説明

液晶装置及び電子機器

【課題】偏光板の保護フィルムの位相差を考慮した視野角補償が可能な液晶装置及び電子機器を提供すること。
【解決手段】液晶装置1は、液晶パネル2と、液晶パネル2を挟んで配置された偏光板6,7と、偏光板6又は偏光板7と液晶パネル2との間に配置された位相差フィルム8と、を備える。偏光板6,7は、偏光子6a,7aと、偏光子6a,7aを挟む透光性の保護フィルム6b,7bとを有する。保護フィルム6b,7bの面内位相差Re1は、0nm≦Re1≦5nmを満たし、保護フィルム6b,7bの厚み方向位相差Rthは、0nm≦Rth≦20nmを満たす。また、位相差フィルム8の面内位相差Re2は、200nm≦Re2≦300nmを満たし、位相差フィルム8のNz値は、0.4<Nz≦0.8を満たし、位相差フィルム8の平均屈折率Naveは、1.4≦Nave≦2.0を満たす。

【発明の詳細な説明】
【技術分野】
【0001】
本発明に係る一態様は、液晶装置及び電子機器に関する。
【背景技術】
【0002】
液晶装置は、一対の基板と、これらの基板間に封入された液晶層とを有する液晶パネルを備え、さらに液晶パネルの外側に偏光板を有する構成が一般的である。この液晶装置の1つに、基板に平行な電界(横電界)によって液晶層を駆動させるIPS(In Plane Switching)モード、FFS(Fringe Field Switching)モードの液晶装置が知られている。これらの横電界方式の液晶装置において、視野角を広げるために、液晶パネルと偏光板との間に位相差フィルムを配置する構成が知られている。特に特許文献1では、偏光板に含まれる透明保護フィルムの位相差まで考慮した位相差フィルムの条件が提案されている。
【0003】
【特許文献1】特開2004−157523号公報
【発明の開示】
【発明が解決しようとする課題】
【0004】
しかしながら、上記特許文献1を含む従来の補償条件においては、位相差フィルムの平均屈折率が考慮されておらず、位相差フィルムの平均屈折率によっては広視野角が得られないことがあるという課題がある。
【課題を解決するための手段】
【0005】
本発明は、上記課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
【0006】
[適用例1]一対の基板と、前記一対の基板の間に配置され、前記基板に平行な成分を有する電界により駆動される液晶層と、を有する液晶パネルと、前記液晶パネルを挟んで配置された第1の偏光板及び第2の偏光板と、前記第1の偏光板と前記液晶パネルとの間、又は前記第2の偏光板と前記液晶パネルとの間に配置された位相差フィルムと、を備え、前記第1の偏光板及び前記第2の偏光板は、偏光子と、前記偏光子を挟む透光性の保護フィルムとを有し、前記保護フィルムの面内位相差Re1は、0nm≦Re1≦5nmを満たし、前記保護フィルムの厚み方向位相差Rthは、0nm≦Rth≦20nmを満たし、前記位相差フィルムの面内位相差Re2は、200nm≦Re2≦300nmを満たし、前記位相差フィルムのNz値は、0.4<Nz≦0.8を満たし、前記位相差フィルムの平均屈折率Naveは、1.4≦Nave≦2.0を満たす液晶装置。
【0007】
このような構成によれば、位相差フィルムの面内位相差Re2、Nz値、及び平均屈折率Naveを適切に選択することにより、保護フィルムが有する面内位相差Re1及び厚み方向位相差Rthを補償して、広い角度範囲にわたり高コントラスト比を有する(すなわち広視野角な)表示が可能な液晶装置が得られる。
【0008】
本明細書において、保護フィルムの面内位相差Re1は、保護フィルムの面内屈折率が最大となる方向をx軸、保護フィルムの面に平行かつx軸に垂直な方向をy軸、保護フィルムの厚さ方向をz軸とし、それぞれの軸方向の550nmにおける屈折率をnx1、ny1、nz1、保護フィルムの厚さをd1とした場合に、Re1=(nx1−ny1)d1で表される。また、保護フィルムの厚み方向位相差Rthは、Rth={(nx1+ny1)/2−nz1}d1で表される。一方、位相差フィルムの面内位相差Re2は、位相差フィルムの面内屈折率が最大となる方向をx軸、位相差フィルムの面に平行かつx軸に垂直な方向をy軸、位相差フィルムの厚さ方向をz軸とし、それぞれの軸方向の550nmにおける屈折率をnx2、ny2、nz2、位相差フィルムの厚さをd2とした場合に、Re2=(nx2−ny2)d2で表される。また、位相差フィルムのNz値は、Nz=(nx2−nz2)/(nx2−ny2)で表される。また、位相差フィルムの平均屈折率Naveは、Nave=(nx2+ny2+nz2)/3で表される。
【0009】
[適用例2]一対の基板と、前記一対の基板の間に配置され、前記基板に平行な成分を有する電界により駆動される液晶層と、を有する液晶パネルと、前記液晶パネルを挟んで配置された第1の偏光板及び第2の偏光板と、前記第1の偏光板と前記液晶パネルとの間、又は前記第2の偏光板と前記液晶パネルとの間に配置された位相差フィルムと、を備え、前記第1の偏光板及び前記第2の偏光板は、偏光子と、前記偏光子を挟む透光性の保護フィルムとを有し、前記保護フィルムの面内位相差Re1は、0nm≦Re1≦5nmを満たし、前記保護フィルムの厚み方向位相差Rthは、20nm<Rth≦40nmを満たし、前記位相差フィルムの面内位相差Re2は、100nm≦Re2≦150nmを満たし、前記位相差フィルムのNz値は、0.2≦Nz≦0.4を満たし、前記位相差フィルムの平均屈折率Naveは、1.4≦Nave≦2.0を満たす液晶装置。
【0010】
このような構成によれば、位相差フィルムの面内位相差Re2、Nz値、及び平均屈折率Naveを適切に選択することにより、保護フィルムが有する面内位相差Re1及び厚み方向位相差Rthを補償して、広い角度範囲にわたり高コントラスト比を有する(すなわち広視野角な)表示が可能な液晶装置が得られる。
