説明

放射線断層撮影装置

【課題】X線管3および、FPD4を正確に円運動させることにより、歪みのない断層画像が取得できる放射線断層撮影装置を提供する。
【解決手段】本発明に係るX線断層撮影装置1は、V型アーム7を傾斜させる油圧シリンダ27を備えている。しかも、この油圧シリンダ27は、第1基部材25ごとV型アーム7を昇降部材26に対して傾斜させる。そして、V型アーム7の傾斜に係らず、これを支持する第1基部材25とV型アーム7の両端との距離が変化しない。したがって、V型アーム7が撓んでしまうことがない。したがって、X線管3とFPD4とは、設定どおりに移動させることができるようになり、たとえば、X線管3を正円に沿って移動させることができるようになる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、被検体の断層画像が取得できる放射線断層撮影装置に関し、特に放射線を照射する放射線源と、放射線を検出する放射線検出器とが相対的な位置関係を保ったまま、回転移動する放射線断層撮影装置に関する。
【背景技術】
【0002】
被検体に放射線を照射し、被検体を透過した透過放射線をイメージングする放射線断層撮影装置には、様々な構成のものがある。例えば、放射線を照射する放射線源と、放射線を検出する放射線検出器の各々がC型の支持部材(C型アーム)の両先端に支持されている構成のものがある。この様な、C型アームを有する放射線検出器は、放射線投影像を撮影しながら被検体に造影剤を注射することが容易なので、例えば、被検体の血管造影検査などに用いられる。
【0003】
まずは、従来の放射線断層撮影装置51の構成について説明する。従来の放射線断層撮影装置51は、図8に示すように、被検体Mを載置する天板52と、被検体Mに向けて放射線ビームを照射する放射線源53と、放射線を検出するとともに、検出素子が2次元的に配列された放射線検出器54と、放射線源53の管電力を制御する放射線源制御部56と、放射線源53と放射線検出器54とを支持するC型アーム57と、これを駆動するC型アーム駆動機構59と、C型アーム駆動機構59を制御するC型アーム駆動制御部60とを備えている。なお、C型アーム57は、支柱58によって支持されている。
【0004】
また、C型アーム57は、その曲率中心を中心としてC型アーム57を回転移動させることもできる。すなわち、支柱58がC型アーム57を支持する支点と、放射線源53との距離を変更することにより、C型アーム57を図8における矢印Gが示す方向に回転移動させることができる。また、放射線源53を支点から遠ざける方向に回転移動させることもできれば、逆に、放射線源53を支点に近づける方向に回転移動させることもできる。
【0005】
C型アーム57が回転移動されることで、任意の角度から放射線を照射することができるようになり、診断にあわせて被検体Mを透視する方向を変更することができる。また、C型アーム57を回転させながら複数枚の放射線透視画像を撮影すると、これらの放射線透視画像を再構成して、被検体の断層画像が取得できるのである。
【0006】
C型アーム57の回転機構について説明する。図9は、従来構成のC型アームの回転機構について説明する斜視図である。図9に示すように、C型アーム57の曲率中心から見て裏側の側辺には、ベルト60が設けられている。ベルト60は、C型アーム57の形状に沿っており、その両端は、ベルト止61によってC型アーム57における先端の各々に固定されている。このC型アーム57およびベルト60は、支持板64に支持されている。この支持板64は、上述の支柱58に支えられている。
【0007】
支持板64には、ベルト60を駆動する駆動滑車63と、6つのコロ62とが設けられている。駆動滑車63の近傍には2つのコロ62が設けられ、この2つのコロ62と駆動滑車63とは、ベルト60を通過させる間隙を残して互いに隣接している。ベルト60は、駆動滑車63の近傍部において、駆動滑車63とコロ62に挟まれてΩ型となっている。また、C型アーム57の両側面には、別のコロ62が2つずつが設けられている。これらの各コロ62がC型アーム57を支持する。
【0008】
C型アーム57を回転させたい場合、駆動滑車63を駆動させる。すると、ベルト60が駆動滑車63に駆動され、ベルト60の両端はC型アーム57に固定されているのであるから、ベルト60の駆動に倣ってC型アーム57が回転される。この様な構成は、特許文献1に記載されている。
【先行技術文献】
【特許文献】
【0009】
【特許文献1】特開平9−154836号公報
【発明の概要】
