説明

淡水生成装置および淡水生成方法

【課題】 淡水を効率良く安定して得ることができる淡水生成装置を提供することを課題とする。
【解決手段】 海水よりも低塩濃度の低塩濃度廃水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第1処理部と、該第1処理部で生成された濃縮水を海水に混合して混合水とし、該混合水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第2処理部とを備え、各処理部にて分離された透過水が淡水として得られる淡水生成装置であって、
前記第1処理部には、前記低塩濃度廃水の塩濃度を測定する第1塩濃度測定手段が備えられ、得られた測定値に基づいて、前記第1処理部で得られる透過水の生成量と、前記第2処理部で得られる透過水の生成量とが制御されるように構成されていることを特徴とする淡水生成装置を提供することにある。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、淡水生成装置および淡水生成方法に関し、詳しくは、逆浸透膜を用いたろ過によって淡水を生成する淡水生成装置および淡水生成方法に関する。
【背景技術】
【0002】
近年、地球温暖化等により雨が局所的に若しくは短時間に降ってしまい水資源が地理的若しくは時間的に偏在してしまうことや、林業衰退や森林伐採等により山間部の保水力が低下してしまうこと等により、水資源を安定的に確保することが難しいという問題がある。
【0003】
水資源を安定的に確保すべく、例えば、臨海地域では、逆浸透膜を用いたろ過処理によって海水を淡水化することが提案されている(例えば、特許文献1)。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2008−55317号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、従来の海水淡水化では、海水を逆浸透膜でろ過処理するのに海水を加圧してポンプ等で逆浸透膜ユニットに圧送する必要があることから、海水の塩濃度が高いほど多大なエネルギーが必要となるという問題を有している。
【0006】
ところで、上記の海水とは別に、例えば下水に代表される有機物を含有する廃水(以下、「有機性廃水」ともいう。)や、有機性廃水が生物処理された生物処理廃水、更には、鉄鋼等の金属製造工場等の廃水に代表される重金属等の無機物を含有する廃水(以下、「無機性廃水」ともいう。)や、無機性廃水が沈殿分離された沈殿処理廃水は、海洋や河川に放出されてしまい、ほとんど有効利用されていないという現状がある。
【0007】
これらの廃水または処理廃水等は、通常、塩濃度が海水よりも低い低塩濃度廃水であり、淡水資源として有効利用すれば、逆浸透膜ろ過を比較的低圧のポンプでもって効率よく淡水としうるものと考えられる。しかしながら、これらの低塩濃度廃水は、海水の如く無尽蔵に存在するものではないことから淡水資源として安定した量を確保できないケースも考えられ、また、状況によって塩濃度が大きく変動することから低圧ポンプを用いたろ過処理では安定した生成量を確保できないケースも考えられ、安定して所定の淡水量が得られなくなる虞がある。
【0008】
本発明は、上記問題点等に鑑み、淡水を効率良く安定して得ることができる淡水生成装置および淡水生成方法を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明は、海水よりも低塩濃度の低塩濃度廃水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第1処理部と、該第1処理部で生成された濃縮水を海水に混合して混合水とし、該混合水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第2処理部とを備え、各処理部にて分離された透過水が淡水として得られる淡水生成装置であって、
前記第1処理部には、前記低塩濃度廃水の塩濃度を測定する第1塩濃度測定手段が備えられ、得られた測定値に基づいて、前記第1処理部で得られる透過水の生成量と、前記第2処理部で得られる透過水の生成量とが制御されるように構成されていることを特徴とする淡水生成装置を提供する。
