説明

液圧作動システムの効率を最適化するシステム及び方法

液圧作動装置を効率的に動作させるシステム及び方法が、本明細書に記載される。例えば、ガス圧縮・膨張エネルギー貯蔵システムを効率的に動作させるシステム及び方法が、本明細書に開示される。例えば、ガス圧縮及び/又は膨張エネルギーシステム等の液圧作動装置/システム内で使用される液圧アクチュエータを、液圧アクチュエータとの加圧液圧流体のやりとりに使用される液圧ポンプ/モータの所望の効率範囲内で制御し動作させるシステム及び方法が提供される。そのようなシステムでは、異なる様々な動作体制が、圧縮ガスの所望の出力ガス圧及び所望の貯蔵圧に応じて使用することができる。システム内の作業ピストンの駆動に使用される液圧シリンダは選択的に作動して、様々な力出力を達成して、所与のサイクルにわたりシステム内のガス圧を増分的に増大させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
[0001]関連出願の相互参照
本願は、「液圧作動システムの効率を最適化するシステム及び方法」という名称の2009年12月24日に出願された米国仮特許出願第61/290,107号の優先権及び利益を主張するものであり、この仮特許出願の開示は参照により本明細書に援用される。
【0002】
[0002]本発明は、一般的には、例えば、圧縮空気エネルギー貯蔵システムの効率を最適化するシステム及び方法を使用してエネルギーを貯蔵する際に使用される、液圧作動システムのエネルギー効率を最適化するシステム及び方法に関する。
【背景技術】
【0003】
[0003]従来、発電所は、ピーク電力需要に対応するようなサイズであった。さらに、発電所のサイズは、最大電力出力、最小電力出力、及び燃料を最も効率的に電気に変換する中間電力出力範囲を考慮しなければならない。発電所は、いかに素早く始動し停止することができるかに関しても制約を受け、発電所を完全に停止させることは一般に実現不可能である。電力出力制約並びに始動及び停止制約の組み合わせは、変動する電力需要を最適に満たす発電所の能力を制限する。これらの制約は、いくつかある欠点の中でも特に、温室効果ガスの放出の増大、全体的な消費燃料の増大、及び/又は潜在的な操業コストの増大に繋がり得る。エネルギー貯蔵システムを用いての発電所の増強は、後で使用するために蓄電する能力を生み出すことができ、それにより、発電所は、これらの欠点を最小に抑えるように、変動する消費需要を満たすことが可能になり得る。
【0004】
[0004]エネルギー貯蔵システムは、発電所の全体的な操業コスト、信頼性、及び/又は放出プロファイルを向上させ得る。しかし、既存のエネルギー貯蔵技術には欠点がある。例として、電池、フライホィール、コンデンサ、及び燃料電池は、高速応答時間を提供し得、一時的な停電の補償に役立ち得るが、限られたエネルギー貯蔵能力を有し、実施にコストがかかり得る。揚水発電システム等の他のより大容量のシステムの設置は、すべての場所で利用できるわけではない特定の地形を必要とする。
【0005】
[0005]いくつかの風力発電地帯等の断続発電地帯は、送電容量を超える容量を有し得る。適したエネルギー貯蔵システムがなければ、そのような断続発電地帯は、フル稼働することができないことがある。断続発電地帯が、送電し得るよりも高い率でエネルギーを生成可能な場合、エネルギーを貯蔵するようなサイズであり得る貯蔵システムから恩恵を受け得ることを本出願人は理解した。貯蔵されたエネルギーは、断続地帯による発電が送電線容量よりも低い場合に、送電線を通して解放し得る。
【0006】
[0006]建物、町、商業施設、軍施設等の電力消費地帯は、定期的に送電能力を超える消費を有し得る。適したエネルギー貯蔵システムがなければ、そのような電力消費者は好ましいレベルで操業することが不可能になり得る。送電により制約を受ける消費地帯が、送電し得るよりも低い率でエネルギーを消費している場合、エネルギーを貯蔵するようなサイズであり得る貯蔵システムから恩恵を受け得ること、及びすぐには消費されない送電エネルギーを貯蔵し得ることを本出願人は理解した。貯蔵されたエネルギーは、消費者の消費電力が送電線容量よりも高い場合に消費者に解放し得る。
【0007】
[0007]圧縮空気エネルギー貯蔵システム(CAES)は、圧縮空気の形態でエネルギーを貯蔵する、使用が限られた別の既知の種類のシステムである。CAESシステムは、電気需要が低い場合、通常、夜間に圧縮空気の形態でエネルギーを貯蔵し、次に、需要が高い場合、通常、日中にエネルギーを解放するために使用し得る。そのようなシステムは、多くの場合は一定速度で動作して、貯蔵のために空気を圧縮する圧縮機を含む。圧縮機とは別に、タービンが通常、圧縮空気を膨張させて発電するために使用される。しかし、タービンでは多くの場合、圧縮空気を、約35気圧等の比較的一定の圧力で提供する必要がある。追加又は代替として、35気圧よりも高い圧力の空気を、タービン内での膨張前に調整する必要があり得、損失を生じさせ、この損失はシステムの効率を低減させ、及び/又は貯蔵構造が対応し得るエネルギー密度を低減させる。加えて、タービンを通して膨張した空気の単位当たりで生成される電気エネルギーを増大させるために、そのようなシステム内の圧縮空気は多くの場合、膨張前に、化石燃料を燃やすことにより高温(例えば、1000C)まで事前に加熱され、これは、システムからのエネルギーのコストを増大させるとともに、エネルギー貯蔵に関連する放出を生み出す。
【発明の概要】
【発明が解決しようとする課題】
【0008】
[0008]圧縮空気としてエネルギーを貯蔵する既知のCAES型システムは、多段階圧縮機を有し、多段階圧縮機は、圧縮段階間の空気を冷却する中間冷却器及び/又は圧縮後の空気を冷却する後置冷却器を含み得る。しかし、そのようなシステムでは、空気はなお、冷却前、各圧縮段階中にかなりの温度に達し得、システムに非効率性をもたらす。したがって、効率を改良したCAES型システムを提供する必要がある。
【0009】
[0009]CAESシステムは、液圧ポンプ等の構成要素を含む液圧構成要素で構成される液圧駆動システムを使用して実施し得る。したがって、圧縮空気エネルギー貯蔵システムの高効率出力を得るシステム及び方法又はそのようなシステムの動作に使用される液圧ポンプ内の液圧流体の圧力及び/又は流量を調整又は変更することができる制御及び動作モードを含むガスの圧縮及び/又は膨張に使用される他のシステムも必要とされる。
【課題を解決するための手段】
【0010】
[0010]液圧作動装置/システムを効率的に動作させるシステム及び方法が、本明細書に記載される。例えば、ガス圧縮・膨張エネルギー貯蔵システムを効率的に動作させるシステム及び方法が、本明細書に記載される。例えば、ガス圧縮及び/又は膨張エネルギーシステム等の液圧作動装置/システム内で使用される液圧ポンプ/モータを、システムのサイクル全体を通してポンプの最大効率範囲内で制御し動作させるシステム及び方法が提供される。そのようなシステムでは、異なる様々な動作体制を、圧縮ガスの所望の出力ガス圧及び所望の貯蔵圧に応じて使用することができる。システム内の作業ピストンの駆動に使用される液圧シリンダは、選択的に作動させることができ、及び/又は可変力出力を達成して、所与のサイクルにわたりシステム内でガス圧を増分的に増大させるように作動させることができる。
【図面の簡単な説明】
【0011】
【図1】実施形態による空気圧縮・膨張エネルギーシステムの概略図である。
【図2A】一実施形態による、圧縮サイクル中のエネルギーの流れを示す空気圧縮・膨張エネルギーシステムの概略図である。
【図2B】一実施形態による、膨張サイクル中のエネルギーの流れを示す空気圧縮・膨張エネルギーシステムの概略図である。
【図3】空気圧縮・膨張システムの一実施形態の一段階を示す。
【図4】圧力容器内で使用することができる仕切りの実施形態を示す。
【図5A】空気圧縮・膨張システムの別の実施形態の一部の概略図である。
【図5B】システムコントローラと、液圧ポンプとを示す、図5Aの空気圧縮・膨張システムの一部の概略図である。
【図6A】図5の空気圧縮・膨張システムのアクチュエータの一部の概略図である。
【図6B】図5の空気圧縮・膨張システムのアクチュエータの一部の概略図である。
【図6C】図5のシステムのアクチュエータの一部の側面図である。
【図6D】図6Cの線6D−6Dに沿った断面図である。
【図6E】図6Cの線6E−6Eに沿った端面図である。
【図6F】図6Cの線6F−6Fに沿った断面図である。
【図7】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図8】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図9】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図10】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図11】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図12】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図13】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図14】実施形態による図5のシステムを用いた空気圧縮プロセスを示す。
【図15】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図16】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図17】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図18】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図19】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図20】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図21】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図22】実施形態による図5のシステムを用いた空気膨張プロセスを示す。
【図23】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図24】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図25】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図26】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図27】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図28】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図29】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図30】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図31】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図32】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図33】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図34】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図35】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図36】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図37】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図38】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図39】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図40】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図41】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図42】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図43】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図44】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図45】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図46】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図47】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図48】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図49】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図50】実施形態による圧縮・膨張システムの動作及び出力に関連する様々なパラメータを示すグラフ例である。
【図51A】実施形態によるアクチュエータの概略図である。
【図51B】アクチュエータの異なるギアを示す図51Aのアクチュエータの複数の概略図を含む。
【図51C】アクチュエータの異なるギアを示す図51Aのアクチュエータの複数の概略図を含む。
【図51D】図51B及び図51Cに示される複数の異なるギアの実施に関連する様々なパラメータを示す表である。
【図52A】別の実施形態によるアクチュエータの概略図である。
【図52B】アクチュエータの異なるギアを示す図52Aのアクチュエータの複数の概略図を含む。
【図52C】アクチュエータの異なるギアを示す図52Aのアクチュエータの複数の概略図を含む。
【図53】別の実施形態によるアクチュエータの概略図である。
【図54A】第1の構成で示される別の実施形態によるアクチュエータの概略図である。
【図54B】第2の構成で示される図54Aのアクチュエータの概略図である。
【図55】別の実施形態によるアクチュエータの概略図である。
【図56】別の実施形態によるアクチュエータの概略図である。
【発明を実施するための形態】
【0012】
[0036]ガス圧縮及び/又は膨張システムを効率的に動作させるシステム及び方法が、本明細書に開示される。ガス膨張及び/又は膨張システムは、1つ又は複数の液圧ポンプ/モータを使用して、システム内でガス及び液体を移動させる(又はガス及び液体により移動する)ことができ、システムの動作サイクル又は行程中、連続又は略連続して最も効率的な体制で液圧ポンプ/モータを動作させるシステム及び方法が、本明細書に記載される。液圧ポンプは、例えば、他のパラメータの中でも特に、流量及び圧力の関数として変更可能な効率的な動作範囲を有することができる。液圧ポンプ/モータを動作させるシステム及び方法が提供されて、液圧ポンプ/モータが、ガス圧縮及び/膨張システムの行程又はサイクル全体を通して最適な効率で機能できるようにする。
【0013】
[0037]本明細書に記載のように、いくつかの実施形態では、液圧ポンプ/モータを使用して、ガス圧縮及び/又は膨張システム内の作業ピストンを駆動(又は作業ピストンにより駆動)することができ、ガス圧縮及び/又は膨張システムでは、作業ピストンは、作業チャンバ内に含まれるガスに対して作用(又はガスにより作用)して、直接又は作業ピストンと作業チャンバ内のガスとの間に配置される液体を通して間接的にガスを圧縮又は膨張させることができる。作業ピストンに加えられる液圧負荷は、システムの所与のサイクル中に変更可能である。例えば、液圧流体圧を液圧ポンプ/モータ内の異なる液圧ピストン及び/又はピストンの異なる表面に加えることにより、液圧アクチュエータの正味作業表面積と作業チャンバ内のガスに対して作用する作業ピストンの作業表面積との比率を変更することができ、したがって、液圧流体圧と作業チャンバ内のガス圧との比率を、システムの所与のサイクル又は行程中に変更させることができる。加えて、作業ピストン/作業チャンバの数及び液圧シリンダの数も、所与のサイクル内のピストン面積比率変更の数と同様に変更することができる。本明細書で使用される場合、「ピストン」という用語は円形断面のピストンに限定されず、三角形、矩形、又は他の多面形状の断面を有するピストンを含むこともできる。
【0014】
[0038]本明細書に記載のガス圧縮及び/又は膨張システムは、圧縮及び/又は膨張の1つ又は複数の段階を含むことができる。例えば、システムは、1段階圧縮/膨張装置、2段階圧縮/膨張装置、3段階圧縮/膨張装置等を含むことができる。本明細書に記載のように、システムは、特定の実施形態を参照して以下に詳細に後述するように、所与の段階内に「ギアシフト」又は「ギア変更」を含むこともできる。本明細書で使用される場合、「ギア変更」又は「ギアシフト」という用語は、アクティブな液圧アクチュエータチャンバ内の液圧流体の圧力と、液圧アクチュエータにより作動する(又は液圧アクチュエータを作動させる)作業チャンバ内のガスの圧力との比率の変更を記述するために使用され、これは本質的に、作業ピストンの加圧表面積と、作業ピストンを作動させる液圧ピストンの加圧表面積の正味面積との比率である。本明細書で使用される場合、「ギア」という用語は、液圧アクチュエータが所与の時間期間に特定のピストン面積比率(例えば、液圧アクチュエータの正味作業表面積と、作業チャンバ内のガスに作用するか、又はガスにより作用される作業ピストンの作業表面積との比率)を有する状態を指すことができる。
【0015】
[0039]いくつかの実施形態では、本明細書に記載の液圧アクチュエータは、例えば、送水ポンプ/モータ内の作業ピストンを駆動するか、又は作業ピストンにより駆動されて、作業チャンバ内に含まれる空気等のガスの圧縮及び/又は膨張に使用される圧力容器の作業チャンバの内外に水(又は他の液体)を移動させるために使用することができる。本明細書に記載のように、アクチュエータは、アクチュエータのサイクル又は行程中に「ギアシフト」又は「ギア変更」(上述)を含むこともできる。いくつかの実施形態では、本明細書に記載のアクチュエータは、圧縮及び/又は膨張装置内に配置された作業ピストンを駆動するか、又は作業ピストンにより駆動されるために使用することができる。例えば、いくつかのそのような実施形態では、作業ピストンを駆動させて、作業チャンバ内の1つ又は複数の流体を圧縮させることができる。本明細書で使用される場合、「流体」は液体、ガス、蒸気、懸濁、エアロゾル、又はこれらの任意の組み合わせを意味することができる。送水ポンプ/モータ並びに/又は圧縮及び/若しくは膨張装置を駆動し、又はこれ(ら)により駆動されるアクチュエータの特定の実施形態が本明細書に記載されるが、アクチュエータの様々な実施形態及び構成を、送水ポンプ、圧縮・膨張装置、圧縮装置、膨張装置、作業ピストンを使用して流体を移動させる他の任意の装置、及び/又は原動力を加えることができるか、又は原動力を提供する任意の装置内の作業ピストンを駆動又は作業ピストンにより駆動されるために使用可能なことを理解されたい。
【0016】
[0040]いくつかの実施形態では、本明細書に記載の装置及びシステムは、圧縮機のみとして使用するように構成することができる。例えば、いくつかの実施形態では、本明細書に記載の圧縮装置は、天然ガスパイプラインの圧縮機、天然ガス貯蔵圧縮機、又はガスの圧縮を必要とする他の任意の産業用途の圧縮機として使用することができる。別の例では、本明細書に記載の圧縮装置は、二酸化炭素の圧縮に使用することができる。例えば、二酸化炭素は、石油増進回収に使用されるプロセスで圧縮することができる。別の例では、本明細書に記載の圧縮装置は、空気の圧縮に使用することができる。例えば、圧縮空気は、他の用途の中でも特に、清掃用途、原動用途、換気用途、空気分離用途、冷却用途を含み得る多くの用途で使用することができる。
【0017】
[0041]いくつかの実施形態では、本明細書に記載の装置及びシステムは、膨張装置のみとして使用されるように構成することができる。例えば、本明細書に記載の膨張装置は発電に使用することができる。いくつかの実施形態では、本明細書に記載の膨張装置は、天然ガス伝送・分配システムに使用することができる。例えば、高圧(例えば、500psi)伝送システムと低圧(例えば、50psi)分配システムとの交点で、エネルギーを解放することができ、そこで、圧力は高圧から低圧に下げられる。本明細書に記載の膨張装置は、圧力低下を使用して発電することができる。
