説明

樹脂組成物

【課題】従来以上に優れた紫外線遮蔽効果を有する紫外線遮蔽剤、これを含有する化粧料、及び、優れた紫外線遮蔽効果を有する微細針状酸化亜鉛を提供する。
【解決手段】平均長径が500nm以下、平均短径が100nm以下であり、平均長径/平均短径で定義されるアスペクト比が4以上で、かつBET法による比表面積が20m/g以上である微細針状酸化亜鉛からなる紫外線遮蔽剤。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、樹脂組成物に関する。
【背景技術】
【0002】
酸化亜鉛は、紫外線遮蔽能を有することから、塗料、プラスチック成型品等の分野において紫外線遮蔽剤として使用できることが知られている。更に、酸化亜鉛の粒子径を微小なものとすると、透明性も良好なものとすることができるので、微粒子酸化亜鉛は透明性良好な紫外線遮蔽剤として使用することができる。このような紫外線遮蔽剤は、樹脂に添加した場合も透明性を損なうことがなく、耐久性においても優れることから、例えば、ガラスへの紫外線カット膜の形成、自動車や、建築物の外壁の塗料の紫外線劣化防止用トップコート等の分野において使用されている。このような紫外線遮蔽性能を有する樹脂組成物は、有機顔料などの紫外線により劣化を引き起こす成分の保護などにも有用である。すなわち、意匠性を損なわずに、紫外線遮蔽効果を付与し、有機顔料などの劣化による外観の変化を防止することができる。このような用途における酸化亜鉛粒子は、近年の各種材料の性能の高度化に伴って、紫外線防御性能の向上が要求されている。
【0003】
特許文献1,2において、微細針状の形状を有する酸化亜鉛が開示されている。しかし、特許文献1、2においては、微細針状酸化亜鉛を導電性材料基材や放熱材料、充填剤等に使用することが記載されているのみであり、紫外線遮蔽性能に関する記載は存在していない。
【0004】
引用文献3には、樹脂製品に配合する酸化亜鉛において、表面にケイ酸亜鉛からなる被覆層を形成することによって、酸化亜鉛の表面活性を抑制する方法が記載されている。当該文献においては、一般的な酸化亜鉛についての表面処理が記載されているのみである。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2008−94695号公報
【特許文献2】特開2008−94696号公報
【特許文献3】特開2001−58821号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、上記に鑑み、従来以上に優れた紫外線遮蔽効果を有する酸化亜鉛を含有する樹脂組成物を提供することを目的とするものである。
【課題を解決するための手段】
【0007】
本発明は、平均長径が500nm以下、平均短径が100nm以下であり、平均長径/平均短径で定義されるアスペクト比が4以上で、かつBET法による比表面積が20m/g以上である微細針状酸化亜鉛を含有することを特徴とする樹脂組成物である。
【0008】
上記微細針状酸化亜鉛は、ケイ酸亜鉛(Zn2SiO4 )換算で0.5〜50重量%の範囲のケイ酸亜鉛からなる被覆層を有するものであってもよい。
上記微細針状酸化亜鉛は、ケイ酸亜鉛からなる第1の被覆層の上に、酸化亜鉛に対して酸化物換算で0.5〜30重量%の範囲のAl、Ti、Zr、Sn、Sb及び希土類元素よりなる群から選ばれる少なくとも1種の元素の酸化物からなる第2の被覆層を有するものであってもよい。
上記微細針状酸化亜鉛は、酸化亜鉛の重量に対して1〜20重量%の範囲の有機ケイ素化合物、高級脂肪酸、高級脂肪酸エステル、金属石ケン、多価アルコール又はアルカノールアミンで処理されたものであってもよい。
上記樹脂組成物は、塗料組成物であってもよい。
【発明の効果】
【0009】
本発明の樹脂組成物は、従来の酸化亜鉛よりも優れた紫外線遮蔽性能を有する酸化亜鉛を含有し、透明性も維持された微細針状酸化亜鉛を含有するものである。従って、本発明の樹脂組成物は優れた紫外線遮蔽性能を有し、透明性も維持されている。更に、従来の酸化亜鉛を添加した場合に比べて、より硬度が向上し、優れた物理的性質を有する樹脂組成物である。
【発明を実施するための形態】
【0010】
以下、本発明を詳細に説明する。
本発明の樹脂組成物は、平均長径が500nm以下、平均短径が100nm以下であり、平均長径/平均短径で定義されるアスペクト比が4以上であり、かつBET法による比表面積が20m/g以上である微細針状酸化亜鉛を含有するものである。更に、上記微細針状酸化亜鉛は、平均長径が100〜500nmの範囲にあり、平均短径が10〜100nmの範囲にあり、アスペクト比が4〜20の範囲にあり、BET法による比表面積が20〜50m/gの範囲にあることが好ましい
【0011】
特に、本発明に更に好ましい微細針状酸化亜鉛は、平均長径が100〜250nmの範囲にあり、平均短径が10〜50nmの範囲にあり、BET法による比表面積が20〜50m/gの範囲にある。