【発明が解決しようとする課題】
【0010】
しかしながら、上述のような従来構成によれば、以下のような問題点がある。
すなわち、C型アーム57を回転すると、それに応じてC型アーム57が撓んでしまう。この問題点を図10を用いて説明する。図10(a)は、放射線源53が支持板64に最も近づいたときの図である。この状態から、C型アーム57を回転させていき、図10(b)に示すような放射線源53が支持板64に最も離れた状態とするものとする。放射線源53は、放射線を遮蔽する必要性と、高電圧を扱うなどの理由から重量が大きな重荷物となっている。したがって、放射線源53を支持板64から遠ざけようとして、C型アーム57の放射線源53と支持板64に挟まれた部分を長くしていくと、C型アーム57は、鉛直下向きに撓み、図10(b)の点線に示す位置にまで沈みこんでしまう。
【0011】
図10における場合、C型アーム57を回転させると、理想的には、放射線源53および、放射線検出器54とはアイソセンターQ周りに円運動する。そして、円運動の際に、放射線源53から照射される放射線は、アイソセンターQを中心とする仮想円Rを常に通過する。しかし、上述のよう従来の構成では、放射線源53が支持板64から遠ざかるに従い、C型アーム57は、鉛直下向きに撓み、放射線源53が次第に理想位置よりも下側に位置してしまう。つまり、放射線源53は、C型アーム57の回転に従い、楕円状の軌跡を辿ることになり、アイソセンターQ周りに円運動しない。すると、放射線源53から照射される放射線の一部は、仮想円Rを通過しなくなり、取得される放射線透視画像の歪みに繋がる。特にC型アーム57を回転させながら一連の放射線透視画像を取得し、それを再構成して被検体の断層画像を取得しようとする場合、この様な問題が顕著になる。すなわち、再構成で施される一連の演算は、放射線源53および、放射線検出器54はアイソセンターQ周りに円運動しているものとして行われる。したがって、放射線源53が正確に円運動していないと、取得される断層画像が歪んでしまう。
【0012】
この様な問題点は、従来の構成によれば、C型アーム57の剛性を高めることで解決されている。すると、C型アーム57が重くなってしまい、それを支える支持板64,支柱58も重いものとなってしまう。
【0013】
本発明は、この様な事情に鑑みてなされたものであって、その目的は、放射線源53および、放射線検出器54を正確に円運動させることにより、歪みのない断層画像が取得できる放射線断層撮影装置を提供することにある。
【課題を解決するための手段】
【0014】
本発明は、上述の目的を達成するため、次のような構成をとる。
すなわち、請求項1に係る放射線断層撮影装置は、放射線を照射する放射線源と、放射線を検出する放射線検出手段と、放射線源と放射線検出手段との各々を両端でそれぞれ支持する支持部材と、支持部材を傾斜させる傾斜手段と、これを制御する傾斜制御手段と、放射線検出手段が出力する検出信号を放射線透視画像に変換する画像生成手段と、複数の放射線透視画像を再構成して被検体の断層画像を取得する再構成手段とを備え、支持部材が傾斜されながら、一連の放射線断層画像が取得され、再構成手段は、これらを再構成して断層画像を取得する放射線断層撮影装置において、支持部材を回転支持する第1基部材と、第1基部材を支持する第2基部材とを備え、第1基部材は、放射線源と放射線検出手段とを結ぶ放射線照射軸に直交するとともに第1基部材を通過する回転軸周りに支持部材が回転されるように支持し、傾斜手段は、支持部材および第1基部材を第2基部材に対して傾斜させることを特徴とするものである。
【0015】
[作用・効果]本発明に係る放射線断層撮影装置は、支持部材を傾斜させる傾斜手段を備えている。しかも、この傾斜手段は、第1基部材ごと支持部材を傾斜させる。そして、第1基部材は、支持部材を支持している。つまり、本発明に係る放射線断層撮影装置は、支持部材の傾斜に係らず、支持部材の両端(または、支持部材の基部。基部は、第1基部材に連接する。)と、これを支える第1基部材との距離が変化しない。これに対して、従来構成によれば、支持部材(C型アーム)を支持するのはコロである。回転の際に、コロと放射線源との距離が変化するから支持部材が撓んでしまうのである。本発明によれば、支持部材を支持する第1基部材と放射線源との距離が変化しないので、支持部材が撓んでしまうことがない。したがって、放射線源と放射線検出手段とは、傾斜手段によって設定どおりに移動させることができるようになり、たとえば、放射線源を正円に沿って移動させることができるようになる。
【0016】