【0018】
[0042]いくつかの実施形態では、本明細書に記載の圧縮及び/又は膨張装置は、空気分離ユニットに使用することができる。一用途例では、空気分離器において、圧縮及び/又は膨張装置をガス液化プロセスに使用することができる。例えば、空気を液化するまで圧縮することができ、空気の様々な成分を沸点の違いに基づいて分離することができる。別の用途例では、圧縮及び/又は膨張装置は、製鋼所内の同じ場所に配置された空気分離器内で使用することでき、製鋼所では、空気のその他の成分から分離された酸素が、溶鉱炉に加えられて、燃焼温度を増大させる。
【0019】
[0043]圧縮及び/又は膨張システムは、異なる様々な構成を有することができ、圧縮/膨張装置内の空気を圧縮/膨張させるために使用される1つ又は複数のアクチュエータを含むことができる。いくつかの実施形態では、アクチュエータは、1つ又は複数のポンプ/モータシステム、例えば、システム内の様々な送水ポンプ/モータと圧力容器との間で1つ又は複数の流体を移動させるか、又は流体により移動するために使用することができる1つ又は複数の液圧ポンプ/モータ等を含むことができる。参照により本明細書に援用される「圧縮及び/又は膨張装置」(本明細書ではまとめて「圧縮及び/又は膨張装置用途」と呼ばれる)という名称の2009年5月22日に出願された米国仮特許出願第61/216,942号と、それぞれが2010年5月21日に出願された米国特許出願第12/785,086号、同第12/785,093号、及び同第12/785,100号とは、本明細書に記載のシステム及び方法を利用可能な様々なエネルギー圧縮及び/又は膨張システムを記載している。
【0020】
[0044]背景として、図1は、エネルギーシステム100の実施形態の概略図であり、この実施形態では、圧縮/膨張装置をエネルギーの貯蔵及び以前に貯蔵されたエネルギーの解放の両方に使用し得る。図1に示されるように、複数の風力タービン104を含む風力発電地帯102を使用して、風力エネルギーを取り入れ、電気エネルギーに変換して、モータ/発電機110に輸送し得る。システム100を、風力発電地帯以外の電気源、例えば、配電網又は太陽電力源等と併用してもよいことを理解されたい。モータ/発電機110は、風力タービン又は他の源から入力された電力を機械力に変換する。次に、機械力を使用して、液圧ポンプ/モータ111を駆動することができる。そして、液圧ポンプ/モータは入力された機械力を液圧力に変換し、液圧力を使用して、圧縮/膨張装置120に接続された液圧アクチュエータ112を駆動することができる。
【0021】
[0045]エネルギーは、圧縮ガスの形態でシステム100内に貯蔵することができ、圧縮ガスは後の期間に膨張させて、以前に貯蔵されたエネルギーにアクセスすることができる。風力発電地帯102により生成されたエネルギーを貯蔵するために、液圧アクチュエータ112は、作業チャンバの容積を変更することができ(例えば、シリンダ内でピストンを移動させることにより)、及び/又は液体を作業チャンバ内に導入させて、作業チャンバ内でガスに利用できる容積を低減することができるため。容積の低減により、ガスが圧縮される。このプロセス中、熱をガスから除去することができる。圧縮中、ガスは圧縮/膨張装置120の下流の段階に輸送され、最終的に、高圧で圧縮ガス貯蔵構造122(本明細書では「空洞」とも呼ばれる)に輸送される。続く時間、例えば、電力網で電力に対して比較的高い需要があるとき、又はエネルギー価格が高いときに、圧縮ガスを貯蔵構造122から伝達させ、圧縮/膨張装置120を通して膨張させ得る。圧縮ガスの膨張により、液圧アクチュエータ112が駆動され、そして液圧アクチュエータ112は、液圧力により液圧ポンプ/モータ111を駆動して機械力を生成し、そして機械力はモータ/発電機110を駆動して発電し、電力網124に送る。比較的低温の熱(例えば、約10℃〜約90℃等)を、膨張中にガスに加えて、膨張プロセス中に単位質量当たりの空気で生成されるエネルギーを増大させ得る。比較的高温の熱(例えば、約90℃を超える)を膨張中に加えて、膨張プロセス中に単位質量当たりの空気で生成されるエネルギーを増大させ得る。
【0022】
[0046]図2Aは、一動作状況例での図1のシステム100と同様の多段階システム200を通るエネルギーの流れの概略図である。ガス、この例では空気が、貯蔵のために圧縮されている。上述したように、例えば、風力発電地帯からの電力を使用して、モータ/発電機210を駆動して機械力を生成し、そして機械力は液圧ポンプ/モータ211を駆動して液圧力を生成し、そして液圧力はアクチュエータ212を駆動する。アクチュエータ212は、低減させる空気を含むために利用できる作業チャンバの容積を低減させ、それにより空気を圧縮する。
【0023】
[0047]図2Aに示されるように、多段階圧縮/膨張装置220は、圧縮/膨張装置220の第1の段階で周囲空気を受け取ることができる。いくつかの実施形態では、周囲空気は任意選択的に、事前圧縮機215内で処理されてから、圧縮/膨張装置220の第1の段階に提供することができる。圧縮中、多段階圧縮/膨張装置220の作業チャンバ内に存在する液体を介して、熱エネルギーを除去して、圧縮中の空気を比較的一定の温度に保つことができる。熱エネルギーは、液体及び圧縮/膨張装置220から、例えば、熱交換器を介して、例えば、ヒートシンクに移すことができる。空気は、一実施形態によれば、例えば、第1、第2、及び第3の各段階で約150psi、1,000psi、及び3,000psiの各圧力を達成してから、約3,000psiの圧力で貯蔵構造222に輸送し得る。圧縮/膨張装置220に提供され、最初に圧縮され冷却された後、空気の温度は、貯蔵構造222に排出されるまで、比較的一定、例えば、約5℃、10℃、20℃、30℃、又は所望であり得る他の温度等に保たれる。貯蔵構造222に貯蔵された空気は、貯蔵構造222が自然により高い(又はより低い)温度である場合、伝導及び対流による伝熱を通して自然に加熱(又は冷却)され得る。例えば、場合によっては、貯蔵構造は地下構造、例えば、岩塩ドームに作られた岩塩空洞等であり得る。図2Aがシステムの一実施形態の一動作状況を示し、他の動作状況も存在し、他のシステム実施形態も意図されることを理解されたい。
【0024】
[0048]図2Bは、空気が貯蔵からエネルギー生成のために伝達する際の一動作状況での図2Aのシステム200を通るエネルギーの流れの概略図である。一動作状況例では、貯蔵構造222内の空気は約3000psiであることができ、圧縮/膨張装置の第3、第2、及び第1の段階を通して、例えば、約1000psi、150psi、及び0psiのそれぞれの圧力まで膨張させることができる。第3、第2、及び第1の各段階での膨張前及び/又は膨張中に熱を空気に加えて、膨張プロセス全体にわたり、空気温度を約35℃又は他の温度等の略一定の温度に保ち得る。膨張中の空気の全体的な温度変化は、比較的小さい容積の圧力容器内で膨張し、かなりの伝熱表面に接触する比較的大量の空気により制限し得ることを理解されたい。空気温度が実質的に、35℃よりも高い温度等に増大するように、熱を空気に加えることが望ましい場合があり得ることを理解されたい。圧縮/膨張装置220は機械力を生成し、機械力は液圧アクチュエータ212により液圧力に変換され、液圧力は液圧ポンプ/モータ211に加えられ、そして液圧ポンプ/モータ211は液圧力を機械力に変換する。機械力はモータ/発電機210に与えられ、モータ/発電機210は機械力を電力に変換する。液圧アクチュエータ以外のアクチュエータを代替として使用可能なことを理解されたい。発電する別の源として、膨張空気が圧縮/膨張装置220の第1の段階を出る際、空気を任意選択的に空気タービン217に提供することができ、空気タービン217は空気を機械力に変換することができる。機械力はモータ/発電機219に与えることができ、モータ/発電機219は機械力を電力に変換する。
【0025】
[0049]図3は、圧縮/膨張装置320と、アクチュエータ312とを含む圧縮空気貯蔵システム300の一部を示す。圧縮/膨張装置320は、圧縮空気貯蔵システムの一段階を示す。圧縮/膨張装置320は、第1の圧力容器324と、第2の圧力容器326とを含む。第1及び第2の圧力容器324、326のそれぞれは、導管又は筐体328及び330のそれぞれによりアクチュエータ312に流体的に結合される。アクチュエータ312は、液圧駆動ピストン332を含む送水ポンプを含むことができる。ピストン332は、筐体又は槽340内に配置され、1つ又は複数の液圧ポンプ(図3に示さず)を用いて駆動して、第1の圧力容器324の導管328に近づくように、そして離れるように移動させ、第1の圧力容器324の内部空気容量を交互に低減させ、次に増大させる(第2の圧力容器326内の空気容量を等量であるが、逆に増大させ、そして低減させる)。第1及び第2の圧力容器324、326のそれぞれには、水等の液体が少なくとも部分的に充填され、液体はアクチュエータ312により移動して、圧縮モードで動作する場合には、第1及び第2の圧力容器324、326のそれぞれの容積から空気を交互に圧縮して駆動し、又は膨張モードで動作する場合には、第1及び第2の圧力容器324、326のいずれかで受けられた圧縮空気により移動する。
【0026】
[0050]各圧力容器324、326は、ガスを圧縮し、及び/又は膨張させる作業チャンバを画定すると見なすことができる。作業チャンバは、圧力容器の容積により画定される容積を有する。作業チャンバは、ガスを含むことができるこの容積の部分と、液体を含む部分とを有し、ガスを含む容積の部分は、作業チャンバの全容積から、液体を含む部分の容積を引いたものに等しい。液体をポンプシリンダから圧力容器内に促す送水ポンプの動作により、ガスを含むことができる作業チャンバの部分の容積が低減し、したがって、その部分に含まれているガスを圧縮する(例えば、圧縮サイクル中)。同様に、液体を圧力容器から送水ポンプに移す送水ポンプの動作により、ガスを含むことができる作業チャンバの部分の容積を増大させることができ、ガスを膨張させる。又は、作業チャンバは、圧力容器と、圧力容器と流通する送水ポンプの部分(すなわち、作業ピストンの片側)と、圧力容器と送水ポンプとを接続する任意の導管又は他の容積とにより画定されるものとみなすことができる。そのように画定される場合、作業チャンバは可変容積を有し、容積は作業ピストンの移動により変更可能である。可変容積の部分は液体(例えば、水)で占めることができ、その一方で、残りの部分はガス(例えば、空気)で占めることができる。作業チャンバ内に含まれるガスの圧力は、作業チャンバ内に含まれる任意の液体の圧力及び作業ピストンの対応する側又は面に対して作用する圧力に本質的に等しい。
【0027】
[0051]圧縮/膨張装置320は、第1及び第2の圧力容器324、326の内部内に位置決めすることができるフィン、仕切り、及び/又はトレイ334を含むこともできる。仕切り334は、空気に直接又は間接的に接触する圧力容器内の全体面積を増大させることができ、それにより、伝熱を向上させることができる。仕切り334は、圧力容器の外側構造並びに全体的な形状及びサイズを、圧力制限及び/又は輸送サイズ制限等の他の考慮事項に向けて最適化させることが可能でありながら、圧縮中の空気と、膨張中の空気との両方に伝熱面積の増大を提供することができる(空気/液体界面面積又は空気/仕切り界面のいずれかを通して)。
【0028】
[0052]この実施形態では、仕切り334は第1及び第2の圧力容器324、326内に積み重ね構造で配置される。各仕切り334は空気ポケットを保持するように構成することができる。例示的な一実施形態では、各仕切り334は、上壁と、圧力容器の内壁に形状が一致し、圧力容器の内壁にサイズが実質的に一致し得る下向きに延びる側壁と、開放底部とを含むことができる。各仕切り334の開放底部は、圧力容器が動作用に向けられた場合、共通する実質的に下向きの方向に面する。図は、圧力容器324、326の内部とサイズ及び形状が一致し、一般に互いに同様の形状の仕切りを示すが、他の構成の中でも特に、圧力容器の内部よりもはるかに小さな幅であり、及び/又は互いに異なる形状及びサイズの仕切りを含む実施形態を含め、他の構成も可能であり、意図されることを理解されたい。例えば、米国仮特許出願第61/216,942号に図示され記載される仕切り及び上記参照により本明細書に援用される圧縮及び/又は膨張装置出願等の様々な他の形状及び構成の仕切りを使用することもできる。図4は、使用可能な仕切りの別の代替の実施形態を示す。仕切りが、熱交換に利用できる面積を増大させるとともに、仕切りと空気との近接性を最大化するフィン構造(ピン又はロッドのアレイ及び他の多孔性構造)を含み、空気ポケットを保持しない仕切りが意図されることも理解されたい。いくつかの実施形態では、仕切りは、水の膜をサポートする構造であり得る。いくつかの実施形態では、間に空の空間を有する仕切りではなく、ピン又はロッドのアレイ、不定形構造、多孔性構造等の中間構造を間に有することができる。
【0029】
[0053]図3に示されるように、マニフォルド336が、積み重なった仕切り334を通して中央に延びることができ、各仕切り334を圧力容器324、326の流入/流出口338に流体的に結合することができる。他の実施形態では、マニフォルドは複数の管を含んでもよく、及び/又は積み重なった仕切りの周縁又は他の位置に配置してもよい。空気は、流入/流出口338を通って圧力容器324、326に流入及び/又は流出し、各仕切り334に関連付けられた空気ポケット間で流通するための導管を提供することができる。仕切りが空気ポケットを保持しない実施形態等の他の実施形態では、マニフォルドを含まなくてもよい。
【0030】
[0054]上述したように、熱は、圧力容器内の液体(例えば、水)により圧縮され及び/又は膨張する空気から伝えることができ、及び/又はそのような空気に伝えることができる。空気/液体界面又は空気/仕切り界面(例えば、部分的に上述した仕切りにより提供される)は、圧縮及び/又は膨張プロセス中に圧力容器内で移動し得、及び/又は形状を変更させ得る。この移動及び/又は形状変更は、圧縮/膨張装置に伝熱面を提供し得、伝熱面は、圧力容器の内部領域の形状変化に対応することができ、伝熱面を通して、圧縮及び/又は膨張中に伝熱することができる。いくつかの実施形態では、液体により、圧縮後に圧力容器内に残っている空気容量を略なくすか、又は完全になくす(すなわち、隙間容積なし)ことができる。
【0031】
[0055]液体(水等)は、ガス(空気等)と比較して相対的に高い熱容量を有することができ、したがって、ガスから液体への熱エネルギーの伝導は、ガスの温度上昇を大幅に低減するが、液体の温度はわずかに増大するだけである。これにより、大きな温度変化からシステムを緩衝することができる。ガス及び液体と容器自体の構成要素との間で伝導する熱は、液体又は容器の構成要素に接触した1つ又は複数の熱交換器を通して圧力容器から、又は圧力容器に移動し得る。これを達成するために使用可能な熱交換器の一種は、さらに詳細に後述するように、ヒートパイプである。
【0032】
[0056]したがって、圧力容器内の液体は、圧縮された空気から(又は膨張した空気へ)の伝熱に使用することができるとともに、熱交換器と組み合わせて動作して、熱を外部環境に(又は外部環境から)伝導することもできる。例として、図3に示されるように、圧力容器324及び326の壁を通って延びるヒートパイプ342の円形アレイを含む熱交換器は、容器内の液体と外部環境との両方に接触することができる。ヒートパイプ342は、圧力容器の液体との伝熱に使用可能な熱交換器の種類の単なる一実施形態例である。他の種類の熱交換器及び他のヒートパイプ構成を代替として使用可能なことを理解されたい。例えば、他の熱管理装置、例えば、フィン、ピン、対流誘導形状、及び/又は渦誘導形状等を使用することができる(代替又は追加として)。
【0033】
[0057]図3の実施形態は、空気圧縮・貯蔵システム内で使用可能な圧力容器及びアクチュエータの構成の一例である。他の構成も可能であり、意図されることを理解されたい。例として、アクチュエータは、垂直に向けられた1つの二重に動作するピストンを含むものとして示されるが、他の実施形態は、水平に向けられたピストン及び/又は複数の液圧ピストンを含むアクチュエータを有する筐体を含み得、ピストンは並列に動作して、圧力容器内の流体を移動させる。いくつかの実施形態によれば、アクチュエータは、ピストンを全く含まなくてもよく、その代わり、流体を圧力容器内外に移動させるポンプを備え得る。追加又は代替として、いくつかの実施形態によれば、複数のポンプ及び/又はピストンを並列に使用して、流体を圧力容器内外に移動させることができる。さらに、システムの実施形態は図示される実施形態に限定されないため、他の実施形態によれば、液圧ピストン等のアクチュエータは、システムのモータ/発電機に直接の機械的接続を有してもよい。
【0034】
[0058]図5A〜図18は、2段階エネルギー圧縮・膨張システム400の例を示す。図5Aは、システム400の一部の概略図である。段階1は、アクチュエータ412と流通して接続された一対の圧力容器424、426を含む。例えば、様々な種類の導管又は筐体(図5Aに示されるような)を使用して、アクチュエータ412の様々な構成要素を圧力容器に流体的に結合することができる。圧力容器424、426のそれぞれは、前の実施形態について上述したように、仕切り又はトレイ(図5Aに示さず)を含むことができる。アクチュエータ412は、後述するように、液圧アクチュエータ又はシリンダにより駆動される送水ポンプを含む。図5Aに示されるように、アクチュエータ412は送水ポンプ444A、444B、及び446を含む。この実施形態では、送水ポンプ444A及び444Bは2つの部分で構築されて、ポンピング機器の高さを低減し、この実施形態では、送水ポンプ444A及び444Bは1つのポンプとして共に動作する。送水ポンプ444A、444B、及び446のそれぞれは、一対の液圧シリンダを用いて液圧駆動される送水ピストン又は作業ピストンを含む。送水ポンプ444Aは液圧シリンダ452及び454に結合され、それらのシリンダにより駆動され、送水ポンプ444Bは液圧シリンダ456及び458に結合され、それらのシリンダにより駆動され、送水ポンプ446は液圧シリンダ448及び450に結合され、それらのシリンダにより駆動される。共通の駆動ロッドが、水ピストンを各液圧シリンダに結合する。段階1の液圧シリンダはすべて、図5Bに示されるように、第1の高効率液圧ポンプ414により制御することができる。液圧ポンプ/モータ、例えば、Artemis Intelligent Power Ltd.製のArtemis Digital Displacement液圧ポンプ等を使用することができる。使用可能な液圧ポンプの他の例は、「デジタル流体ポンプ」という名称の米国特許第7,001,158号及び「流体作業機械」という名称の米国特許第5,259,738号に記載されており、これらを参照により本明細書に援用する。
【0035】
[0059]図5Bに示されるように、システムコントローラ又は液圧コントローラ416を使用して、液圧ポンプ/モータ414を動作させ制御することができる。液圧ポンプ/モータ414は、システムの様々な送水ポンプ(又は作業アクチュエータ)に関連付けられた液圧シリンダの各端部に接続することができる。弁が、液圧シリンダの各端部(すなわち、各液圧チャンバ)と液圧ポンプとの間に結合され、例えば、液圧コントローラ416の制御下で選択的に開閉して、液圧ポンプ414の出力と各液圧シリンダの各液圧チャンバとを流体的に結合又は流体的に分離し、特定の液圧シリンダ、より詳細には特定の液圧シリンダ内の液圧ピストンの特定の側(例えば、より詳細に後述するように、ブラインド側及び/又はロッド側)を選択的に作動させることができる。各弁は、図5Bでは418で示される。
【0036】
[0060]図5Aに示されるように、システム400の段階2は、アクチュエータ413に流通して接続された一対の圧力容器462及び464を含み、アクチュエータ413は送水ポンプ466及び468を含む。段階1の構成と同様に、各圧力容器462及び464は仕切りを含むことができ、各送水ポンプ466及び468は水ピストンを含み、水ピストンは、図5Aにも示される一対の液圧シリンダにより液圧駆動される(又は、膨張モードでは、液圧シリンダを駆動する)。送水ポンプ466は液圧シリンダ470及び472に結合され、それらのシリンダにより駆動され、送水ポンプ468は液圧シリンダ474及び476に結合され、それらのシリンダにより駆動される。段階2の液圧シリンダはすべて、段階1と同様にして、同じ液圧コントローラ416又は第2の液圧コントローラ(図示せず)を使用して第2の高効率液圧ポンプ/モータ(図示せず)により駆動されるか、又は第2の高効率液圧ポンプ/モータを駆動することができる。段階2の液圧シリンダが、様々な構成の液圧ポンプ/モータにより駆動され、又はそれ(ら)を駆動することができること、及びシステム400が、例えば、1個、2個、3個、4個、又は5個以上の液圧ポンプ/モータを有し得ることを理解されたい。
【0037】