【0012】
上記特定の形状を有する微細針状酸化亜鉛は、原因は不明であるが、針状形状を有さない通常の微細酸化亜鉛と比較した場合に顕著に優れた紫外線遮蔽性能を有することが明らかになった。当該事実は、当業者にとって予想外の新規な知見である。このような知見に基づいて、上記微細針状酸化亜鉛を含有する樹脂組成物は、紫外線遮蔽性能が重視される各種分野において特に好適に使用することができることを見出し、本発明を完成したものである。
【0013】
更に、上記微細針状酸化亜鉛は、樹脂組成物中に添加した場合、硬度が高く物理的性質が優れた樹脂組成物とすることができる。このような効果が生じる作用は明らかではないが、針状の形状由来による、補強効果および、塗膜界面では、針状形状由来のスパイク効果が発現しているのではないかと推測される。
【0014】
上記微細針状酸化亜鉛は、その製造方法を特に限定されるものではないが、例えば、水酸化物イオン/亜鉛イオンモル比を1.50〜1.85の範囲に保つと共に、得られる混合物のpHを6.0から8.0の範囲、好ましくは、6.5〜7.5の範囲に保ちながら、55℃以下の温度にて、亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加える方法によって得ることができる。
【0015】
上記微細針状酸化亜鉛の製造に用いる上記亜鉛塩としては、水溶性であれば、特に限定されるものではないが、好ましくは、塩化物、硝酸塩、硫酸塩等のような無機酸塩や、また、ギ酸亜鉛や酢酸亜鉛のような有機酸塩が好ましく用いられる。このような亜鉛塩は、通常、0.01〜6.0モル/L濃度の水溶液として用いられる。上記微細針状酸化亜鉛の製造に用いる上記アルカリとしては、通常、アルカリ金属水酸化物が好ましく用いられ、特に、水酸化ナトリウム、水酸化カリウム、水酸化リチウム等が好ましく用いられる。このようなアルカリは、通常、0.01〜18モル/L濃度の水溶液として用いられる。
【0016】
上記微細針状酸化亜鉛は、上記亜鉛塩水溶液とアルカリ水溶液を、水酸化物イオン/亜鉛イオンモル比を1.50〜1.85の範囲に保つと共に、得られる混合物のpHを6.0から8.0の範囲、好ましくは、6.5から7.5の範囲に保ちながら、55℃以下の温度にて、好ましくは、55〜35℃の範囲の温度にて、反応槽に同時に加えることによって得ることができる。詳しくは、例えば、バッチ方式による場合は、予め、反応槽に水を張っておき、この水に同時に加えられる亜鉛塩水溶液とアルカリ水溶液が速やかに混合され、接触するように、十分に攪拌しながら、これに亜鉛塩水溶液とアルカリ水溶液とをそれぞれ所定の割合にて同時に加えることによって、上記微細針状酸化亜鉛を得ることができる。このように亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加えることは、連続方式でも同様に行うことができる。
【0017】
一般に、亜鉛塩とアルカリとの反応は実質的に瞬時に完了するが、ある量の亜鉛塩水溶液とある量のアルカリ水溶液とを上述したようにして反応槽に同時に加えて反応させて、目的とする微細針状酸化亜鉛を工業的に効率よく製造するには、ある程度の時間をかけて、上記亜鉛塩水溶液とアルカリ水溶液のそれぞれ全量を反応槽に加えることが望ましい。しかし、本発明によれば、上記亜鉛塩水溶液とアルカリ水溶液のそれぞれ全量を反応槽に加えるための時間は短くてよく、具体的には、反応に供する亜鉛塩水溶液とアルカリ水溶液のそれぞれの濃度や量にもよるが、例えば、1モル/L程度の濃度の亜鉛塩水溶液1Lと3.6モル/L程度の濃度のアルカリ水溶液0.75Lとを同時中和するために要する時間は、通常、数分程度であり、例えば、1分から2分程度である。
【0018】
上記微細針状酸化亜鉛の製造において、上記亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加える際に、水酸化物イオン/亜鉛イオンモル比が1.50よりも小さいときは、得られる微細針状酸化亜鉛が大きくなり、目的とする平均長径と平均短径と比表面積を有する微細酸化亜鉛を得ることができない。また、得られる微細針状酸化亜鉛のアスペクト比が小さくなる傾向がある。他方、微細針状酸化亜鉛の製造において、上記亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加える際に、水酸化物イオン/亜鉛イオンモル比が1.85よりも大きいときは、針状酸化亜鉛を得ることができない。即ち、得られる酸化亜鉛は、針状性のない粒子である。
【0019】
上記微細針状酸化亜鉛の製造において、上記亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加える際に、得られる混合物のpHが6.0よりも小さいときは、得られる微細針状酸化亜鉛が大きくなる傾向があり、目的とする平均長径と平均短径と比表面積を有する微細酸化亜鉛を得ることができない。しかし、得られる混合物のpHが8.0よりも大きいときは、針状酸化亜鉛を得ることができない。