【0010】
斯かる淡水生成装置に於いては、第1処理部にて低塩濃度廃水を淡水資源として利用することから、その分だけ海水のみを淡水資源とするものに比して低エネルギーで淡水を生成することができる。
また、第2処理部では、海水を希釈できることから塩濃度を下げることができ、この点に於いても低エネルギーで淡水を生成することができる。
更に、淡水資源として海水をも用いることから、安定して淡水資源を確保することができ、低塩濃度廃水の塩濃度が変動した場合には、第1処理部及び第2処理部での生成量を制御してトータルの生成量を安定化させることもできる。
【0011】
本発明の淡水生成装置に於いては、前記測定値が所定基準以下又は未満である場合には、前記第1処理部での生成量を上げ、前記第2処理部での生成量を下げるように制御されてなるものが好ましい。
斯かる構成に於いては、塩濃度の測定値が所定基準以下又は未満である場合には、基準内である場合に比して、回収率を上げて同じエネルギーでより多くの淡水を得ることができる。
従って、その分だけ高エネルギーを要する第2処理部における生成量(淡水量)を少なくすることができ、同じエネルギーで効率よく淡水を得ることができる。
【発明の効果】
【0012】
以上のように、本発明によれば、淡水を効率良く安定して得ることができる。
【図面の簡単な説明】
【0013】
【図1】一実施形態に係る淡水生成装置の概略ブロック図。
【図2】他実施形態に係る淡水生成装置の概略ブロック図。
【図3】他実施形態に係る淡水生成装置の概略ブロック図。
【図4】他実施形態に係る淡水生成装置の概略ブロック図。
【図5】実施例に係る淡水生成装置の概略ブロック図。
【発明を実施するための形態】
【0014】
以下、本発明の実施の形態について、図面を参照しつつ説明する。
【0015】
先ず、本実施形態に係る淡水生成装置について説明する。
【0016】
図1は、本実施形態の淡水生成装置の概略ブロック図である。
本実施形態の淡水生成装置1は、図1に示すように、海水Aよりも低塩濃度の低塩濃度廃水Bを逆浸透膜ろ過によって第1透過水と第1濃縮水とに分離する第1処理部2と、該第1処理部2で生成された第1濃縮水を希釈水として海水Aに混合して混合水とし、該混合水を逆浸透膜ろ過によって第2透過水と第2濃縮水とに分離する第2処理部3とを備えてなる。
【0017】
本実施形態の淡水生成装置1は、第1処理部2に低塩濃度廃水Bが移送され、濃縮水貯留槽(図示せず)に第2濃縮水を濃縮水Eとして移送されるように構成されてなる。
【0018】
また、本実施形態の淡水生成装置1は、第1透過水が淡水Cとして得られ、第2透過水が淡水Dとして得られるように構成されてなる。
【0019】
前記海水Aは、塩を含む水であり、例えば、塩濃度が1.0〜8.0質量%程度の水であり、より具体的には、塩濃度が2.5〜6.0質量%である。
本明細書において、海水Aは、海に存在する水に限定されず、塩濃度が1.0質量%以上の水であれば、湖(塩湖、汽水湖)の水、沼水、池水等の陸に存在する水も含む。
【0020】
前記低塩濃度廃水Bは、海水よりも塩濃度が低い水である。低塩濃度廃水Bは、例えば、海水Aの塩濃度に対する低塩濃度廃水Bの塩濃度の比が0.1以下のもの、より一般的には、海水Aの塩濃度に対する低塩濃度廃水Bの塩濃度の比が0.01以下のものである。
前記低塩濃度廃水Bは、有機物を含む廃水(以下、「有機性廃水」ともいう。)、無機物を含む廃水(以下、「無機性廃水」ともいう。)、若しくは有機物及び無機物を含む廃水である。
前記有機性廃水は、例えば、有機物濃度の指標としてのBOD(生物化学的酸素要求量)が2000mg/L以下の廃水であり、より具体的には、200mg/L程度の廃水である。有機性廃水としては、下水(生活廃水や雨水が下水道に流れた水等)や、工業廃水(食品工場、化学工場、電子産業工場、パルプ工場等の工場から排出される廃水)等が挙げられる。