また、請求項2に係る発明は、請求項1に記載の放射線断層撮影装置において、第2基部材を鉛直方向に移動自在に支持する第3基部材と、第2基部材を第3基部材に対して鉛直方向に移動させることにより、支持部材を移動させる昇降移動手段と、これを制御する昇降移動制御手段とを備え、昇降移動手段は、支持部材の傾斜に伴って、放射線源と放射線検出手段とを結ぶ線分に属する定点が常に同一の高さとなるように、支持部材を鉛直方向に移動させることを特徴とするものである。
【0017】
[作用・効果]上記構成によれば、支持部材を鉛直方向に移動させる昇降移動手段を備えている。支持部材が傾斜されるにつれ、放射線源と放射線検出手段とを結ぶ線分における定点は、上下動してしまうが、昇降移動手段は、支持部材の傾斜に伴って、放射線源と放射線検出手段とを結ぶ線分における定点が常に同一の高さとなるように、支持部材を鉛直方向に移動させる。したがって、放射線源と放射線検出手段とは、支持部材の傾斜に伴って定点を中心として正円の運動を行うことになる。
【0018】
また、請求項3に係る発明は、請求項1または請求項2に記載の放射線断層撮影装置において、第3基部材を所定方向に進退自在に移動させることにより、支持部材を移動させる水平方向移動手段と、これを制御する水平方向移動手段とをさらに備え、水平方向移動手段は、支持部材の傾斜に伴って、定点が所定方向において常に同一の位置となるように、支持部材を所定方向に移動させることを特徴とするものである。
【0019】
[作用・効果]上記構成によれば支持部材ごと所定方向に進退自在に移動させる水平方向移動手段を備えている。支持部材が傾斜されるにつれ、放射線源と放射線検出手段とを結ぶ線分における定点は、水平方向に移動してしまうが、水平方向移動手段は、支持部材の傾斜に伴って、水平方向移動手段は、支持部材の傾斜に伴って、定点が所定方向において常に同一の位置となるように、支持部材を所定方向に移動させる。したがって、放射線源と放射線検出手段とは、支持部材の傾斜に伴って定点を中心として正円の運動を行うことになる。
【0020】
また、請求項4に記載の発明は、請求項3に記載の放射線断層撮影装置において、定点の所定方向および鉛直方向の位置が保たれた状態で、支持部材が第2基部材に対して傾斜されながら鉛直方向、および所定方向に移動され、それに伴って、放射線源および放射線検出手段は、相対的な位置関係を保ったまま円弧の軌跡を描いて回転移動され、その際、放射線源は、放射線検出手段に向けて放射線を照射することで放射線透視画像が連写され、再構成手段は、これらを再構成して断層画像を取得することを特徴とするものである。
【0021】
[作用・効果]上述の構成によれば、確実に断層画像を取得することができる。すなわち、傾斜手段、昇降移動制御手段、水平方向移動手段とが、協働して定点が所定方向および鉛直方向に同一の位置となるように移動される。この様にすることで、放射線源、および放射線検出手段は、定点を中心に正円運度をしながら放射線透視画像を連写する。この様にすることで、確実に断層撮影を行うことができるのである。
【発明の効果】
【0022】
本発明に係る放射線断層撮影装置は、支持部材を傾斜させる傾斜手段を備えている。しかも、この傾斜手段は、支持部材を第1基部材とともに傾斜させることにより支持部材を回転させる。そして、第1基部材は、支持部材を支持している。つまり、本発明に係る放射線断層撮影装置は、支持部材の傾斜に係らず、支持部材の両端とこれを支える第1基部材の距離が変化しない。したがって、本発明によれば、支持部材が撓んでしまうことがない。また、本発明の構成によれば、支持部材を鉛直方向に移動させる昇降移動手段を備えることもできるし、支持部材ごと所定方向に進退自在に移動させる水平方向移動手段を備えることもできる。したがって、放射線源と放射線検出手段とは、支持部材の傾斜に伴って定点を中心として正円の運動を行うことになり、再構成部で再構成される断層画像は、ゆがみがなく、診断に好適なものとなっている。
【実施例1】
【0023】
以下、本発明に係る放射線断層撮影装置の実施例について図面を参照しながら説明する。なお、実施例1におけるX線は、本発明に係る放射線の一例である。
【0024】
