説明

水素吸蔵媒体および水素吸蔵装置

【課題】 取り扱いが容易で、かつ低コストにて、高速の水素吸蔵および放出を実現できる水素吸蔵媒体およびこれを用いた水素吸蔵装置を提供する。
【解決手段】 最大径が10μm以下で深さが100nm以上の孔20を複数個有する媒体の表面に、当該孔20の内面を含めて水素吸蔵合金の薄膜22が形成されている水素吸蔵媒体13およびこれを用いた水素吸蔵装置とする。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、水素を吸蔵および放出する能力を持つ水素吸蔵媒体および当該水素吸蔵媒体を内部に備えた水素吸蔵装置に関する。
【背景技術】
【0002】
水素は、酸素と反応して水になるだけであり、化石燃料のように炭酸ガスあるいは硫黄酸化物を副生することがないため、クリーンなエネルギー源の一つとして有望視されている。水素の貯蔵には、旧来から高圧ボンベが使用されているが、耐圧容器の重量が大きく、その割には圧縮効率も低いことから、より効率的な水素貯蔵方法が望まれていた。
【0003】
このような背景から効率的な水素の貯蔵方法が研究され、その一つとして水素貯蔵合金を使用する貯蔵方法が提案された。金属が水素を取り込む現象は古くから知られていたが、米国のJ.J.Reillyらは、この現象を積極的に利用して水素を貯蔵する研究を精力的に行った。この結果、J.J.Reillyらは、マグネシウム基合金およびバナジウム合金が水素吸蔵および放出を行うこと、各合金組成の制御により吸蔵・放出能が大きく変わることを証明した。これが水素吸蔵合金の幕開けとなった。水素吸蔵合金は、一般的に、冷却または加熱により水素ガスを可逆的に吸蔵および放出できる機能性材料である。 水素吸蔵合金は単位体積当たりの水素ガスの貯蔵密度が高圧ボンベよりも大きいことから、軽量かつ小型の水素ガス貯蔵容器を作ることができる。
【0004】
水素吸蔵合金の水素吸蔵原理は、固溶現象と化学的結合の2つに大別される。固溶現象は、合金を構成する原子の間に水素原子が侵入する現象をいう。水素の吸蔵と放出を可逆的に行わせるには、水素原子が合金の構成原子の間に安定的に存在し、かつある刺激によってその場所から出て行く必要がある。このため、水素吸蔵合金には、比較的に隙間が多く、かつ触媒作用を持つ材料であることが求められる。また、化学的結合によって水素を吸蔵・放出を実現する場合には、合金の構成原子と水素とが可逆的に化学反応を起こす必要がある。このような原理で水素を吸蔵・放出する合金としては、マグネシウム基およびバナジウム基合金が知られている。上述の水素吸蔵合金(「MH」と略する。)は、これを負極材料に用いたNi−MH二次電池、燃料電池あるいはヒートポンプ等に応用されている。
【0005】
水素吸蔵合金における水素ガスの吸蔵および放出は、合金の膨張と収縮を伴うため、実用的な吸蔵および放出速度を得るためには、水素吸蔵合金を粉末状の形態で利用して、水素と接触する面積を増大させる必要がある(例えば、特許文献1参照。)。
【特許文献1】特開2004−197162号公報(特許請求の範囲、要約書等)
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、上述の従来技術には、次のような問題がある。水素吸蔵合金を粉末の形態で使用する場合、取り扱いをも考慮すると、粒径は数10〜100μmである。このため、水素は水素吸蔵合金の粉末の表面部分で固溶あるいは反応するに留まり、粉末の中心部は水素の吸蔵および放出に関与しにくい領域となっている。このため、水素吸蔵合金の粉末をさらに微粉にする試み、あるいはカーボンナノチューブ等のナノマテリアルを採用する試みも行われている。しかし、水素吸蔵合金のさらなる微粉化あるいは上記のようなナノマテリアルの採用は、材料の取り扱いを悪化させると共に、高コスト化を引き起こし、実用に耐えない結果を招く。
【0007】