【0011】
[適用例3]一対の基板と、前記一対の基板の間に配置され、前記基板に平行な成分を有する電界により駆動される液晶層と、を有する液晶パネルと、前記液晶パネルを挟んで配置された第1の偏光板及び第2の偏光板と、前記第1の偏光板と前記液晶パネルとの間、又は前記第2の偏光板と前記液晶パネルとの間に配置された位相差フィルムと、を備え、前記第1の偏光板及び前記第2の偏光板は、偏光子と、前記偏光子を挟む透光性の保護フィルムとを有し、前記保護フィルムの面内位相差Re1は、0nm≦Re1≦5nmを満たし、前記保護フィルムの厚み方向位相差Rthは、40nm<Rth≦60nmを満たし、前記位相差フィルムの面内位相差Re2は、100nm≦Re2≦150nmを満たし、前記位相差フィルムのNz値は、−0.1≦Nz<0.2を満たし、前記位相差フィルムの平均屈折率Naveは、1.4≦Nave≦2.0を満たす液晶装置。
【0012】
このような構成によれば、位相差フィルムの面内位相差Re2、Nz値、及び平均屈折率Naveを適切に選択することにより、保護フィルムが有する面内位相差Re1及び厚み方向位相差Rthを補償して、広い角度範囲にわたり高コントラスト比を有する(すなわち広視野角な)表示が可能な液晶装置が得られる。
【0013】
[適用例4]上記液晶装置であって、前記位相差フィルムは、前記液晶パネルと前記第1の偏光板との間に配置され、前記位相差フィルムの遅相軸及び前記第2の偏光板の吸収軸は、前記液晶層の配向方向と平行であり、前記第1の偏光板の吸収軸は、前記液晶層の配向方向と直交している液晶装置。
【0014】
このような構成によれば、Eモードの液晶装置において、広視野角な表示特性を実現することができる。
【0015】
[適用例5]上記液晶装置であって、前記位相差フィルムは、前記液晶パネルと前記第2の偏光板との間に配置され、前記位相差フィルムの遅相軸及び前記第1の偏光板の吸収軸は、前記液晶層の配向方向と平行であり、前記第2の偏光板の吸収軸は、前記液晶層の配向方向と直交している液晶装置。
【0016】
このような構成によれば、Oモードの液晶装置において、広視野角な表示特性を実現することができる。
【0017】
[適用例6]上記液晶装置であって、前記液晶パネルは、IPSモードの液晶パネルである液晶装置。
【0018】
このような構成によれば、広視野角な表示特性を有するIPSモードの液晶装置が得られる。
【0019】
[適用例7]上記液晶装置であって、前記液晶パネルは、FFSモードの液晶パネルである液晶装置。
【0020】
このような構成によれば、広視野角な表示特性を有するFFSモードの液晶装置が得られる。
【0021】
[適用例8]上記液晶装置を表示部に備える電子機器。
【0022】
このような構成によれば、表示部において広視野角な表示を行うことが可能な電子機器が得られる。
【発明を実施するための最良の形態】
【0023】
以下、図面を参照し、液晶装置及び電子機器の実施形態について説明する。なお、以下に示す各図においては、各構成要素を図面上で認識され得る程度の大きさとするため、各構成要素の寸法や比率を実際のものとは適宜に異ならせてある。
【0024】
図1は、液晶装置1の構成を示しており、(a)は斜視図、(b)は(a)中のA−A線における断面図、(c)は偏光板6,7の層構成を示す断面図である。液晶装置1は、液晶パネル2と、液晶パネル2を挟んで配置された、第1の偏光板としての偏光板6及び第2の偏光板としての偏光板7を有している。また、偏光板6と液晶パネル2との間には、位相差フィルム8が配置されている。
【0025】
液晶パネル2は、枠状のシール材58を介して対向して貼り合わされた、一対の基板としての素子基板10、対向基板20を有している。素子基板10、対向基板20、シール材58によって囲まれた空間には、液晶層50が封入されている。素子基板10は、対向基板20より大きく、一部が対向基板20に対して張り出した状態で貼り合わされている。この張り出した部位には、液晶層50を駆動するためのドライバIC57が実装されている。偏光板6は、液晶パネル2の素子基板10側、偏光板7は、液晶パネル2の対向基板20側に配置されている。したがって、偏光板7、液晶パネル2、位相差フィルム8、偏光板6は、この順に積層されており、またこれらの各要素間は接着層を介して接着されている。
【0026】
図1(c)に示すように、偏光板6は、偏光子6aと、偏光子6aの両面に貼り合わされた透光性を有する一対の保護フィルム6bとを有している。同様に、偏光板7は、偏光子7aと、偏光子7aの両面に貼り合わされた透光性を有する一対の保護フィルム7bとを有している。
【0027】
偏光子6a,7aとしては、例えばポリビニルアルコール系フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したものを用いることができる。
【0028】
保護フィルム6b,7bとしては、面内位相差Re1が10nm以下、より好ましくは5nm以下であり、かつ厚み方向位相差Rthが0nm以上100nm以下、より好ましくは0nm以上60nm以下のものを特に制限なく用いることができる。保護フィルム6b,7bを構成する材料としては、例えば、トリアセチルセルロース(TAC)やジアセチルセルロース等のセルロース系ポリマー、ポリエチレンテレフタレートやポリエチレンナフタレート等のポリエステル系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー、ポリスチレンやアクリロニトリル・スチレン共重合体(AS樹脂)等のスチレン系ポリマー、ポリカーボネート系ポリマー等を用いることができる。また、ポリオレフィン系ポリマー、塩化ビニル系ポリマー、アミド系ポリマー、イミド系ポリマー、スルホン系ポリマー等を用いてもよい。あるいは、保護フィルム6b,7bは、アクリル系、ウレタン系、アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型、紫外線硬化型の樹脂の硬化層として形成することもできる。これらの材料の中では、トリアセチルセルロースが好適である。