前記無機性廃水は、無機物が含まれ且つ有機物濃度が低い廃水で、例えば、BOD(生物化学的酸素要求量)が50mg/L以下の廃水であり、好ましくは、10mg/L以下の廃水である。無機性廃水としては、工業廃水(鉄鋼工場、化学工場、電子産業工場等の工場から排出される廃水)等が挙げられる。
さらに、前記低塩濃度廃水Bは、廃水が沈殿分離槽で沈殿分離された上澄水、精密ろ過膜(MF膜)、限外ろ過膜(UF膜)、砂ろ過池等でろ過され除濁された透過水であってもよい。また、前記低塩濃度廃水Bは、有機性廃水の場合、生物種により浄化処理された生物処理水であってもよい。
尚、本明細書に於いて、除濁とは逆浸透膜ろ過よりも粗いろ過、即ち、逆浸透膜装置でろ過処理する前に実施され、逆浸透膜で分離するよりも粗い不純物(例えば、固形物質等)を除去することを意味する。
また、本明細書に於いて、生物種による浄化処理とは、細菌、原生動物、後生動物等の生物種によって水に含まれる有機物を分解することを意味する。具体的には、活性汚泥を用いた曝気処理等を挙げることができる。
【0021】
前記逆浸透膜としては、酢酸セルロース、芳香族ポリアミド、ポリビニールアルコールなどの素材により形成された直径数mmの中空糸状に形成されたいわゆる中空糸膜などと呼ばれるタイプのものや、該中空糸膜よりも径の太い数cm程度の太さを有するいわゆるチューブラー膜と呼ばれるタイプのもの、さらには、使用時に内部にメッシュなどの支持材が配された状態でロール状に巻回されて用いられる封筒状のいわゆるスパイラル膜と呼ばれるものなど従来公知のものを採用することができる。
【0022】
前記第1処理部2は、前記低塩濃度廃水Bを逆浸透膜ろ過によって第1透過水と第1濃縮水とに分離する第1逆浸透膜ユニット21を備えてなり、また、第1ポンプ22を介して低塩濃度廃水Bが第1逆浸透膜ユニット21に圧送されるように構成されてなる。
【0023】
また、前記第1処理部2は、前記第1逆浸透膜ユニット21に移送される低塩濃度廃水Bの塩濃度を測定する第1塩濃度測定装置23と、第1透過水の流量を調節する第1水量調整機構24とを備えてなる。
【0024】
前記第1塩濃度測定装置23としては、塩濃度を測定するための電気伝導度計やイオン計などを備えたものを例示することができる。
尚、電気伝導度は、塩濃度との相関関係を有し測定も容易である点において、前記第1塩濃度測定装置23としては、電気伝導度を測定する機構を有するものが好適である。
しかも、電気伝導度計は、安価でメンテナンスも容易であることから、電気伝導度計を備えた第1塩濃度測定装置23は、淡水生成装置コスト、メンテナンスコストの低減に有効である。
【0025】
前記第2処理部3は、海水Aに希釈水としての第1濃縮水を混合して混合水を得る混合槽36と、該混合水を逆浸透膜ろ過によって第2透過水と第2濃縮水とに分離する第2逆浸透膜ユニット31とを備えてなり、また、第2ポンプ32を介して前記混合水が第2逆浸透膜ユニット31に圧送されるように構成されてなる。
【0026】
本実施形態の淡水生成装置1は、前記混合槽36に海水Aが移送され、該混合槽36に希釈水としての第1濃縮水が移送されるように構成されてなる。
【0027】
前記第2処理部3は、該海水Aの流量を調節する第2水量調整機構34を備えてなる。
【0028】
前記第1水量調整機構24及び前記第2水量調整機構34には、前記第1塩濃度測定装置23から発信された信号に基づいて、それぞれ、第1透過水の水量及び海水Aの水量を変化させるべくバタフライ弁など開度調整可能な開度調整弁が用いられている。
【0029】
本実施形態の淡水生成装置1は、前記第1塩濃度測定装置23から発信された信号を、例えば、前記開度調整弁の開度を変更する制御信号として前記第1水量調整機構24及び前記第2水量調整機構34に伝達するための信号伝達機構4を備えてなる。
【0030】
本実施形態の淡水生成装置1は、前記第1塩濃度測定装置23によって得られた測定値に基づいて、前記第1処理部2で得られる第1透過水の生成量と、前記第2処理部3で得られる第2透過水の生成量とが制御されるように構成されてなる。具体的には、本実施形態の淡水生成装置1は、前記第1塩濃度測定装置23によって得られた測定値に基づいて前記信号伝達機構4により、第1水量調整機構24により第1透過水の流量を調節し且つ第2水量調整機構34により海水Aの流量を調節して、前記第1処理部2で得られる第1透過水の生成量と、前記第2処理部3で得られる第2透過水の生成量とが制御されるように構成されてなる。
