説明

欠陥検出装置及び方法

【課題】S/N比を低下させることなく精度の良い欠陥検出を行う。
【解決手段】ハロゲンランプ22と受光器24との間には第1及び第2偏光板25,26が設けられている。第1及び第2偏光板25,26は、互いの偏光方向25a,26aが直交するように配置されている。第1偏光板25と第2偏光板26との間にはフィルム16が走行している。受光器24の直前には除去光学系27が設けられている。ハロゲンランプ22から発する光には、600nm〜800nmの波長域に輝線が一つだけ存在する。そのため、フィルム16上に干渉縞が発生することはほとんどない。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、偏光方向を直交させた一対の偏光板を用いて欠陥を検出する欠陥検出装置及び方法に関する。
【背景技術】
【0002】
光学異方性のある液晶層を透明なフィルム上に形成することにより、液晶表示装置の視野角を改善することができる光学補償フィルム(以下「位相差フィルム」という)が知られている。この位相差フィルムは、長尺な透明フィルムに配向膜を形成する工程と、その上に液晶を塗布し乾燥して液晶層を形成する工程を経て製造される(例えば特許文献1参照)。各製造工程は厳格な品質管理の下に置かれているが、異物の混入・付着による分子配向ムラ、支持体となる透明フィルムの厚みムラ、液晶層の塗工ムラ等の欠陥を完全に無くすことは容易ではない。
【0003】
これまで、このような欠陥を検出するために、位相差フィルムなどの検査対象に対して投光器から光を照射し、その検査対象からの光を受光器で受光し、その受光器が受光した光の信号を解析することによって、欠陥の位置、大きさ、強さをオンラインで把握していた。さらに、投光器と検査対象との間に第1の偏光板を、検査対象と受光器との間に第2の偏光板を、それぞれの偏光板の偏光方向が直交(クロスニコル)するように配置することで、検査対象上の欠陥により散乱・拡散した光のみを、受光器に入るようにする検査方法が知られている(特許文献2参照)。
【特許文献1】特開平9−73081号公報
【特許文献2】特開平6−148095号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
近年では、更なる高品質の位相差フィルムが求められているため、微細な欠陥までも検出することができる精度の良い欠陥検出方法が要望されている。欠陥の検出精度は一般的にS/N比で表され、欠陥検出の精度を上げるためにはS/N比を向上させることが不可欠である。ここで、S/N比は、欠陥部分の信号(以下「欠陥信号」という)を欠陥以外の部分の信号(以下「ノイズ信号」という)で除した値で表される。
【0005】
上述のように、一対の偏光板をクロスニコルに配置した欠陥検査では、欠陥信号には欠陥で散乱・錯乱した光の信号が、ノイズ信号には一対の偏光板からわずかに透過する光の信号が含まれている。したがって、S/N比を向上させるためには、ノイズ信号を最小限に抑えるとともに、欠陥信号を大きくする必要がある。欠陥信号を大きくする方法の一つとして、高い輝度の光を発する投光器を検査対象への照射に用いることで、欠陥で散乱・拡散する光を強める方法がある。
【0006】
しかしながら、高い輝度の光を発する投光器には、メタルハライドランプのような複数の輝線を有するものがある。このような投光器を、位相差フィルムのような薄い透明体の欠陥検査に用いた場合には、フィルム上に鮮明な干渉縞ができてしまう。干渉縞により光が強まり合った明るい部分がフィルム上できてしまうため、一対の偏光板からわずかに透過する光の信号が大きくなってしまう。そのため、ノイズ信号が大きくなり、結果としてS/N比が低下してしまう。したがって、高い輝度を有する投光器であっても、複数の輝線を有する投光器を用いた場合には、干渉縞の影響により逆にS/N比が低下してしまうことがある。
【0007】