[0061]第1の段階の第1及び第2の圧力容器424及び426のそれぞれは、導管により第2の段階の圧力容器462及び464に流体的に結合され、導管は1つ又は複数の弁(図5Aに示さず)を含み、対応する圧力容器の容積間の流通を選択的に開閉し得る。段階1の第1及び第2の圧力容器424及び426もそれぞれ弁(図示せず)を含むことができ、弁は開いて、環境からの空気(例えば、大気圧の)又は任意選択的に大気圧から所望の圧力、例えば、1〜3バールに事前圧縮された空気を受け入れることができる。追加の弁を段階2の圧力容器と、システムからの圧縮空気を貯蔵し得る貯蔵構造又は空洞(図示せず)との間に使用することができる。弁は、様々な構成要素を接続する導管に沿った位置に結合し配置してもよく、又は構成要素に直接結合してもよい。
【0038】
[0062]図6Aは、送水ポンプ446を含むアクチュエータ412の一部の様々な構成要素と、対応する液圧シリンダ448及び450とを概略的に示し、図6Bは、液圧シリンダ448の様々な構成要素を概略的に示す。しかし、システム400の第1の段階及び第2の段階の両方の送水ポンプ及び液圧シリンダのそれぞれを、送水ポンプ446及び液圧シリンダ448と同様に構築し、同じように機能することができることを理解されたい。図6Aに示されるように、送水ポンプ446は、液体、例えば、水W等を含むことができる(しかし、他の作業液体を使用することもできる)円筒形水槽又は筐体482と、水ピストン又は作業ピストン474と、ピストン474に結合された駆動ロッド476とを含む。駆動ロッド476は、液圧シリンダ448及び450の液圧駆動ピストン478及び480のそれぞれにも結合される。したがって、液圧シリンダ448及び450を使用して、ピストン474を筐体482内で前後に動作又は駆動させて、内部に含まれる水Wを加圧し移動させることができる。水筐体482は、ピストン474の各側に1つずつ、2つの部分に分割される。各部分は、上述した圧力容器(図6Aに示さず)等の圧力容器に流通する。上述したように、作業ピストン474の各側は、圧力容器内に含まれるガスと同じ圧力がかかり、それを用いて作業ピストン474のその側は、空気を含む作業チャンバとの境界をなす。
【0039】
[0063]図6Bは、液圧シリンダ448を概略的に示す。図6Bに示されるように、液圧シリンダ448は円筒形筐体484を含み、筐体484内に、液圧駆動ピストン478が移動可能に配置される。上述したように、駆動ピストン478は駆動ロッド476に結合される。より詳細に後述するように、液圧シリンダ448の筐体484内で、液圧流体Hfを内外に汲み入れ、汲み出すことができる。
【0040】
[0064]液圧シリンダ448の筐体484は内部容積を画定し、内部容積は、駆動ピストン又は液圧ピストン478により液圧シリンダの行程中の任意の所与の時間に2つの部分に分けられる。図6Bに示されるように、駆動ピストン478の上(すなわち、ピストン478のロッド476とは逆の側)の筐体484内の内部容積の部分は、本明細書では「ブラインド側」又は「ボア側」Bと呼ばれ、駆動ピストン478の下(すなわち、ロッド476と同じ側)に示される筐体484内の内部容積の部分は、本明細書ではロッド側Rと呼ばれる。液圧シリンダを駆動するために、液圧流体Hfを駆動ピストンの片(又は両)側から各液圧シリンダ内に汲み入れて、システム内で様々な圧力及び流量を達成することができる。例えば、エネルギーを貯蔵するために空気を圧縮するプロセスの様々なステップにおいて、加圧液圧流体Hfを、所望の出力圧力、流量、及び/又は圧縮サイクル若しくは膨張サイクルの様々なステップで望まれる力の方向に応じて、筐体484のブラインド側Bのみ、ロッド側Rのみ、又は両側に汲み入れることができる。
【0041】
[0065]例えば、送水ポンプ446並びに関連付けられた液圧シリンダ448及び450を参照すると、筐体482内で作業ピストン474を移動させて、部分的に作業ピストンにより境界付けられる作業チャンバの容積を変更するには、液圧シリンダ448及び450の一方又は両方を所与の時間期間に作動させて、所望の力を提供し、ピストンを移動させることができる。例えば、ピストン474を上方に移動させるには、液圧流体を液圧シリンダ450のブラインド側に汲み入れることもブラインド側及びロッド側の両方に汲み入れることもでき、又は液圧流体を液圧シリンダ448のロッド側に汲み入れることができ、又はこれらの任意の組み合わせも可能である。ピストン474を下方に移動させるには、液圧流体を液圧シリンダ448のブラインド側、液圧シリンダ448のブラインド側及びロッド側の両方、液圧シリンダ450のロッド側、又はこれらの任意の組み合わせに汲み入れることができる。これらの各モードでは、液圧流体の圧力を受ける液圧ピストンの合計面積が異なるため、異なる力を作業ピストン474にかける。液圧流体の圧力変更が、槽加圧の組み合わせの変更と共に働いて、ピストンを移動させる広範囲の力を提供可能なことを理解されたい。
【0042】
[0066]システム400は、液圧ポンプの所望のエネルギー効率範囲内で動作するように構成することができる。液圧ポンプの動作圧範囲及び水ピストンの表面積と液圧駆動ピストンの表面積との比率(本明細書では「ピストン比率」とも呼ばれる)を使用して、圧縮プロセスの最適な動作シーケンスを決定することができる。加えて、サイクルの特定の時点で水ピストンを移動させるために、どの液圧ポンプを作動させるかを変更することにより、システム内の圧力をさらに変更することができる。ポンプは、空気ピストン行程として連続して動作することができる圧力及び流れの好ましい範囲を有する。
【0043】
[0067]例えば、図6C〜図6Fに示されるように、水ピストン474は、水ピストンの両側で同じである表面積SA(すなわち、水ピストン474の外周及びロッド476の外周を境界とする環状面積)を有する動作面490を有し、液圧駆動ピストン478は、ブラインド側に表面積SA(すなわち、液圧駆動ピストンの外周のみを境界とする円形表面積)を有する動作面492と、ロッド側に表面積SA(すなわち、液圧駆動ピストンの外周及びロッドの外周を境界とする環状面積)を有する動作面494とを有する。ピストンの動作表面積は、液圧流体圧により力がかけられるピストンの表面積である。したがって、液圧シリンダが、加圧液圧流体をブラインド側に通すことにより作動する場合、液圧ピストンの有効表面積は、同じ圧力がロッド側に伝えられる場合よりも大きい(すなわち、SA>SA)。したがって、所与の液圧流体圧の場合、液圧流体圧がブラインド側にかけられる場合、ロッド側にかけられる場合よりも大きな力がロッド476にかけられる(方向は異なるが)。所与の液圧で、ピストンの両側に液圧流体圧をかけることにより、さらに異なる量の力を生成することも可能である。再生モードと呼ばれるこの動作モードでは、正味ピストン面積は、ブラインド側の面積SAとロッド側の面積SAとの差に等しい。この正味面積はロッドの断面積に対応し、SA(b−r)と呼ばれる。
【0044】
[0068]いくつかの実施形態では、液圧駆動ピストン478及び液圧駆動ピストン480に関連付けられた表面積の組み合わせが加圧されて、ロッド476への所望の出力が達成され、これは、水Wの第2の圧力に対応し得る。すると、所与のギアに加圧される有効又は正味動作表面積Anetは、液圧流体で加圧される液体シリンダ448及び450の様々な部分に関連付けられた表面積の和に等しい。表面積の和は、液圧ピストンの表面積SAと呼ぶこともできる。他の実施形態がアクチュエータ412内の様々な表面積に伝えられる液圧流体圧が互いに異なり得る実施形態を含むことを理解されたい。
【0045】
[0069]作業ピストン又は水ピストンの表面積SAと液圧ピストンの表面積SAとの比率は、サイクルの所与の時点で所望の水圧、ひいてはガス圧を達成するために必要な液圧を決定付ける。所与の送水ポンプ/液圧シリンダセットで表面積の比率を変更することにより、液圧が同じレベルの場合、圧縮サイクル内の異なる時点で、様々なレベルの水圧を達成することができる。特定の水圧(及び/又は空気圧)を達成するために必要な液圧流体の圧力は、以下のように計算することができる。
(液圧流体の力)=P(液圧)×SA(SA、又はSA、又はSA(b−r)
(水に加えられる力)=P(水圧)×SA
=F
×SA=P×SA
=P×(SA/SA)及びP=P×(SA/SA
【0046】
[0070]各液圧ポンプの最大及び最小動作圧は、例えば、液圧ポンプが所望のエネルギー効率以上で動作する動作圧範囲の限度として確立することができる。この圧力範囲を使用して、液圧ポンプの最大効率範囲内の動作に近づくか、又はそのような動作を達成するようにシステムを動作させるために、圧縮サイクル中の様々な時点で必要なピストン比率(例えば、(SA/SA))を決定することができる。例えば、最大効率動作圧300バールを有する液圧ポンプの場合及び空気(ひいては水)の所望最大出力圧は30バールであり、加圧サイクルの終わりで必要とされるピストン比率(すなわち、(SA/SA))は、水圧及び空気圧が30バールに達する場合、10:1である。それに対応して、液圧ポンプが、最小効率動作圧120バールを有し、空気がシステムに3バールで入る場合、加圧サイクルの開始時に必要とされるピストン比率(すなわち、SA/SA))は、水圧及び空気圧が3バールである場合、40:1である。必要とされる送水ポンプ及び液圧ポンプの数と、様々な送水ポンプ/液圧セットのピストン比率(及び液圧シリンダ及び送水ポンプの対応するサイズ)とは、システムが圧縮サイクル全体で所望の効率範囲内で動作することができる(すなわち、空気を3バールから30バールに圧縮する)ように決定することができる。システム内の圧力の増分的な増大及びこの出力の達成に使用することができる異なる様々な動作シーケンスがある。300バールよりも高い又は低い最大動作圧及び120バールよりも高い又は低い最小動作圧を有する液圧ポンプを使用して、この手法を適用することもできることが理解される。
【0047】
[0071]圧縮サイクル又は膨張サイクル中の所与の時間で、アクチュエータ412は、その時間にアクチュエータ内で加圧されているピストン面積比率に関連付けられた特定の「状態」又はギアにあるものとして言及される。上述したように、システムが、液圧アクチュエータ内の液圧流体の圧力と、液圧アクチュエータにより作動する送水ポンプ内の水圧との比率(すなわち、水ピストンの加圧表面積と、水ピストンを作動させる液圧ピストンの正味動作加圧表面積との比率)を変更する場合、これは「ギアシフト」又は「ギア変更」と呼ばれる。システムの特定の動作シーケンスに組み込むことができるギア変更(ピストン表面積比率の変更)の異なる様々な組み合わせ又はシーケンスがある。
【0048】
[0072]各送水ポンプが2つの同一の関連付けられた液圧シリンダを有して、送水ポンプを作動させるシステム400の例では、2つのアクチュエータで可能な16の状態、すなわち、各チャンバが加圧され、又は加圧されないあらゆる組み合わせ(2つの状態と4つのチャンバで、2個の組み合わせ)がある。同一の液圧シリンダ(すなわち、各シリンダのブラインド側面積が同じであり、各シリンダのロッド側面積が同じである)の場合、各作業ピストン又は水ピストンを各方向で作動させるために使用することができる4つの異なる可能なギア(ピストン面積比率に関連付けられる)がある。例えば、水ピストンを1つの送水ポンプ内で上方に移動させるには、(1)上部液圧シリンダのロッド側(又は、上部液圧シリンダのロッド側及び両シリンダのブラインド側−互いに相殺する)、(2)下部液圧シリンダのブラインド側(又は下部シリンダのブラインド側及び両シリンダのロッド側−互いに相殺する)、(3)下部液圧シリンダのブラインド側及びロッド側の両方、又は(4)上部液圧シリンダのロッド側及び下部液圧シリンダのブラインド側の両方に液圧流体を汲み入れることができる。いずれのチャンバも加圧されない状態は、作業ピストンに対していかなる力も生み出さず、すべてのチャンバが加圧される状態も作業ピストンに対していかなる力も生み出さない(同一のシリンダに対して)。図5Aに示される実施形態では、各状態には、一方が他方の後に作動する2つの送水ポンプが構成され、この実施形態では、各送水ポンプが4つの可能なギアを有するため、圧縮プロセスは8つの可能なギアを有する。他の実施形態が、アクチュエータ412の様々な表面積に伝えられる液圧流体圧が互いに異なり得、各送水ポンプで5つ以上の可能なギアを生み出し得る実施形態を含むことを理解されたい。4つの可能なギアを達成可能なアクチュエータの場合、4よりも少数のギア、例えば、3つのギアを使用することが好ましい場合があることが理解される。そのような好ましさの理由は、ギアシフト事象に対する流体及び/又は機械構成要素の動的応答が関わり得る。それに対応して、2つの送水ポンプが構成された実施形態は、可能な8つのギアのうちの5つ、6つ、又は7つを使用して動作し得る。さらに、圧縮プロセスは、圧縮空気貯蔵容器の現在圧に従って変更することもでき、例えば、貯蔵容器が比較的低圧である場合、好ましい圧縮プロセスは、可能な8つのギアのうちの1つ、2つ、3つ、4つ、5つ、6つ、又は7つを使用し得る。
【0049】
[0073]他の実施形態では、アクチュエータは、例えば、液圧シリンダの数、液圧ピストンが移動可能に配置される液圧シリンダの筐体のサイズ(例えば、直径)、液圧シリンダの筐体内に配置される液圧ピストンのサイズ(例えば、直径)、液圧ピストンに結合される駆動ロッドの数及びサイズ、及び/又は作動させるべき作業ピストンのサイズに基づいて、異なる数の可能な異なるギア及びギア変更を有するように構成することができる。アクチュエータのさらなる例について、図51A〜図51D、図52A〜図52C、図53、図54A、図54B、図55、及び図56を参照して後述する。
【0050】
[0074]したがって、液圧時間プロファイルを必要に応じて変更して、特定の出力空気圧を達成することができる。液圧ポンプシステムの効率範囲により、所望の空気圧範囲(入力又は開始圧と出力又は終了圧との差)に必要であり得るギアの数及びギアシフトの数を決めることができる。例えば、液圧ポンプの効率範囲が狭いほど、多数のギアが所与の空気圧範囲に必要であり得る。ギアのサイズ及び数は、システムの特定の動作速度(RPM)にも依存し得る。
【0051】
[0075]図7〜図14は、システム400を使用し、システムの行程又はサイクル全体を通して最大(又は所望の)効率範囲内でシステムを動作させるか、又は最大(又は所望の)効率範囲に近づける空気圧縮サイクルを示す。この例では、最適化プロセスは、プロセスの各段階に4つの異なるギアを含み、動作を液圧システムの最適効率範囲内に維持する動作体制を利用する。この例では、4つのギアモードが、2つの送水ポンプを逐次使用することにより達成され、各ギアモードは2又は3つのギアを使用する。システム400は、例えば、段階1で空気を3バールから30バールに圧縮し、次に、段階2で30バールから180バールに圧縮するように構成することができる。これが使用可能な単なる一動作シーケンス例であることを理解されたい。システムの水圧、ひいては空気圧は、所与のサイクル中に徐々に上昇させることができる。システムが様々なギアシフトのそれぞれを通して進むにつれて、液圧流体の圧力は、液圧システムの最小効率動作圧(例えば、120バール)から液圧システムの最大効率動作圧(例えば、300バール)に増大する。液圧ポンプ/モータの所望の最大動作圧にサイクルの各ギアモード内で達すると、システムはシーケンス内の次のギアにシフトする。
【0052】
[0076]図7は、上述したシステム400の様々な構成要素に対応する参照番号を含むとともに、様々な送水ポンプ及び圧力容器を接続する導管又は筐体を含む。図7〜図14には明白に示されないが、段階1の下部液圧シリンダ450、454、458のそれぞれは、筐体が収容する液圧シリンダを示すように記された支持筐体内部に包まれる。
【0053】
[0077]図7は、空気を外部環境から直接(すなわち、大気圧)又は事前圧縮機から(例えば、3バール)第1の段階の第1の圧力容器424内に受け取ることを含む、圧縮サイクルの開始状況を示す。図8〜図10及び図12〜図14は、システムの圧縮サイクルの段階1及び段階2の両方の液圧シリンダに関する水流及び空気流と、駆動方向とを示す。図11〜図14は、第1の段階の第2の圧力容器426内での受け取った空気を圧縮する完全サイクルを示す。したがって、図11は、第1の圧力容器424内でまず受け取った空気を圧縮するサイクルの終わりを示すとともに、第2の圧力容器426内でまず受け取った空気を圧縮することを含むサイクルの開始時点も示す。システム400の完全な1サイクル(図7〜図11又は図11〜図14)は、例えば、合計で6秒であり得る。
【0054】
[0078]図7の例に示されるように、圧縮サイクルは、段階1及び段階2の両方を含み、例示のために、以下の状態で開始することができる、すなわち、段階1の第1の圧力容器424及び段階2の第2の圧力容器426のそれぞれに水が充填され、段階1の第2の圧力容器426及び段階2の第1の圧力容器464のそれぞれに空気が充填されている。圧縮行程は、段階1の送水ポンプ444A及び444Bを駆動し、段階2の送水ポンプ466を駆動することにより開始される。段階1の第1の圧力容器424と事前圧縮機(図示せず)との間の弁(図示せず)を開き、空気を取り込み、圧力容器424に接続された導管に入れることができる。段階1の第2の圧力容器426と段階2の第2の圧力容器462との間の弁(図示せず)を開いて、2つの圧力容器間を流通させることができる。段階2の第1の圧力容器464と貯蔵空洞(図示せず)との間の弁(図示せず)は、圧縮行程の開始時に閉じることができ、圧縮行程のある時間、例えば、圧力容器464内の空気圧が貯蔵空洞(図示せず)の空気圧と略等しい場合、開くことができる。
【0055】
[0079]システムが3つの空気操作プロセスを協調して動作させることを認識することが重要である。したがって、認識すべき3つの空気容量がある。すべての圧縮行程中、システムに略一定の吸入圧で引き込まれる1つの空気容量があり、2つの異なる圧力で同時に圧縮する2つの空気容量がある。例えば、第1の空気容量が、例えば、3バールの略一定の圧力で吸入され、第2の空気容量は、例えば、3バールから30バールに圧縮され、第3の空気容量は、例えば、30バールから排出圧(空洞圧に伴って変化する)、例えば、180バールまで圧縮される。図8は、送水ポンプ444A及び444Bと、送水ポンプ466との同時作動を通しておおよそ中間の圧縮行程を示す。図8を参照すると、吸入圧の第1の空気容量は圧力容器424に入り、第2の空気容量は圧縮を開始し、圧力容器426から圧力容器462に移り、第3の空気容量は圧縮を開始し、圧力容器464から貯蔵空洞(図示せず)に移される。図8は、圧力容器464内の空気圧が、貯蔵空洞内の空気圧との均等性を達成し、したがって、圧力容器464と貯蔵空洞との間にある弁(図示せず)が開かれて、空気を圧力容器464から貯蔵空洞に移すことができる例及び状況を示すことに留意する。圧力容器464から貯蔵空洞への空気移送の過程で、付随する空気圧縮が生じ得、空気の圧力増大が、圧力容器464と貯蔵空洞との相対容量により決まり得ることが認識される。
【0056】
[0080]図8及び図9は、圧縮サイクルの開始部分を示す。空気は、圧縮サイクルの開始部分中、空気圧縮が進むにつれて生成されるより高い空気圧と比較して低圧であるため、圧縮サイクルの開始には、6ギアシーケンスの「ハイエンド」を使用し、6ギアシーケンスの「ローエンド」の使用に進む。図8及び図9は、6番目のギアから次に「最も低い」ギア、この例では、「5番目の」ギアへのギアシフトを含み得、5番目のギアからさらに次に最も低いギア、この例では「4番目の」ギアへのギアシフトも含み得る。図8に示される空気、水、及びピストンの移動に関して、段階1において、6番目のギアは、液圧弁(図示せず)を作動させて、液圧ポンプ/モータ(図示せず)により出力された加圧液圧流体を、上部液圧シリンダ452のロッド側チャンバ及びブラインド側チャンバと、下部液圧シリンダ458のロッド側チャンバ及びブラインド側チャンバと流体的に結合し、加圧液圧流体をこれらのチャンバに汲み入れることを含むことができる。これは、各アクチュエータにより送水ポンプ444A内のピストンを下方に移動させ、送水ポンプ444B内のピストンを上方に移動させる。段階2では、6番目のギアは、液圧弁(図示せず)を作動させて、液圧ポンプ/モータ(図示せず)により出力された加圧液圧流体を、下部液圧シリンダ472のロッド側チャンバ及びブラインド側チャンバに流体的に結合することを含むことができる。これは、アクチュエータにより送水ポンプ466内のピストンを上方に移動させる。
【0057】
[0081]ピストン444A及び444Bと、ピストン466とが行程の終わりに達する(図9に示されるように)前に、6番目から5番目へ、5番目から4番目へ、そして4番目から3番目へのギアシフトを開始しておくことができる。(図9が、4番目のギアの終わり及び/又は3番目のギアの開始の両方を示すことに留意する)。6番目から5番目へのギアシフトが開始されると、加圧液圧流体を液圧ポンプ/モータから液圧シリンダ454及び456と、液圧シリンダ470とのロッド側チャンバに供給する弁(図示せず)が開かれる。これらの弁を開けることにより、液圧シリンダ452及び458と、液圧シリンダ472とからすでに来ているピストンロッドの「押し」が、液圧シリンダ454及び456と、液圧シリンダ470とからのピストンロッドの「引っ張り」で補強される。上述したシーケンスが、SA<SA(b−r)である実施形態に対応し、表面積が異なる相対サイズである、例えば、SA>SA(b−r)である実施形態、6番目のギアと5番目のギアとを達成する加圧の組み合わせが異なり得、したがって、好ましい加圧シーケンスも異なり得ることを理解されたい。
