなく、X線透過部でX線を回折することによりタルボ干渉効果が生じる構成(特許第4445397号公報等に記載の構成)としてもよい。ただし、この場合には、第1及び第2の格子の間の距離をタルボ干渉距離に設定する必要がある。また、この場合には、第1の格子を吸収型格子に代えて、位相型格子を用いることが可能であり、第1の格子に代えて用いた位相型格子は、タルボ干渉効果により生じる自己像を、第2の格子の位置に形成する。
【0113】
さらに、本発明は、医療診断用の放射線撮影システムに限定されず、工業用等のその他の放射線撮影システムに適用することが可能である。また、放射線として、X線以外に、ガンマ線等を用いることも可能である。
【符号の説明】
【0114】
10 X線撮影システム
20 X線画像検出器
21 第1の格子
21a X線吸収部
21b X線透過部
22 第2の格子
22a X線吸収部
22b X線透過部
50 位相微分像生成部
52 減算処理部
56 走査位置ズレ量算出
57 走査位置補正部

【特許請求の範囲】
【請求項1】
格子線方向が一致するように対向配置された第1及び第2の格子と、
前記第1の格子に対する第2の格子の相対位置を格子線方向に直交する方向に変更し、複数の走査位置に順に設定する走査手段と、
前記各走査位置において、放射線源から放射された放射線を、前記第1及び第2の格子を介して撮影して画像データを生成する放射線画像検出器と、
前記画像データの画素値の前記走査位置に対する変化を表す強度変調信号の位相ズレ量を求めることにより位相微分像を生成する位相微分像生成手段と、
被検体を配置せずに撮影を行うプレ撮影と、被検体を配置して撮影を行う本撮影との間で、前記強度変調信号の差異を検出することにより、前記プレ撮影と前記本撮影との間での前記各走査位置のズレ量を算出する走査位置ズレ量算出手段と、
前記位相微分像生成手段により位相微分像を生成する際に用いられる前記各走査位置を、前記走査位置ズレ量算出手段により算出されたズレ量を用いて、前記本撮影または前記プレ撮影のいずれか一方の場合に補正する走査位置補正手段と、
前記本撮影時に前記位相微分像生成手段により生成された第1の位相微分像から、前記プレ撮影時に前記位相微分像生成手段により生成された第2の位相微分像を減算する減算手段と、
を備えることを特徴とする放射線撮影システム。
【請求項2】
走査位置ズレ量算出手段は、前記放射線画像検出器の複数の画素に対応する強度変調信号を用いて前記各走査位置のズレ量を統計的に算出することを特徴とする請求項1に記載の放射線撮影システム。
【請求項3】
前記放射線画像検出器は、前記放射線源から放射された放射線が被検体を透過せずに入射する素抜け領域が区分されており、前記複数の画素は、前記素抜け領域に属するものであることを特徴とする請求項2に記載の放射線撮影システム。
【請求項4】
前記走査位置ズレ量算出手段は、前記複数の画素について前記各走査位置のズレ量を算出し、該ズレ量に対する画素数の度数分布のピーク位置、平均値、または中央値を検出することにより、前記各走査位置のズレ量を決定することを特徴とする請求項2または3に記載の放射線撮影システム。
【請求項5】
前記走査位置ズレ量算出手段は、同一画素における前記本撮影時及び前記プレ撮影時の強度変調信号について、一方の強度変調信号について隣接する走査位置間を補間し、この補間された強度変調信号を基準として、他方の強度変調信号とのズレ量を前記各走査位置ごとに算出することを特徴とする請求項1から4いずれか1項に記載の放射線撮影システム。
【請求項6】
前記補間は、線形補間であることを特徴とする請求項5に記載の放射線撮影システム。
【請求項7】
前記走査位置ズレ量算出手段は、前記一方の強度変調信号について外挿を行い、1周期以上の信号とすることを請求項5または6に記載の放射線撮影システム。
【請求項8】
前記位相微分像生成手段は、最小二乗に基づく計算式を用いて強度変調信号の位相ズレ量を算出することを特徴とする請求項1から7いずれか1項に記載の放射線撮影システム。
【請求項9】
前記位相微分像生成手段により生成された位相微分像を、前記相対位置の変更方向に沿って積分処理することにより位相コントラスト画像を生成する位相コントラスト画像生成手段を備えることを特徴とする請求項1から8いずれか1項に記載の放射線撮影システム。
【請求項10】
前記第1の格子は、吸収型格子であり、前記放射線源から入射した放射線を幾何光学的に前記第2の格子に投影することを特徴とする請求項1から9いずれか1項に記載の放射線撮影システム。
【請求項11】
前記第1の格子は、位相型格子であり、タルボ干渉効果により前記放射線源から入射した放射線にタルボ干渉効果を生じさせ、前記第2の格子の位置に自己像を形成することを特徴とする請求項1から9いずれか1項に記載の放射線撮影システム。
【請求項12】
格子線方向が一致するように対向配置された第1及び第2の格子と、前記第1の格子に対する第2の格子の相対位置を格子線方向に直交する方向に変更し、複数の走査位置に順に設定する走査手段と、前記各走査位置において、放射線源から放射された放射線を、前記第1及び第2の格子を介して撮影して画像データを生成する放射線画像検出器と、前記画像データの画素値の前記走査位置に対する変化を表す強度変調信号の位相ズレ量を求めることにより位相微分像を生成する位相微分像生成手段と、を備えた放射線撮影システムに用いられる画像処理方法において、
被検体を配置せずに撮影を行うプレ撮影と、被検体を配置して撮影を行う本撮影との間で、前記強度変調信号の差異を検出することにより、前記プレ撮影と前記本撮影との間での前記各走査位置のズレ量を算出し、
前記位相微分像生成手段により位相微分像を生成する際に用いられる前記各走査位置を、前記ズレ量を用いて、前記本撮影または前記プレ撮影のいずれか一方の場合に補正し、
前記本撮影時に前記位相微分像生成手段により生成された第1の位相微分像から、前記プレ撮影時に前記位相微分像生成手段により生成された第2の位相微分像を減算することを特徴とする画像処理方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2012−125343(P2012−125343A)
【公開日】平成24年7月5日(2012.7.5)
【国際特許分類】
【出願番号】特願2010−278163(P2010−278163)
【出願日】平成22年12月14日(2010.12.14)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】