本発明は、このような問題に鑑みてなされたものであり、取り扱いが容易で、かつ低コストにて、高速の水素吸蔵および放出を実現できる水素吸蔵媒体およびこれを用いた水素吸蔵装置を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記目的を達成するために、本発明は、最大径が10μm以下で深さが100nm以上の孔を複数個有する媒体の表面に、当該孔の内面を含めて水素吸蔵合金の薄膜が形成されている水素吸蔵媒体としている。媒体の表面に複数の孔を設けて、その孔径を最大でも10μmとし、かつ孔の深さを最小でも100nmとし、その孔の内面を含めて水素吸蔵合金の薄膜を形成することによって、媒体の体積あたりの水素吸蔵能を極めて大きくすることができる。微粒化するほど取り扱いが難しくなる粉末に比べると取り扱いが容易で、かつ膜全域を使って水素を吸蔵できるので、水素吸蔵効率が高い。このように、本発明に係る水素吸蔵媒体を用いると、取り扱いが容易で、かつ低コストで水素吸蔵および放出を実現できる。なお、本願において、「水素吸蔵合金の薄膜」は、複数の金属組成から成る合金の単一層、当該合金の複数層のみならず、金属単体の単一層および金属単体を複数積層した複数層をも含むように広義に解釈されるものとする。
【0009】
また、別の本発明は、先の発明における媒体を、孔の深さ方向を薄くした有機高分子製、金属製若しくはセラミックス製の板状体またはフィルムとした水素吸蔵媒体としている。このように、水素吸蔵合金の薄膜を形成させる媒体を板状体あるいはフィルムの各形態とすることにより、孔の形成および薄膜の形成が容易になると共に、要求される水素吸蔵能に応じて、水素吸蔵装置内に格納する水素吸蔵媒体の数を適宜変更できる。
【0010】
また、別の本発明は、先の各発明における水素吸蔵合金の薄膜の厚さを、孔を埋没させない厚さとした水素吸蔵媒体としている。このように、水素吸蔵合金の薄膜を調整することによって、水素を吸蔵していない薄膜領域を低減し、吸蔵効率の高い薄膜を実現できる。孔を埋没させる程に厚い薄膜を形成することは、媒体の単位体積あたりの表面積を高くできなくなるので、好ましくない。したがって、薄膜の厚さは、孔を埋没させない厚さであることを要する。
【0011】
また、別の本発明は、先の各発明における水素吸蔵合金の薄膜を、水素の吸蔵および放出に、熱、圧力、たわみの内少なくともいずれか1つを必要とする水素吸蔵媒体としている。このため、水素吸蔵媒体の水素吸蔵および放出を容易に行わせることができる。特に、たわみを付与することによって水素吸蔵および放出を可能とすると、水素吸蔵装置を容易に構築できる。水素吸蔵媒体が板状体あるいはフィルムの形態である場合には、さらに、たわみの外力を加えやすくなるので、好ましい。
【0012】
また、別の本発明は、先の各発明における水素吸蔵合金の薄膜を、チタン、マンガン、ジルコニウム、ニッケル、コバルト、アルミニウム、鉄、バナジウム、マグネシウム、パラジウム、カルシウム、ランタン、リチウム、カリウム、ウラン、ナトリウム、銅、カドミウムの内少なくとも1つを含む材料とした水素吸蔵媒体としている。具体的には、LaNi、ZrMn、TiNi、V(Ti,Cr)、MgNi等の水素吸蔵合金を例示することができるが、これらに限定されるものではない。
【0013】
また、別の本発明は、先の各発明における水素吸蔵合金の薄膜を、複数の層から構成される薄膜とした水素吸蔵媒体としている。このため、水素吸蔵能、水素吸蔵・放出条件等が異なる層を形成し、水素吸蔵あるいは放出の条件によって、水素の吸蔵量あるいは放出量を制御することが可能となる。また、コストの高い単一層を形成する場合と比べて、ほぼ同じ水素吸蔵能を有する低コストの別の層を含めるように複数の層を形成すれば、水素吸蔵媒体およびそれを備える水素吸蔵装置の低コスト化を図ることができる。
【0014】