本発明は、S/N比を低下させることなく精度の良い欠陥検出を行うことができる検出装置及び方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明は、フィルムの一方の面側に設けられた第1偏光板と、前記フィルムの他方の面側に設けられた第2偏光板とを用い、前記第1偏光板及び前記第2偏光板をクロスニコルに配置して、前記フィルムの欠陥を検出する欠陥検出装置において、輝線を有しない又は1つのみ有する光を、前記第1偏光板を介して、前記フィルムに投光する投光器と、前記フィルムから出た光を、前記第2偏光板を介して受光する受光器と、前記受光器で得られた受光信号に基づいて、前記フィルムの欠陥を検出する欠陥検出部とを備えることを特徴とする。
【0009】
前記フィルムは位相差フィルムであり、前記第1及び第2偏光板の偏光方向は前記位相差フィルムの遅相軸に対して45°の方向に向けられていることが好ましい。前記投光器はハロゲンランプであることが好ましい。前記第1及び第2偏光板はヨウ素系偏光板であることが好ましい。
【0010】
本発明の欠陥検出方法は、輝線を有しない又は1つのみ有する光を、前記第1偏光板を介して、前記フィルムに投光し、前記フィルムから出た光を、前記第2偏光板を介して受光器で受光し、前記受光器で得られた受光信号に基づいて、前記フィルムの欠陥を検出することを特徴とする。
【発明の効果】
【0011】
本発明によれば、輝線を有しない又は1つのみ有する光をフィルムに投光することで、フィルム上に干渉縞が生じることはほとんどない。これにより、S/N比を低下させることなく精度の良い欠陥検出を行うことができる。
【発明を実施するための最良の形態】
【0012】
図1に示すように、位相差フィルム製造ライン10は、配向膜形成装置11、液晶層形成装置12、欠陥検出装置13、及び巻取装置14を備えている。
【0013】
配向膜形成装置11は、フィルムロール18から送り出された透明樹脂フィルム15の表面に、配向膜形成用樹脂が含まれる塗布液を塗布して加熱乾燥する。これにより、透明樹脂フィルム15の表面に配向膜形成用樹脂層が形成される。そして、配向膜形成装置11は、配向膜形成用樹脂層に対してラビング処理を施して配向膜を形成する。
【0014】
液晶層形成装置12は、透明樹脂フィルム15の配向膜上に液晶化合物を含む塗布液を塗布し、塗布後に加熱乾燥して液晶層を形成する。そして、液晶層に対して紫外線を照射して、液晶層を架橋する。これにより、透明樹脂フィルム15の上に配向膜及び液晶層が形成された位相差フィルム16(以下「フィルム」という)が製造される。フィルム16は、以下で詳しく述べる欠陥検出装置13を経た後に、巻取装置14により巻き取られる。ここで、フィルムロール18を出て巻取装置14に巻き取られるまでのフィルム16の搬送方向を、X方向とする。X方向はフィルム16の遅相軸方位と一致している。
【0015】
欠陥検出装置13はフィルム16上に発生した欠陥を検出する。欠陥としては、例えば、傷、厚みムラ、塗工ムラ、分子配向ムラなどが挙げられる。なお、検査対象とするフィルムは位相差フィルムに限る必要はなく、透明体や半透明体などの光を透過する部材であればよく、例えば反射防止フィルムなどがある。
【0016】
欠陥検出装置13は、ガイドローラ20,21、ハロゲンランプ22、光量調整部23、受光器24、第1及び第2偏光板25,26、除去光学系27、コントローラ28を備えている。ガイドローラ20,21はフィルム16の搬送路に一定の間隔で離間して配置されている。これらガイドローラ20,21は回動自在であり、フィルム16の搬送に従動して回転する。また、フィルム16は、ガイドローラ20,21の掛け渡しによって平面状に保持されている。また、ガイドローラ21にはエンコーダ30が接続されており、このエンコーダ30はフィルム16が一定長搬送されるごとにエンコーダパルス信号を発生する。エンコーダパルス信号はコントローラ28に送信され、欠陥位置を特定する際に用いられる。