【0031】
また、本実施形態の淡水生成装置1は、前記第1塩濃度測定装置23によって得られた測定値が所定基準以下又は未満である場合には、前記第1処理部2での第1透過水の生成量を上げ、第2処理部3での第2透過水の生成量を下げるように制御されるように構成されてなる。
【0032】
本実施形態の淡水生成装置は、上記の如く構成されてなるが、次ぎに、本実施形態の淡水生成方法について説明する。
【0033】
本実施形態の淡水生成方法は、低塩濃度廃水Bを第1逆浸透膜ユニット21によって第1透過水と第1濃縮水とに分離する第1処理工程と、該第1処理工程で生成した第1濃縮水を希釈水として海水Aに混合槽36で混合して混合水とし、該混合水を第2逆浸透膜ユニット31によって第2透過水と第2濃縮水とに分離する第2処理工程とを実施し、各工程の透過水を淡水として得る。
【0034】
また、本実施形態の淡水生成方法は、第1塩濃度測定手段23で低塩濃度廃水Bの塩濃度を測定し、この測定で得られた測定値に基づいて、前記第1処理工程での透過水の生成量と、前記第2処理工程での透過水の生成量とを制御する。
具体的には、本実施形態の淡水生成方法は、前記第1塩濃度測定装置23によって得られた測定値に基づいて前記信号伝達機構4により、第1水量調整機構24により第1透過水の流量を調節し且つ第2水量調整機構34により海水Aの流量を調節して、前記第1処理部2で得られる第1透過水の生成量と、前記第2処理部3で得られる第2透過水の生成量とを制御する。
【0035】
また、本実施形態の淡水生成方法は、前記第1塩濃度測定装置23によって得られた測定値が所定基準以下又は未満である場合には、前記第1処理部2での第1透過水の生成量を上げ、第2処理部3での第2透過水の生成量を下げるように制御する。
【0036】
尚、ここでは詳述しないが、従来公知の淡水生成装置に用いられている各種の装置類を本発明の効果を損ねない範囲において本発明の淡水生成装置に採用することも可能である。また、従来公知の淡水生成方法における各種の制御や設備運転方法を本発明の淡水生成方法においても採用可能である。
【0037】
例えば、本実施形態の淡水生成装置1は、第1水量調整機構24が備えられてなるが、本発明の淡水生成装置は、図2に示すように、第1塩濃度測定装置23の測定結果に基づいて第1ポンプ22の回転数を変化させるための第1インバータ25が設けられ、信号伝達機構4が該第1インバータ25に接続されてもよい。
また、本実施形態の淡水生成装置1は、第2水量調整機構34が備えられてなるが、本発明の淡水生成装置は、図2に示すように、第1塩濃度測定装置23の測定結果に基づいて第2ポンプ32の回転数を変化させるための第2インバータ35が設けられ、信号伝達機構4が該第2インバータ35に接続されてもよい。
【0038】
また、本実施形態の淡水生成装置1は、図3に示すように、前記混合槽36に移送される海水Aの塩濃度を測定する第2塩濃度測定装置33が前記第2処理部3に備えられてもよい。
ここで、海水Aの塩濃度が変動した場合、前記第2逆浸透膜ユニット31での第2透過水の生成効率が変動する。具体的には、海水Aの塩濃度が低下した場合は第2透過水の生成効率が上昇し、海水Aの塩濃度が上昇した場合は第2透過水の生成効率は低下する。
そこで、本実施形態の淡水生成装置1は、前記第1塩濃度測定装置23によって得られた測定値に基づいて前記信号伝達機構4により、第1水量調整機構24により第1透過水の流量を調節し且つ第2水量調整機構34により海水Aの流量を調節するが、前記第2塩濃度測定装置33によって得られた海水Aの塩濃度に応じて決定される第2透過水の生成効率に基づいて海水Aの流量を補正するように構成されてなる。
【0039】