また、本発明は、水素を吸入および排出する口を有し、装置内部に、最大径が10μm以下で深さが100nm以上の孔を複数個有する媒体であって孔の深さ方向を薄くした有機高分子製、金属製若しくはセラミックス製の板状体またはフィルムの形態を持つ媒体の表面に孔の内面を含めて水素吸蔵合金の薄膜が形成されている水素吸蔵媒体を複数枚配置した水素吸蔵装置としている。このため、媒体の表面に複数の孔を設けて、その孔径を最大でも10μmとし、かつ孔の深さを最小でも100nmとし、その孔の内面を含めて水素吸蔵合金の薄膜を形成することによって、媒体の単位体積あたりの水素吸蔵能を極めて大きくすることができる。微粒化するほど取り扱いが難しくなる粉末に比べると取り扱いが容易で、かつ膜全域を使って水素を吸蔵できるので、水素吸蔵効率が高い。このように、本発明に係る水素吸蔵媒体を格納した水素吸蔵装置を用いると、取り扱いが容易で、かつ低コストで水素吸蔵および放出を実現できる。
【発明の効果】
【0015】
本発明によれば、取り扱いが容易で、かつ低コストにて、高速の水素吸蔵および放出を実現できる。
【発明を実施するための最良の形態】
【0016】
以下、本発明に係る水素吸蔵媒体および水素吸蔵装置の各実施の形態について、図面に基づいて詳細に説明する。なお、水素吸蔵媒体は、水素吸蔵装置に格納されるため、その実施の形態の説明は、水素吸蔵装置の実施の形態の説明の中で行うものとする。
【0017】
(第1の実施の形態)
図1は、第1の実施の形態に係る水素吸蔵装置1の概略構成図である。図2は、水素吸蔵装置1の内部に格納される水素吸蔵媒体13およびロッド12の斜視図である。なお、図1および図2において、上を上方、下を下方と称する。
【0018】
水素吸蔵装置1は、上方に水素を入出する入出口10を有している。水素吸蔵装置1の内部には、入出口10から続く略円筒形状の空間11が形成されている。空間11の下方には、下方底面の中央に立設される円柱形状のロッド12が備えられている。また、空間11内には、円板形状の水素吸蔵媒体13が、複数枚、格納されている。ただし、水素吸蔵媒体13の形状は円板に限定されず、多角形状、楕円形状等の他の形状であっても良い。
【0019】
水素吸蔵媒体13は、厚さ1〜2mmで、中央に穴を有する円板形状を有しており、空間11の高さ方向にほぼ同間隔の隙間を隔てて、複数枚が積層配置されている。空間11の上方と下方を除く中央部分は、同一径を有する円筒領域となっている。当該円筒領域の直径は、水素吸蔵媒体13の外径に対してわずかに大きい。このため、各水素吸蔵媒体13は、空間11の円筒領域内に接するように配置されている。このように、水素吸蔵合金の薄膜を形成させる水素吸蔵媒体13を板状体とすることにより、その表面への孔の形成および薄膜の形成が容易になると共に、要求される水素吸蔵能に応じて、水素吸蔵装置1内に格納する水素吸蔵媒体13の数を適宜変更できる。
【0020】
ロッド12は、水素吸蔵装置1の空間11内における円筒領域の円の中心に向かって垂直上方に立設するように、水素吸蔵装置1の外枠に備えられている。ロッド12は、積層された水素吸蔵媒体13の最下位置の水素吸蔵媒体13の中央の穴のみを塞ぐ高さを有している。このロッド12を例えば、上下方向に動かすことによって、水素吸蔵媒体13が撓み、水素の出し入れを行うことができる。
【0021】
図3は、一枚の水素吸蔵媒体13の平面図である。図4は、一枚の水素吸蔵媒体13を図3のX−X線で切断した時の断面図とその中の一部(Aの部分)の拡大図である。
【0022】
図3および図4に示す水素吸蔵媒体13の表面には、多数の小さな孔20が形成されている。孔20は、最大径が10μm以下で深さが100nm以上であり、好適には、直径1.0μm以下で深さが100〜500nmの円柱形状の形態を有する。水素吸蔵媒体13は、アルミニウム製の板21とその表面に形成される薄膜22とから構成されている。薄膜22は、水素吸蔵機能を有する合金製の薄膜であり、当該孔20の内面を含め、水素吸蔵媒体13の表面を覆うように形成されている。なお、アルミニウム製の板21の代わりに、有機高分子製の板、セラミックス製の板を採用しても良い。
【0023】
薄膜22の厚さは、孔20を埋没させない厚さであれば、特に限定されるものではない。孔20の大きさに応じて薄膜22の厚さを決定する必要があり、孔20を埋没させる程に厚い薄膜22を形成することは、水素吸蔵媒体13の単位体積あたりの表面積を高くすることができなくなるので、好ましくない。また、薄膜22は、チタン、マンガン、ジルコニウム、ニッケル、コバルト、アルミニウム、鉄、バナジウム、マグネシウム、パラジウム、カルシウム、ランタン、リチウム、カリウム、ウラン、ナトリウム、銅、カドミウムの内、少なくともいずれか1つの元素を含む組成であれば好ましい。好適な薄膜22としては、例えば、LaNi、ZrMn、TiNi、V(Ti,Cr)、MgNi等から成る薄膜を挙げることができる。