【0017】
ハロゲンランプ22はフィルム16の搬送路の下方に設置されている。ハロゲンランプ22は、図2に示すように、波長が600nmと800nmとの間で輝線を1つのみ有する。そのため、フィルム16上に干渉縞が生じることはほとんどない。また、仮に、干渉縞が生じた場合であっても、干渉縞のうち光が強まりあった明るい部分の輝度は、ハロゲンランプ22から発する光の輝度よりもほんのわずか大きい程度である。したがって、干渉縞が欠陥検出の精度に影響を与えることはない。なお、輝線を有さない又は1つのみ有する投光器であれば、ハロゲンランプに限る必要はない。
【0018】
光量調整部23は、ハロゲンランプ22の近傍に設置されたセンサ(図示省略)で検出した光量検出信号に基づき、光量が一定になるようにハロゲンランプ22を制御している。これにより、光量が均一な光をフィルム16に対して照射することができるため、常に同じ感度で欠陥検出を行うことができる。
【0019】
受光器24はCCDカメラから構成されており、フィルム16の搬送路の上方に設置されている。受光器24は、フィルム16の幅方向にライン状に並べられた多数の受光素子を備えており、フィルム16が一定長搬送されるごとに、フィルムをその幅方向に1ラインずつ撮像する。撮像で得られる信号には、欠陥により散乱・錯乱した光の信号(以下「欠陥信号」という)と、第1及び第2偏光板25,26からわずかに透過する光などの信号(以下「ノイズ信号」という)が含まれている。これら信号はコントローラ28に送信される。なお、受光器は1台に限らず2台以上であってもよい。
【0020】
第1及び第2偏光板25,26はヨウ素系偏光板から構成されており、図3に示すように、第1偏光板25はハロゲンランプ22とフィルム16との間に、第2偏光板26はフィルム16と受光器24との間に設置されている。また、第1及び第2偏光板25,26は、互いの偏光方向25a,26aが直交(クロスニコル)するように配置されている。なお、性能と価格の面からヨウ素系偏光板を用いているが、これに限らず、染料系偏光板、金属偏光子、方解石などからなる偏光板を用いてもよい。
【0021】
第1及び第2偏光板25,26をクロスニコルに配置することで、欠陥がないフィルム16が位置するときには、第1偏光板25により特定の偏光面に偏光した光はもう一方の第2偏光板26において遮られるため、その光は受光器24にほとんど入らない。即ち、受光器24は暗視野状態となる。一方、欠陥があるフィルム16が位置するときには、第1偏光板25により特定の偏光面に偏光した光は欠陥により散乱・錯乱し、その偏光面が変化する。このように偏光面が変化すると、もう一方の第2偏光板26から光が出るようになる。即ち、受光器24は受光状態となる。
【0022】
また、第1偏光板の偏光方向25aはX方向(フィルム16の遅相軸方向)に対する角度θが45°となるように設定されており、第2偏光板の偏光方向26aはX方向に対する角度(90°−θ)が45°になるように設定されている。
【0023】
図4は、角度θに対して、第1偏光板25に入射する入射光の光量と第2偏光板26を透過する透過光の光量との比率(透過光量比(%))がどのように変化するかを示すグラフである。また、図5は、フィルム16の位相差に対して透過光量比がどのように変化するかを示すグラフであり、「○」は角度θが0°のときの透過光量比を、「□」は角度θが15°のときの透過光量比を、「△」は角度θが30°のときの透過光量比を、「◇」は角度θが45°のときの透過光量比を示している。
【0024】
図4に示すように、角度θが45°のときに、透過光量比が最も高くなる。したがって、角度θを45°とすることで、傷などの欠陥により散乱・錯乱する光の光量が増加するため、S/N比を向上させることができる。また、図5に示すように、角度θが0°から45°にかけて徐々に透過光量比の位相差依存性が強くなり、角度θが45°のときに最も位相差依存性が強くなる。塗布ムラなどの位相差欠陥はその位相差欠陥で散乱・錯乱する光の光量が少ないため検出されないこともあったが、角度θを45°とすることで、位相差欠陥の部分の透過光量比が大きくなるため、傷などの欠陥だけでなく位相差欠陥も確実に検出することができる。