【0020】
更に、微細針状酸化亜鉛の製造において、上記亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加える際に、反応温度が55℃を超えるときは、得られる微細針状酸化亜鉛が大きくなる傾向があり、目的とする平均長径と平均短径と比表面積を有する微細針状酸化亜鉛を得ることができない。
【0021】
上述した微細針状亜鉛の製造において、亜鉛塩水溶液とアルカリ水溶液を反応槽に同時に加えて反応させる際に、これを超音波照射下に行うことによって、特に、微細な針状酸化亜鉛を得ることができる。超音波照射に用いる超音波の周波数は、特に限定されるものではなく、15kHzから1MHzの範囲にわたってよいが、通常、20〜300kHzの範囲が適当であり、なかでも、20〜100kHzの範囲が適当である。
【0022】
上記微細針状酸化亜鉛は、更に、ケイ酸亜鉛(Zn2SiO4 )換算で被覆前の酸化亜鉛に対して0.5〜50重量%の範囲のケイ酸亜鉛からなる被覆層を有することが好ましい。粒子径が小さい超微粒子酸化亜鉛は、樹脂に対する添加剤とした場合に、例えば、ポリエチレンテレフタレートやポリカーボネート等の熱可塑性樹脂に配合すれば、超微粒子酸化亜鉛がこれらの樹脂の分解を促進して、成形性を著しく損なうという問題が生じるおそれがある。また、超微粒子酸化亜鉛を塗料に配合した場合には、酸化亜鉛と樹脂バインダーが反応して、塗料が経時的に増粘し、ゲル化するおそれがある。上述したケイ酸亜鉛による被覆を行うことによって、これらの問題を解消することができる点で好ましい。また、上述したケイ酸亜鉛による被覆を行った微細針状酸化亜鉛は、純水や硫酸への溶解度が著しく低く、光触媒活性も極めて抑制されるために、耐酸性雨が懸念される屋外用途を含む幅広い分野の塗料に用いることができる。
【0023】
上記微細針状酸化亜鉛は、その表面に酸化亜鉛に対してケイ酸亜鉛(Zn2 SiO4 )換算で0.5〜50重量%、より好ましくは、1〜15重量%の範囲でケイ酸亜鉛からなる被覆層を有することが好ましい。上記ケイ酸亜鉛の割合がケイ酸亜鉛(Zn2 SiO4 )換算で0.5重量%よりも少ないときは、酸化亜鉛が本来有する表面活性を十分に抑えることができなくなるおそれがある。他方、50重量%よりも多いときは、酸化亜鉛本来の紫外線遮蔽効果が著しく低下するおそれがある。
【0024】
なお、本発明において、「ケイ酸亜鉛換算にて」というとき、このケイ酸亜鉛は、オルトケイ酸亜鉛(Zn2 SiO4 )を意味するものとする。
【0025】
このような表面活性を抑えた微細針状酸化亜鉛は、微細針状酸化亜鉛の粒子の水性懸濁液に、水溶性ケイ酸塩と水溶性亜鉛塩のそれぞれの水溶液をケイ酸亜鉛(Zn2 SiO4 )を形成する化学量論比で、且つ、酸化亜鉛に対してケイ酸亜鉛(Zn2 SiO4 )換算で0.5〜50重量%の範囲の量を加えた後、水洗、乾燥し、次いで、300〜1200℃の範囲の温度に加熱して、微細針状酸化亜鉛を生成させると共に、その粒子の表面にケイ酸亜鉛からなる被覆層を形成させることによって得ることができる。
【0026】
この方法を更に詳細に説明すれば、上記微細針状酸化亜鉛の水性懸濁液を調製するには、上述した方法によって得られた微細針状酸化亜鉛を、ビーズミルを用いて懸濁させることが好ましい。懸濁液における微細針状酸化亜鉛の濃度は、50〜250g/Lの範囲が好ましい。但し、本発明においては、微細針状酸化亜鉛の水性懸濁液の調製と懸濁液における微細針状酸化亜鉛の濃度は、上記例示に限定されるものではない。
【0027】
次に、このようにして得られた微細針状酸化亜鉛の水性懸濁液に、水溶性ケイ酸塩の水溶液と水溶性亜鉛塩の水溶液をケイ酸亜鉛(Zn2 SiO4 )を形成する化学量論比で、且つ、酸化亜鉛に対してケイ酸亜鉛(Zn2 SiO4 )換算で0.5〜50重量%の範囲の量を加える。この際、必要に応じて、中和剤を加えて、pHを調整してもよい。
【0028】
上記水溶性ケイ酸塩としては、ケイ酸ナトリウム、ケイ酸カリウム等のようなケイ酸アルカリ金属が好ましく用いられ、また、水溶性亜鉛塩としては、硫酸亜鉛、塩化亜鉛等の無機酸塩が好ましく用いられるが、しかし、これらに限定されるものではない。ここに、微細針状酸化亜鉛の懸濁液に水溶性ケイ酸塩の水溶液と水溶性亜鉛塩の水溶液を加えるに際して、いずれを先に加えてもよく、また、両者を同時に加えてもよい。
【0029】
このようにして、得られた懸濁液から微細針状酸化亜鉛を分別し、洗浄し、必要に応じて、乾燥させた後、例えば、空気のような酸化性雰囲気下、300〜1200℃の範囲の温度に加熱、焼成し、この後、ハンマーミル、エッジランナーミル、ジェットミル等、適宜の粉砕機にて乾式粉砕することによって、ケイ酸亜鉛からなる被覆層を有する微細針状酸化亜鉛を得ることができる。