【0024】
図5は、多層薄膜32を形成した水素吸蔵媒体13を示す図である。
【0025】
図5に示すように、多層薄膜32は、第一の層33、第二の層34および第三の層35の3つの層から構成されている。例えば、多層薄膜32は、Mgの層、Vの層およびPdの層を順に積層した層である。ただし、多層薄膜32を3層以外の複数の層から構成するようにしても良い。このように、薄膜として、多層薄膜32を採用しても良く、その場合に、各層を、複数金属元素から構成される合金ではなく、金属単体とすることもできる。多層薄膜32として水素吸蔵能、水素吸蔵・放出条件等が異なる層から成る薄膜とすると、水素吸蔵あるいは放出の条件によって、水素の吸蔵量あるいは放出量を制御することが可能となる。また、コストの高い単一層を形成する場合と比べて、ほぼ同じ水素吸蔵能を有する低コストの別の層を含めるように複数の層を形成すれば、水素吸蔵媒体13およびそれを備える水素吸蔵装置1の低コスト化を図ることができる。
【0026】
上述の孔20は、化学的または力学的手法によって形成される。例えば、化学エッチング等のエッチング処理によって孔20を形成することもできるが、それ以外の方法を採用しても良い。また、上述の薄膜22あるいは多層薄膜32の形成方法には、各種メッキ、化学蒸着、物理蒸着等の薄膜形成法を採用できる。例えば、多層薄膜32は、アルミニウム製の板21を基板とするRF支援マグネトロンスパッタリング法を使用して形成できる。DC電流とRFコイル電力を所定値に設定し、不活性ガス(例えば、Arガス)圧0.5Paの条件でMgターゲットをスパッタリングすることによって、100〜200nmのMg層を形成する。次に、Vターゲットをスパッタリングして50〜100nmのV層を形成する。さらに、DC電流、RFコイル電力、Arガス圧を調整してから、Pdターゲットをスパッタリングして、10〜50nmのPd層を形成する。
【0027】
深さ300nmの孔20の直径が0.8μmで、孔数を20億個とした場合、水素吸蔵媒体13の表面積は2000倍に拡大する。また、同じ深さの孔20の直径を0.4μmとし、孔数を90億個とした場合、表面積は8000倍に拡大する。同様に、孔20の直径を0.2μmとし孔数を300億個とした場合、孔20の直径を0.1μmとし孔数を1250億個とした場合、各表面積はそれぞれ3万倍および13万倍となる。このように、同じ大きさの水素貯蔵媒体13でも、孔20の直径を小さくして孔数を多くする程、表面積は増大し、水素貯蔵能も高くなる。従来のように、粉末という立体物の表面のみを利用して水素を貯蔵してきたのに対して、二次元的に水素を貯蔵できるので、水素の貯蔵効率を高くすることができる。したがって、水素吸蔵能の極めて高い水素貯蔵装置とすることができる。
【0028】
また、一旦水素を貯蔵した水素貯蔵媒体13に対して加熱、加圧あるいはたわみによる外力を加えることにより、水素貯蔵媒体13から容易に水素を放出させることができる。本実施の形態に係る水素貯蔵媒体13は薄い板形状を有しているため、容易にたわみの外力を加えることができる。特に、たわみを付与することによって水素吸蔵および放出を可能とすると、水素吸蔵装置1を容易に構築できるので好ましい。
【0029】
(第2の実施の形態)
次に、本発明に係る水素貯蔵媒体および水素貯蔵装置の第2の実施の形態について、図面に基づいて説明する。ただし、第1の実施の形態と同様の構成については、その説明を省略する。
【0030】
図6は、先の実施の形態と別の形態を有する水素貯蔵装置50の構成を概略的に示す図である。
【0031】