【0025】
除去光学系27は赤外線カットフィルタから構成されており、受光器24の直前に設置されている。除去光学系27は、第2偏光板26からの光のうち、波長が700nm以上の光を除去する。これにより、波長が700nm未満の光のみが受光器24に入射するため、以下に示す理由から、高いS/N比で精度良く欠陥を検出することができる。
【0026】
図6は、欠陥検出装置13から除去光学系27を除いた状態で、第1偏光板の偏光方向25aの角度θを45°にした場合における第1及び第2偏光板25,26の光の透過率を示しており、第1及び第2偏光板25,26は、波長が700nmまでの光をほぼ遮光するが、波長が700nmを超える光については高い透過率で透過してしまう。一方、受光器24は、波長が700nmを超える光に対しても感度を有している。そのため、波長が700nmを超える光が受光器24のノイズ信号に含まれてしまう。
【0027】
そこで、波長が700nm以上の光(ハッチングエリア35内の光)を除去光学系27により除去することで、波長が700nm未満の光のみが受光器24に入射する。そのため、波長が700nm以上の光が、受光器24のノイズ信号に含まれることがなくなる。これにより、ノイズ信号を最小限に抑えることができるため、十分に大きいS/N比を得ることができる。なお、欠陥である塗布スジを検出したときのS/N比は、波長が700nm以上の光を除去しない場合には1.5であるのに対して、波長が700nm以上の光を除去した場合には2.1に向上する。
【0028】
除去光学系27として、赤外線カットフィルタを用いたが、その他、誘電体多層膜を使用したバンドパスフィルタ、モノクロメータ、波長カットフィルタ、色ガラスフィルタ、回折格子などを用いてもよい。また、除去光学系27で除去する光の波長域は700nm以上に限る必要はなく、欠陥検出に使用する偏光板の種類に応じて適宜変更してもよい。また、波長600nm以上の光を除去する除去光学系を、ハロゲンランプ22と第1偏光板25との間に設置して、ハロゲンランプ22の光から輝線を除去してもよい。
【0029】
除去光学系27の設置位置は、受光器24の直前(以下「本発明の設置位置」という)以外に、以下のような6つの設置位置が考えられる。第1の設置位置はハロゲンランプ22と第1偏光板25との間、第2の設置位置は受光器24と第2偏光板26との間、第3の設置位置は第2偏光板26とフィルム16との間、第4の設置位置はフィルム16と第1偏光板25との間、第5の設置位置はハロゲンランプ22の内部、第6の設置位置はハロゲンランプ22との一体型である。
【0030】
上記第1〜第6の設置位置のうちいずれの設置位置が最適であるかを以下検討する。一般的に偏光板はハロゲンランプ22の光や熱に対して弱いことから第2〜第4の設置位置は好ましくない。これに対して、第1の設置位置では、ハロゲンランプ22からの光が除去光学系27を介して間接的に偏光板に当たるため、光や熱により偏光板の性能を劣化させることがない。したがって、第1の設置位置は好ましい。
【0031】
また、受光器24のフォーカスはフィルムに合わせていることから、除去光学系27とフィルム16との距離はできるだけ離れているほうがよい。そのため、第3及び第4の設置位置は好ましくない。また、第6の設置位置については、ハロゲンランプ22を交換する度に欠陥の検出精度が変わってしまうため好ましくない。これに対して、除去光学系27をハロゲンランプ22内に配置すると、その除去光学系27は小さいもので済むため、安価となる。よって、第5の設置位置は好ましい。
【0032】