【0058】
[0082]加圧流体の供給源と流通させる弁に加えて、すべての液圧シリンダチャンバにも、低圧液圧流体槽(図示せず)と流通させ得る弁(図示せず)を準備することができ、これらの弁が開いた場合、関連付けられた液圧チャンバ流体は、液圧槽の低圧を実質的に維持し、液圧流体が流れることができ、それにより、液圧ピストンを移動させることができることが理解され、当業者には馴染みがあろう。加圧液圧流体と連通する弁を開く又は閉じることを含むギアシフトの説明は、簡潔にするために意図的に、シリンダチャンバと低圧液圧流体槽とを連通させる弁の関連する開又は閉についての詳述を省いている。
【0059】
[0083]段階1の圧縮中のギアシフトのタイミングが、段階2のギアシフトのタイミングから独立していることを認識することが重要である。ギアシフト動作の好ましい方法は主に、液圧ポンプ動作エネルギー効率を最大化する加圧液圧流体圧になるギアを選択することに注意を払う。圧縮の各段階を、圧縮の第1の段階で生成される第1の空気圧及び圧縮の第2の段階で生成される第2の空気圧に対して駆動する液圧流体圧は、異なり得、第1の空気圧は第2の空気圧とは異なる。好ましい実施形態では、段階1を駆動する加圧液圧流体の圧力は、段階2を駆動する加圧液圧流体の圧力から独立して制御され、これは、段階1及び段階2のそれぞれに専用の液圧ポンプ/モータを準備することにより達成し得る。いくつかの実施形態では、段階1を駆動する加圧液圧流体の圧力が、段階2を駆動する加圧液圧流体の圧力と同じ圧力であってもよく、これは、1つの液圧ポンプ/モータを両段階に準備することにより達成し得ることが認識される。
【0060】
[0084]前の説明及び以下の説明は、6つの利用可能なギアを用いるギアシステムとして構成された圧縮プロセスに基づき、6番目のギアは有効水ピストン表面積と有効液圧流体表面積の最大の比率を有し、換言すれば、6番目のギアでは、比較的小量の液圧流体流が、比較的大量の水流を生み出し、したがって、圧縮中のガスの占有に提供される容積の大きな変更を生み出す。システムの第1の段階に6つのギア比率の第1の組が構成され、システムの第2の段階に6つのギア比率の第2の組が構成されることを認識することが重要である。6つのギアは、2つ、3つ、又は4つ以上の送水ポンプを使用して実施し得る。圧縮の第1の段階が、圧縮の第2の段階で動作する空気圧範囲よりも低い空気圧範囲で動作することを認識することも重要である。それに対応して、システムは、圧縮の第1の段階の駆動に使用される6ギア範囲が、圧縮の第2の段階を駆動するように構成された6ギア範囲よりも高いギア比率からなるように構成される。実施形態がより多数又は少数のギアを有することができることが理解され、予期される。実施形態がより多数の送水ポンプを使用することができ、又はより少数の送水ポンプを使用することもできることが理解され、予期される。
【0061】
[0085]図7〜図9を参照して、ピストン444A及び444Bと、ピストン466とが行程の終わりに達する(図9に示されるように)前に、6番目から5番目へ、5番目から4番目へ、そして4番目から3番目へのギアシフトを開始しておくことができる。
【0062】
[0086]
5番目から4番目へのギアシフトが開始されると、加圧液圧流体を液圧ポンプ/モータから液圧シリンダ452及び458と、液圧シリンダ472とのロッド側チャンバに供給する弁(図示せず)が閉じられる。これらの弁を閉じると、液圧シリンダ452及び458と、液圧シリンダ472とのブラインド側チャンバのみを加圧液圧流体と流通した状態にすることにより、液圧シリンダ452及び458と、液圧シリンダ472とからすでに来ているピストンロッドの「押し」が増大する。増大したピストンロッドの「押し」を、液圧シリンダ454及び456と、液圧シリンダ470とからの進行中のピストンロッドの「引っ張り」と組み合わせて、5番目のギアのピストンロッド力よりも大きくすることができる4番目のギアのピストンロッド力が達成される。4番目のギアのピストンロッド力は、図9に示される送水ポンプ位置を達成するのに十分でなければならない。
【0063】
[0087]図10は、段階1及び段階2の両方の第2の送水ポンプの動作を示す。第2の送水ポンプの動作に関して、図9は3番目のギアを示す。ピストン446及び468が行程の終わりに達する(図11に示されるように)前に、3番目から2番目へ、そして2番目から1番目へのギアシフトを開始しておくことができる。第2の送水ポンプを3番目のギアに構成するために、加圧液圧流体を液圧ポンプ/モータから液圧シリンダ450及び474のロッド側チャンバ及びブラインド側チャンバに供給する弁(図示せず)が開かれ、再生モードで「押す」ようにシリンダ450及び474を構成する。
【0064】
[0088]2番目へのギアシフト3番目が開始されると、加圧液圧流体を液圧ポンプ/モータから液圧シリンダ448及び476のロッド側チャンバに供給する弁(図示せず)が開かれる。これらの弁を開くことにより、液圧シリンダ450及び474によりすでに与えられていたピストンロッドの「押し」が、液圧シリンダ448及び476からのピストンロッドの「引っ張り」で補強される。上述したシーケンスが、例えば、SA<SA(b−r)である実施形態に対応し、表面積が異なる相対サイズである、例えば、SA>SA(b−r)である実施形態、6番目のギアと5番目のギアとを達成する加圧の組み合わせが異なり得、したがって、好ましい加圧シーケンスも異なり得ることを理解されたい。
【0065】
[0089]2番目から1番目へのギアシフトが開始されると、加圧液圧流体を液圧ポンプ/モータから液圧シリンダ450及び474のロッド側チャンバに供給する弁(図示せず)が閉じられる。これらの弁を閉じると、液圧シリンダ450及び474のブラインド側チャンバのみを加圧液圧流体と流通した状態にすることにより、液圧シリンダ450及び474からすでに来ていたピストンロッドの「押し」が増大する。増大したピストンロッドの「押し」を、液圧シリンダ448及び476からの進行中のピストンロッドの「引っ張り」と組み合わせて、2番目のギアのピストンロッド力よりも大きくすることができる1番目のギアのピストンロッド力が達成される。1番目のギアのピストンロッド力は、図11に示される送水ポンプ位置を達成するのに十分でなければならない。
【0066】
[0090]図8及び図9の水流及び空気流の矢印で示されるように、システムが行程の第1の部分を経るにつれて、段階1の第1の圧力容器424内の水は、水流の矢印で示されるように移動し、送水ポンプ444A及び444B内に引き込まれる。水が圧力容器424から流出すると、空気流の矢印で示されるように、圧力容器424内部に空気が入る容積が生まれる。例えば、相対的な負圧を圧力容器424内で生み出すことができ、それにより、周囲空気又は事前圧縮された吸入空気を、第1の圧力容器424と、圧力容器424内の各仕切り内のポケットとに引き込む。他の実施形態が、ポケットを含まない仕切りを使用し得ることが理解される。この結果、空気/液体界面と、空気/仕切り界面とが生まれ、これらの界面を通して伝熱し得る。送水ポンプ444A及び444B内のピストンが、行程の終わりに達すると(図9に示されるように)、図10に示されるように、行程の第2の部分が、追加の水を圧力容器424から送水ポンプ448に引き込むとともに、追加の吸入空気を圧力容器424に引き込む。図11は、圧力容器424からの水の除去の終わりを示し、これは、空気を圧力容器424に引き込む空気吸入行程の終わりでもある。
【0067】
[0091]図8及び図9の水流及び空気流の矢印で示されるように、システムが圧縮の第1の部分を経るにつれて、段階2の圧力容器462内の水は移動し、送水ポンプ466に引き込まれる。水が圧力容器462から流出すると、図8及び図9の空気流の矢印で示されるように、圧力容器462内部に、圧力容器426からの空気が入る容積が生まれ、空気流入は、圧力容器462内に生じ得る相対的な負圧により促される。送水ポンプ466内のピストンが行程の終わり(図9に示されるように)に達すると、図10に示されるように、行程の第2の部分が、追加の水を圧力容器462から送水ポンプ468内に引き込まれ、これにより、追加の空気が圧力容器462内に引き込まれる。図11は、圧力容器462からの水除去の終わりを示し、これは、空気を圧力容器462に引き込む空気圧縮・転送行程の終わりでもある。
【0068】
[0092]図8及び図9の水流及び空気流の矢印で示されるように、システムが圧縮の第1の部分を経るにつれて、送水ポンプ466からの水は圧力容器464内に移動する。水が圧力容器464に流入すると、圧力容器464内部の容積が低減し、圧力容器464内の空気圧が増大する。例えば、圧力容器464内部の空気圧が、空気貯蔵空洞(図示せず)内の空気圧と略同じである場合、圧力容器464と貯蔵空洞との間にある弁(図示せず)が開き、圧力容器464と貯蔵空洞との間に連通を確立することができる。水は、送水ポンプ466から圧力容器464内に続けて移動し得、これにより、図8及び図9の空気流の矢印で示されるように、空気が圧力容器464から空気貯蔵空洞内に移り得、これは、圧力容器464内に生み出し得る相対的な正圧により促される。送水ポンプ466内のピストンが行程の終わりに達する(図9に示されるように)と、図10に示されるように、行程の第2の部分が、追加の水を送水ポンプ468から圧力容器464に移動させ、これにより、追加の空気を貯蔵空洞(図示せず)に流入させ得る。図11は、圧力容器464への水の移動の終わりを示す。圧力容器464と貯蔵空洞との連通を確立することができる弁が、必要に応じて、例えば、行程中、圧力容器464内の空気圧が貯蔵空洞内の空気圧といつ同じになるかに応じて、送水ポンプ466の作動中又は送水ポンプ468の作動中に開き得ることが理解される。
【0069】
[0093]図12〜図14は、吸入空気が圧力容器426(段階1)内で受け取られ、空気が圧力容器424(段階1)から圧力容器464(段階2)に移され、空気が圧力容器462(段階2)から貯蔵空洞(図示せず)に移ることを除き、上述したような同様のプロセスを示す。これらのプロセスは、上述した様式と同様に動作するため、詳述しない。
【0070】
[0094]図15〜図22は、システム400を使用した膨張システムを示す。貯蔵構造内に貯蔵された空気は、システム400を通して膨張し、貯蔵エネルギーを所望であり得る他の形態に変換するために使用することができ、例えば、発電に使用し得る。システム400の様々な構成要素は、同様であるが逆方向に動作することができる。したがって、空気は段階2を通して膨張させ、次に、段階1を通して膨張させることができ、各段階で、膨張空気は送水ポンプ内のピストンを駆動し、それにより、液圧ポンプ/モータ及び電気モータ/発電機が駆動されて、発電する。圧力容器内部の空気の最終的な膨張後、それでもなお周囲圧力よりも高い場合、例えば、空気を空気タービン等の別のエネルギー変換装置に移すことによる空気の膨張により、追加のエネルギーを生成することができる。他の実施形態では、圧力容器内部の最終的な膨張後、空気を周囲環境に解放し、略周囲空気圧で解放し得る。
【0071】
[0095]図15は、第2の段階の第2の圧力容器464内で貯蔵空洞から圧縮空気を受け取ることを含む、膨張サイクルの開始状況を示す。図16〜図18及び図20〜図22は、システムの膨張サイクルの段階1及び段階2の両方での液圧シリンダに関する水流、空気流、及び駆動方向を示す。図11と同様に、図19は、第2の圧力容器464内でまず受け取った空気を膨張させるサイクルの終わりと、段階2の第1の圧力容器462内でまず受け取った空気の膨張を含む別のサイクルの開始点との両方を示す。システム400の完全な1サイクル(図15〜図19又は図19〜図22)は、例えば、合計で6秒であり得る。システムは、圧縮に関して上述した様式と同じであるが、水流及び空気流の方向は逆にして循環することができる。
【0072】
[0096]図23及び図24は、上述したように4ギアシーケンスで動作するように構成されるとともに、貯蔵空洞内の圧縮空気を184バールに維持するように構成されたシステム400等のシステムの1サイクル(例えば、6秒)の液圧流体圧と、液圧流体流量とを示すグラフ例である。図23は、システムの段階1の液圧流体圧と、流体流量とを示し、図24は、システムの段階2の液圧流体圧と、流体流量とを示す。4ギアステップのそれぞれの圧力及び流量が示される。これらのチャート例は、液圧流体圧が360バールに達した場合のギアシフトを示す。各ギアシフト直後、圧力は約200バールに降下する。これらの圧力が単なる例示であり、他の高圧値及び低圧値を選択してもよいことが理解される。高圧値及び低圧値は、液圧ポンプ/モータ414の動作特徴に従って選択される。液圧ポンプは、液圧ポンプによって決定される圧力範囲内で動作する場合、比較的効率的に動作する。システム及び方法を効果的に適用するために、ギアシフトが生じる圧力は、液圧ポンプが効率的に動作する圧力に関して選択される。通常、液圧ポンプのエネルギー効率は、その出力圧の影響を最も受けやすく、これが、システム及び方法が流体圧に入念に注意を払う理由であるが、他のポンプ特徴、特に、単位時間当たりの流体量を単位とするポンプの最大流量にも同時に注意を払わなければならない。いくつかの液圧ポンプが他の制約、例えば、最小流量を有してもよいことに留意されたい。
【0073】
[0097]ギアシフト点が、液圧シリンダの最大伸張位置等の他の実施詳細によっても制約を受け得ることに留意されたい。液圧ポンプの動作特徴が通常、相互作用し、圧力変化により、流量も変化することにも留意されたい。図23及び図24は、毎秒約7.6ガロン(gps)の最大液圧流体流量を有する液圧ポンプに対応する液圧流体ポンピングシナリオの一例を示す。この例では、可能な6つのギアのうちの4つが使用される。この例では、ギアシフトのうちのいくつかは、360バールから約200バールへの圧力変化を含み、この例では、圧力変化には、約4.0gpsへの流体流量の略同時の降下が付随する。液圧流体圧と液圧流体流量との積が電力であり、この例は、ポンプシステムの動作中におおよそ一定の電力値を維持する圧力及び流れのシナリオを示す。定電力は、出力圧と出力流量との関係を選択する一方法である。他の実施形態が、一定以外の何かである電力を生じさせる様式で圧力及び流れを変更させることを選んでもよいことが理解される。
【0074】
[0098]図25及び図26は、システム400等のシステムの1サイクルの液圧流体圧と、液圧流体流量とを示すグラフ例である。システムの構成は、上述したように、段階1が4ギアシーケンスを使用するようなものである。図26は、段階2が空気を圧縮するシナリオを示し、圧縮空気圧が貯蔵空洞内の空気圧と略等しい場合、圧縮空気は現在90バールの貯蔵空洞に汲み入れられる。図25は、システムの段階1の圧力及び流体流量を示し、図26は、システムの段階2の圧力及び流体流量を示し、このシナリオで、好ましいギアシフトシーケンスが可能な6つのギアのうちの3つをいかに使用するかを示す。4つの段階1ギアステップのそれぞれ及び3つの段階2ギアステップのそれぞれの圧力及び流量が示される。これらのチャート例は、液圧ポンプ最大圧以外の制約により決定されるポイントで生じるギアシフトを示す。例えば、図26は、360バール最大未満の約310バールの圧力で生じるギアシフトを示す。このギアシフトは、最大液圧流体圧360バールが必要になる前に、第1の送水ポンプが行程の終わりに達したために生じた。さらに、第2の送水ポンプの動作中の液圧流体圧は、第2の送水ポンプの行程全体を通して約250バールを下回ったままである。これは、第2の送水ポンプ内で利用可能な最高ギアを使用して、空洞の現在圧と対抗して動作するために必要な液圧流体圧が、最大液圧ポンプ圧よりも低いためである。重要なことに、液圧流体圧は、液圧ポンプの効率出力圧範囲、この例では、120バール〜360バール内に留まっている。120バール〜360バールとは異なる圧力範囲を使用して方法を提供してもよいことが理解される。
【0075】
[0099]図27及び図28は、空気を貯蔵空洞内に90バール及び180バールのそれぞれで圧縮するシステムの段階1及び段階2の液圧と液圧ポンプ容積流量との関係を示すグラフ例である。
【0076】
[00100]図29及び図30は、空気を現在90バールの貯蔵空洞に圧縮するシステム400等のシステムで使用される液圧ポンプの消費電力を示すグラフ例である。図29は段階1の消費電力を示し、図30は段階2の消費電力を示す。図31及び図32は、空気を現在180バールの貯蔵空洞に圧縮するシステム400等のシステムで使用される液圧ポンプの消費電力を示すグラフ例である。図31は段階1の消費電力を示し、図32は段階2の消費電力を示す。上述したように、この例は、ポンプが消費する電力(ポンプにより生成される液圧力に比例する)が、システムの動作中、おおよそ一定レベルに維持される例である。
【0077】
[00101]図33〜図36は、様々な圧力及び速度で液圧ポンプとして動作する場合の、システム400等のシステムで使用される液圧ポンプ/モータの効率レベルのマップ例である。マップはゾーンに区分され、ゾーンは液圧ポンプに提供されるエネルギー効率を示す。本明細書に記載のシステムを動作させるシステム及び方法は、圧縮サイクル全体を通して最高効率ゾーン内で液圧ポンプを動作させるように構成することができる。効率は、ポンプの最大容積変位(上述した例で使用されるポンプでは、選択的に可変)の割合に基づいて特定される。例えば、図33は、流量7.6ガロン/秒で100%変位に基づく効率を示す。図34は80%に基づく効率を示し、これは、システムが7.6ガロン/秒の80%の流量(すなわち、6.0ガロン/秒)で動作していることを意味する。図35及び図36は、7.6ガロン/秒での100%変位に基づいて同様に特定される。
【0078】
[00102]図37〜図50は、180バールの貯蔵空洞圧で動作する、システム400等のシステムの様々なパラメータを示すグラフ例である。図37〜図42は段階1に関連付けられた様々なパラメータを示し、図43〜図47は段階2に関連付けられた様々なパラメータを示す。図48及び図49は、液圧シリンダピストン表面積の異なる構成を使用する場合、段階1及び段階2の実施形態のサイクル全体を通してのギアシフト中の関連付けられた圧力及び流量がいかに変化するかの例を示す。圧力及び流れの変化の性質が、図48及び図49を図23〜図26と比較することで分かる。図50は、図48及び図49に示される圧力及び流れに対応するシステムの液圧と体積流量との関係を示す。
【0079】
[00103]上述したように、熱は、圧力容器内で圧縮された空気(又は他のガス)から伝導させて、圧縮プロセスで消費される仕事を低減することができる。熱は、空気から液体に、及び/又は空気から圧縮容器内の仕切りに、及び/又は液体から圧力容器外に伝導することができる。いくつかの実施形態では、伝熱を増大させるために、システムは比較的低速で動作することができる。例えば、いくつかの実施形態では、完全な圧縮又は膨張サイクルは、空気と液体との間での伝熱に追加の時間を提供するのに十分に遅くし得る。いくつかの実施形態によれば、等温圧縮及び/又は膨張プロセスに近づけるのに十分な熱エネルギーを伝導させることができ、それに関連付けられる仕事の低減又は抜き取り及び効率を達成し得る。追加又は代替として、高速にするほど、等温又は温度変化を伴う膨張中に達成される電力レベルを大きくすることができ、電力レベルの増大は、システムの動作中の特定の時間に望ましいことがある。
【0080】
[00104]圧縮及び/又は膨張中に熱を渡す媒質として液体(例えば、水)を使用することにより、連続した温度軽減プロセスが可能であり、熱を圧力容器内及び/又は外に移動し得るメカニズムを提供し得る。すなわち、圧縮中、液体は、圧縮中の空気から熱を受け取り、空気が圧縮中の間及び空気を後で圧縮するために圧力容器で受け取っている間の両方で、この熱を外部環境に連続して、又はまとめて渡すことができる。同様に、圧縮/膨張装置が膨張モードで動作中の場合、膨張中及び膨張空気が圧力容器から渡される際の両方で、熱の追加を行い得る。
【0081】
[00105]上述したように、圧力容器内の液体は、1つ又は複数の空気/液体界面及び空気/仕切り界面で空気に接触することができ、界面をわたって、圧縮された空気から伝熱し、及び/又は膨張した空気に伝熱する。圧力容器は、上述したような1つ又は複数のヒートパイプ等の熱交換器を含むこともでき、熱交換器は、熱を液体と装置外部の環境との間で伝導させる。圧縮された空気から熱を移動させ、及び/又は膨張した空気に熱を移動させて、等温又は略等温の圧縮プロセス及び/又は膨張プロセスを達成し得る。
【0082】
[00106]図51A〜図51D、図52A〜図52C、図53、図54A、図54B、図55、及び図56のそれぞれは、液圧流体圧と作業チャンバを境界付ける作業ピストンへの流体圧との比率を選択的に調整するために使用可能な液圧駆動システム又はアクチュエータの実施形態を示す。例えば、アクチュエータを使用して、圧縮及び/又は膨張装置内の作業ピストンを作動させて、ガス(例えば、空気)の圧縮又は膨張を行うことができる。圧縮及び/又は膨張装置は、ガス、液体、及び/又はガスと液体の両方を含むことができる槽又は筐体を含むことができる。アクチュエータは、前の実施形態に関して上述したように、1つ又は複数の状態又はギアを含み、作業ピストンの移動を制御し、作業チャンバ内の流体圧とアクチュエータ内の液圧流体圧との間で所望の関係を維持することができる。