【0030】
このようにして得られた微細針状酸化亜鉛を焼成するに際して、焼成温度が300℃よりも低いときは、微細針状酸化亜鉛上に含水ケイ酸亜鉛が残存するために好ましくなく、他方、1200℃を超えるときは、粒子が成長して極端に大きくなり、高い透明性を有する微細針状酸化亜鉛を得ることができない。好ましくは、焼成温度は、500〜1100℃の範囲であり、最も好ましくは、600〜1000℃の範囲である。
【0031】
上記微細針状酸化亜鉛は、酸化亜鉛表面に鉄が酸化亜鉛に対して鉄換算にて0.1〜20重量%の範囲で固溶されており、その上に上記ケイ酸亜鉛による被覆層が形成されたものであってもよい。
【0032】
この鉄固溶微細針状酸化亜鉛において、酸化亜鉛への鉄の固溶量は、酸化亜鉛に対して鉄換算で0.1〜20重量%、好ましくは、0.5〜15重量%、特に好ましくは、1〜10重量%の範囲である。このように、酸化亜鉛に鉄を固溶させることによって、400nmもの長波長領域の紫外線を有効に遮蔽する酸化亜鉛超微粒子を得ることができ、このような酸化亜鉛超微粒子は、これを樹脂に配合した場合に、樹脂やその他の成分との望ましくない反応を起こさず、活性酸素の生成のおそれがない点で好ましいものである。
【0033】
酸化亜鉛への鉄の固溶量が鉄換算で0.1重量%よりも少ないときは、380nmより長波長のA領域紫外線を遮蔽する効果が不十分となる場合があり、他方、20重量%よりも多いときは、鉄の一部が酸化亜鉛に固溶しないまま、酸化亜鉛と分離して存在することなり、樹脂組成物への配合時に色分かれ等の問題が生じるおそれがある。
【0034】
このような鉄固溶微細針状酸化亜鉛は、本発明に従って、微細針状酸化亜鉛の水性懸濁液に、酸化亜鉛に対して鉄換算で0.1〜20重量%の水溶性鉄塩の水溶液を加えた後、中和剤を加えて、上記微細針状酸化亜鉛の表面に含水酸化鉄層を形成させ、この後、前述したようにして、このような微細針状酸化亜鉛を含む水性懸濁液に、水溶性ケイ酸塩と水溶性亜鉛塩のそれぞれの水溶液をケイ酸亜鉛(Zn2 SiO4 )を形成する化学量論比で、且つ、酸化亜鉛に対してケイ酸亜鉛(Zn2 SiO4)換算で0.5〜50重量%の範囲の量を加えた後、水洗、乾燥し、次いで、300〜1200℃の範囲の温度に加熱して、微細針状酸化亜鉛中に鉄を固溶させると共に、表面にケイ酸亜鉛からなる被覆層を形成させることによって得ることができる。
【0035】
本発明によれば、微細針状酸化亜鉛上に含水酸化鉄を沈着させるためには、例えば、微細針状酸化亜鉛の水性懸濁液に酸化亜鉛に対して鉄換算で0.1〜20重量%の水溶性鉄塩を加えた後、中和剤を加えて、上記懸濁液を中和すればよい。上記水溶性鉄塩としては、例えば、塩化第一鉄、塩化第二鉄、硫酸第一鉄、硫酸第二鉄、硝酸第一鉄、硝酸第二鉄等が好ましく用いられるが、これらに限定されるものではない。また、上記中和剤としては、限定されるものではないが、水酸化ナトリウム、水酸化カリウム、アンモニア水等が好ましく用いられる。
【0036】
上記微細針状酸化亜鉛は、酸化亜鉛表面にコバルトが酸化亜鉛に対して酸化コバルト換算にて酸化亜鉛に対して0.5〜30重量%、好ましくは、1〜25重量%、特に好ましくは、3〜20重量%の範囲で固溶されており、その上に上記ケイ酸亜鉛による被覆層が形成されたものであってもよい。
【0037】
本発明によるコバルト固溶微細針状酸化亜鉛は、380〜420nmの長波長領域の紫外線に対する遮蔽能に優れているのみならず、これを媒体に分散させて、樹脂組成物とした場合、表面のケイ酸亜鉛からなる被覆層によって、コバルト含有微細針状酸化亜鉛が媒体から完全に隔絶されており、従って、例えば、純水への溶解性や他の成分との反応性を著しく抑制することができ、更には、光触媒活性をもほぼ完全に抑制することができる。
【0038】
このようなコバルト固溶微細針状酸化亜鉛も、前述した鉄固溶微細針状酸化亜鉛と同様にして得ることができる。即ち、コバルト固溶微細針状酸化亜鉛は、微細針状酸化亜鉛の水性懸濁液に、酸化亜鉛に対して酸化コバルト(CoO)換算で0.5〜30重量%の水溶性コバルト塩の水溶液を加えた後、中和剤を加えて、上記微細針状酸化亜鉛の表面に含水酸化コバルト層を形成させ、この後、前述したようにして、このような微細針状酸化亜鉛を含む水性懸濁液に、水溶性ケイ酸塩と水溶性亜鉛塩のそれぞれの水溶液をケイ酸亜鉛(Zn2 SiO4 )を形成する化学量論比で、且つ、酸化亜鉛に対してケイ酸亜鉛(Zn2 SiO4 )換算で0.5〜50重量%の範囲の量を加えた後、水洗、乾燥し、次いで、300〜1200℃、好ましくは、500〜1100℃、最も好ましくは、600〜1000℃の範囲の温度に加熱して、微細針状酸化亜鉛中にコバルトを固溶させると共に、表面にケイ酸亜鉛からなる被覆層を形成させることによって得ることができる。
【0039】