まず、実施例1に係るX線断層撮影装置1に構成について説明する。図1は、実施例1に係る放射線断層撮影装置の構成を説明する機能ブロック図である。図1に示すように、実施例1に係るX線断層撮影装置1には、被検体Mを載置する被検体Mの体軸方向に沿って進退自在の天板2と、天板2の下側に設けられたX線ビームを照射するX線管3と、天板2の上側に設けられるとともに被検体Mを透過したX線を検出するフラット・パネル・ディテクタ(FPD)4とを備えている。また、実施例1に係るX線断層撮影装置1は、X線管3の管電圧、管電流、X線ビームのパルス幅を制御するX線管制御部6を有している。なお、X線管3、およびFPD4の各々は、放射線源、および放射線検出手段の各々に相当する。
【0025】
X線管3とFPD4とは、V型アーム7によって一括的に支持されている。この両端がともに方向Aに突き出した弧状となっているV型アーム7は、2つの先端を有するが、その一端側にX線管3が、他端側にFPD4が設けられている。このV型アーム7は、天板2と干渉することがないように、天板2を避けるように屈曲した構成となっている。そして、このV型アーム7は、検査室の床面に配置された支柱8に支持される構成となっている。なお、V型アーム7は、本発明の支持部材に相当する。
【0026】
また、V型アーム7は、回転が可能となっている。すなわち、X線断層撮影装置1には、V型アーム回転移動機構11と、これを制御するV型アーム回転移動制御部12とが設けられており、V型アーム7は、それが有する2つの先端の突き出た方向Aと平行な(被検体Mの体軸方向に平行な)中心軸Q周りに、回転移動自在となっている。つまり、図1においては、矢印Fが示すように、支柱8がV型アーム7を支持する支点を回転移動の中心として、回転軸P周りであるとともに時計回りに1回転させることもできれば、逆に、回転軸P周りであるとともに反時計回りに1回転させることもできる(図2参照)。この回転の様子は図2に示されている。第1基部材25と、基部7aと、V型アーム7とはこの順に回転軸Pに沿って連接されている。
【0027】
回転軸Pについて説明する。回転軸Pは、図3の両矢印が示すX線管3とFPD4とを結ぶX線照射軸(本発明の放射線照射軸)に直交するとともに、第1基部材25,および基部7aを通過する軸のことである。第1基部材25は、回転軸P周りにV型アーム7が回転するように支持する。V型アーム7は、第1基部材25に対し、基部7aごと回転する。
【0028】
V型アーム7には、基部7aが設けられており、この基部7aから1本の腕が回転軸Pに平行な方向A,かつ上方向に向けて(上斜め方向に向けて)第1基部材25から遠ざかるように突き出ている。また、もう1本の腕が基部7aから下方向、かつ方向Aに向けて(下斜め方向に向けて)第1基部材25から遠ざかるように突き出ている。これらの基部7aと2本の腕がV型アーム7を構成する。V型アーム7は、この基部7aを中心としてアイソセンターQ周りに回転するのである。したがって、中心軸Qは、基部7aの中心を通過する。
【0029】
V型アーム7の基部7aは、第1基部材25に支持されている。つまりV型アーム回転移動機構11は、この基部7aに付設されている。この様子を、図3に示す。この第1基部材25は、初期状態においては傾斜しておらず、このとき、V型アーム7に設けられたX線管3は、FPD4の鉛直下向きに位置している。さらに、この基部7aは、第1基部材25によって回転自在に支持される。すなわち、第1基部材25の一端は、昇降部材26と回転自在に支持され、第1基部材25の他端は、V型アーム7の基部7aを回転自在に支持する。ただし、第1基部材25は、昇降部材26に対し、V型アーム7の幅方向Sに沿った軸(X線管3とFPD4とを結ぶX線照射軸、および回転軸Pのどちらにも直交する軸に平行な軸)を中心に回転し、V型アーム7の基部7aは、第1基部材25に対し、V型アーム7の突き出した方向Aに沿った軸を中心に回転する(図2参照)。つまり、V型アーム7の第1基部材25に対する回転運動の運動方向と、第1基部材25の昇降部材26との回転運動の方向とは、互いに異なっている。つまり、V型アーム7および第1基部材25は、昇降部材26に対して傾斜され、その際、V型アーム7の基部7aと第1基部材25との距離が保たれる。
【0030】
なお、第1基部材25は、図4に示すように、昇降部材26に対して傾斜するようになっており、第1基部材25の他端部がV型アーム7側に突出するように傾斜させることもできれば、この反対方向に突出するように傾斜させることもできる。この様な第1基部材25の昇降部材26に対する傾斜角度の変更は、両者の介する位置に設けられた油圧シリンダ27が伸縮することで行われる。つまり、V型アーム7は、第1基部材25に追従して傾斜が可能となっている。これを言い換えれば、V型アーム7は、第1基部材25とともに傾斜される。すなわち、図4の矢印のように、V型アーム7の一端を方向Aに突き出させるとともに、V型アーム7の他端を方向Aから後退させることができる。