以上から、本発明の設置位置、第1の設置位置、及び第5の設置位置のいずれかに除去光学系27を設置することが好ましいが、本発明の設置位置に除去光学系27を設置したときに最もS/N比が高くなる。したがって、本発明の設置位置に除去光学系27を設置することが最も好ましい。
【0033】
コントローラ28は、受光器24からの撮像信号に基づき欠陥信号を検出する欠陥信号検出部28aと、欠陥信号とエンコーダ30からのエンコーダパルス信号とに基づきフィルム16上の欠陥の位置を特定する欠陥位置特定部28bとを備えている。
【0034】
次に、本発明の欠陥検出装置の作用について説明する。欠陥検出装置13には、配向膜形成装置11及び液晶層形成装置12で製造されたフィルム16が送り込まれる。フィルム16は第1偏光板25と第2偏光板26の間を走行する。それら第1及び第2偏光板25,26に対しては、ハロゲンランプ22から光が発せられている。
【0035】
ハロゲンランプ22からの光は、第1偏光板25により特定の偏光面に偏光する。ここで、フィルム16上に欠陥がない場合には偏光した光は第2偏光板26により遮られ、一方フィルム16上に欠陥がある場合には、偏光した光は欠陥により散乱・錯乱し、その散乱・錯乱した光が第2偏光板26から出るようになる。第2偏光板26から出た光は、除去光学系27により波長が700nm以上の光が除去される。そして、除去光学系27を経た光は、受光器24で受光される。
【0036】
受光器24は、フィルム16が一定長送られるごとに1ライン分の撮像を行う。欠陥信号検出部28aでは、受光器24からの撮像信号に基づいて、欠陥信号を検出する。欠陥位置特定部28bは、欠陥信号とエンコーダ30からのエンコーダパルス信号とに基づきフィルム16上の欠陥の位置を特定する。コントローラ28での結果は、ディスプレイ(図示省略)に表示される。
【実施例】
【0037】
以下の実施例及び比較例により本発明を具体的に説明する。なお、本発明は以下の実施例及び比較例に限定されるものではない。
【0038】
[実施例1]
図3に示す欠陥検出装置を用いて、フィルム16上の欠陥検出を行った。検査対象のフィルム16の下方にハロゲンランプ22を設置し、その上方に受光器24を設置した。ハロゲンランプ22とフィルム16との間に第1偏光板25を、フィルム16と受光器24との間に第2偏光板26を設置した。その際、第1偏光板25の偏光方向25aと第2偏光板26の偏光方向26aをクロスニコルにし、欠陥がないときには受光器24が暗視野状態となるようにした。また、第1偏光板25の偏光方向25aをフィルム16の遅相軸(X方向(フィルムの搬送方向)に対して45°にし、第2偏光板26の偏光方向26aをX方向に対して45°にした。なお、第1及び第2偏光板にはヨウ素系偏光板を用い、受光器にはCCDラインカメラを用いた。
【0039】
また、受光器24の直前に、赤外線カットフィルタから構成される除去光学系27設置した。除去光学系27により、第2偏光板26からの光のうち波長が700nm以上の光を除去した。受光器24は除去光学系27を出た光を検出し、検出した信号をコントローラ28に送信した。
【0040】
[比較例1]
ハロゲンランプに代えてメタルハライドランプから光を発した以外は、実施例1と同様に欠陥検出を行った。
【0041】
[比較例2]
ハロゲンランプに代えて蛍光灯から光を発した以外は、実施例1と同様に欠陥検出を行った。
【0042】
[評価]
上記実施例1及び比較例1、2で行った欠陥検査について、フィルム上に干渉縞がどの程度発生したか、S/N比がどの程度であったかを評価した上で、各実施例及び比較例を総合評価した。また、周知の分光測定器を用いて各実施例及び比較例の投光器の分光放射強度を測定し、その測定結果から各実施例及び比較例の投光器に輝線がいくつあるかを調べた。
【0043】
下記表1は各実施例及び比較例の評価結果を示している。図7は各実施例及び比較例で測定した分光放射強度を示しており、グラフ60はハロゲンランプの分光放射強度を、グラフ61はメタルハライドランプの分光放射強度を、グラフ62は蛍光灯の分光放射強度を示している。