この水素貯蔵装置50は、筺体51と、その上部に固定される水素吸蔵・放出用ヘッド(以後、単に、「ヘッド」と称する。)52とから、主に構成されている。図6におけるヘッド52の左右両側には、各一個ずつ、ローラ53およびローラ54が配置されている。また、筺体51の内部には、ローラ55およびローラ56が備えられている。
【0032】
テープ57は、ローラ55、ローラ53、ローラ54、ローラ56の表面に渡され、ローラ55およびローラ56に巻回されている。また、ヘッド52の内部には、水平方向に所定間隔をあけて、かつ同じ高さに配置される同じ大きさのローラ60およびローラ61と、ローラ60およびローラ61とそれぞれ接するように所定間隔をあけて、かつ同じ高さに配置される同じ大きさのローラ62およびローラ63が配置されている。また、ローラ60とローラ61との間には、上下方向(図6中の両矢印方向)に可動な可動部材64が備えられている。テープ57は、ローラ60とローラ62との間、ローラ61とローラ63との間を通って、ローラ53およびローラ54に渡されている。
【0033】
図7は、図6に示すテープ57の断面および当該断面の一部(B)を拡大して示す図である。
【0034】
テープ57は、先に説明した水素貯蔵媒体13と同様に、表面に多数の小さな孔70を有する水素吸蔵媒体である。以後、テープ57を、水素吸蔵媒体57という。孔70は、最大径が10μm以下で深さが100nm以上であり、好適には、直径1.0μm以下で深さが100〜500nmの円柱形状の形態を有する。水素吸蔵媒体57は、樹脂製のフィルム80とその表面に形成される薄膜81とから構成されている。薄膜81は、水素吸蔵機能を有する合金製の薄膜であり、当該孔70の内面を含め、水素吸蔵媒体57の表面を覆うように形成されている。なお、樹脂製のフイルム80の代わりに、金属製、セラミックス製等のフィルムを採用しても良い。
【0035】
薄膜81の厚さは、孔70を埋没させない厚さであれば、特に限定されるものではない。孔70の大きさに応じて薄膜81の厚さを決定する必要があり、孔70を埋没させる程に厚い薄膜81を形成することは、水素吸蔵媒体57の単位体積あたりの表面積を高くすることができなくなるので、好ましくない。また、薄膜81は、チタン、マンガン、ジルコニウム、ニッケル、コバルト、アルミニウム、鉄、バナジウム、マグネシウム、パラジウム、カルシウム、ランタン、リチウム、カリウム、ウラン、ナトリウム、銅、カドミウムの内、少なくともいずれか1つの元素を含む組成であれば好ましい。好適な薄膜81としては、例えば、LaNi、ZrMn、TiNi、V(Ti,Cr)、MgNi等から成る薄膜を挙げることができる。なお、薄膜81を、図5に示したように、多層の膜から構成されるようにしても良い。薄膜81の形成方法には、第1の実施の形態にて説明した方法を採用できる。
【0036】
図7に示す構造の水素吸蔵媒体57を格納した水素吸蔵装置50において、ヘッド52内の可動部材64を動かして、水素吸蔵媒体57に接触して撓ませることによって、水素を吸蔵あるいは放出させることができる。また、必要に応じて、水素吸蔵媒体57に熱を加えることも可能である。
【0037】
以上、本発明に係る水素貯蔵媒体および水素貯蔵装置の好適な実施の形態について説明したが、本発明に係る水素貯蔵媒体および水素貯蔵装置は、上述の各実施の形態に限定されることなく、種々変形した形態にて実施可能である。
【0038】
例えば、水素吸蔵媒体を、平滑な水平面を有する板形状とせずに、波形状、湾曲形状としても良い。さらに、孔を円柱形状とせずに、四角柱形状、六角柱形状、三角柱形状等の多角柱形状としたり、楕円柱形状としても良い。かかる場合、「最大径」とは、多角柱形状の孔の場合には最大の対角線を意味し、楕円柱形状の場合には長径を意味する。また、「深さ」とは、開口面から最も深い部分までの長さを意味する。孔の深さは孔の内部において一定でなくても良く、深い部分と浅い部分が存在していても良い。
【0039】
水素吸蔵合金の薄膜は、一層あるいは複数層の合金から成る薄膜でも良いし、一層あるいは複数層の金属単体から成る薄膜でも良い。また、薄膜を付ける媒体自体は、アルミニウム以外の金属、合金、有機高分子、セラミックス、紙、布等のいかなる材質から成るものでも良い。
【0040】