【0029】
上記において、保護フィルム6b,7bの面内位相差Re1は、保護フィルム6b,7bの面内屈折率が最大となる方向をx軸、保護フィルム6b,7bの面に平行かつx軸に垂直な方向をy軸、保護フィルム6b,7bの厚さ方向をz軸とし、それぞれの軸方向の550nmにおける屈折率をnx1、ny1、nz1、保護フィルム6b,7bの厚さをd1とした場合に、Re1=(nx1−ny1)d1で表される。また、保護フィルム6b,7bの厚み方向位相差Rthは、Rth={(nx1+ny1)/2−nz1}d1で表される。
【0030】
位相差フィルム8としては、前記Nz値が−0.1以上0.8以下であり、面内位相差Re2が50nm以上400nm以下、より好ましくは100nm以上300nm以下であり、平均屈折率Naveが1.4以上2.0以下であるものを特に制限なく使用することができ、例えば高分子ポリマーフィルムの複屈折性フィルム、液晶ポリマーの配向フィルム等を用いることができる。高分子ポリマーとしては、例えば、トリアセチルセルロース(Nave=1.48)、ゼオノア(Nave=1.52)、ポリカーボネート(Nave=1.59)、PMMA(Nave=1.49)、ポリスチレン(Nave=1.59)等を用いることができる。
【0031】
上記において、位相差フィルム8の面内位相差Re2は、位相差フィルム8の面内屈折率が最大となる方向をx軸、位相差フィルム8の面に平行かつx軸に垂直な方向をy軸、位相差フィルム8の厚さ方向をz軸とし、それぞれの軸方向の550nmにおける屈折率をnx2、ny2、nz2、位相差フィルム8の厚さをd2とした場合に、Re2=(nx2−ny2)d2で表される。また、位相差フィルム8のNz値は、Nz=(nx2−nz2)/(nx2−ny2)で表される。また、位相差フィルム8の平均屈折率Naveは、Nave=(nx2+ny2+nz2)/3で表される。
【0032】
続いて、液晶パネル2の構成について詳述する。液晶パネル2のうち、液晶層50が封入された領域には、表示に寄与するサブ画素4R,4G,4B(図2)がマトリクス状に多数配置されている。以下では、サブ画素4R,4G,4Bの集合からなる領域を画素領域5とも呼ぶ。
【0033】
図2は、画素領域5の拡大平面図である。画素領域5には、矩形のサブ画素4R,4G,4Bが多数配置されている。サブ画素4R,4G,4Bは、それぞれ赤、緑、青のいずれかの色の表示に寄与する。以下では、サブ画素4R,4G,4Bについて、色を区別しない場合には、単にサブ画素4とも呼ぶ。サブ画素4R,4G,4Bには、それぞれ赤、緑、青に対応するカラーフィルタ23(図5)が配置されている。カラーフィルタ23は、入射した光の特定の波長成分を吸収することによって透過光を所定の色とすることができる。隣接するサブ画素4の間には、カラーフィルタ23と同一層に形成された遮光層22が配置されている。
【0034】
サブ画素4は、マトリクス状に配置されており、ある列に配置されるサブ画素4の色はすべて同一である。換言すれば、サブ画素4は、対応する色がストライプ状に並ぶように配置されている。また、行方向に並んだ隣り合う3つのサブ画素4R,4G,4Bの集合によって画素3が構成される。画素3は、表示の最小単位(ピクセル)となる。各画素3において、サブ画素4R,4G,4Bの輝度バランスを調節することによって、種々の色の表示を行うことができる。
【0035】
図3は、画素領域5を構成する複数のサブ画素4における各種素子、配線等の等価回路図である。画素領域5においては、複数の走査線12と複数のデータ線13とが交差するように配線され、走査線12とデータ線13との交差に対応して、TFT(Thin Film Transistor)素子30、画素電極16を含むサブ画素4が形成されている。画素電極16は、TFT素子30のドレイン領域に電気的に接続されている。また、サブ画素4には、共通電極18が配置されている。各共通電極18は、共通線18aを介して等電位に保たれている。
【0036】
TFT素子30は、走査線12から供給される走査信号G1,G2,…,Gmに含まれるON信号によってオンとなり、このときデータ線13に供給された画像信号S1,S2,…,Snを画素電極16に供給する。そして、画素電極16と、共通電極18との間の電位差に応じた電界が液晶層50にかかると、液晶層50の配向状態が変化する。これにより、液晶パネル2の偏光変換機能を所望の状態とすることができる。
【0037】
次に、サブ画素4の構成要素を、図4及び図5を用いて詳述する。図4は、素子基板10のうち、1つのサブ画素4に対応する部分を抽出して示す平面図である。また、図5は、図4中のB−B線の位置における断面図である。以下の説明において「上層」又は「下層」とは、図5において相対的に上又は下に形成された層を指す。
【0038】
図4に示すように、各サブ画素4には、走査線12とデータ線13とが交差するように配置されており、この交差に対応してTFT素子30が形成されている。本明細書では、走査線12の延在方向をX方向、データ線13の延在方向をY方向とする。各サブ画素4には、櫛歯状をなす部分を有する画素電極16、共通電極18が形成されている。このうち画素電極16は、TFT素子30のドレイン電極33に電気的に接続されている。また、共通電極18は、共通線18aと一体で形成されており、隣接するサブ画素4の共通電極18との間で共通線18aを介して電気的に接続されている。画素電極16、共通電極18は、櫛歯状をなす部分が互い違いに入り込んだ状態で対向して配置されている。