本発明によれば、微細針状酸化亜鉛上に含水酸化コバルトを沈着させるためには、例えば、微細針状酸化亜鉛の水性懸濁液に酸化亜鉛に対して酸化コバルト(CoO)換算で0.5〜30重量%の水溶性コバルト塩を加えた後、中和剤を加えて、上記懸濁液を中和すればよい。上記水溶性コバルト塩としては、例えば、塩化コバルト、硫酸コバルト、硝酸コバルト等が好ましく用いられるが、これらに限定されるものではない。また、上記中和剤としては、限定されるものではないが、水酸化ナトリウム、水酸化カリウム、アンモニア水等が好ましく用いられる。
【0040】
本発明によるコバルト固溶微細針状酸化亜鉛において、コバルト固溶量が酸化亜鉛に対して酸化コバルト(CoO)換算で0.5重量%よりも少ないときは、380〜420nmの長波長領域の紫外線に対する遮蔽効果が殆どなく、他方、30重量%よりも多いときは、可視光の透過率、即ち、透明性が著しく低下するおそれがある。
【0041】
上記微細針状酸化亜鉛は、ケイ酸亜鉛(Zn2 SiO4 )換算で0.5〜50重量%の範囲のケイ酸亜鉛からなる第1の被覆層の上に、第1の被覆層形成時と同様に被覆前の酸化亜鉛に対して酸化物換算で0.5〜30重量%の範囲のAl、Ti、Zr、Sn、Sb及び希土類元素よりなる群から選ばれる少なくとも1種の元素の酸化物からなる第2の被覆層を有するものであってもよい。
【0042】
このような微細針状酸化亜鉛は、微細針状酸化亜鉛の表面にケイ酸亜鉛からなる被覆層を有する微細針状酸化亜鉛を調製した後、次いで、微細針状酸化亜鉛の水性懸濁液にAl、Ti、Zr、Sn、Sb及び希土類元素よりなる群から選ばれる少なくとも1種の元素の水溶性化合物の水溶液を加えた後、酸又はアルカリを中和剤として加えて、上記元素の水溶性化合物を中和し、上記微細針状酸化亜鉛の表面に沈殿させて、上記元素の酸化物からなる第2の被覆層を形成することによって得ることができる。第2の被覆層は、第1の被覆層形成時と同様に被覆前の酸化亜鉛の量に対して、0.5〜30重量%の範囲が好ましく、特に、2〜15重量%の範囲が好ましい。また、希土類元素としては、例えば、イットリウム、ランタン、セリウム、ネオジム等を挙げることができる。
【0043】
上記アルミニウムの水溶性化合物としては、例えば、硝酸アルミニウム、硫酸アルミニウム、アルミン酸ナトリウム等を挙げることができる。チタンの水溶性化合物としては、例えば、四塩化チタンやチタニル硫酸等を挙げることができる。上記ジルコニウムの水溶性化合物としては、例えば、硝酸ジルコニウム、硫酸ジルコニウム等を挙げることができる。上記スズの水溶性化合物としては、例えば、塩化スズを挙げることができる。上記アンチモンの水溶性化合物としては、例えば、塩化アンチモン等を挙げることができる。また、上記希土類元素の水溶性化合物としては、例えば、硝酸セリウム等を挙げることができる。
【0044】
このような第2の被覆層を有する本発明による微細針状酸化亜鉛の調製において、上記中和剤としては、酸又はアルカリが用いられ、酸としては、例えば、硫酸、塩酸等の無機酸や、酢酸、シュウ酸等の有機酸が好ましく用いられ、他方、アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、アンモニア水等が好ましく用いられる。
【0045】
ケイ酸亜鉛からなる第1の被覆層を有する微細針状酸化亜鉛の表面に上記元素の酸化物からなる第2の被覆層を形成するに際して、2種以上の複数の元素の酸化物からなる被覆層を形成する場合、複数の元素の水溶性化合物の水溶液を用いて、一度に複数の元素の酸化物からなる被覆層を形成してもよいが、個々の元素の水溶性化合物の水溶液を用いて、一層ずつ、その酸化物からなる被覆層を順次、形成して、第2の被覆層を多層に形成するのが好ましい。特に、第2の被覆層として、アルミニウム酸化物を含む被覆層を形成する場合には、アルミニウム酸化物からなる被覆層を最後に形成することが望ましい。
【0046】
本発明において使用する上記微細針状酸化亜鉛においては、分散性を高めるために、有機ケイ素化合物、高級脂肪酸、高級脂肪酸エステル、金属石ケン、多価アルコール又はアルカノールアミンから選ばれる表面処理剤で表面処理してもよい。このような表面処理剤は、上記微細針状酸化亜鉛(表面被覆の重量を含む)に対して、通常、1〜20重量%の範囲であり、好ましくは、1〜10重量%の範囲で用いられる。上記表面処理は、上述したケイ酸亜鉛による被覆上や、ケイ酸亜鉛からなる第1の被覆層の上に、Al、Ti、Zr、Sn、Sb及び希土類元素よりなる群から選ばれる少なくとも1種の元素の酸化物からなる第2の被覆層を形成した上に形成するものであってもよいし、これらの被覆を形成していない微細針状酸化亜鉛状に形成するものであってもよい。
【0047】
上記有機ケイ素化合物としては、例えば、メチルハイドロジェンポリシロキサンやジメチルポリシロキサン等のオルガノポリシロキサンや、トリエトキシビニルシランやジフェニルジメトキシシラン等のシランカップリング剤を挙げることができる。