さらに、本実施形態の淡水生成装置1は第1水量調整機構24が備えられてなるが、本発明の淡水生成装置は、図4に示すように、第1濃縮水の流量を調節する第3水量調整機構26を備えてもよい。該第3水量調整機構26は、信号伝達機構4により信号を伝達されるように構成されてなる。また、本実施形態の淡水生成装置1は第2水量調整機構34が備えられてなるが、本発明の淡水生成装置は、図4に示すように、第2濃縮水の流量を調節する第4水量調整機構37を備えてもよい。該第4水量調整機構37は、信号伝達機構4により信号を伝達されるように構成されてなる。
【実施例】
【0040】
次に、実施例および比較例を挙げて本発明についてさらに具体的に説明する。
【0041】
(通常運転時)
海水Aよりも低塩濃度の低塩濃度廃水Bを逆浸透膜ろ過によって第1透過水と第1濃縮水とに分離する第1処理部2と、該第1処理部2で生成された第1濃縮水を希釈水として海水Aに混合して混合水とし、該混合水を逆浸透膜ろ過によって第2透過水と第2濃縮水とに分離する第2処理部3とを備えてなり、第1処理部2には、前記低塩濃度廃水Bの塩濃度を測定する第1塩濃度測定手段23(電気伝導率計)と、第1濃縮水の流量を調節する第3水量調整機構26とが備えられ、第2処理部3には、前記海水Aの塩濃度を測定する第2塩濃度測定手段33(電気伝導率計)と、該海水Aの流量を調節する第2水量調整機構34とが備えられ、得られた測定値に基づいて、前記第1処理部2で得られる透過水の生成量と、前記第2処理部3で得られる透過水の生成量とが制御されるように構成されている淡水生成装置1(図5)を用いて、海水A(15m3 /d)及び廃水B(第1処理部2への供給水)(50m3 /d)から淡水C、Dを得た。ここで、通常運転時は、海水Aの塩濃度が3.5質量%、廃水Bの塩濃度が0.035質量%であった。運転時において、第1処理部2及び第2処理部3それぞれにおける透過水量(淡水量)、濃縮水量、処理圧力、及び動力(消費動力)を測定した。結果を表1に示す。
尚、第2処理部3への供給水量は、海水Aと、第1処理部2で得られた濃縮水のうち第2処理部3へ供給されたものとの合計を意味する。
【0042】
(実施例1:制御あり)
(a)低塩濃度廃水Bの電気伝導率が通常運転時よりも低下したとき
前記淡水生成装置1を用いて海水A及び低塩濃度廃水Bから淡水C、Dを得、低塩濃度廃水Bの電気伝導率が低下した(低塩濃度廃水Bの塩濃度が0.035質量%から0.02質量%へ低下した)際に、この値に基づいて前記第1処理部2及び前記第2処理部3での透過水の生成量を制御した時において、第1処理部2及び第2処理部3それぞれの透過水量(淡水量)、濃縮水量、処理圧力、動力を測定した。ここでの制御では、第3水量調整機構26の弁を狭めた。これにより、第1処理部2への供給水量は一定となるため、第1処理部2で得られる透過水量(淡水量)が増える。また、ここでの制御では、更に、所定の合計淡水量を得ることを考慮すると、第2処理部3で得るべき透過水量を低減できるため、第2水量調整機構34の弁を狭めて、第2処理部3で得る透過水量を低減した。結果を表1に示す。表1に示すように、第1処理部2では、供給水量は一定で且つ処理圧力(供給圧力)は一定でも電気伝導率の低下分で透過水量を増加させているため、消費動力はほとんど変わらない。一方で、第2処理部3では、処理圧力(供給圧力)は一定で供給水量を低減しているため、消費動力を低減することができた。従って、得られる総淡水量を一定に保ちつつ、全体の消費電力を低減することができた。
(b)海水Aの電気伝導率が通常運転時よりも低下したとき
前記淡水生成装置1を用いて海水A及び低塩濃度廃水Bから淡水C、Dを得、海水Aの電気伝導率が低下した(海水Aの塩濃度が3.5質量%から3.3質量%へ低下した)際に、この値に基づいて前記第1処理部2及び前記第2処理部3での透過水の生成量を制御した時において、第1処理部2及び第2処理部3それぞれの透過水量(淡水量)、濃縮水量、処理圧力、動力を測定した。ここでの制御では、第2処理部3での透過水量を一定とし、第2水量調整機構34の弁を狭めて海水Aの供給量を低減させた。これは、海水Aの電気伝導率が低下したことにより、より少ない海水Aの供給量(ここでは、第1処理部2から得られる濃縮水を第2処理部3へ供給する量は一定)から同量の透過水量が得られる、即ち、処理水回収率が高められることによる。結果を表1に示す。表1に示すように、第2処理部3での消費動力を低減することができた。従って、得られる総淡水量を一定に保ちつつ、全体の消費電力を低減することができた。
【0043】
(比較例1:制御なし)
(a)低塩濃度廃水Bの電気伝導率が通常運転時よりも低下したとき
制御を実施しないように構成されたこと以外は実施例1と同じ淡水生成装置を用い、低塩濃度廃水Bの電気伝導率が低下した(低塩濃度廃水Bの塩濃度が0.035質量%から0.02質量%へ低下した)際における第1処理部2及び第2処理部3それぞれの透過水量(淡水量)、濃縮水量、処理圧力、動力を測定した。結果を表1に示す。表1に示すように、比較例1のように制御しない場合には、得られる総透過水量は一定であるが全体の消費動力を実施例1ほど低減することができなかった。
(b)海水Aの電気伝導率が通常運転時よりも低下したとき
制御を実施しないように構成されたこと以外は実施例1と同じ淡水生成装置を用い、海水Aの電気伝導率が低下した(海水Aの塩濃度が3.5質量%から3.3質量%へ低下した)際における第1処理部2及び第2処理部3それぞれの透過水量(淡水量)、濃縮水量、処理圧力、動力を測定した。結果を表1に示す。表1に示すように、比較例1のように制御しない場合には、得られる総透過水量は一定であるが全体の消費動力を実施例1ほど低減することができなかった。
【0044】
【表1】

【符号の説明】
【0045】
1:淡水生成装置、2:第1処理部、3:第2処理部、4:信号伝達機構、21:第1逆浸透膜ユニット、22:第1ポンプ、23:第1塩濃度測定手段、24:第1水量調整機構、25:第1インバータ、26:第3水量調整機構、31:第2逆浸透膜ユニット、32:第2ポンプ、33:第2塩濃度測定手段、34:第2水量調整機構、35:第2インバータ、36:混合槽、37:第4水量調整機構、A:海水、B:低塩濃度廃水、C:淡水、D:淡水

【特許請求の範囲】
【請求項1】
海水よりも低塩濃度の低塩濃度廃水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第1処理部と、該第1処理部で生成された濃縮水を海水に混合して混合水とし、該混合水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第2処理部とを備え、各処理部にて分離された透過水が淡水として得られる淡水生成装置であって、
前記第1処理部には、前記低塩濃度廃水の塩濃度を測定する第1塩濃度測定手段が備えられ、得られた測定値に基づいて、前記第1処理部で得られる透過水の生成量と、前記第2処理部で得られる透過水の生成量とが制御されるように構成されていることを特徴とする淡水生成装置。
【請求項2】
前記測定値が所定基準以下又は未満である場合には、前記第1処理部での生成量を上げ、前記第2処理部での生成量を下げるように制御されてなる請求項1記載の淡水生成装置。
【請求項3】
海水よりも低塩濃度の低塩濃度廃水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第1処理工程と、該第1処理工程で生成した濃縮水を海水に混合して混合水とし、該混合水を逆浸透膜ろ過によって透過水と濃縮水とに分離する第2処理工程とを実施し、各工程の透過水を淡水として得る淡水生成方法であって、
前記低塩濃度廃水の塩濃度を測定し、得られた測定値に基づいて、前記第1処理工程での透過水の生成量と、前記第2処理工程での透過水の生成量とを制御することを特徴とする淡水生成方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate


【公開番号】特開2010−207804(P2010−207804A)
【公開日】平成22年9月24日(2010.9.24)
【国際特許分類】
【出願番号】特願2010−28834(P2010−28834)
【出願日】平成22年2月12日(2010.2.12)
【特許番号】特許第4499834号(P4499834)
【特許公報発行日】平成22年7月7日(2010.7.7)
【出願人】(000192590)株式会社神鋼環境ソリューション (534)
【Fターム(参考)】