【0039】
続いて、図5を用いてサブ画素4の断面構造について説明する。ガラス基板11の、ガラス基板21に対向する面には、走査線12が形成されている。走査線12と同層には、ドレイン電極33との間で容量を形成する容量線を形成してもよい。ガラス基板11と走査線12との間には、酸化シリコン(SiO2)等からなる絶縁層が設けられていてもよい。走査線12の上層には、酸化シリコン(SiO2)等からなるゲート絶縁層42を挟んで半導体層31が形成されている。半導体層31は、例えばアモルファスシリコンから構成することができる。また、半導体層31に一部が重なる状態で、ソース電極13aとドレイン電極33が形成されている。ソース電極13aは、データ線13(図4)と一体で形成されている。半導体層31、ソース電極13a、ドレイン電極33、走査線12等からTFT素子30が構成される。走査線12は、TFT素子30のゲート電極としての役割を兼ねる。走査線12(ゲート電極)、ソース電極13a(データ線13)、ドレイン電極33は、例えば、チタン(Ti)、クロム(Cr)、タングステン(W)、タンタル(Ta)、モリブデン(Mo)、アルミニウム(Al)等の金属のうちの少なくとも一つを含む、金属単体、合金、金属シリサイド、ポリシリサイド、これらを積層したもの、あるいは導電性ポリシリコン等から構成することができる。
【0040】
TFT素子30の上層には、酸化シリコン(SiO2)等からなる層間絶縁層43を挟んで、透光性を有するITO(Indium Tin Oxide)からなる画素電極16、共通電極18が形成されている。図5の断面においては、共通電極18と画素電極16とは、電極の櫛歯状の部分が交互に配置されている。このうち画素電極16は、層間絶縁層43に設けられたコンタクトホール34を介してTFT素子30のドレイン電極33に電気的に接続されている。このように、画素電極16及び共通電極18は、ガラス基板11の、ガラス基板21に対向する面に形成されている。
【0041】
画素電極16、共通電極18上には、ポリイミドからなる配向膜48が形成されている。配向膜48は、液晶層50に接する部材であり、配向膜48をラビングすることで、液晶層50の液晶分子51を当該ラビングの方向に沿って配向させることができる。本実施形態では、配向膜48は、+95度の方向に沿ってラビングがなされている。なお、本明細書におけるラビング方向又は液晶分子51の配向方向は、X−Y平面をZ軸の正方向から見て、X軸の正方向を0度とし、Z軸を中心とした左回り(反時計回り)を正方向とする方位角で表す。素子基板10は、ガラス基板11から配向膜48までの要素により構成される。
【0042】
一方、ガラス基板21のうち、ガラス基板11に対向する面上には、カラーフィルタ23、配向膜28がこの順に積層されている。カラーフィルタ23が形成されている層には、より詳しくは、赤、緑、青に対応する3種のカラーフィルタ23と、これら各色のカラーフィルタ23の間に配置された遮光層22(図2)とが形成されている。配向膜28はポリイミドからなり、素子基板10側の配向膜48と同様の性質を有している。本実施形態では、配向膜28は、−95度の方向に沿ってラビングがなされている。したがって、配向膜28,48のラビング方向は、互いに平行かつ逆方向である。対向基板20は、ガラス基板21から配向膜28までの要素により構成される。
【0043】
素子基板10と対向基板20との間の領域、すなわち配向膜28と配向膜48とによって挟まれた領域には、液晶分子51を有する液晶層50が配置されている。液晶層50のΔnd(液晶分子51の複屈折率Δnと、液晶層50の厚さdとの積)は、例えば300nmから400nmの間に設定することができる。本実施形態では360nmとした。
【0044】
液晶層50の液晶分子51は、電圧無印加時(オフ状態に相当する弱い電圧が印加された状態を含む。以下同じ)においては、配向膜28,48のラビング方向、すなわち95度の方向に沿って配向する。配向膜28,48のラビング方向は、上記したように平行かつ逆方向であるため、液晶層50はいわゆるアンチパラレル配向となっている。したがって、液晶層50の液晶分子51の少なくとも一部は、駆動電圧の大きさ(電界の大きさ)に関わらず、ガラス基板11に対して平行に配向する。
【0045】
図6は、偏光板6,7及び位相差フィルム8の向きを示す模式図である。図6には、液晶層50の配向方向50A、偏光板6,7の吸収軸6A,7A、及び位相差フィルム8の遅相軸8Aの方向が矢印で示されている。ここで、位相差フィルム8の遅相軸8A及び偏光板7の吸収軸7Aは、液晶層50の配向方向50Aと平行であり、偏光板6の吸収軸6Aは、液晶層50の配向方向50Aと直交している。したがって、遅相軸8A、吸収軸7Aの方向は、配向方向50Aと同じく95度であり、吸収軸6Aの方向は5度である。このような構成の液晶装置1は、Eモードと呼ばれる。
【0046】
液晶装置1は、偏光板6側から入射したバックライト(不図示)等からの光を、偏光板7側から取り出すことにより表示を行う。したがって、観察者は偏光板7側から(Z軸の正方向から)表示を視認する。液晶装置1は、液晶パネル2の偏光変換機能と、偏光板6,7の偏光選択機能とによって入射光を変調することにより、種々の表示を行うことができる。
【0047】