【0031】
昇降部材26は、支柱8によって鉛直方向に移動自在に支持され、昇降部材26は支柱8に対して鉛直方向に移動可能である。昇降部材26が支柱8に対して移動することにより、V型アーム7が昇降する様子は、図5に示されている。また、支柱8は、検査室の床面Rを摺動移動することができる。具体的には、V型アーム7の突き出す方向Aに沿って進退自在となっている。この様子は、図6に示されている。
【0032】
以上のような、第1基部材25,昇降部材26,および支柱8の運動は、これらを担当する各機構、各制御手段が協働することで行われる。支柱8の床面Rに対する摺動運動は、支柱8を摺動させる支柱摺動機構28と、これを制御する支柱摺動制御部29とによって実現される。また、昇降部材26の支柱に対する昇降移動は、昇降駆動機構36,およびこれを制御する昇降駆動制御部37によって実現される。支柱摺動機構28,および昇降駆動機構36の具体的構成としては、例えば、ラックとピニオンであるが、本実施例は、これに限られるものではない。なお、第1基部材25の昇降部材26に対する傾斜角度の変更は、油圧シリンダ27によるものであることは、既に説明済みである。この油圧シリンダ27は、油圧シリンダ制御部38によって制御される。
【0033】
なお、油圧シリンダ27は、本発明の傾斜手段に相当し、支柱摺動機構28は、本発明の水平方向移動手段に相当する。また、支柱摺動制御部29は、本発明の水平方向移動制御手段に相当し、昇降移動機構36は、本発明の昇降移動手段に相当する。そして、昇降移動制御部37は、本発明の昇降移動制御手段に相当し、油圧シリンダ制御手段38は、本発明の傾斜制御手段に相当する。なお、昇降部材26は、本発明の第2基部材に相当し、支柱8は、本発明の第3期部材に相当する。
【0034】
また、X線断層撮影装置1は、FPD4から出力された信号をX線透視画像に変換する画像処理部15と、X線透視画像を再構成して断層画像を取得する再構成部16とを備えている。この再構成部16は、本発明の断層画像取得手段に相当する。また、X線断層撮影装置1は、操作者は操作卓22を通じてV型アーム7の位置・姿勢を変更させることができる。
【0035】
X線グリッド5は、FPD4の有するX線検出面を覆うように設けられている。このX線グリッド5には、被検体の内部で生じた散乱X線を吸収する吸収箔が配列されている。このX線グリッド5を設けることによって、コントラストの高い断層画像の取得が可能となる。なお、X線管3には、X線管3から照射されるX線をコリメートするコリメータ9が付設されている。X線管3から出力されるX線は、このコリメータ9によってコーン状のX線ビームとなって被検体Mに向けて放射される。このコリメータ9の開度は、コリメータ制御部10により制御される。
【0036】
また、X線断層撮影装置1は、図1に示すように、各制御部6,10,12,29,36,37,38を統括的に制御する主制御部24をも備えている。この主制御部24は、CPUによって構成され、各種のプログラムを実行することにより各制御部6,10,12,29,36,37,38を実現している。また、上述の各制御は、それらを担当する制御装置に分割されて実行されてもよい。この他に、実施例1に係るX線断層撮影装置1は、被検体MのX線透視画像を表示する表示部23を備えている。なお、V型アーム7の傾斜角度と、昇降距離と、水平摺動距離とを関連付けた傾斜角度関連情報記憶部13がX線断層撮影装置1には備えられているが、これを設けた意義については、後述のものとする。
【0037】
つぎに、この様なX線断層撮影装置1の動作について説明する。実施例1に係るX線断層撮影装置1で被検体の断層画像を取得するには、被検体Mを天板2に載置する被検体載置ステップS1と、V型アーム7を傾斜、昇降、水平移動させながら被検体MのX線透視画像を次々と取得するV型アーム移動ステップS2と、取得された一連のX線透視画像を再構成して被検体Mの断層画像を取得する再構成ステップS3との各ステップを経る。これらの各ステップの詳細について図面を参照しながら順を追って説明する。
【0038】
<被検体載置ステップS1,V型アーム移動ステップS2>
まず、被検体Mが天板2に載置される(被検体載置ステップS1)。この時点で、術者は、操作卓22を通じて、X線断層撮影装置1に対して、被検体Mの断層画像を取得するように指示を行ったものとする。すると、V型アーム7に支持されたX線管3,およびFPD4とが相対的な位置関係を保ったまま被検体Mの体軸周りに円運動される。その最中にX線管3は、FPD4に向けてX線ビームを照射し、FPD4には、被検体Mの透視画像が写りこむ。この様なX線管3,およびFPD4は、V型アーム7が回転されることによって実現される。