水素吸蔵装置1の内部構成は、図1に示す構成に限定されない。例えば、上述の実施の形態では、水素吸蔵媒体13は、空間11の内面に接するように格納されているが、空間の11の内面と隙間を有する状態で格納されていても良い。その場合、水素は、水素吸蔵媒体13の中央の穴のみならず、外側をまわって下方の水素吸蔵媒体13へと移動する。また、ロッド12を全ての水素吸蔵媒体13の穴を通したり、上方のいくつかの水素吸蔵媒体13以外の水素吸蔵媒体13の穴を通すようにしても良い。ロッド12の長さを変えることにより、入出口10から入ってくる水素の循環路を容易に変更でき、水素吸蔵媒体13によって水素吸蔵量を変えることができる。
【産業上の利用可能性】
【0041】
本発明は、電池、ヒートポンプ等の水素の吸蔵・放出を行う構成部材を用いる産業に利用可能である。
【図面の簡単な説明】
【0042】
【図1】本発明の第1の実施の形態に係る水素貯蔵装置の構成を示す図である。
【図2】図1に示す水素貯蔵装置に格納される複数枚の水素貯蔵媒体を示す斜視図である。
【図3】図2に示す複数枚の水素貯蔵媒体の内の一枚を示す平面図である。
【図4】図3に示す水素貯蔵媒体をX−X線で切ったときの断面図と表面近傍の拡大図である。
【図5】図4の形態と異なる水素貯蔵合金の薄膜を有する水素貯蔵媒体の表面近傍の拡大図である。
【図6】本発明の第2の実施の形態に係る水素貯蔵装置の構成を示す図である。
【図7】図6に示す水素貯蔵媒体の断面を示す図である。
【符号の説明】
【0043】
1 水素吸蔵装置
10 入出口
11 空間
12 ロッド
13 水素吸蔵媒体
20 孔
21 板
22 薄膜
32 多層薄膜
33 第一の層
34 第二の層
35 第三の層
50 水素貯蔵装置
57 テープ(水素貯蔵媒体)
70 孔
81 薄膜

【特許請求の範囲】
【請求項1】
最大径が10μm以下で深さが100nm以上の孔を複数個有する媒体の表面に、当該孔の内面を含めて水素吸蔵合金の薄膜が形成されていることを特徴とする水素吸蔵媒体。
【請求項2】
前記媒体は、前記孔の深さ方向を薄くした有機高分子製、金属製若しくはセラミックス製の板状体またはフィルムであることを特徴とする請求項1に記載の水素吸蔵媒体。
【請求項3】
前記水素吸蔵合金の薄膜の厚さは、前記孔を埋没させない厚さであることを特徴とする請求項1または2に記載の水素吸蔵媒体。
【請求項4】
前記水素吸蔵合金の薄膜は、水素の吸蔵および放出に、熱、圧力、たわみの内少なくともいずれか1つを必要とするものであることを特徴とする請求項1から3のいずれか1項に記載の水素吸蔵媒体。
【請求項5】
前記水素吸蔵合金の薄膜は、チタン、マンガン、ジルコニウム、ニッケル、コバルト、アルミニウム、鉄、バナジウム、マグネシウム、パラジウム、カルシウム、ランタン、リチウム、カリウム、ウラン、ナトリウム、銅、カドミウムの内少なくとも1つを含む材料であることを特徴とする請求項1から4のいずれか1項に記載の水素吸蔵媒体。
【請求項6】
前記水素吸蔵合金の薄膜は、複数の層から構成されることを特徴とする請求項1から5のいずれか1項に記載の水素吸蔵媒体。
【請求項7】
水素を吸入および排出する口を有し、装置内部に、最大径が10μm以下で深さが100nm以上の孔を複数個有する媒体であって上記孔の深さ方向を薄くした有機高分子製、金属製若しくはセラミックス製の板状体またはフィルムの形態を持つ媒体の表面に上記孔の内面を含めて水素吸蔵合金の薄膜が形成されている水素吸蔵媒体を複数枚配置していることを特徴とする水素吸蔵装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2007−84388(P2007−84388A)
【公開日】平成19年4月5日(2007.4.5)
【国際特許分類】
【出願番号】特願2005−275676(P2005−275676)
【出願日】平成17年9月22日(2005.9.22)
【出願人】(301035851)株式会社フレイン・エナジー (11)
【出願人】(504232321)有限会社エムアイシー (2)
【Fターム(参考)】