続いて、上記構成を有する液晶装置1の動作について説明する。液晶装置1の動作の際には、共通電極18は所定の共通電位に保たれている一方で、画素電極16にはデータ線13、TFT素子30を介して画像信号が書き込まれる。これにより、共通電極18と画素電極16との間には、画像信号の大きさに応じた駆動電圧が印加される。駆動電圧が印加され、電位差が生じると、画素電極16の表面から出て共通電極18の表面に至る電気力線を有するような電界が生じる。このとき、共通電極18及び画素電極16の上部、すなわち液晶層50が配置された層においては、ガラス基板11と平行な電界(横電界)が生じる。換言すれば、当該電界は、ガラス基板11に平行な成分を有している。そして、この横電界の平面視での方向は、共通電極18及び画素電極16の櫛歯状電極の延在方向に直交する方向である。液晶層50に含まれる液晶分子51は、この横電界の大きさに応じて、ガラス基板11に平行な面内で配向方向を変える。ここで、電圧無印加時における液晶分子51の配向方向と、電圧印加時において生じる横電界の方向(共通電極18及び画素電極16の櫛歯状電極の延在方向に直交する方向)とのなす角は約85度となっている。このようにすれば、横電界が印加された際の、液晶分子51の回転方向を一様にすることができる。これにより、上記回転方向の不均一に起因するドメインの発生を抑制することができる。
【0048】
電圧無印加時においては、液晶層50の液晶分子51は、配向膜28,48のラビング方向(95度)に沿って配向する。このとき、偏光板6を透過した直線偏光は、その偏光軸が液晶分子51の配向方向と直交するため、液晶層50によっては位相差を与えられずに直線偏光のまま液晶層50を透過し、偏光板7によって吸収される。したがって、電圧無印加時では、偏光板7からは表示光が取り出されず、黒表示が行われる。
【0049】
一方、電圧印加時には、液晶層50の液晶分子51は、横電界によって駆動され、配向方向が95度から変化する。このとき、偏光板6を透過した直線偏光は、その偏光軸が液晶分子51の配向方向とは直交しないため、液晶層50によって位相差を与えられ、偏光状態が変化する。この偏光状態の変化量は、液晶層50のリタデーション(Δnd)及び液晶分子51の回転角度に依存する。液晶層50を透過して偏光状態の変化を受けた光は、偏光板7の吸収軸に直交する成分を有して偏光板7に入射するため、一部又は全部が偏光板7を透過し、観察者に視認される。こうして、電圧印加時には、例えば白表示が行われる。
【0050】
なお、黒表示時と白表示時の中間の大きさの電圧が印加されている場合は、液晶分子51の配向方向が、その電圧の大きさに応じた角度だけ変化する。よって、液晶層50において透過光が受ける偏光状態の変化の量が変わる。したがって、印加される電圧の大きさに応じて偏光板7を透過する光量が変化し、中間調表示が行われる。
【0051】
このような液晶モードは、IPSモードと呼ばれる。IPSモードは、常に液晶分子51がガラス基板11に略平行に保たれるため、視角によるリタデーションの変化が少なく、広視野角な表示を行うことができる。
【0052】
さらに、本実施形態では、液晶パネル2と偏光板6との間に位相差フィルム8が配置されていることによって、より広視野角な表示特性が得られる。位相差フィルム8は、所定の光軸(Z軸)からずれた方向で偏光板6に入射した光に対し位相差を与えることで、当該光が偏光板7から射出される際の光漏れを低減させることができる。したがって、位相差フィルム8は、液晶装置1を斜め方向(Z軸に対して角度を有する方向)から見た際のコントラストの低下を補償する機能を有する。
【0053】
特に、偏光板6,7に含まれる保護フィルム6b,7bの特性値に応じて位相差フィルム8の特性値を適切に設定することで、より広い角度範囲にわたり高コントラストな表示が得られる。
【0054】
具体的には、第1の条件として、保護フィルム6b,7bの面内位相差Re1、厚み方向位相差Rthが
0nm≦Re1≦5nm
0nm≦Rth≦20nm
を満たす場合には、位相差フィルム8の面内位相差Re2、Nz値、平均屈折率Naveを
200nm≦Re2≦300nm
0.4<Nz≦0.8
1.4≦Nave≦2.0
の範囲内の値とすることで、広視野角な表示特性が得られる。
【0055】
また、第2の条件として、保護フィルム6b,7bの面内位相差Re1、厚み方向位相差Rthが
0nm≦Re1≦5nm
20nm<Rth≦40nm
を満たす場合には、位相差フィルム8の面内位相差Re2、Nz値、平均屈折率Naveを
100nm≦Re2≦150nm
0.2≦Nz≦0.4
1.4≦Nave≦2.0
の範囲内の値とすることで、広視野角な表示特性が得られる。
【0056】
また、第3の条件として、保護フィルム6b,7bの面内位相差Re1、厚み方向位相差Rthが
0nm≦Re1≦5nm
40nm<Rth≦60nm
を満たす場合には、位相差フィルム8の面内位相差Re2、Nz値、平均屈折率Naveを
100nm≦Re2≦150nm
−0.1≦Nz<0.2
1.4≦Nave≦2.0
の範囲内の値とすることで、広視野角な表示特性が得られる。
【0057】
上記各例からわかるように、位相差フィルム8の平均屈折率Naveは、いずれの条件においても1.4≦Nave≦2.0とすることが好ましい。平均屈折率Naveを1.4以上とすることで、高コントラストが得られる角度範囲を広げることができる。また、平均屈折率Naveを2.0以下とすることで、耐熱性等についての信頼性の高い位相差フィルム8が得られる。
【0058】
以下に示す実施例1から実施例3は、それぞれ上述の第1の条件から第3の条件について、平均屈折率Naveの範囲として1.4以上2.0以下が好適であることを示す具体例である。図7は、各実施例において、位相差フィルムの平均屈折率Naveを変更した場合の液晶装置1の視野角特性を示す図である。詳しくは、観察方向を変えたときの表示のコントラスト分布を示す図である。各グラフの中心点は、液晶パネル2の法線方向(Z軸方向)に対応し、中心点を同心とする円は、直径の小さいものから順に、法線方向からの傾き(極角)が20度(°)、40度、60度、80度となる方向に対応する。グラフ中の等高線は、コントラストが100又は500となる方向の分布を示す。また、各グラフは、外周(極角80度に対応する線)の位置においてコントラストが100以上となる部分を太線で描いている。したがって、外周のうち太線となっている部分の割合が多い条件ほど、広視野角の得られる条件であると言える。