【0048】
上記高級脂肪酸としては、例えば、炭素原子数10〜30の例えばラウリン酸、ステアリン酸、パルミチン酸等の高級脂肪酸等を挙げることができる。
上記高級脂肪酸エステルとしては、例えば、パルミチン酸オクチルのような上記高級脂肪酸のアルキルエステル等を挙げることができる。
上記金属石ケンとしては、例えば、ステアリン酸アルミニウム、ラウリン酸アルミニウム等の上記高級脂肪酸の金属塩等を挙げることができる。金属石ケンを構成する金属種は特に限定されず、例えば、アルミニウム、リチウム、マグネシウム、カルシウム、ストロンチウム、バリウム、亜鉛、スズ等を挙げることができる。
【0049】
上記多価アルコールとしては、例えば、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等を挙げることができる。
上記アルカノールアミンとしては、例えば、ジエタノールアミン、ジプロパノールアミン、トリエタノールアミン、トリプロパノールアミン等を挙げることができる。
【0050】
上記表面処理剤による処理量が酸化亜鉛に対して1重量%よりも少ないときは、本発明による微細針状酸化亜鉛の分散性の改善効果に乏しくなるおそれがあり、他方、20重量%を越えても、分散性が飽和するので、経済的に不利となるおそれがある。
【0051】
上記表面処理剤による処理は、上記微細針状酸化亜鉛に表面処理剤を所定量混合することによって得ることができる。更には、上記微細針状酸化亜鉛を適宜の媒体、例えば、水、アルコール、エーテル等に懸濁させた後、この懸濁液に表面処理剤を加え、攪拌し、分別し、乾燥、粉砕して得ることもでき、また、蒸発乾固し、粉砕して得ることもできる。
【0052】
本発明の樹脂組成物は、上述した微細針状酸化亜鉛を含有するものである。樹脂組成物中の上記微細針状酸化亜鉛の含有量は特に限定されず、例えば、0.1〜90重量%とすることができる。上記範囲内とすることで、良好な紫外線遮蔽性能を有する樹脂組成物とすることができる。
【0053】
上記微細針状酸化亜鉛と組み合わせて使用することができる樹脂としては特に限定されず、熱可塑性樹脂、熱硬化性樹脂、エネルギー線硬化型樹脂等の任意の樹脂を使用することができる。使用することができる樹脂としては、例えば、ポリエチレン,ポリプロピレン等のオレフィン樹脂;ポリスチレン樹脂;ナイロン6,ナイロン66等のポリアミド樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート等のポリエステル樹脂;アクリル樹脂;ポリカーボネート樹脂;有機シリコーン樹脂等を例示することができる。
【0054】
本発明の樹脂組成物は、上記微細針状酸化亜鉛及び樹脂を含有する組成物であれば特に限定されず、例えば、熱可塑性樹脂中に混練等の方法で上記微細針状酸化亜鉛を分散させた樹脂組成物;水、有機溶媒又はこれらの混合物等の液体媒体中に上記微細針状酸化亜鉛及び樹脂の両方を分散又は溶解させた塗料組成物等の形態とすることができる。
【0055】
本発明の樹脂組成物は、上記微細針状酸化亜鉛、樹脂に加えて、必要に応じてその他の添加剤を含有するものであってもよい。添加剤としては、例えば、分散剤、本発明の針状酸化亜鉛以外の紫外線防御剤、着色顔料、体質顔料等を挙げることができる。
【0056】
本発明の樹脂組成物を塗料組成物として使用した場合、基材との密着性の向上が得られる点でも好ましい。塗料組成物において、酸化亜鉛を塗料中に配合することによって密着性が低下する傾向があった。しかし、上記微細針状酸化亜鉛は、塗料中に配合した場合の密着性の低下が少ない、という利点も有する。このような効果が発現する理由は不明であるが、その針状形状によって、スパイク効果が生じるものと推測される。
【0057】
本発明の樹脂組成物は、その用途を特に限定されるものではないが、例えば、紫外線カットガラス用塗料、自動車や、建築物の外壁の塗料の紫外線劣化防止用トップコート等の、紫外線防御性能が特に重要である用途において好適に使用することができる。
【0058】
本発明の樹脂組成物が紫外線カットガラス用塗料である場合は、紫外線カット塗料はガラスの片面あるいは両面に均一に塗布する必要がある。塗布方法に特に制限はないがディピッピング法、スプレー法、流し塗り法等が好しい。塗布膜厚は乾燥後で2〜10μmの範囲が好しい。塗布膜厚が2μm以下では紫外線カット能が劣る場合があり、10μm以上では不経済である場合がある。
【0059】
上記紫外線カットガラス用塗料は、樹脂として有機シリコーン樹脂を含有することが好ましい。
【実施例】
【0060】
以下に実施例をあげて本発明を説明するが、本発明はこれらの実施例によって何ら限定されるものではない。
【0061】
実験に先立って、長径、短径、アスペクト比の測定方法を詳述する。
(長径、短径、アスペクト比の測定方法)