【表1】

表1の「投光器」は各実施例及び比較例で使用する投光器の種類を、「輝線」は投光器の輝線の数を示している。また、「干渉縞」の「○」はフィルム上に干渉縞が発生しなかったことを、「×」はフィルム上に鮮明な干渉縞が発生したことを示している。また、「S/N」の「○」は2以上であることを、「△」は1.5以上であることを示している。また、「評価」の「○」は製品上問題となる欠陥を検出したことを、「×」は製品上問題となる欠陥を確実に検出できなかったことを示している。なお、S/N比については、「2」以上あれば安定的に欠陥検出を行うことができる。
【0044】
実施例1では、ハロゲンランプの輝線は1つのみであったため、フィルム上には干渉縞が発生することはなかった。これに対して、比較例1及び2では、2以上の輝線があるため、明るい部分と暗い部分とがはっきりとした干渉縞が生じた。この干渉縞が影響して、S/N比が低下し製品上問題となる欠陥の検出を確実に行うことができなかった。
【図面の簡単な説明】
【0045】
【図1】位相差フィルム製造ラインの概略図である。
【図2】ハロゲンランプの分光放射強度を示すグラフである。
【図3】欠陥検出装置の斜視図である。
【図4】角度θと透過光量比との関係を示すグラフである。
【図5】フィルムの位相差と透過光量比との関係を示すグラフである。
【図6】クロスニコルに配置した一対の偏光板の分光透過率を示すグラフである。
【図7】ハロゲンランプ、メタルハライドランプ、蛍光灯の分光放射強度を示すグラフである。
【符号の説明】
【0046】
13 欠陥検出装置
16 フィルム
22 ハロゲンランプ
24 受光器
25 第1偏光板
26 第2偏光板
27 除去光学系

【特許請求の範囲】
【請求項1】
フィルムの一方の面側に設けられた第1偏光板と、前記フィルムの他方の面側に設けられた第2偏光板とを用い、前記第1偏光板及び前記第2偏光板をクロスニコルに配置して、前記フィルムの欠陥を検出する欠陥検出装置において、
輝線を有しない又は1つのみ有する光を、前記第1偏光板を介して、前記フィルムに投光する投光器と、
前記フィルムから出た光を、前記第2偏光板を介して受光する受光器と、
前記受光器で得られた受光信号に基づいて、前記フィルムの欠陥を検出する欠陥検出部とを備えることを特徴とする欠陥検出装置。
【請求項2】
前記フィルムは位相差フィルムであり、前記第1及び第2偏光板の偏光方向は前記位相差フィルムの遅相軸に対して45°の方向に向けられていることを特徴とする請求項1記載の欠陥検出装置。
【請求項3】
前記投光器はハロゲンランプであることを特徴とする請求項1または2記載の欠陥検出装置。
【請求項4】
前記第1及び第2偏光板はヨウ素系偏光板であることを特徴とする請求項1ないし3いずれか1項記載の欠陥検出装置。
【請求項5】
フィルムの一方の面側に設けられた第1偏光板と、前記フィルムの他方の面側に設けられた第2偏光板とを用い、前記第1偏光板及び前記第2偏光板をクロスニコルに配置して、前記フィルムの欠陥を検出する欠陥検出方法において、
輝線を有しない又は1つのみ有する光を、前記第1偏光板を介して、前記フィルムに投光し、
前記フィルムから出た光を、前記第2偏光板を介して受光器で受光し、
前記受光器で得られた受光信号に基づいて、前記フィルムの欠陥を検出することを特徴とする欠陥検出方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2009−236826(P2009−236826A)
【公開日】平成21年10月15日(2009.10.15)
【国際特許分類】
【出願番号】特願2008−85794(P2008−85794)
【出願日】平成20年3月28日(2008.3.28)
【出願人】(306037311)富士フイルム株式会社 (25,513)
【Fターム(参考)】