【0059】
(実施例1)
本実施例では、保護フィルム6b,7bとして、面内位相差Re1が0nm、厚み方向位相差Rthが0nmのTACを用いた。また、位相差フィルム8として、面内位相差Re2が270nm、Nz値が0.5のフィルムを用いた。さらに、位相差フィルム8の平均屈折率Naveを2.5/1.5/1.3の3通りに変更し、それぞれの条件について液晶装置1の視野角特性を求めた(図7上段)。
【0060】
図7から分かるように、平均屈折率Naveが2.5又は1.5の場合には、全方位にわたって極角80度におけるコントラストが100以上となっており、広視野角な特性が得られた。一方で、平均屈折率Naveを1.3とすると、一部の方位において極角80度でのコントラストが100を切るようになり、視野角が狭くなることが確認された。視野角の広さの面からは、位相差フィルム8の平均屈折率Naveは1.4以上とすることが好ましい。
【0061】
また、平均屈折率Naveが2.0より大きくなると、好適な材料の選択肢が狭まることに起因して信頼性が低下する。
【0062】
また、次に示す表1は、位相差フィルム8の平均屈折率Naveを変更した場合に、方位角60度、極角45度から見たときの黒表示の色度を示している(CIE色度座標による)。本実施例では、表1の上段に示すように、平均屈折率Naveを2.5とした場合(x=0.215,y=0.142)には、平均屈折率Naveが1.5である場合(x=0.221,0.160)に比べて、黒の色度が青味がかってくることがわかる。このように、信頼性、及び黒表示の色度の面から、位相差フィルム8の平均屈折率Naveは2.0以下とすることが好ましい。
【0063】
【表1】

【0064】
(実施例2)
本実施例では、保護フィルム6b,7bとして、面内位相差Re1が0nm、厚み方向位相差Rthが30nmのTACを用いた。また、位相差フィルム8として、面内位相差Re2が130nm、Nz値が0.3のフィルムを用いた。さらに、位相差フィルム8の平均屈折率Naveを2.5/1.5/1.3の3通りに変更し、それぞれの条件について液晶装置1の視野角特性を求めた(図7中段)。
【0065】
図7から分かるように、平均屈折率Naveが1.5の場合には、平均屈折率Naveが1.3の場合と比較して、極角80度においてコントラストが100以上となる方位が大幅に増えた。一方で、平均屈折率Naveを2.5とすると、一部の方位では極角80度でのコントラストが100に達するものの、コントラストが100以上となる領域が大きく減少する。視野角の広さの面からは、位相差フィルム8の平均屈折率Naveは1.4以上2.0以下とすることが好ましい。
【0066】
また、平均屈折率Naveが2.0より大きくなると、好適な材料の選択肢が狭まることに起因して信頼性が低下する。
【0067】
また、上記表1の中段によれば、本実施例では、平均屈折率Naveを2.5とした場合(x=0.309,y=0.208)には、平均屈折率Naveが1.5である場合(x=0.348,0.229)に比べて、黒の色度が青味がかってくることがわかる。このように、信頼性、及び黒表示の色度の面から、位相差フィルム8の平均屈折率Naveは2.0以下とすることが好ましい。
【0068】
(実施例3)
本実施例では、保護フィルム6b,7bとして、面内位相差Re1が0nm、厚み方向位相差Rthが50nmのTACを用いた。また、位相差フィルム8として、面内位相差Re2が130nm、Nz値が0.1のフィルムを用いた。さらに、位相差フィルム8の平均屈折率Naveを2.5/1.5/1.3の3通りに変更し、それぞれの条件について液晶装置1の視野角特性を求めた(図7下段)。
【0069】
図7から分かるように、平均屈折率Naveが1.5の場合には、平均屈折率Naveが1.3の場合と比較して、極角80度においてコントラストが100以上となる方位が増加した。特に、平均屈折率Naveが1.3の場合には、極角80度でコントラストが100となる方位の領域が6つであったのに対し、平均屈折率Naveを1.5とした場合には、同領域が8つに増加した。一方で、平均屈折率Naveを2.5とすると、一部の方位では極角80度でのコントラストが100に達するものの、コントラストが100以上となる領域が大きく減少する。視野角の広さの面からは、位相差フィルム8の平均屈折率Naveは1.4以上2.0以下とすることが好ましい。
【0070】
また、平均屈折率Naveが2.0より大きくなると、好適な材料の選択肢が狭まることに起因して信頼性が低下する。
【0071】
また、上記表1の下段によれば、本実施例では、平均屈折率Naveを2.5とした場合(x=0.205,y=0.119)には、平均屈折率Naveが1.5である場合(x=0.329,0.273)に比べて、黒の色度が大きく青味がかってくることがわかる。このように、信頼性、及び黒表示の色度の面から、位相差フィルム8の平均屈折率Naveは2.0以下とすることが好ましい。
【0072】
(電子機器)
以上に説明した液晶装置1は、例えば、携帯電話機等の電子機器に搭載して用いることができる。図12は、電子機器としての携帯電話機100の斜視図である。携帯電話機100は、表示部110及び操作ボタン120を有している。表示部110は、内部に組み込まれた液晶装置1によって、操作ボタン120で入力した内容や着信情報を始めとする様々な情報について表示を行うことができる。このとき、液晶装置1に含まれる位相差フィルム8の作用により、表示部110において広視野角の表示を行うことができる。