【0039】
図3に示すQは、X線管3,およびFPD4が回転するときの中心であるアイソセンターである。実施例1に係るX線断層撮影装置1においては、このアイソセンターQ周りに正円の軌跡を描きながらX線管3,およびFPD4とが回転されることになる。
【0040】
このアイソセンターQについて説明する。アイソセンターQは、実施例1においては、X線管3とFPD4とを結ぶ線分の中点である。X線管3は、FPD4に向けてコーン状のX線ビームを照射する。その放射線ビームの中心軸は、平面となっているFPD4の中心点を通過するのである。アイソセンターQの基準となる線分とは、この放射線ビームの中心軸と一致する。
【0041】
V型アーム移動ステップS2においては、X線管3からX線が照射される前に、V型アーム7は、傾斜、昇降、および水平に摺動され、X線透視画像の撮影時における初期状態へと移動される。このときの状態を図7に示す。つまり、V型アーム7の傾斜角度をX線管3が方向Aに最も突き出した初期角度とするのである。この動作について、傾斜角度関連情報記憶部13で記憶された関連テーブルが利用される。主制御部24は、関連テーブルを傾斜角度関連情報記憶部13から読み出して、初期角度に対応したV型アーム7のあるべき高さと、方向Aにおける位置とを取得する。各制御部29,37,38は、これを基に、V型アーム7を傾斜させつつ、所定の高さ、および、方向Aにおける所定位置とする。
【0042】
このときのV型アーム7の高さ、および方向Aにおける位置は、アイソセンターQを基準に決定される。すなわち、X線管3がFPD4の鉛直下向きに位置している状態から、V型アーム7を傾斜させるに伴って、アイソセンターQが移動しないようにV型アーム7を昇降、摺動させるのである。具体的には、昇降駆動制御部37は、V型アーム7の傾斜に伴って、アイソセンターQが常に同一の高さとなるように、V型アーム7を鉛直下向きに移動させる。同様に、支柱摺動制御部29は、V型アーム7の傾斜に伴って、アイソセンターQが常に方向Aにおける同一の位置となるように、支柱8を被検体Mから遠ざける方向に移動させる。これらにあわせて油圧シリンダー制御部38はV型アーム7を傾ける。この様にすることで、V型アーム7を初期角度まで傾斜させたとしても、アイソセンターQは、ズレてはいない。いいかえれば、関連テーブルは、アイソセンターQが同一となるような傾斜角度、高さ、方向Aにおける位置とのそれぞれが関連付けられているのである。
【0043】
この状態から、V型アーム7の傾斜角度が変更されながら、X線管3は、FPD4に向けてX線ビームを照射する。このときの傾斜角度の変更においても、傾斜角度関連情報記憶部13で記憶された関連テーブルが利用される。すなわち、油圧シリンダ制御部38、昇降駆動制御部37,および支柱摺動制御部29は、関連テーブルを基に、現在のV型アーム7の傾斜角度に合わせて、それぞれが担当する各機構について、運動の方向と程度を決定する。具体的には、昇降駆動制御部37は、V型アーム7の傾斜に伴って、アイソセンターQが常に同一の高さとなるように、V型アーム7を鉛直上向きに移動させる。同様に、支柱摺動制御部29は、V型アーム7の傾斜に伴って、アイソセンターQが常に方向Aにおける同一の位置となるように、支柱8を被検体Mに近づく方向に移動させる。これらにあわせて油圧シリンダー制御部38はV型アーム7を傾ける。こうすることで、X線管3は、アイソセンターQ周りに回転することになり、その軌跡が正円からズレることがない。この様な事情はFPD4についても同様である。
【0044】
V型アーム7は、回転されていき、図3の状態となる。実施例1に係るX線断層撮影装置1においては、この状態になっても、V型アーム7の回転は続行され、FPD4がX線管3よりも方向Aについて突出することになる。V型アーム7の傾斜は、FPD4が方向Aに最も突き出した最終角度となるまで続けられる。この時点においても、傾斜角度関連情報記憶部13で記憶された関連テーブルが利用される。具体的には、昇降駆動制御部37は、V型アーム7の傾斜に伴って、アイソセンターQが常に同一の高さとなるように、V型アーム7を鉛上向きに移動させる。同様に、支柱摺動制御部29は、V型アーム7の傾斜に伴って、アイソセンターQが常に方向Aにおける同一の位置となるように、支柱8を被検体Mから遠ざける方向に移動させる。FPD4は、X線ビームを検出するたびに、X線の検出信号を画像処理部15に送出し、複数枚のX線透視画像が取得される。