【0083】
[00107]図51Aに示される実施形態では、アクチュエータは2つの液圧シリンダを含み、それぞれが、作業ピストン(又は他の被駆動部材)を異なる液圧で作動させる(又は作業ピストンにより作動する)ことができる異なる直径及び異なるサイズ(例えば、直径)を有する。異なるサイズの液圧ピストンのため、作業ピストンの両側で液圧ピストンを加圧するために利用可能な動作表面積の様々な組み合わせにより、ギアの数及びギアシフトの数を増大させることができる(同じ直径を有する2つの液圧ピストンを含む上記アクチュエータ412と比較して)。より多くのギア及びギアシフトを有することにより、液圧アクチュエータは、より高い程度の圧力選択性で動作することができ、それにより、おそらく、作業チャンバの所与の流体圧範囲でポンプ/モータを液圧のより高い効率範囲で動作させることができ、又は同じ液圧範囲内で、より広範囲の作業チャンバ圧で動作することができ、及び/又は所望の出力(又は入力)圧、流量、及び/又は送水ポンプ及び/又は圧縮及び/又は膨張装置又はシステムの異なる動作段階で望まれる力の方向をより密に制御するため。
【0084】
[00108]図51Aは、アクチュエータ712の一部の様々な構成要素を概略的に示す。図51Aに示されるように、アクチュエータ712は、液圧シリンダ748と、液圧シリンダ750とを含む。液圧シリンダ748は、筐体784と、筐体784により画定される内部領域内に移動可能に配置された液圧ピストン778とを含む。液圧シリンダ750は、筐体785と、筐体785の内部領域内に移動可能に配置された液圧ピストン780とを含む。
【0085】
[00109]液圧ピストン778は、液圧シリンダ748の筐体784の内部領域を2つの部分に分ける、すなわち、液圧ピストン778の上の液圧流体チャンバC1及び液圧ピストン778の下の液圧流体チャンバC2。同様に、液圧ピストン790も液圧シリンダ750の筐体785の内部領域を2つの部分に分ける、すなわち、液圧ピストン780の上の液圧流体チャンバC3及び液圧ピストン780よりも下の液圧流体チャンバC4。液圧流体チャンバC1及びC2のそれぞれは、液圧シリンダ748のブラインド側及びロッド側と呼ぶことができ、流体チャンバC3及びC4のそれぞれは、液圧シリンダ750のロッド側及びブラインド側と呼ぶことができる。
【0086】
[00110]液圧ピストン778は、流体チャンバC1に関連付けられた液圧ピストン778の側(ブラインド側)に動作表面積A1と、流体チャンバC2に関連付けられた側(ロッド側)に動作表面積A2とを有する。液圧ピストン780は、流体チャンバC3に関連付けられた液圧ピストン780の側(ロッド側)に動作表面積A3と、流体チャンバC4に関連付けられた側(ブラインド側)に動作表面積A4とを有する。
【0087】
[00111]したがって、異なるサイズの液圧ピストン及び/又は異なるサイズの駆動ロッドR1及びR2により、液圧ピストン778の動作表面積A1及びA2は、液圧ピストン780の動作表面積A3及びA4と異なる。例えば、液圧ピストン778のロッド側動作表面積A2は、液圧ピストン780のロッド側動作表面積A3よりも小さくすることができる。A2をA3以上にすることができるような程度まで、R2をR1よりも大きくし得ることが理解される。液圧ピストン778が液圧ピストン780よりも小さな直径を有する例では、液圧ピストン778のブラインド側動作表面積A1は、液圧ピストン780のブラインド側動作表面積A4よりも小さい。
【0088】
[00112]液圧ピストン778は、駆動ロッドR1を介して被駆動部材(この実施形態では、作業ピストン)774に結合され、液圧ピストン780は、駆動ロッドR2を介して作業ピストン774に結合される。作業ピストン774は、筐体782内に移動可能に配置され、筐体782は、作業ピストン774により2つの作業チャンバWC1及びWC2に分けられ、各作業チャンバは流体(例えば、水及び/又は空気)を含むように構成される。駆動ロッドR1及びR2は筐体782の各開口部を通って摺動可能に延び、各開口部は、駆動ロッドR1及びR2が開口部内を移動して、作業ピストン774を作動させることができるが、流体が作業チャンバWC1、WC2と液圧流体チャンバC2及びC3とのそれぞれの間を通過し得ないようなシールを含むことができる。この実施形態では、駆動ロッドR1の直径は駆動ロッドR2の直径よりも小さく、液圧ピストン778の直径は液圧ピストン780の直径よりも小さい。
【0089】
[00113]他の実施形態に関して上述したように、アクチュエータ712は、アクチュエータ712のサイクル又行程中、有効ピストン比率(例えば、液圧ピストンの正味動作表面積と被駆動部材、例えば、作業ピストンの表面積)を変更することにより、アクチュエータ712のサイクル中の任意の所与の時点で、複数の異なるギア又は状態のうちの1つで動作することができる。所与の液圧流体圧の場合、筐体782内の作業流体の圧力は、液圧ピストンの正味動作液圧加圧面積を変更することにより変更することができ、便宜上、可能な面積の変更を「ギア」と呼ぶことができる。逆に、所与の作業流体圧の場合、液圧流体圧は、例えば、膨張サイクルにおいて変更することができる。ギアの数量及びシーケンスは、所望に応じて、槽内の作業流体の圧力(本質的に、作業チャンバ内の流体の圧力と同じ)と、液圧ポンプ/モータから供給される(又は液圧ポンプ/モータに供給される)液圧流体圧との所望の関係を達成するように変更可能である。したがって、作業ピストンの作動(ガス圧縮を駆動するか、それともガス膨張により駆動されるかに関わりなく)は、液圧アクチュエータ712の所与の行程に最適なギアシーケンスを構成することにより、微調整することができる。上述したように、所与のアクチュエータに可能なギアの数は、液圧シリンダの数、ピストンのサイズ、駆動ロッドの数、及び作業ピストンのサイズに基づき得る。この実施形態では、ピストン778及び780が異なる直径を有し、駆動ロッドR1及びR2が異なる直径を有するため、アクチュエータの16の可能な状態(4つの各チャンバを加圧してもよく、又は加圧しなくてよい)が、そのアクチュエータ712に15の可能なギアを画定する(チャンバが加圧されない状態は、いかなる正味液圧ピストン面積も生じさせないため)。駆動ロッドR1及びR2が同じ直径を有する場合、すべてのチャンバが加圧されたとき、より詳細に後述するように、結果として生成される正味動作表面積はゼロに等しくなるため、可能なギアの数は14である。
【0090】
[00114]図51B及び図51Cのそれぞれは、アクチュエータ712が動作することができる異なる可能なギアを示す。これらのギアは、参照し易くするためにD1〜D7及びU1〜U7として識別されるが、この付番方式は必ずしも、状態が正味表面積の順であることを示すわけではない。図51Bは、アクチュエータ712が作業ピストン774を上方に駆動することができる(又は作業ピストンの上方移動がアクチュエータを駆動することができる)、アクチュエータ712のギアを示し、図51Cは、アクチュエータ712が作業ピストン774を下方に駆動することができる(又は作業ピストンの下方移動がアクチュエータを駆動することができる)、アクチュエータ712のギアを示す。図51B及び図51Cに示されるように、アクチュエータ712の所与のギア(例えば、D1〜D7、U1〜U7)について、流体チャンバ(例えば、C1、C2、C3、C4)がアクティブである、すなわち、液圧ポンプ/モータの高圧側と流通している(ポンプとして作用する液圧ポンプ/モータにより提供される加圧液圧流体を受け取り、その流体により駆動されるか、又は加圧流体液体を、モータとして作用する液圧ポンプ/モータに提供して駆動する)場合、陰影なしで示され、流体チャンバが非アクティブである、すなわち、液圧ポンプ/モータの高圧側から流体的に分離されている場合、その特定のギアは陰影付き(クロスハッチング)で示される。
【0091】
[00115]図51Dは、図51B及び図51Cでのアクチュエータ712の様々なギア(例えば、D1〜D7及びU1〜U7)に対応する情報を含む表である。表は、すべてのチャンバC1〜C4が加圧されるギアU8(図51B及び図51Cに示されない)も示す(より詳細に後述する)。図51Dの表は、各ギア(D1〜D7、U1〜U8)でアクティブである(液圧ポンプ/モータの高圧側と流通する)アクチュエータ712の関連付けられたチャンバ(C1〜C4)も示す。特に、表に示されるように、特定のギアについて、Pは、チャンバ(例えば、C1、C2、C3、C4)が加圧される(アクティブである)ことを示し、Nは、チャンバが加圧されない(非アクティブである)ことを示す。DIRと記された列は、アクティブな液圧流体チャンバ(例えば、C1〜C4)が力を及ぼす方向を示す。例えば、チャンバC1のみがアクティブである(液圧ポンプ/モータの高圧側と流通する)場合、結果として、被駆動部材(例えば、作業ピストン747)に生じる力は、下方向であり、チャンバC2のみがアクティブである場合、結果として生じる力は上方向である。第2の圧力よりも相対的に高い第1の圧力で「加圧されている」手段は、「加圧されていないと呼ばれることが理解される。
【0092】
[00116]特定のギアのアクチュエータ712の正味動作表面積Anetは、そのギアでアクティブなチャンバ(C1〜C4)に関連付けられた表面積(例えば、A1、A2、A3、A4)の総和に等しい。例示のために、この例で使用される符号規則では、表面積A1及びA3にかけられる力が正(+)方向にあるとし、表面積A2及びA4にかけられる力が負(−)方向にあると呼ぶ。したがって、この例では、被駆動部材を、圧縮モードで動作している作業ピストン774であると見なす場合、正味動作表面積Anetが負である場合、アクチュエータ712は、作業ピストン774を上方向に移動させ(例えば、ギアU1〜U8)、正味動作表面積が正の場合、アクチュエータ712は、作業ピストン774を下方向に移動させる。逆に、被駆動部材が、膨張モードで動作している作業ピストン774である場合、膨張ガスが作業ピストン774を上方向に駆動する場合、ギアU1〜U8は、これらのギアに関連付けられたアクティブな液圧チャンバがチャンバ内の液圧流体を加圧させ、その流体を液圧ポンプ/モータに供給し、液圧ポンプ/モータをモータモードで駆動させるように動作可能である。
【0093】
[00117]アクチュエータ712の選択された液圧流体チャンバ(例えば、C1、C2、C3、及び/又はC4)を、作業液圧で液圧流体(ポンプとして動作する液圧ポンプ/モータにより供給される流体又はモータとして動作する液圧ポンプ/モータに液圧流体チャンバにより供給される流体等)と流通させ、その他のチャンバを作業液圧から流体的に分離することにより、異なるギアをアクティブ化することができる。例えば、1つ又は複数の弁を各チャンバC1〜C4に結合することができ、弁は、選択的に開いて(例えば、上述したように液圧コントローラにより、且つ図52Aに示されるアクチュエータ812を参照して後述するように)、液圧ポンプ/モータの高圧側との流通を確立して、液圧流体をチャンバに汲み入れられるようにする。逆に、1つ又は複数の弁を制御して、チャンバを液圧ポンプ/モータの高圧側から分離し、液圧流体の低圧槽との流通を確立して、例えば、関連付けられたピストンが移動して、チャンバの容積を低減する際に、液圧流体をチャンバから放出又は排出させることができる。アクチュエータ712の1サイクル又は行程中、1つ又は複数のギアを作動させて、筐体782内で所望の流体出力圧を達成することができる。加えて、ギアの順は可変である。したがって、ギアは図においてD1〜D7及びU1〜U8と記されるが、アクチュエータ712は、様々な異なる組み合わせ及び順で1つ又は複数のギアを経ることができる。例えば、1サイクルで、アクチュエータ712は、ギアD7、D6、D2、及びD5を経て、そのサイクル中に筐体782内の作業流体の圧力を増分的に増大させるように構成することができる。
【0094】
[00118]一例では、図51Dの表に示されるように、そして図51Cを参照するように、ギアD7を作動させるには、作業圧での液圧流体は、液圧シリンダ748のチャンバC1及びチャンバC2に選択的に連通し、液圧を表面積A1及びA2の下方向及び上方向のそれぞれにかける。表面積A1は表面積A2よりも大きいため、正味動作表面積Anet(A1−A2)は正であり、結果として生成される液圧力は液圧ピストン778を下方に移動させ、そして、作業ピストン774が下方に移動する。別の例では、ギアU2を作動させるには、作業圧の液圧流体が、図51Bに示されるように、選択的にチャンバC2及びC4に連通し、それにより、表面積A2及びA4に液圧が上方向にかかり、結果として、負である正味動作表面積Anet(Anet=−A2+−A4)が生じる。したがって、液圧力は、液圧ピストン778を上方に移動させ、これは、作業ピストン774を上方に移動させる。
【0095】
[00119]図51Dの表のギアU8を参照すると(しかし、図51B及び図51Cには示されない)、作業圧の液圧流体が、すべてのチャンバ(C1〜C4)に選択的に連通する場合、液圧は、表面積A1及びA3に下方向(すなわち、正)にかかり、表面積A2及びA4には上方向(すなわち、負)にかかり、結果として、正味動作表面積はAnet=A1−A2+A3−A4になる。駆動ロッドR1の直径及び駆動ロッドR2の直径は、この実施形態例では異なるため、結果として生じる正味動作面積Anetはゼロにはならず、むしろ、正味動作表面積Anetが存在し、これは、2つのロッドの断面積の差に等しい。駆動ロッドR1の直径及び駆動ロッドR2の直径が等しい場合、結果として生じる正味動作表面積はゼロになるため、作業ピストンへの力はゼロになる。
【0096】
[00120]図51Dの表の最下行は、液圧ピストン778のブラインド側表面積及びロッド側表面積が、液圧ピストン780のブラインド側表面積及びロッド側表面積のそれぞれと同じである場合(すなわち、ピストン778の直径=ピストン780の直径、A4=A1、A2=A3、及びR1=R2)、アクチュエータ712に関連付けられた可能なギアを示す。そのような実施形態は、上述したアクチュエータ412と同様である。表に示されるように、例えば、図51CのギアD1を参照すると、そのような実施形態では、作業圧の液圧流体が、流体チャンバC1、C3、及びC4に選択的に連通する場合、この例ではピストン778及び780が等しいため、表面積A1及びA4にかけられる液圧は互いに相殺し、結果として正味動作表面積Anetは表面積A3に等しくなる。これは、液圧ピストン780を下方に移動させ、そして水ピストン774を下方に移動させる。別の例では、作業圧の液圧流体が、図51CのギアD3に示されるように、流体チャンバC2及びC3に選択的に連通する場合、表面積A1は、この場合、表面積A3に等しいため、結果として水ピストンにかかる力はゼロになる。表に示されるように、この例では(例えば、ピストン778=ピストン780、ロッド2=ロッド3)、ギアD6はギアD3と同じであり、ギアD2はギアD5と同じである。したがって、そのような実施形態で利用可能な異なるギアの総数は8に等しく、それぞれ、4つが上方向で、4つが下方向である。
【0097】
[00121]図52Aは、本明細書に記載の装置及びシステムと併用可能なアクチュエータの別の実施形態を示す。この実施形態は、作業ピストンの一端部に動作可能に結合され、作業ピストンを作動させるように構成された複数の液圧シリンダを含むことができるアクチュエータを示す。図52Aは、2つの異なるサイズの液圧シリンダを示し、各シリンダは異なる直径の液圧ピストンを有する。しかし、3つ以上の液圧シリンダを使用してもよく、及び/又は1つ若しくは複数の液圧シリンダを作業ピストンの両端部に動作可能に結合してもよいことを理解されたい。
【0098】
[00122]特に、図52Aは、アクチュエータ812の一部の様々な構成要素を概略的に示す。図52Aに示されるように、アクチュエータ812は、内部領域を画定する筐体884及び筐体884の内部領域内に移動可能に配置された液圧ピストン878を含む液圧シリンダ848と、筐体885及び筐体885の内部領域内に移動可能に配置された液圧ピストン880を含む液圧シリンダ850とを含む。駆動ロッドR1が、液圧シリンダ850の液圧ピストン880と、液圧シリンダ848の液圧ピストン878とに結合され、駆動ロッドR2が、液圧シリンダ850の液圧ピストン880に結合されるとともに、筐体882内に配置された作業ピストン(図示せず)に結合することができ、筐体882は、前の実施形態に関して上述したように、ある容量の流体を含むように構成される。この実施形態例では、液圧ピストン878は液圧ピストン880よりも小さな直径を有し、液圧駆動ロッドR1の直径は、液圧駆動ロッドR2の直径よりも大きい。しかし、液圧ピストン878が代替として、液圧ピストン880と同じ又はより大きなサイズであってもよいことを理解されたい。同様に、液圧駆動ロッドR1及びR2は代替として、同じサイズであってもよく、又は液圧駆動ロッドR2が液圧駆動ロッドR1よりも大きくてもよいことを理解されたい。
【0099】
[00123]液圧シリンダ848の筐体884は、内部領域内に、液圧ピストン878の上の流体チャンバC1と、液圧ピストン878の下の流体チャンバC2とを画定する。同様に、液圧シリンダ850の筐体885は、内部領域内に、液圧ピストン880の上の流体チャンバC3と、液圧ピストン880の下の流体チャンバC4とを画定する。この実施形態では、流体チャンバC1及びC2のそれぞれは、液圧シリンダ848のブラインド側及びロッド側と呼ぶことができ、流体チャンバC3及びC4のそれぞれは、液圧シリンダ850の第1のロッド側及び第2のロッド側と呼ぶことができる。
【0100】
[00124]液圧シリンダ848は、導管895を介して液圧ポンプ/モータ814(又は他の適した加圧液圧流体源)に結合され、液圧シリンダ850は、導管896を介して液圧ポンプ/モータ814に結合される。液圧ポンプ/モータ814はシステムコントローラ816に結合され、システムコントローラ816を使用して、前の実施形態に関して上述したように、液圧ポンプ/モータ814を動作させ制御することができる。弁898が、液圧シリンダ848及び850の各チャンバと液圧ポンプ/モータ814との間に結合され、例えば、システムコントローラ816の制御下で選択的に開閉して、液圧ポンプ/モータ814の高圧側を各チャンバにそれぞれ流体的に結合又は流体的に分離することができ、それにより、システム又は液圧コントローラ816は、前の実施形態に関して上述した様式と同様にして、液圧シリンダ848及び850のうちの一方又は両方の一方又は両方のチャンバを選択的に作動させる(加圧液圧流体を供給する)ことができる。
【0101】
[00125]液圧ピストン878は、流体チャンバC1に関連付けられた側(例えば、ブラインド側)に動作表面積A1と、流体チャンバC2に関連付けられた側(例えば、ロッド側)に動作表面積A2とを有する。液圧ピストン880は、流体チャンバC3に関連付けられた液圧ピストン880の側(例えば、第1のロッド側)に動作表面積A3と、流体チャンバC4に関連付けられた側(例えば、第2のロッド側)に動作表面積A4とを有する。
【0102】
[00126]この実施形態例では、図52Aに示されるように、液圧ピストン878の動作表面積A1及びA2は、液圧ピストン880の動作表面積A3及びA4と異なる。例えば、液圧ピストン878の動作表面積A2は、液圧ピストン880の動作表面積A3及びA4よりも小さい。液圧ピストン880の動作表面積A4は、液圧ピストン880の動作表面積A3よりも大きく、両方とも、液圧ピストン878の動作表面積A1及びA2よりも大きい。
【0103】
[00127]図52B及び図52Cのそれぞれは、アクチュエータ812が動作できる異なる可能な状態又はギア(D1〜D7、U1〜U7として識別される)を示す。図52Bは、アクチュエータ812が、駆動ロッドR2に結合された作業ピストンを筐体882内で上方に移動させることができるアクチュエータ812のギアを示し、図52Cは、アクチュエータ812が作業ピストンを筐体882内で下方に移動させることができるギアを示す。前の実施形態と同様に、図52B及び図52Cに示される特定のギア(例えば、D1〜D7、U1〜U7)では、流体チャンバ(例えば、C1、C2、C3、C4)が液圧流体で加圧される場合、陰影なしで示され、流体チャンバが液圧流体で加圧されない場合、陰影付きで示される。
【0104】
[00128]前の実施形態に関して説明したように、作業液圧の液圧流体源をアクチュエータ812の流体チャンバのうちの1つ又は複数(例えば、C1、C2、C3、及び/又はC4)に選択的に流体的に結合する(例えば、上述した液圧ポンプ/モータ814を介して)ことにより、異なるギアをアクティブ化することができる。例えば、弁898のうちの選択された1つ又は複数を選択的に開き、液圧流体をチャンバのうちの1つ又は複数に汲み入れ、及び/又はチャンバのうちの1つ又は複数から液圧流体を排出することができる(例えば、行程の終わりで)。ギアのうちの1つ又は複数を、アクチュエータ812の所与のサイクル中に作動させて、筐体882内の流体の所望の出力圧を達成することができる。ギアの順は変更することも可能である。したがって、ギアは図52B及び図52CにおいてD1〜D7及びU1〜U7と記されるが、アクチュエータ812は、前の実施形態に関して上述したように、様々な異なる組み合わせ及び順で1つ又は複数のギアを経ることができる。
【0105】
[00129]特定のギアの正味動作表面積Anetは、所与のギアで加圧されるチャンバ(例えば、C1〜C4)に関連付けられた表面積(例えば、A1、A2、A3、A4)の総和に等しい。上述したように、この実施形態例では、1つ又は複数の液圧シリンダは、任意選択的に、作業ピストンの両端部に結合することもできる。そのような実施形態では、特定のギアの正味動作表面積Anetは、アクチュエータ712に関して上述した様式と同様に、作業ピストンの両端部に対して動作する液圧シリンダの加圧チャンバに関連付けられた表面積も含む。
【0106】
[00130]図53はアクチュエータ812の変形を示し、この変形では、アクチュエータを作業ピストンに接続する駆動ロッドは2つの液圧ピストンのうちの小さい方に結合され、駆動ロッドは同じ直径を有する。アクチュエータ912は、内部領域を画定する筐体984及び筐体984の内部領域内に移動可能に配置される液圧ピストン978を含む液圧シリンダ948と、筐体985及び筐体985の内部領域内に移動可能に配置される液圧ピストン980を含む液圧シリンダ950とを含む。駆動ロッドR1は、液圧ピストン978及び液圧ピストン980に結合され、駆動ロッドR2は、液圧ピストン980に結合され、前の実施形態に関して上述したように、筐体(図示せず)内に配置された作業ピストン(図示せず)に結合することができる。この実施形態では、液圧ピストン978の直径は液圧ピストン980の直径よりも大きく、駆動ロッドR1の直径は駆動ロッドR2の直径に等しい。
【0107】
[00131]液圧シリンダ948の筐体984は、内部領域内に、液圧ピストン978の上の流体チャンバC1と、液圧ピストン978の下の流体チャンバC2とを画定する。液圧シリンダ950の筐体985は、内部領域内に、液圧ピストン980の上の流体チャンバC3と、液圧ピストン980の下の流体チャンバC4とを画定する。液圧ピストン978は、流体チャンバC1に関連付けられた側に動作表面積A1と、流体チャンバC2に関連付けられた側に動作表面積A2とを有する。液圧ピストン980は、流体チャンバC3に関連付けられた液圧ピストン980の側に動作表面積A3と、流体チャンバC4に関連付けられた側に動作表面積A4とを有する。
【0108】
[00132]前の実施形態と同様に、アクチュエータ912は、複数の異なるギアで動作して、作業ピストン(図示せず)を筐体(図示せず)内で移動させることができる。特定のギアの正味動作表面積Anetは、上述したように、所与のギアで加圧されるチャンバ(例えば、C1〜C4)に関連付けられた表面積(例えば、A1、A2、A3、A4)の総和に等しい。1つ又は複数の液圧シリンダは、任意選択的に、両端部作業ピストンに結合することもできる。そのような実施形態では、特定のギアの正味動作表面積Anetは、他の実施形態に関して上述した様式と同様に、作業ピストンの両端部に対して動作する液圧シリンダの加圧チャンバに関連付けられた表面積も含む。
【0109】
[00133]図54A及び図54Bは、本明細書に記載の装置及びシステムと併用可能なアクチュエータのさらに別の実施形態を示す。この実施形態では、アクチュエータは、弁を選択的に開く必要なくあるギアから別のギアに移ることができる。アクチュエータ1012は、内部領域を画定する筐体1084及び筐体1084の内部領域内に移動可能に配置される液圧ピストン1078を含む液圧シリンダ1048と、筐体1085及び筐体1085の内部領域内に移動可能に配置される液圧ピストン1080を含む液圧シリンダ1050とを含む。液圧駆動ロッドR1は、液圧シリンダ1050の液圧ピストン1080と、液圧シリンダ1048の液圧ピストン1078とに結合される。液圧駆動ロッドR2は、液圧シリンダ1050の液圧ピストン1080に結合され、前の実施形態に関して上述したように、ある容量の液体を内部に含むように構成された筐体1082内に移動可能に配置された作業ピストン1074に結合される。この実施形態では、液圧シリンダ1048の筐体1084は、液圧ピストン1078が図54Bに示される筐体1084の内部領域と、図54Aに示される筐体1085の内部領域との間で移動可能なように、液圧シリンダ1080の筐体1085と流通する。
【0110】
[00134]液圧ピストン1078が筐体1085内に配置される場合(図54Aに示されるように)、液圧流体チャンバC1は、筐体1084及び筐体1085によりまとめて、液圧ピストン1078の上及び液圧ピストン1080の上に画定され、液圧流体チャンバC2が、液圧ピストン1080の下に画定される。液圧ピストン1078が筐体1084に係合すると(図54Bに示されるように)、液圧流体チャンバC3が、液圧ピストン1078の上に筐体1084により画定され、液圧流体チャンバC2が液圧ピストン1080の下に画定され、液圧流体チャンバC4が、液圧ピストン1080の上及び液圧ピストン1078の下に画定される。したがって、液圧ピストン1078が液圧シリンダ1048と150との間で移動する場合、液圧流体チャンバを再画定することができる。
【0111】
[00135]液圧ピストン1078が筐体1085と共に配置される場合(図54Aに示されるように)、流体チャンバC1は、まとめて液圧シリンダ1048及び液圧シリンダ1050のブラインド側と呼ぶことができ、流体チャンバC2は、液圧シリンダ1050のロッド側と呼ぶことができる。液圧ピストン1078が筐体1084に係合する場合、流体チャンバC3は液圧シリンダ1048のブラインド側と呼ぶことができ、流体チャンバC2はやはり、液圧シリンダ1050のロッド側と呼ばれ、流体チャンバC4は、まとめて液圧シリンダ1048及び液圧シリンダ1050のロッド側と呼ぶことができる。
【0112】
[00136]この実施形態では、液圧ピストン1078は液圧ピストン1080の直径よりも小さい直径を有し、液圧駆動ロッドR1の直径は液圧駆動ロッドR2の直径に等しい。本明細書に記載の他の実施形態と同様に、液圧ピストン1078及び1080は、互いに対して他のサイズを有してもよく、駆動ロッドR1及びR2は互いに対して他のサイズを有してもよい。例えば、液圧ピストン1078は、液圧ピストン1080より大きくてもよい。そのような実施形態では、可能なギアセットは、液圧ピストンの相対サイズ及び/又は作業ピストンに対する液圧ピストンの位置に基づいて変更することができる。液圧ピストン1078は、図54A及び図54Bに示されるように、動作表面積A1と、動作表面積A2とを有し、液圧ピストン1080は、動作表面積A3と、動作表面積A4とを有する。
【0113】
[00137]前の実施形態と同様に、アクチュエータ1012は、複数の異なるギアで動作して、作業ピストン1074を筐体1082内で移動させることができる。特定のギアの正味動作表面積Anetは、上述したように、所与のギアで加圧されるチャンバ(例えば、C1、C2、C3、C4)に関連付けられた表面積(例えば、A1、A2、A3、A4)の総和に等しい。異なるギアは、前の実施形態に関して説明したように、作業液圧の液圧流体源をアクチュエータ1012の流体チャンバのうちの1つ又は複数(例えば、C1、C2、C3、及び/又はC4)に選択的に流体的に結合する(例えば、液圧ポンプを介して)ことにより、アクティブ化することができる。例えば、図54A及び図54Bに示されるように、導管1095は、筐体1084の内部領域に結合して流通することができ、導管1096及び1097は、筐体1085に結合して流通することができる。導管1095、1096、及び1097のそれぞれは、例えば、液圧ポンプ(図示せず)に結合して、加圧液圧流体を供給することができる。弁1098を導管1095、1096、及び1097並びに/又は各筐体1084、1085に結合し、アクチュエータ1012の様々な流体チャンバへの流通を選択的に開くために使用することができる。
【0114】
[00138]この例では、液圧ピストン1078が筐体1084に係合する場合、アクチュエータ1012の可能なギア及びギアシフトの数も変更される。したがって、アクチュエータ1012の1サイクル又は行程中、可能なギアの数は変更する。例えば、液圧ピストン1078が筐体1085内に配置された場合、4つの可能な加圧状態(2つのチャンバがそれぞれ加圧されるか、又は加圧されない)があるため、可能なギアの数は3に等しく、液圧流体が流体チャンバC1に汲み入れられる場合、1つのギアが画定され、液圧流体が流体チャンバC2に汲み入れられる場合、1つのギアが画定され、液圧流体が流体チャンバC1及びC2の両方に汲み入れられる場合、1つのギアが画定される。一ギア例では、流体チャンバC1が、導管1095及び1096のうちの一方又は両方を介して作業液圧の液圧流体源に選択的に流体的に結合される場合、正味動作表面積Anetは、(A1+A3−A2)に等しく、結果として生まれる力は、右方向である。流体チャンバC1及び流体チャンバC2の両方が、作業液圧の液圧流体源に選択的に流体的に結合される場合、正味動作表面積Anetは(A1+A3−A2−A4)に等しく、結果として生まれる力はここでも右方向である。
【0115】
[00139]液圧ピストン1078が筐体1084に係合し、及び/又は筐体1084内に配置される場合(図54Bに示されるように)、異なる流体チャンバの数が増大するため、可能なギアの数は増大する。ピストン1078は、チャンバC1を2つのチャンバC3及びC4に分ける。これにより、8つの加圧状態が可能になるため(3つのチャンバのそれぞれが加圧されるか、又は加圧されない)、可能なギアの数は7に等しい(各チャンバが個々に、チャンバのうちの2つの各組み合わせ、及びすべてのチャンバ)。一ギア例では、流体チャンバC3は、作業液圧の液圧流体源に選択的に流体的に結合することができ、正味動作表面積AnetはA1に等しく、結果として生まれる力は右方向である。別の例では、流体チャンバC3及び流体チャンバC2は両方とも、作業圧の液圧流体源に選択的に流体的に結合することができ、正味動作表面積Anetは(A1+A3−A2−A4)に等しく、結果として生まれる力はここでも右方向である。したがって、この例では、正味動作表面積Anetは、流体チャンバC1(図54A中)が上述したように液圧流体で加圧される場合と同じである。
【0116】
[00140]液圧シリンダが作業ピストン1074の他方の側に動作可能に結合される場合も、可能なギアの数を増大させることができる。したがって、図54A及び図54Bに示されないが、1つ又は複数の液圧シリンダを作業ピストン1074に動作可能に結合することもできる。そのような実施形態では、正味動作表面積Anetは、前の実施形態に関して上述したように特定することができる。
【0117】
[00141]図55は、作業ピストンが配置された槽又は筐体内に、液圧シリンダが配置されるアクチュエータの実施形態を示す。そのような実施形態は、例えば、作動させる特定の装置に必要なスペースを低減することが望ましいことがある。アクチュエータ1112は、それぞれが筐体1182に結合され、筐体1182により画定される内部領域内に配置される液圧シリンダ1148及び液圧シリンダ1150を含み、筐体1182内でガスを圧縮することができ、及び/又は筐体1182から流体を排出することができ、及び/又は筐体1182内で液体を受け取り得る。筐体1182は、内部領域内にある容量の流体を含むように構成される。液圧シリンダ1148は、筐体1184と、筐体1184により画定される内部領域内に移動可能に配置される液圧ピストン1078とを含む。液圧シリンダ1150は、筐体1185と、筐体1185の内部領域内に移動可能に配置される液圧ピストン1080とを含む。作業ピストン1174は、筐体1182の内部領域内に移動可能に配置され、作業ピストン1174が液圧ピストン1178及び液圧ピストン1180の移動と共に移動可能なように、1つの駆動ロッドR1を介して液圧ピストン1178及び液圧ピストン1180に結合される。
【0118】
[00142]筐体1084は、内部領域内に、液圧流体チャンバC1及び液圧流体チャンバC2を画定し、筐体1085は、内部領域に、液圧流体チャンバC3及び液圧流体チャンバC4を画定する。ギア及び特定のギアに関連付けられる正味動作表面積の決定は、前の実施形態に関して上述した様式と同じ又は同様に決定することができ、したがって、本実施形態を参照して詳述しない。液圧ピストン1178及び1180を作動させて、各筐体1184及び1185内で移動させ、筐体1182内で作業ピストン1174を上下に移動させることができる。
【0119】
[00143]図56は、液圧ピストンが静止したままであり、筐体及び作業ピストンが液圧ピストンに対して移動するように、液圧シリンダの筐体が槽又は筐体内の作業ピストンに固定して結合され、槽又は筐体内には作業ピストンが配置される、アクチュエータの実施形態を示す。アクチュエータ1212は液圧シリンダ1248及び液圧シリンダ1280を含み、各液圧シリンダは、ある容量の流体を内部に含むように構成された筐体1282の内部領域内に配置される。液圧シリンダ1248は、筐体1284と、筐体1284の内部領域内に移動可能に配置される液圧ピストン1278とを含み、液圧シリンダ1250は、筐体1285と、筐体1285の内部領域内に移動可能に配置される液圧ピストン1280とを含む。駆動ロッドR1が液圧ピストン1278及び筐体1282に結合され、駆動ロッドR2が液圧ピストン1280及び筐体1282に結合される。作業ピストン1274は、筐体1282の内部領域内に移動可能に配置される。作業ピストンは、アクチュエータ1212が作動した場合、作業ピストン1274、筐体1284、及び筐体1285が一緒に、液圧ピストン1278及び液圧ピストン1280に対して移動できるように、筐体1284及び筐体1285に結合される。したがって、液圧ピストン1278及び1280のそれぞれが筐体1284及び1285に対して移動するのではなく、アクチュエータ1212が作動した場合、筐体1284及び1285が(作業ピストンに沿って)各ピストン1278及び1280に対して移動する。
【0120】
[00144]筐体1284は、内部領域内に、液圧流体チャンバC1及び液圧流体チャンバC2を画定し、筐体1285は、内部領域内に、液圧流体チャンバC3及び液圧流体チャンバC4を画定する。ギア及び特定のギアに関連付けられた正味動作表面積は、前の実施形態に関して上述した様式と同じ又は同様に決定することができ、したがって、本実施形態を参照して詳述しない。
【0121】
[00145]本発明の様々な実施形態を上述したが、実施形態が単なる例として提示され、限定として提示されていないことを理解されたい。上述した方法及びステップが、特定の順で生じる特定の事象を示す場合、特定のステップの順を変更してもよく、そのような変更が本発明の変形によることを、本開示を利用する当業者なら認識しよう。さらに、特定のステップは、可能な場合、並列プロセスで同時に実行してもよく、上述したように逐次実行してもよい。実施形態は、具体的に図示され説明されたが、形態及び詳細に様々な変更を行い得ることが理解されよう。
【0122】
[00146]例えば、様々な構成要素のサイズ(例えば、直径、長さ等)を変更して、システムの所望の出力を提供することができる。図7〜図22は異なるサイズの様々な送水ポンプを示すが、各送水ポンプは、同じサイズで構成されて、システムの所与の段階で同じ機能及び出力を提供することもできる。
【0123】
[00147]圧縮/膨張装置内の液体は、水を含むものとして上述したが、加えて又は代替として、他の液体を使用することもできる。理解されるように、水は、当然ながら、システムにより圧縮されている空気から凝縮することができ、この点に関して、悪影響なしで液体と混合することができる。さらに、膨張/圧縮装置の実施形態で使用される場合、水は、悪影響なしで膨張中に空気中に蒸発し得る。しかし、他の種類の液体を水に対する追加又は代替として使用し得る。そのような液体のいくつかの例としては、グリコール等の凍結を防ぐように作成された添加剤又は液体全体、グリセリン等の蒸発を防ぐ液体、及び/又は発泡を防ぐ液体を挙げることができる。同様に、圧縮/膨張装置内のガスは空気(周囲空気を使用することができるように、好都合な選択である)であるものとして上述したが、追加又は代替として、他のガスを使用することもできる。
【0124】
[00148]さらに、システム400は、それぞれが2つの送水ポンプを有する2つの段階を有するものとして説明され、送水ポンプはそれぞれ2つの液圧シリンダ(上部及び下部液圧シリンダ)により作動するが、代替の実施形態では、より多数の液圧シリンダを送水ポンプの上下に結合することができ、それにより、追加の可能なギアモードを提供することができる。さらに、他の実施形態では、システムには、異なる数の送水ポンプ及び/又は異なる数の段階を構成することができ、それにより、追加の可能なギアモードを提供することができる。さらに、本明細書に記載のシステム及び方法は、既知のコンピュータシステム及びそのような目的で使用される制御システムを使用して制御することができる。
【0125】
[00149]上述した実施形態では、液圧アクチュエータにより駆動される(又は液圧アクチュエータを駆動する)被駆動部材は、直接又は間接的に、圧縮すべき(又は膨張すべき)ガスに圧力を与える(又はそのようなガスから圧力を受け取る)ピストンであるが、代替の実施形態では、被駆動部材は、駆動されて、機械力を供給するか、又は機械力を受け取って駆動されることが望まれる任意の部材とすることができる。開示されるシステム及び方法の他の用途例としては、商用航空機に使用されるような油圧機械式アクチュエータ、油圧式又は空気圧式伐木機、水門、及び海堰等の広範囲の力プロファイルを有する用途、並びに車及びトラックに使用されるようなショックアブソーバが挙げられる。
【0126】
[00150]システムコントローラ(例えば、414、814)は、例えば、プロセッサにプロセスを実行させる命令を表すコードを記憶したプロセッサ可読媒体を含むことができる。プロセッサは、例えば、市販のパーソナルコンピュータ又は1つ若しくは複数の特定のタスクの実行専用の他の計算又は処理装置とすることができる。例えば、プロセッサは、インタラクティブグラフィカルユーザインタフェース(GUI)の提供専用の端末とすることができる。プロセッサは、1つ又は複数の実施形態によれば、市販のマイクロプロセッサとすることができる。又は、プロセッサは、1つ若しくは複数の特定の機能を達成するか、又は1つ若しくは複数の特定の装置若しくはアプリケーションを可能にするように設計された特定用途向け集積回路(ASIC)又はASICの組み合わせとすることができる。さらに別の実施形態では、プロセッサは、アナログ回路、デジタル回路、又は複数の回路の組み合わせとすることができる。
【0127】
[00151]プロセッサはメモリ構成要素を含むことができる。メモリ構成要素は、1つ又は複数の種類のメモリを含むことができる。例えば、メモリ構成要素は、読み取り専用メモリ(ROM)構成要素及びランダムアクセスメモリ(RAM)構成要素を含むことができる。メモリ構成要素は、プロセッサが検索可能な形態でデータを記憶するのに適した他の種類のメモリを含むこともできる。例えば、電子的にプログラム可能な読み取り専用メモリ(EPROM)、消去可能電子的にプログラム可能な読み取り専用メモリ(EEPROM)、フラッシュメモリ、磁気ディスクメモリ、並びに他の適した形態のメモリをメモリ構成要素内に含むことができる。これらのメモリ構成要素のうちの任意又はすべてに、任意の形態の通信ネットワークによりアクセス可能なことが認識される。プロセッサは、コードの所望の機能に応じて、様々な他の構成要素、例えば、コプロセッサ、グラフィックプロセッサ等を含むこともできる。
【0128】
[00152]プロセッサは、メモリ構成要素と通信することができ、データをメモリ構成要素に記憶し、又は前にメモリ構成要素に記憶されたデータを検索することができる。プロセッサの構成要素は、入出力(I/O)構成要素によりプロセッサ外部の装置と通信するように構成することができる。1つ又は複数の実施形態によれば、I/O構成要素は、様々な適した通信インタフェースを含むことができる。例えば、I/O構成要素は、例えば、標準シリアルポート、パラレルポート、ユニバーサルシリアルバス(USB)ポート、S−ビデオポート、ローカルエリアネットワーク(LAN)ポート、小型コンピュータシステムインタフェース(SCCI)ポート、アナログ/デジタルインタフェース入力装置、デジタル/アナログインタフェース出力装置等の有線接続を含むことができる。さらに、I/O構成要素は、例えば、赤外線ポート、光学ポート、Bluetooth(登録商標)無線ポート、無線LANポート等の無線接続を含むことができる。プロセッサはネットワークに接続することもでき、ネットワークは、ローカルエリアネットワーク若しくは広域ネットワーク等のイントラネット又はワールドワイドウェブ若しくはインターネット等のエクストラネットを含む任意の形態の相互接続ネットワークであり得る。ネットワークは、仮想私設ネットワーク(VPN)を含む専用ライン又は専用回線上の無線又は有線ネットワークで物理的に実施することができる。

【特許請求の範囲】
【請求項1】
作業シリンダ及び前記作業シリンダ内で往復運動するように配置された作業ピストンを有する作業アクチュエータであって、前記作業ピストンは少なくとも部分的に、前記作業ピストンの第1の側と前記作業シリンダの間に、有効作業ピストン表面積を有する作業チャンバを画定し、前記有効作業ピストン表面積に前記作業チャンバ内の作業流体の作業圧がかけられて、前記作業ピストンの前記第1の側に、第1の方向に作用する作業力を生成する、作業アクチュエータと、
前記作業ピストンに結合された液圧アクチュエータであって、液圧シリンダ及び前記液圧シリンダ内で往復運動するように配置された液圧ピストンを含み、前記液圧ピストンは、前記液圧シリンダを第1の液圧チャンバ及び第2の液圧チャンバに分け、前記液圧ピストンは前記第1の液圧チャンバ及び前記第2の液圧チャンバを画定し、
前記第1の液圧チャンバは、第1の液圧流体ポートを有するとともに、第1の有効液圧ピストン表面積を有し、前記第1の有効液圧ピストン表面積に前記第1の液圧チャンバ内の液圧流体の液圧がかけられて、前記液圧ピストンに、前記第1の方向とは逆の第2の方向に作用する第1の液圧力を生成し、
前記第2の液圧チャンバは、第2の液圧流体ポートを有するとともに、第2の有効液圧ピストン表面積を有し、前記第2の有効液圧ピストン表面積に前記第2の液圧チャンバ内の液圧流体の液圧がかけられて、前記液圧ピストンに、前記第1の方向に作用する第2の液圧力を生成し、
前記第2の有効液圧ピストン面積は、前記第1の有効液圧ピストン面積よりも小さく、前記第2の液圧力は前記第1の液圧力よりも小さい、液圧アクチュエータと、
前記第1の液圧流体ポート、前記第2の液圧流体ポート、及び加圧液圧流体に流体的に結合可能な液圧コントローラであって、前記加圧液圧流体が前記第1の液圧流体ポートに流体的に結合されるが、前記第2の液圧流体ポートには流体的に結合されない第1の動作状態と、前記加圧液圧流体が前記第2の液圧流体ポートに流体的に結合されるが、前記第1の液圧流体ポートには流体的に結合されない第2の動作状態と、前記加圧液圧流体が前記第1の液圧流体ポート及び前記第2の液圧流体ポートの両方に流体的に結合される第3の動作状態と、前記加圧液圧流体が前記第1の液圧ポート及び前記第2の液圧ポートから流体的に分離される第4の動作状態とで動作可能な液圧コントローラと、
を備える装置であって、
前記液圧コントローラは、前記液圧を有する加圧液圧流体と共に動作可能であり、前記液圧アクチュエータに、前記作業ピストンに対して選択された液圧アクチュエータ力、すなわちa)前記第1の動作状態では、前記第2の方向で作用し、前記第1の液圧力におおよそ等しい前記液圧アクチュエータ力、b)前記第2の動作状態では、前記第1の方向に作用し、前記第2の液圧力におおよそ等しい前記液圧アクチュエータ力、及びc)前記第3の動作状態では、前記第2の方向に作用し、前記第1の液圧力と前記第2の液圧力との差におおよそ等しい前記液圧アクチュエータ力を生成させ、
それにより、前記作業力よりも大きな前記第2の方向での液圧アクチュエータ力を生成する前記液圧コントローラの動作が、前記作業ピストン及び前記液圧ピストンを前記第2の方向に移動させ、前記作業力よりも小さな前記第2の方向での液圧アクチュエータ力を生成する前記液圧コントローラの動作が、前記作業ピストン及び前記液圧ピストンを前記第1の方向に移動させる、装置。
【請求項2】
前記作業アクチュエータに流体的に結合され、部分的に、前記作業チャンバを画定する内部領域を有する圧力容器をさらに備え、前記第2の方向での前記作業ピストンの移動は、前記作業チャンバの容積を低減させるとともに、前記作業チャンバに含まれるガスを圧縮させ、又は前記第1の方向での前記作業ピストンの移動は、前記作業チャンバの容積を増大させるとともに、前記作業チャンバに含まれるガスを膨張させる、請求項1に記載の装置。
【請求項3】
前記液圧アクチュエータは、前記作業ピストン及び前記液圧ピストンに結合された接続ロッドにより、前記作業ピストンに結合される、請求項1に記載の装置。
【請求項4】
前記液圧シリンダは第1の液圧シリンダであり、前記液圧ピストンは第1の液圧シリンダであり、前記装置は、
前記作業ピストンに結合された第2の液圧アクチュエータであって、第2の液圧シリンダ及び前記第2の液圧シリンダ内で往復運動するように配置された第2の液圧ピストンを有する、第2の液圧アクチュエータをさらに備え、
前記第2の液圧ピストンは、前記第2の液圧シリンダを第3の液圧チャンバ及び第4の液圧チャンバに分け、前記第2の液圧ピストンは前記第3の液圧チャンバ及び前記第4のチャンバを画定し、
前記第3の液圧チャンバは、第3の液圧流体ポートを有するとともに、第3の有効液圧ピストン表面積を有し、前記第3の有効液圧ピストン表面積に前記第3の液圧チャンバ内の液圧流体の液圧がかけられて、前記液圧ピストンに、前記第2の方向に作用する第3の液圧力を生成し、
前記液圧コントローラは、加圧液圧流体源が前記第3の液圧ポートに流体的に結合されるが、前記第1又は第2の液圧流体ポートには流体的に結合されない第5の動作状態と、前記加圧液圧流体源が前記第1の液圧ポート及び前記第3の液圧ポートに結合されるが、前記第2の液圧流体ポートには流体的に結合されない第6の動作状態と、前記加圧液圧流体源が前記第1の液圧ポート、前記第2の液圧ポート、及び前記第3の液圧ポートに流体的に結合される第7の動作状態とでさらに動作可能であり、
前記液圧コントローラは、前記液圧を有する加圧液圧流体と共にさらに動作可能であり、前記液圧アクチュエータに、前記作業ピストンに対して選択された液圧アクチュエータ力、すなわちd)前記第5の動作状態では、前記第2の方向で作用し、前記第3の液圧力におおよそ等しい液圧アクチュエータ力、b)前記第6の動作状態では、前記第2の方向に作用し、前記第1の液圧力と前記第3の液圧力との和におおよそ等しい液圧アクチュエータ力、及びc)前記第7の動作状態では、前記第2の方向に作用し、前記第3の液圧力の和と、前記第1の液圧力と前記第2の液圧力との差との差におおよそ等しい液圧アクチュエータ力を生成させる、請求項1に記載の装置。
【請求項5】
前記作業ピストンは、前記第1の液圧アクチュエータと前記第2の液圧アクチュエータとの間に配置される、請求項4に記載の装置。
【請求項6】
前記第1の液圧アクチュエータは、前記第2の液圧アクチュエータと前記作業ピストンとの間に配置される、請求項4に記載の装置。
【請求項7】
前記第1の液圧アクチュエータは、前記作業ピストン及び前記第1の液圧ピストンに結合された第1のピストンロッドにより前記作業ピストンに結合され、前記第2の液圧ピストンは、第2のピストンロッドにより前記第1の液圧ピストンに結合される、請求項6に記載の装置。
【請求項8】
前記加圧液圧流体は、液圧ポンプの高圧側と流通する、請求項1に記載の装置。
【請求項9】
前記加圧液圧流体は、液圧モータの高圧側と流通する、請求項1に記載の装置。
【請求項10】
被駆動部材と、
前記被駆動部材に動作可能に結合され、第1の液圧シリンダ及び前記第1の液圧シリンダ内に移動可能に配置された第1の液圧ピストンを有し、前記第1の液圧ピストンの第1の側に第1の液圧チャンバを画定し、前記第1の液圧ピストンの逆の第2の側に第2の液圧チャンバを画定する第1の液圧アクチュエータであって、前記第1の液圧チャンバは第1の液圧ピストン面積を画定し、前記第1の液圧ピストン面積に加圧液圧流体が適用されて、前記被駆動部材に第1の方向で作用する力を生成し、前記第2の液圧チャンバは、前記第1の液圧ピストン面積よりも小さな第2の液圧ピストン面積を画定し、前記第2の液圧ピストン面積に加圧液圧流体が適用されて、前記被駆動部材に第2の方向で作用する力を生成する、第1の液圧アクチュエータと、
前記被駆動部材に動作可能に結合され、第2の液圧シリンダ及び前記第2の液圧シリンダ内に動作可能に配置された第2の液圧ピストンを有し、前記第2の液圧ピストンの第1の側に第3の液圧チャンバ及び前記第2の液圧ピストンの逆の第2の側に第4の液圧チャンバを画定する第2の液圧アクチュエータであって、前記第3の液圧チャンバは第3の液圧ピストン面積を画定し、前記第3の液圧ピストン面積に加圧液圧流体が適用されて、前記被駆動部材に前記第1の方向に作用する力を生成し、前記第4の液圧チャンバは、前記第3の液圧ピストン面積よりも大きな第4の液圧ピストン面積を画定し、前記第4の液圧ピストン面積に加圧液圧流体が適用されて、前記被駆動部材に前記第2の方向に作用する力を生成する、第2の液圧アクチュエータと、
前記第1の液圧アクチュエータ、前記第2の液圧アクチュエータに結合され、加圧液圧流体に流体的に結合可能な液圧コントローラと、
を備え、前記液圧コントローラは、前記加圧液圧流体を前記第1、第2、第3、及び第4の液圧チャンバのうちの任意の1つ又は複数に少なくとも4つの組み合わせで選択的に提供するか、又は提供しないように動作可能であり、各組み合わせは、前記液圧チャンバの加圧状態を確立し、第1の状態及び第2の状態のそれぞれは正味液圧ピストン面積を生成し、前記正味液圧ピストン面積に液圧がかけられると、前記第1の液圧アクチュエータ及び前記第2の液圧アクチュエータから、前記第1の方向に作用する正味アクチュエータ力が前記被駆動部材に生成され、第3の状態及び第4の状態は正味液圧ピストン面積を生成し、前記正味液圧ピストン面積に液圧がかけられると、前記第2の方向に作用する正味アクチュエータ力が前記被駆動部材に生成され、前記第1の状態は、前記第2の状態とは異なる正味液圧ピストン面積を有し、前記第3の状態は、前記第4の状態とは異なる正味液圧ピストン面積を有する、装置。
【請求項11】
前記液圧コントローラは、前記第1の状態及び前記第2の状態を順次確立することにより、前記液圧アクチュエータに前記被駆動部材を前記第1の方向に変位させるように動作可能である、請求項10に記載の装置。
【請求項12】
前記液圧コントローラは、前記第3の状態及び前記第4の状態を順次確立することにより、前記液圧アクチュエータに前記被駆動部材を前記第2の方向に変位させるようにさらに動作可能である、請求項11に記載の装置。
【請求項13】
前記液圧コントローラは、加圧液圧流体を前記第1、第2、第3、及び第4の液圧チャンバのうちの任意の1つ又は複数に少なくとも6つの組み合わせで選択的に提供するか、又は提供せず、前記第1の方向に作用する正味液圧ピストン面積を生成する第5の状態をさらに確立し、前記第2の方向に作用する正味液圧ピストン面積を生成する第6の状態を確立するようにさらに動作可能であり、前記第5の状態は、前記第1の状態及び前記第2の状態とは異なる正味液圧ピストン面積を有し、前記第6の状態は、前記第3の状態及び前記第4の状態とは異なる正味液圧ピストン面積を有する、請求項10に記載の装置。
【請求項14】
前記液圧コントローラは、加圧液圧流体を前記第1、第2、第3、及び第4の液圧チャンバのうちの任意の1つ又は複数に少なくとも8つの組み合わせで選択的に提供するか、又は提供せず、前記第1の方向に作用する正味液圧ピストン面積を生成する第7の状態をさらに確立し、前記第2の方向に作用する正味液圧ピストン面積を生成する第8の状態を確立するようにさらに動作可能であり、前記第7の状態は、前記第1の状態、前記第2の状態、及び前記第5の状態とは異なる正味液圧ピストン面積を有し、前記第8の状態は、前記第3の状態、前記第4の状態、及び前記第6の状態とは異なる正味液圧ピストンを有する、請求項13に記載の装置。
【請求項15】
前記第1、第2、第3、及び第4の液圧ピストン面積のそれぞれは、その他の前記液圧ピストン面積とは異なり、前記液圧コントローラは、加圧液圧流体を前記第1、第2、第3、及び第4の液圧チャンバのうちの任意の1つ又は複数に少なくとも10の組み合わせで選択的に提供するか、又は提供せず、前記第1の方向に作用する正味液圧ピストンを生成する第9の状態をさらに確立し、前記第2の方向に作用する正味液圧ピストン面積を生成する第10の状態を確立するようにさらに動作可能であり、前記第9の状態は、前記第1の状態、前記第2の状態、前記第5の状態、及び前記第7の状態とは異なる正味液圧ピストン面積を有し、前記第10の状態は、前記第3の状態、前記第4の状態、前記6の状態、及び前記第8の状態とは異なる正味液圧ピストン面積を有する、請求項14に記載の装置。
【請求項16】
前記液圧コントローラは、前記第1の状態、前記第2の状態、前記第5の状態、前記第7の状態、及び前記第9の状態を順次確立することにより、前記液圧アクチュエータに前記被駆動部材を前記第1の方向に変位させるように動作可能である、請求項10に記載の装置。
【請求項17】
前記液圧コントローラは、前記第3の状態、前記第4の状態、前記第6の状態、前記第8の状態、及び前記第10の状態を順次確立することにより、前記液圧アクチュエータに前記被駆動部材を前記第2の方向に変位させるようにさらに動作可能である、請求項16に記載の装置。
【請求項18】
作業シリンダと、前記作業シリンダ内で往復運動するように配置された作業ピストンとを有する作業アクチュエータをさらに備え、前記作業ピストンは少なくとも部分的に、前記作業ピストンの第1の側と前記作業シリンダとの間に作業チャンバを画定し、前記作業チャンバ内にはガスを含むことができ、前記作業ピストンは前記被駆動部材であり、前記液圧コントローラは、前記液圧アクチュエータに前記作業ピストンを前記第1の方向に変位させて、前記作業チャンバ内に含まれるガスを圧縮するように動作可能である、請求項10に記載の装置。
【請求項19】
前記被駆動部材は、前記第1の液圧アクチュエータと前記第2の液圧アクチュエータとの間に配置される、請求項10に記載の装置。
【請求項20】
前記第1の液圧アクチュエータは、前記第2の液圧アクチュエータと前記被駆動部材との間に配置される、請求項10に記載の装置。
【請求項21】
前記加圧液圧流体は、液圧ポンプの高圧側と流通する、請求項10に記載の装置。
【請求項22】
前記加圧液圧流体は、液圧モータの高圧側と流通する、請求項10に記載の装置。
【請求項23】
被駆動部材を駆動するか、又は前記被駆動部材により駆動される液圧駆動システムを動作させる方法であって、前記液圧駆動システムは加圧液圧流体を含み、液圧アクチュエータが、第1の液圧シリンダと、前記第1の液圧シリンダ内に移動可能に配置された第1の液圧ピストンとを有し、前記第1のシリンダと共に第1の液圧チャンバ及び第2の液圧チャンバを画定し、第2の液圧シリンダと、前記第2の液圧シリンダ内に移動可能に配置された第2の液圧ピストンとを有し、前記第2の液圧シリンダと共に第3のチャンバ及び第4のチャンバを画定し、前記液圧アクチュエータは前記被駆動部材に結合され、液圧コントローラが、前記加圧液圧流体と、前記第1、第2、第3、及び第4の液圧チャンバのそれぞれとに流体的に結合され、前記液圧チャンバ及び前記加圧液圧流体のそれぞれを、前記チャンバの連通及び分離の少なくとも4つの組み合わせのそれぞれで流体的に結合又は流体的に分離するように選択的に独立して動作可能であり、各組み合わせは、第1の方向及び逆の第2の方向のうちの一方で作用する正味液圧ピストン面積を画定し、第1又は第2の方向において、前記アクチュエータは、加圧液圧流体を前記液圧コントローラが前記加圧液圧流体との流通を前記組み合わせで確立する前記1つ又は複数のチャンバに与えることにより、前記被駆動部材を促し、前記方法は、
第1の時間期間中、前記第1の方向に作用する第1の正味液圧ピストン面積を有する第1の組み合わせを確立すること、
第2の時間期間中、前記第1の方向に作用する、前記第1の液圧ピストン面積よりも大きな第2の正味液圧ピストン面積を有する第2の組み合わせを確立すること、
第3の時間期間中、前記第1の方向に作用する、前記第2の液圧ピストン面積よりも大きな第3の正味液圧ピストン面積を有する第3の組み合わせを確立すること、及び
第4の時間期間中、前記第1の方向に作用する、前記第3の液圧ピストン面積よりも大きな第4の正味液圧ピストン面積を有する第4の組み合わせを確立すること
を含む、方法。
【請求項24】
前記液圧コントローラは、前記液圧チャンバ及び前記加圧液圧流体のそれぞれを、前記チャンバの連通及び分離の少なくとも6つの組み合わせのそれぞれで流体的に結合又は流体的に分離するように選択的に独立して動作可能であり、
第5の時間期間中、前記第2の方向に作用する第5の正味液圧ピストン面積を有する第5の組み合わせを確立すること、
第6の時間期間中、前記第2の方向に作用する、前記第5の液圧ピストン面積よりも大きな第6の正味液圧ピストン面積を有する第6の組み合わせを確立すること
をさらに含む、請求項23に記載の方法。
【請求項25】
前記液圧コントローラは、前記液圧チャンバ及び前記加圧液圧流体のそれぞれを、前記チャンバの連通及び分離の少なくとも6つの組み合わせのそれぞれで流体的に結合又は流体的に分離するように選択的に独立して動作可能であり、
第5の時間期間中、前記第1の方向に作用する、前記第4の正味液圧ピストン面積よりも大きな第5の正味液圧ピストン面積を有する第5の組み合わせを確立すること、
第6の時間期間中、前記第1の方向に作用する、前記第5の液圧ピストン面積よりも大きな第6の正味液圧ピストン面積を有する第6の組み合わせを確立すること
をさらに含む、請求項23に記載の方法。
【請求項26】
前記第1の時間期間中、第1の力が、前記第1のピストン、前記第2のピストン、前記第1の駆動ロッド、及び前記第2の駆動ロッドのうちの少なくとも1つにより集合的に画定される第1の正味表面積に対してかけられ、前記作業ピストンに適用され、
前記第2の時間期間中、第2の力が、前記第1のピストン、前記第2のピストン、前記第1の駆動ロッド、及び前記第2の駆動ロッドのうちの少なくとも1つにより集合的に画定される第2の正味表面積に対してかけられ、前記作業ピストンに適用され、前記第1の力は第1のセットに関連付けられ、前記第2の力は第2のセットに関連付けられる、請求項23に記載の方法。
【請求項27】
前記被駆動部材は、作業シリンダ内に配置され、ある量のガスを含む作業チャンバを少なくとも部分的に画定する作業ピストンであり、
前記第1の組み合わせを確立することは、前記作業ピストンを前記第1の方向に移動させて、前記作業チャンバの容積を低減させ、前記量のガスを第1の圧力から、前記第1の圧力よりも高い第2の圧力に圧縮することを含み、
前記第2の組み合わせを確立することは、前記作業ピストンを前記第1の方向にさらに移動させて、前記作業チャンバの容積をさらに低減させ、前記量のガスを前記第2の圧力から、前記第2の圧力よりも高い第3の圧力にさらに圧縮することを含み、
前記第3の組み合わせを確立することは、前記作業ピストンを前記第1の方向にさらに移動させて、前記作業チャンバの容積をさらに低減させ、前記量のガスを前記第3の圧力から、前記第3の圧力よりも高い第4の圧力にさらに圧縮することを含み、
前記第4の組み合わせを確立することは、前記作業ピストンを前記第1の方向にさらに移動させて、前記作業チャンバの容積をさらに低減させ、前記量のガスを前記第4の圧力から、前記第4の圧力よりも高い第5の圧力にさらに圧縮することを含む、請求項23に記載の方法。
【請求項28】
前記加圧液圧流体は、液圧ポンプの高圧側により提供される、請求項23に記載の方法。
【請求項29】
前記加圧液圧流体は、液圧モータの高圧側により提供される、請求項23に記載の方法。
【請求項30】
所定の低圧と、前記所定の低圧よりも高い所定の高圧を含む液圧範囲にわたり液圧流体を輸送するように動作可能な液圧ポンプと、
第1の液圧ピストン及び第2の液圧ピストンを含む液圧アクチュエータ装置であって、前記液圧ピストンのそれぞれは第1の側及び第2の側を有する、液圧アクチュエータ装置と、
を備え、
前記液圧アクチュエータ装置は、前記液圧ポンプに動作可能に結合されて、加圧液体流体を前記液圧ポンプから前記第1及び第2の液圧ピストンのそれぞれの前記第1の側及び前記第2の側のうちの一方又は両方に、少なくとも第1、第2、及び第3の組み合わせで選択的に輸送できるようにし、
前記組み合わせのそれぞれは、前記液圧ポンプにより輸送される前記加圧液圧流体の圧力におおよそ比例する出力を前記液圧アクチュエータにもたらし、
前記液圧アクチュエータ装置は、前記液圧範囲にわたり加圧液圧流体を前記液圧ポンプから受け取り、前記第1の組み合わせに対応する第1の力範囲、前記第2の組み合わせに対応する、前記第1の力範囲よりも大きな第2の力範囲、及び前記第3の組み合わせに対応する、前記第2の力範囲よりも大きな第3の力範囲で出力をもたらすように動作可能である、装置。
【請求項31】
前記液圧アクチュエータ装置に動作可能に結合された作業アクチュエータをさらに備え、前記作業アクチュエータは、作業シリンダと、前記作業シリンダ内で往復運動するように配置された作業ピストンとを有し、前記作業ピストンは少なくとも部分的に、前記作業ピストンの第1の側と前記作業シリンダとの間に、ある量のガスを含むように構成された作業チャンバを画定し、
前記液圧アクチュエータ装置は、前記液圧ポンプと共に動作可能であり、前記第1の力範囲、前記第2の力範囲、及び前記第3の力範囲を前記作業ピストンに対して順次もたらし、前記量のガスをそれに対応してより高いガス圧範囲に圧縮する、請求項30に記載の装置。
【請求項32】
前記液圧アクチュエータ装置は、
加圧液圧流体を前記液圧ポンプから前記第1及び第2の液圧ピストンのそれぞれの前記第1の側及び前記第2の側のうちの一方又は両方に、少なくとも第4及び第5の組み合わせで選択的に輸送できるようにし、
前記液圧範囲にわたり加圧液圧流体を前記液圧ポンプから受け取り、前記第4の組み合わせに対応する、前記第3の力範囲よりも大きな第4の力範囲及び前記第5の組み合わせに対応する、前記第4の力範囲よりも大きな第5の力範囲の出力をもたらす
ようにさらに動作可能である、請求項30に記載の装置。
【請求項33】
少なくとも、所定の低圧と、前記所定の低圧よりも高い所定の高圧を含む液圧範囲にわたり、前記液圧モータが受け取る液圧流体により駆動されるように動作可能な液圧モータと、
第1の液圧ピストン及び第2の液圧ピストンを含む液圧アクチュエータ装置であって、前記液圧ピストンのそれぞれは第1の側及び第2の側を有する、液圧アクチュエータ装置と、
を備え、
前記液圧アクチュエータ装置は、前記液圧モータに動作可能に結合されて、加圧液圧流体を前記第1及び第2の液圧ピストンのそれぞれの前記第1の側及び前記第2の側のうちの一方又は両方から前記液圧モータに、少なくとも第1、第2、及び第3の組み合わせで選択的に輸送できるようにし、
前記組み合わせのそれぞれは、前記液圧アクチュエータ装置から前記液圧ポンプに輸送される、前記液圧アクチュエータ装置に与えられる入力におおよそ比例する前記加圧液圧流体の出力圧をもたらし、
前記液圧アクチュエータ装置は、前記第1の組み合わせに対応する第1の力範囲、前記第2の組み合わせに対応する、前記第1の力範囲よりも大きな第2の力範囲、及び前記第3の組み合わせに対応する、前記第2の力範囲よりも大きな第3の力範囲の入力に応答して、前記液圧範囲にわたり加圧液圧流体を前記液圧アクチュエータから前記液圧モータに輸送するように動作可能である、装置。
【請求項34】
前記液圧アクチュエータ装置に動作可能に結合された作業アクチュエータをさらに備え、前記作業アクチュエータは、作業シリンダと、前記作業シリンダ内で往復運動するように配置された作業ピストンとを有し、前記作業ピストンは少なくとも部分的に、前記作業ピストンの第1の側と前記作業シリンダとの間に、ある量のガスを含むように構成された作業チャンバを画定し、
前記液圧アクチュエータ装置は、前記第3の力範囲、前記第2の力範囲、及び前記第1の力範囲を、それに対応するより低いガス圧範囲への前記量のガスの膨張により駆動される前記作業ピストンから順次受け取り、前記液圧モータに加圧液圧流体を前記液圧範囲のみで提供するように動作可能である、請求項33に記載の装置。
【請求項35】
前記液圧アクチュエータ装置は、
加圧液圧流体を前記第1及び第2の液圧ピストンのそれぞれの前記第1の側及び前記第2の側のうちの一方又は両方から前記液圧モータに、少なくとも第4及び第5の組み合わせで選択的に輸送できるようにし、
前記第4の組み合わせに対応する、前記第3の力範囲よりも大きな第4の力範囲及び前記第5の組み合わせに対応する、前記第4の力範囲よりも大きな第5の力範囲の入力に応答して、前記液圧範囲にわたり加圧液圧流体を前記液圧アクチュエータから前記液圧モータに輸送するようにさらに動作可能である、請求項33に記載の装置。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5A】
image rotate

【図5B】
image rotate

【図6A】
image rotate

【図6B】
image rotate

【図6C】
image rotate

【図6D】
image rotate

【図6E】
image rotate

【図6F】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate

【図31】
image rotate

【図32】
image rotate

【図33】
image rotate

【図34】
image rotate

【図35】
image rotate

【図36】
image rotate

【図37】
image rotate

【図38】
image rotate

【図39】
image rotate

【図40】
image rotate

【図41】
image rotate

【図42】
image rotate

【図43】
image rotate

【図44】
image rotate

【図45】
image rotate

【図46】
image rotate

【図47】
image rotate

【図48】
image rotate

【図49】
image rotate

【図50】
image rotate

【図51A】
image rotate

【図51B】
image rotate

【図51C】
image rotate

【図51D】
image rotate

【図52A】
image rotate

【図52B】
image rotate

【図52C】
image rotate

【図53】
image rotate

【図54A】
image rotate

【図54B】
image rotate

【図55】
image rotate

【図56】
image rotate


【公表番号】特表2013−515928(P2013−515928A)
【公表日】平成25年5月9日(2013.5.9)
【国際特許分類】
【出願番号】特願2012−546234(P2012−546234)
【出願日】平成22年12月23日(2010.12.23)
【国際出願番号】PCT/US2010/062010
【国際公開番号】WO2011/079267
【国際公開日】平成23年6月30日(2011.6.30)
【出願人】(511282737)ジェネラル コンプレッション インコーポレイテッド (3)
【Fターム(参考)】