【0073】
なお、液晶装置1は、上記携帯電話機100の他、モバイルコンピュータ、デジタルカメラ、デジタルビデオカメラ、車載機器、オーディオ機器等の各種電子機器に用いることができる。
【0074】
上記実施形態に対しては、様々な変形を加えることが可能である。変形例としては、例えば以下のようなものが考えられる。
【0075】
(変形例1)
上記実施形態では、Eモードの液晶装置1について説明したが、Oモードとすることもできる。図8は、本変形例に係るOモードの液晶装置1を示し、(a)は斜視図、(b)は(a)中のC−C線における断面図である。この図に示すように、本変形例では、位相差フィルム8は、液晶パネル2と、第2の偏光板としての偏光板7との間に配置されている。図9は、Oモードの液晶装置1における液晶層50の配向方向50Aと偏光板6,7及び位相差フィルム8の向きを示す模式図である。この図に示すように、位相差フィルム8の遅相軸8A及び偏光板6の吸収軸6Aは、液晶層50の配向方向50Aと平行であり、その方向は95度である。また、偏光板7の吸収軸7Aは、液晶層50の配向方向50Aと直交しており、その方向は5度である。このような構成の液晶装置1のモードは、Oモードと呼ばれる。このような構成においても、位相差フィルム8の面内位相差Re2、Nz値、平均屈折率Naveを、保護フィルム6b,7bの面内位相差Re1、厚み方向位相差Rthに応じて適切な値(上記実施形態と同様の値)に設定することで、液晶装置1の視野角を広げることができる。
【0076】
(変形例2)
上記各実施形態の液晶装置1は、IPSモードの液晶パネル2を採用しているが、これに代えてFFSモードとすることもできる。本変形例は、FFSモードを適用した液晶パネル2を備えた液晶装置1に係るものである。
【0077】
図10は、FFSモードを適用した液晶パネル2の素子基板10のうち、1つのサブ画素4に対応する部分を抽出して示す平面図である。また、図11は、図10中のD−D線の位置における断面図である。以下では、図4及び図5と共通する構成要素については説明を省略する。
【0078】
図10に示すように、TFT素子30には、略長方形の画素電極16が電気的に接続されている。画素電極16には、多数の平行なスリット(開口部)16aが等間隔で設けられている。スリット16aは、細長い長方形又は平行四辺形をなしており、その長辺は、X軸方向に対して所定の角度に傾いている。本実施形態では、当該角度は5度となっている。画素電極16の下層側には、共通電極18が形成されている。共通電極18は、+Z方向から見て、画素電極16の略全面に重なる位置に形成されている。
【0079】
図11に示すように、TFT素子30の上層には、酸化シリコン(SiO2)等からなる層間絶縁層43を挟んで、ITOからなる共通電極18が積層されている。
【0080】
共通電極18の上層には、酸化シリコン(SiO2)等からなる層間絶縁層44を挟んでITOからなる画素電極16が形成されている。画素電極16は、サブ画素4ごとに独立して設けられている。画素電極16は、層間絶縁層43,44を貫通して設けられたコンタクトホール34を介してドレイン電極33に電気的に接続されている。画素電極16には、上記したように多数のスリット16aが設けられている。ここで、画素電極16、共通電極18及びこれに挟まれた層間絶縁層44は、蓄積容量としても機能する。画素電極16上には、ポリイミドからなる配向膜48が積層されている。
【0081】
本変形例では、配向膜28,48は0度の方向に沿ってラビングされている。したがって、液晶層50は0度の方向に沿ったアンチパラレル配向となっている。これにともなって、本変形例では、偏光板6,7の吸収軸、位相差フィルム8の遅相軸については、上記実施形態又は変形例において95度となっていたものは0度に変更し、5度となっていたものは90度に変更する。
【0082】
共通電極18は所定の共通電位に保たれている一方で、画素電極16にはデータ線13、TFT素子30を介して画像信号が書き込まれるため、共通電極18と画素電極16との間には、画像信号の大きさに応じた駆動電圧が印加される。駆動電圧が印加され、電位差が生じると、画素電極16の表面から出て共通電極18の表面に至る電気力線を有するような電界が生じる。このとき、画素電極16の上部、すなわち液晶層50が配置された層においては、ガラス基板11と平行な電界(横電界)が生じる。そして、この横電界の方向は、画素電極16のスリット16aの長手方向に直交する方向である。液晶層50に含まれる液晶分子51は、この横電界の大きさに応じて、ガラス基板11に平行な面内で配向方向を変える。
【0083】
本変形例2の液晶装置1は、以上に示したFFSモードの液晶パネル2を備えている。このような構成においても、位相差フィルム8の面内位相差Re2、Nz値、平均屈折率Naveを、保護フィルム6b,7bの面内位相差Re1、厚み方向位相差Rthに応じて適切な値(上記実施形態と同様の値)に設定することで、液晶装置1の視野角を広げることができる。
【図面の簡単な説明】
【0084】
【図1】液晶装置の構成を示しており、(a)は斜視図、(b)は(a)中のA−A線における断面図、(c)は偏光板の層構成を示す断面図。
【図2】画素領域の拡大平面図。
【図3】画素領域を構成する複数のサブ画素における各種素子、配線等の等価回路図。
【図4】素子基板のうち、1つのサブ画素に対応する部分を抽出して示す平面図。
【図5】図4中のB−B線の位置における断面図。
【図6】偏光板及び位相差フィルムの向きを示す模式図。
【図7】各実施例において、位相差フィルムの平均屈折率Naveを変更した場合の液晶装置の視野角特性を示す図。