透過型電子顕微鏡写真撮影装置(JEM-100SX 日本電子製 )において、一つの酸化亜鉛サンプルについて、80000倍の倍率で5視野撮影し、画像部分が短辺12cm、長辺16.5cmの写真とした。それぞれの写真1枚に付き、それぞれの短辺及び長辺の中間点から、それぞれ短辺、長辺に対して平行線を引き、さらに、対角線を2本引き、合計4本の直線に重なってる粒子の短径及び長径をノギスを用いて測定した。なお、同一粒子に複数の線が重なっている場合は、重複して測定しないこととした。5枚全てで、100〜150個の粒子を測定し、短径及び長径の測定値の平均値を、その酸化亜鉛サンプルの平均短径及び平均長径とし、その平均長径の値を平均短径の値で割った値をその酸化亜鉛のアスペクト比とした。なお、この倍率では、125nmが1cmで表される写真となり、測定値は、0.01cmまで読み取り、平均の際には、小数点第2桁目を四捨五入した。また、アスペクト比は、有効数字2桁とし、3桁目を四捨五入した。(SSAはmicromeritics製 GEMINI2360にて測定。X線回折装置は、理学製 RAD IICを用いて測定した。)
【0062】
調製例1
(微細針状酸化亜鉛Aの調製)
特許文献1の実施例1に記載の方法で得られた微細針状酸化亜鉛を空気中、500℃で60分間焼成した後、ジェットミル粉砕し、微細針状酸化亜鉛Aを得た。この微細針状酸化亜鉛の平均短径は29.0nm、平均長径は153.1nm、アスペクト比は5.3であった。また、この微細針状酸化亜鉛の窒素吸着法による比表面積(以下、同じ)は40m/gであった。
【0063】
調製例2
(微細針状酸化亜鉛Bの調製)
特許文献1の実施例1に記載の微細針状酸化亜鉛の水性懸濁液(ZnO濃度100g/L)に、撹拌下、60℃において、ケイ酸ナトリウム水溶液(超微粒子酸化亜鉛に対してSiO2 として1.3重量%)と硫酸亜鉛水溶液(超微粒子酸化亜鉛に対してZnOとして3.7重量%)とを加えた。次いで、この懸濁液のpHを水酸化ナトリウム水溶液を用いて7.5とし、30分間熟成した。このような懸濁液を室温まで冷却し、濾過、水洗した後、空気中で120℃で5時間、加熱乾燥した。得られた乾燥物を空気中、500℃で60分間焼成した後、ジェットミル粉砕し微細針状酸化亜鉛Bを得た。この微細針状酸化亜鉛は表面にケイ酸亜鉛(Zn2 SiO4 )換算で酸化亜鉛に対して5重量%のケイ酸亜鉛からなる被覆層を有しており、平均短径は29.8nm、平均長径は153.7nm、アスペクト比は5.2であった。また、この微細針状酸化亜鉛の比表面積は38m/gであった。
【0064】
調製例3
(微細針状酸化亜鉛Cの調製)
特許文献1記載の微細針状酸化亜鉛の水性懸濁液(ZnO濃度100g/L)に、ケイ酸亜鉛からなる被覆層が15重量%となるように調製した以外は、実施例2と同様の操作を行い、微細針状酸化亜鉛Cを得た。この微細針状酸化亜鉛は表面にケイ酸亜鉛(Zn2 SiO4 )換算で酸化亜鉛に対して15重量%のケイ酸亜鉛からなる被覆層を有しており、平均短径は30.2nm、平均長径は154.3nm、アスペクト比は5.1であった。また、この微細針状酸化亜鉛の比表面積は36m2/gであった。
【0065】
調製例4
(微細針状酸化亜鉛Dの調製)
調製例2に記載の方法で得られたケイ酸亜鉛にて表面被覆された微細針状酸化亜鉛の水性懸濁液(ZnO濃度100g/L)をよく攪拌しながら、60℃に昇温し、酸化亜鉛に対してAl23 換算で3重量%のアルミン酸ナトリウム水溶液を加え、10分間熟成した後、懸濁液を硫酸を用いてpH7.0に中和した。30分間熟成し、次いで、このようにして得られた懸濁物を濾過し、水洗した後、120℃で5時間、加熱乾燥した。得られた乾燥物を空気中、500℃で60分間焼成した後、ジェットミル粉砕し、微細針状酸化亜鉛Dを得た。この微細針状酸化亜鉛は表面にケイ酸亜鉛(Zn2 SiO4 )換算で酸化亜鉛に対して5重量%のケイ酸亜鉛、その外側に酸化亜鉛に対して酸化アルミニウム(Al23)換算で3重量%のアルミニウム酸化物からなる第2の被覆層を有しており、平均短径は30.5nm、平均長径は154.2nm、アスペクト比は5.1であった。また、この微細針状酸化亜鉛の比表面積は35m/gであった。
【0066】
調製例5
(微細針状酸化亜鉛Eの調製)
特許文献1に記載の方法で得られた微細針状酸化亜鉛の水性懸濁液(ZnO濃度100g/L)に、撹拌下、60℃において、メチルハイドロジェンポリシロキサンの水性エマルジョンを、メチルハイドロジェンポリシロキサンとして微細針状酸化亜鉛の5重量%となるよう加え、1時間攪拌後、室温まで冷却し、濾過、水洗した後、空気中にて150℃で5時間、加熱乾燥した後、ジェットミル粉砕し微細針状酸化亜鉛Eを得た。この微細針状酸化亜鉛は平均短径は29.5nm、平均長径は153.9nm、アスペクト比は5.2であった。また、この微細針状酸化亜鉛の比表面積は39m/gであった。
【0067】
調製例6
(微細針状酸化亜鉛Fの調製)