【0045】
<再構成ステップS3>
複数枚のX線透視画像は、再構成部16へと送出される。一連のX線透視画像には、被検体の体内の構造が位置を変えながら写りこんでいる。X線管3およびFPD4の回転角度は予め分かっているので、再構成部16は、一連のX線透視画像を基に被検体Mの断層画像を組み立てることができる。具体的な手法としては、例えば、バックプロジェクション法が使用される。表示部23に再構成された断層画像が表示されて、実施例1に係る断層画像の取得は、終了となる。
【0046】
以上のように、実施例1に係るX線断層撮影装置1は、V型アーム7を傾斜させる油圧シリンダ27を備えている。しかも、この油圧シリンダ27は、第1基部材25ごとV型アーム7を昇降部材26に対して傾斜させる。そして、第1基部材25は、V型アーム7を支持している。しかも、V型アーム7(基部7a)と、第1基部材25との距離は、油圧シリンダ27の動作に係らず変化しない。つまり、本発明に係るX線断層撮影装置1は、V型アーム7の傾斜に係らず、第1基部材25とV型アーム7の両端との距離が変化しない。これに対して、従来構成によれば、C型アーム57を支持するのはコロ62である。回転の際に、コロ62と放射線源53との距離が変化するからV型アーム7が撓んでしまうのである。X線断層撮影装置1によれば、V型アーム7を支持する第1基部材25とX線管3との距離が変化しないので、V型アーム7が撓んでしまうことがない。したがって、X線管3とFPD4とは、設定どおりに移動させることができるようになり、たとえば、X線管3を正円に沿って移動させることができるようになる。
【0047】
また、実施例1に係るX線断層撮影装置1によれば、V型アーム7を鉛直方向に移動させる昇降駆動機構36を備えている。V型アーム7が傾斜されるにつれ、X線管3とFPD4とを結ぶ線分における中点(アイソセンターQ)は、上下動してしまうが、昇降移動機構36は、V型アーム7の傾斜に伴って、X線管3とFPD4とを結ぶ線分における中点が常に同一の高さとなるように、V型アーム7を鉛直方向に移動させる。したがって、X線管3とFPD4とは、傾斜に伴って中点を中心として正円の運動を行うことになる。
【0048】
実施例1に係るX線断層撮影装置1によれば、V型アーム7ごと所定方向に進退自在に移動させる支柱摺動機構28を備えている。V型アーム7が傾斜されるにつれ、X線管3とFPD4とを結ぶ線分における中点は、水平方向に移動してしまうが、支柱摺動機構28は、V型アーム7の傾斜に伴って、中点が所定方向において常に同一の位置となるように、V型アーム7を所定方向に移動させる。したがって、X線管3とFPD4とは、傾斜に伴って中点を中心として正円の運動を行うことになる。
【0049】
また、X線断層撮影装置1の構造変更に自由度が生じる。すなわち、従来構成によれば、X線管3とFPD4を円運動させるために、これらを指示するアームは円弧状のC型でなければならない。しかし、本実施例におけるX線断層撮影装置1によれば、V型アーム7の形状に従来例のような厳しい制約はない。すなわち、X線管3とV型アーム7の基部7aとの距離Nを自由なものとし、X線管3とFPD4をより被検体Mに対して従来の構成よりも方向Aに突き出させることができる。こうすれば、図8のように天板2の長手方向が方向Aに沿っている場合、X線管3が被検体Mに対し移動できる範囲が大きくなり、X線断層撮影装置1における被検体Mの透視が可能な部分は、より広いものとなる。
【0050】
本発明は、上記構成に限られるものでなく、下記のように変形実施することができる。
【0051】
(1)上述した実施例において、V型アーム7を支持する支柱8は、検査室の床面Rに配置されていたが、本発明は、これに限らない。支柱8を検査室の天井に配置し、支柱8にV型アーム7を懸垂支持させる構成としてもよい。
【0052】
(2)上述した実施例において、放射線検出手段の具体例としてFPDを挙げて説明したが、本発明は、これに限らない。放射線検出手段として、放射線を可視光線に変換して表示するイメージインテンシファイアで構成してもよい。
【0053】
(3)上述した実施例において、X線断層撮影装置1には、単一のV型アーム7が設けられていたが、本発明は、これに限らない。V型アーム7を2つ設けたバイプレーンシステムに適応されてもよい。
【0054】
(4)上述した各実施例は、医用の装置であったが、本発明は、工業用や、原子力用の装置に適用することもできる。
【0055】