【図8】変形例1に係るOモードの液晶装置を示し、(a)は斜視図、(b)は(a)中のC−C線における断面図。
【図9】Oモードの液晶装置における液晶層の配向方向と偏光板及び位相差フィルムの向きを示す模式図。
【図10】FFSモードを適用した液晶装置の素子基板のうち、1つのサブ画素に対応する部分を抽出して示す平面図。
【図11】図10中のD−D線の位置における断面図。
【図12】電子機器としての携帯電話機の斜視図。
【符号の説明】
【0085】
1…液晶装置、2…液晶パネル、4…サブ画素、5…画素領域、6…第1の偏光板、7…第2の偏光板、6A,7A…吸収軸、6a,7a…偏光子、6b,7b…保護フィルム、8…位相差フィルム、8A…遅相軸、10…素子基板、11,21…ガラス基板、12…走査線、13…データ線、13a…ソース電極、16…画素電極、16a…スリット、18…共通電極、18a…共通線、20…対向基板、22…遮光層、23…カラーフィルタ、28,48…配向膜、30…TFT素子、31…半導体層、33…ドレイン電極、34…コンタクトホール、42…ゲート絶縁層、43,44…層間絶縁層、50…液晶層、50A…配向方向、51…液晶分子、57…ドライバIC、58…シール材、100…電子機器としての携帯電話機。

【特許請求の範囲】
【請求項1】
一対の基板と、前記一対の基板の間に配置され、前記基板に平行な成分を有する電界により駆動される液晶層と、を有する液晶パネルと、
前記液晶パネルを挟んで配置された第1の偏光板及び第2の偏光板と、
前記第1の偏光板と前記液晶パネルとの間、又は前記第2の偏光板と前記液晶パネルとの間に配置された位相差フィルムと、を備え、
前記第1の偏光板及び前記第2の偏光板は、偏光子と、前記偏光子を挟む透光性の保護フィルムとを有し、
前記保護フィルムの面内位相差Re1は、0nm≦Re1≦5nmを満たし、
前記保護フィルムの厚み方向位相差Rthは、0nm≦Rth≦20nmを満たし、
前記位相差フィルムの面内位相差Re2は、200nm≦Re2≦300nmを満たし、
前記位相差フィルムのNz値は、0.4<Nz≦0.8を満たし、
前記位相差フィルムの平均屈折率Naveは、1.4≦Nave≦2.0を満たすことを特徴とする液晶装置。
【請求項2】
一対の基板と、前記一対の基板の間に配置され、前記基板に平行な成分を有する電界により駆動される液晶層と、を有する液晶パネルと、
前記液晶パネルを挟んで配置された第1の偏光板及び第2の偏光板と、
前記第1の偏光板と前記液晶パネルとの間、又は前記第2の偏光板と前記液晶パネルとの間に配置された位相差フィルムと、を備え、
前記第1の偏光板及び前記第2の偏光板は、偏光子と、前記偏光子を挟む透光性の保護フィルムとを有し、
前記保護フィルムの面内位相差Re1は、0nm≦Re1≦5nmを満たし、
前記保護フィルムの厚み方向位相差Rthは、20nm<Rth≦40nmを満たし、
前記位相差フィルムの面内位相差Re2は、100nm≦Re2≦150nmを満たし、
前記位相差フィルムのNz値は、0.2≦Nz≦0.4を満たし、
前記位相差フィルムの平均屈折率Naveは、1.4≦Nave≦2.0を満たすことを特徴とする液晶装置。
【請求項3】
一対の基板と、前記一対の基板の間に配置され、前記基板に平行な成分を有する電界により駆動される液晶層と、を有する液晶パネルと、
前記液晶パネルを挟んで配置された第1の偏光板及び第2の偏光板と、
前記第1の偏光板と前記液晶パネルとの間、又は前記第2の偏光板と前記液晶パネルとの間に配置された位相差フィルムと、を備え、
前記第1の偏光板及び前記第2の偏光板は、偏光子と、前記偏光子を挟む透光性の保護フィルムとを有し、
前記保護フィルムの面内位相差Re1は、0nm≦Re1≦5nmを満たし、
前記保護フィルムの厚み方向位相差Rthは、40nm<Rth≦60nmを満たし、
前記位相差フィルムの面内位相差Re2は、100nm≦Re2≦150nmを満たし、
前記位相差フィルムのNz値は、−0.1≦Nz<0.2を満たし、
前記位相差フィルムの平均屈折率Naveは、1.4≦Nave≦2.0を満たすことを特徴とする液晶装置。
【請求項4】
請求項1から3のいずれか一項に記載の液晶装置であって、
前記位相差フィルムは、前記液晶パネルと前記第1の偏光板との間に配置され、
前記位相差フィルムの遅相軸及び前記第2の偏光板の吸収軸は、前記液晶層の配向方向と平行であり、
前記第1の偏光板の吸収軸は、前記液晶層の配向方向と直交していることを特徴とする液晶装置。
【請求項5】
請求項1から3のいずれか一項に記載の液晶装置であって、
前記位相差フィルムは、前記液晶パネルと前記第2の偏光板との間に配置され、
前記位相差フィルムの遅相軸及び前記第1の偏光板の吸収軸は、前記液晶層の配向方向と平行であり、
前記第2の偏光板の吸収軸は、前記液晶層の配向方向と直交していることを特徴とする液晶装置。
【請求項6】
請求項1から5のいずれか一項に記載の液晶装置であって、
前記液晶パネルは、IPSモードの液晶パネルであることを特徴とする液晶装置。
【請求項7】
請求項1から5のいずれか一項に記載の液晶装置であって、
前記液晶パネルは、FFSモードの液晶パネルであることを特徴とする液晶装置。
【請求項8】
請求項1から7のいずれか一項に記載の液晶装置を表示部に備えることを特徴とする電子機器。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate


【公開番号】特開2009−192866(P2009−192866A)
【公開日】平成21年8月27日(2009.8.27)
【国際特許分類】
【出願番号】特願2008−34073(P2008−34073)
【出願日】平成20年2月15日(2008.2.15)
【出願人】(304053854)エプソンイメージングデバイス株式会社 (2,386)
【Fターム(参考)】