調製例2に記載の方法で得られたケイ酸亜鉛にて表面被覆された微細針状酸化亜鉛の水性懸濁液(ZnO濃度100g/L)を用いた以外は、実施例5と同様な操作を行い、微細針状酸化亜鉛Fを得た。この微細針状酸化亜鉛は平均短径は30.2nm、平均長径は154.2nm、アスペクト比は5.1であった。また、この微細針状酸化亜鉛の比表面積は37m/gであった。
【0068】
調製例7
(微細針状酸化亜鉛Gの調製)
調製例3に記載の方法で得られた表面被覆微細針状酸化亜鉛の水性懸濁液(ZnO濃度100g/L)を用いた以外は、実施例5と同様な操作を行い、微細針状酸化亜鉛Gを得た。この微細針状酸化亜鉛は平均短径は30.4nm、平均長径は154.6nm、アスペクト比は5.1であった。また、この微細針状酸化亜鉛の比表面積は35m/gであった。
【0069】
調製例8
(微細粒状酸化亜鉛Hの調製)
平均粒子径が31nm、比表面積が35m2/gの微細粒状酸化亜鉛(堺化学工業(株)製 FINEX-30)を酸化亜鉛Hとした。
【0070】
調製例9
(微細粒状酸化亜鉛Iの調製)
調製例8の微細酸化亜鉛を用いた以外は、調製例2と同じ操作を行い、微細粒状酸化亜鉛Iを得た。平均粒子径が32nm、比表面積は34m/gであった。
【0071】
実施例1
調製例1〜調整例7で得られた酸化亜鉛各々2 .36gとアルキド樹脂ワニス( 大日本インキ社製ベッコゾールJ−524)5.5g、メラミン樹脂ワニス( 大日本インキ社製スーパーベッカミンJ−820)2 .8g、および、キシレン( 試薬特級)5.7gを混合し、1.5mmφガラスビース30gを加えペイントシェーカー(レッドデビル社製5410型)を用いてビヒクル中に分散させ、塗料化した後、この分散塗料を少量ガラス板上に採取して、12番のバーコーターを用いて成膜した後、130℃で30分間焼き付けて評価膜とした。これらの評価膜を、紫外可視近赤外分光光度計(日本分光製V−570 型分光光度計及びILN471型積分級装置) を用いて、波長350nmにおけるA領域の紫外線遮蔽能と波長550nmにおける可視光透明性を評価した。
また、上記評価膜を用い、JIS K5600-5-4に準拠した試験法で鉛筆硬度を測定し、JIS
K5600-5-6に準拠した試験法で塗膜に碁盤目の切り込み(1mm×1mm、100桝)を入れ、セロハン粘着テープによる剥離試験を実施した。数値は残存数で示した(100:塗膜剥離無し、0:すべて剥離)。
【0072】
比較例1
調製例8および9を用いた以外は、実施例1と同様な操作をおこなった。
表1に実施例1および比較例1の評価結果を示す。
【0073】
【表1】

【0074】
調整例A〜調整例Gの微細針状酸化亜鉛は、調製例H、調整例Iに記載の微細酸化亜鉛と比較し、可視光透過性で同等かそれ以上の値を示し、UV-A領域である350nmの遮蔽性が優れていることが判った。また、鉛筆硬度では、比較例と比較し、より硬度の優れる評価膜が確認できた。また、剥離試験では、密着強度の向上が確認された。この結果については、詳細は判らないが、針状酸化亜鉛の形状由来により硬度が向上し、また、針状形状がスパイク効果を示し密着性が向上したものと推測する。
【産業上の利用可能性】
【0075】
本発明の樹脂組成物は、紫外線遮蔽効果が要求される各種用途において好適に使用することができる。本発明の樹脂組成物は、公知の各種用途において使用することができ、特に、高い可視光透過性と高い紫外線吸収能が要求される用途において使用することもできる。

【特許請求の範囲】
【請求項1】
平均長径が500nm以下、平均短径が100nm以下であり、平均長径/平均短径で定義されるアスペクト比が4以上で、かつBET法による比表面積が20m/g以上である微細針状酸化亜鉛を含有することを特徴とする樹脂組成物。
【請求項2】
微細針状酸化亜鉛は、ケイ酸亜鉛(Zn2SiO4 )換算で0.5〜50重量%の範囲のケイ酸亜鉛からなる被覆層を有する請求項1記載の樹脂組成物。
【請求項3】
微細針状酸化亜鉛は、ケイ酸亜鉛からなる第1の被覆層の上に、酸化亜鉛に対して酸化物換算で0.5〜30重量%の範囲のAl、Ti、Zr、Sn、Sb及び希土類元素よりなる群から選ばれる少なくとも1種の元素の酸化物からなる第2の被覆層を有する請求項2記載の樹脂組成物。
【請求項4】
微細針状酸化亜鉛は、酸化亜鉛の重量に対して1〜20重量%の範囲の有機ケイ素化合物、高級脂肪酸、高級脂肪酸エステル、金属石ケン、多価アルコール又はアルカノールアミンで処理されたものである請求項1,2又は3記載の樹脂組成物。
【請求項5】
塗料組成物である請求項1,2,3又は4記載の樹脂組成物。

【公開番号】特開2010−195847(P2010−195847A)
【公開日】平成22年9月9日(2010.9.9)
【国際特許分類】
【出願番号】特願2009−38866(P2009−38866)
【出願日】平成21年2月23日(2009.2.23)
【出願人】(000174541)堺化学工業株式会社 (96)
【Fターム(参考)】