(5)上述した各実施例のいうX線は、本発明における放射線の一例である。したがって、本発明は、X線以外の放射線にも適応できる。
【0056】
(6)また上述のアイソセンターQは、X線管3とFPD4とを結ぶ線分の中点となっていたが、X線管3とFPD4とを結ぶ線分に属する定点であれば、断層画像を取得することができる。
【図面の簡単な説明】
【0057】
【図1】実施例1に係る放射線断層撮影装置の構成を説明する機能ブロック図である。
【図2】実施例1に係るV型アームの移動を説明する斜視図である。
【図3】実施例1に係るV型アームの移動を説明する斜視図である。
【図4】実施例1に係るV型アームの移動を説明する斜視図である。
【図5】実施例1に係るV型アームの移動を説明する斜視図である。
【図6】実施例1に係るV型アームの移動を説明する斜視図である。
【図7】実施例1に係るV型アームの移動を説明する斜視図である。
【図8】従来構成における放射線断層撮影装置の構成を説明する機能ブロック図である。
【図9】従来構成におけるC型アームの構成を説明する斜視図である。
【図10】従来構成におけるC型アームの構成を説明する模式図である。
【符号の説明】
【0058】
P 回転軸
Q アイソセンター(定点)
3 X線管(放射線源)
4 FPD(放射線検出手段)
7 V型アーム(支持部材)
8 支柱(第3基部材)
15 画像処理部(画像形成手段)
16 再構成部(再構成手段)
25 第1基部材
26 昇降部材(第2基部材)
27 油圧シリンダ(傾斜手段)
28 支柱摺動機構(水平方向移動手段)
29 支柱摺動制御部(水平方向移動制御手段)
36 昇降移動機構(昇降移動手段)
37 昇降移動制御部(昇降移動制御手段)
38 油圧シリンダ制御手段(傾斜制御手段)

【特許請求の範囲】
【請求項1】
放射線を照射する放射線源と、前記放射線を検出する放射線検出手段と、前記放射線源と前記放射線検出手段との各々を前記両端でそれぞれ支持する支持部材と、前記支持部材を傾斜させる傾斜手段と、これを制御する傾斜制御手段と、前記放射線検出手段が出力する検出信号を放射線透視画像に変換する画像生成手段と、複数の前記放射線透視画像を再構成して被検体の断層画像を取得する再構成手段とを備え、前記支持部材が傾斜されながら、一連の放射線断層画像が取得され、再構成手段は、これらを再構成して前記断層画像を取得する放射線断層撮影装置において、
前記支持部材を回転支持する第1基部材と、
前記第1基部材を支持する第2基部材とを備え、
前記第1基部材は、前記放射線源と前記放射線検出手段とを結ぶ放射線照射軸に直交するとともに前記第1基部材を通過する回転軸周りに前記支持部材が回転されるように支持し、
前記傾斜手段は、前記支持部材および前記第1基部材を第2基部材に対して傾斜させることを特徴とする放射線断層撮影装置。
【請求項2】
請求項1に記載の放射線断層撮影装置において、
前記第2基部材を鉛直方向に移動自在に支持する第3基部材と、
前記第2基部材を前記第3基部材に対して鉛直方向に移動させることにより、前記支持部材を移動させる昇降移動手段と、
これを制御する昇降移動制御手段とを備え、
前記昇降移動手段は、前記支持部材の傾斜に伴って、前記放射線源と前記放射線検出手段とを結ぶ線分に属する定点が常に同一の高さとなるように、前記支持部材を鉛直方向に移動させることを特徴とする放射線断層撮影装置。
【請求項3】
請求項1または請求項2に記載の放射線断層撮影装置において、
前記第3基部材を前記所定方向に進退自在に移動させることにより、前記支持部材を移動させる水平方向移動手段と、
これを制御する水平方向移動手段とをさらに備え、
前記水平方向移動手段は、前記支持部材の傾斜に伴って、前記定点が前記所定方向において常に同一の位置となるように、前記支持部材を前記所定方向に移動させることを特徴とする放射線断層撮影装置。
【請求項4】
請求項3に記載の放射線断層撮影装置において、
前記定点の前記所定方向および鉛直方向の位置が保たれた状態で、前記支持部材が前記第2基部材に対して傾斜されながら鉛直方向、および前記所定方向に移動され、
それに伴って、前記放射線源および前記放射線検出手段は、相対的な位置関係を保ったまま円弧の軌跡を描いて回転移動され、
その際、前記放射線源は、前記放射線検出手段に向けて放射線を照射することで放射線透視画像が連写され、再構成手段は、これらを再構成して前記断層画像を取得することを特徴とする放射線断層撮影装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate