説明

温度分布検出装置

【課題】赤外線検出素子群の移動範囲をできるだけ小さくし、高速で温度分布を検出する温度分布検出装置を提供する。
【解決手段】本発明の温度分布検出素子は、直線状赤外線検出素子群は複数あり、各直線状赤外線検出素子群は視野の間隔が等しくなるように配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させるので、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、食品を加熱する加熱空間や家庭内の居住空間など定められた範囲内の温度分布を検出する温度分布検出装置に関するものである。
【背景技術】
【0002】
加熱庫で食品を加熱調理するオーブンレンジや、居住空間を暖房するエアコンでは、その加熱範囲の温度分布を検出することで、適切な加熱制御を行うことを目的とし、温度分布を検出する各種温度分布検出装置の提案をされている。
【0003】
図7により、直線軸に沿って二次元に配列された赤外線検出素子群を、その直線軸に直交する方向に回転駆動させる構成で温度分布を検出する例を説明する(特許文献1参照)。図7において、サーモパイル熱検出素子1a〜1iは、直線軸2に沿って二次元配列されてサーモパイル熱検出素子群を構成している。
【0004】
この構成でステッピングモータを使い、二次元のサーモパイル熱検出素子群を直線軸2に直交する方向に駆動することで、検出エリアをA、B、C、D,Eと移動させることで、A〜Eの広範囲で温度分布を検出することができる。そしてこの範囲を繰り返し往復駆動することにより、時系列に温度分布検出を繰り返すことができる。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2006−177848号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、このような構成の二次元のサーモパイル熱検出素子群を移動させて温度分布を検出するには、広い範囲を移動させなければならない。即ち、図7中のAの直線軸からEの直線軸まで移動させなければならない。そのために移動時間を要することで、温度分布検出に要する時間が長いという課題がある。
【0007】
例えば、オーブンレンジなどで加熱庫内の食品を加熱する場合には、食品は急速に温度上昇しているものであり、その変化している食品温度を的確に検出して加熱制御するためにはより速く温度分布検出をする必要がある。
【0008】
また、エアコンで人の居住空間の温度分布を正しく検出するには、人の移動速度以上の速さで温度分布を検出する必要がある。いずれにしてもより速く温度分布を検出する必要があり、そのためには、赤外線検出素子群の移動範囲をできるだけ小さな範囲にしなければならない。
【0009】
本発明は、上記課題を解決するためになされたものであり、赤外線検出素子群の移動範囲をできるだけ小さくし、高速で温度分布を検出する温度分布検出装置を提供することを目的とする。
【課題を解決するための手段】
【0010】
本発明の温度分布検出装置は、赤外線を検出する複数の赤外線検出素子を直線状に配置した直線状赤外線検出素子群を複数有し、前記複数の直線状赤外線検出素子群を視野が所定の等間隔となるよう開けて配置した構成の二次元赤外線検出素子群と、前記二次元赤外
線検出素子群の各赤外線検出素子からの検出信号を選択し増幅し信号処理する信号処理回路と、前記直線状赤外線検出素子群の直線方向と直交する方向に前記二次元赤外線検出素子群を移動させる駆動手段と、前記駆動手段を制御する駆動制御手段を有し、前記駆動制御手段は前記複数の直線状赤外線検出素子群の視野の間隔の角度だけ前記駆動手段にて往復移動させる構成としたものである。
【0011】
この構成により、直線状に配置した各赤外線検出素子が視野となる箇所の温度に応じた出力を発生し、信号処理回路が順次各赤外線検出素子を選択して増幅し信号処理する。そして直線状赤外線検出素子群は複数あり、各直線状赤外線検出素子群の視野の間隔は等しく配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させるので、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となる。
【0012】
また、本発明の温度分布検出装置は、前記信号処理回路は、信号をデジタル化するAD変換器と、前記AD変換器のAD変換結果を基に温度情報に換算する温度換算部と、前記温度換算部で換算した温度情報をシリアル通信で出力する通信制御部を有する構成としたものであるから、AD変換器が各赤外線検出素子の増幅された出力信号をAD変換し、温度換算部が温度情報に換算して通信制御部がシリアル通信で温度情報を出力するので、ノイズなどに強く適切な温度分布検出ができる。
【0013】
また、本発明の温度分布検出装置は、前記駆動制御手段は、往復駆動の端部にて隣接する前記直線状赤外線検出素子群の視野と一致するよう重なる範囲を有して移動するよう制御し、前記信号処理回路は前記往復駆動の端部における隣接する前記直線状赤外線検出素子群の視野が一致する位置の出力に基づき前記温度換算部の温度換算を補正する構成としているので、別の赤外線検出素子で同じ視野の温度を検出することにより、互いに補正できるので、素子間ばらつきを吸収することができ、温度分布検出の精度を向上させることができる。
【発明の効果】
【0014】
本発明によれば、直線状赤外線検出素子群は複数あり、各直線状赤外線検出素子群は視野の間隔が等しくなるように配置されていて、駆動制御手段は駆動手段によりその直線状赤外線検出素子群に直行する方向に複数の直線状赤外線検出素子群を移動させ、その移動の間隔は各直線状の赤外線検出素子群の視野間隔の角度だけを往復移動させるので、移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能となる。
【図面の簡単な説明】
【0015】
【図1】本発明の実施の形態1にかかる温度分布検出装置の側面断面構成図
【図2】本発明の実施の形態1にかかる温度分布検出装置の二次元赤外線検出素子群の構成図
【図3】本発明の実施の形態1にかかる温度分布検出装置による二次元の温度分布結果の説明図
【図4】本発明の実施の形態1にかかる温度分布検出装置の信号処理回路の構成図
【図5】本発明の実施の形態2にかかる温度分布検出装置による二次元の温度分布結果の説明図
【図6】本発明の実施の形態2にかかる温度分布検出装置の信号処理回路の構成図
【図7】従来の温度分布検出装置による二次元の温度分布結果の説明図
【発明を実施するための形態】
【0016】
以下、本発明に係る実施の形態について図面を参照して詳細に説明する。
【0017】
(実施の形態1)
図1は本発明の温度分布検出装置の断面図を示すものである。二次元赤外線検出素子群1における各赤外線検出素子はサーモパイルで構成され、金属製のカン3の中に封じ込めている。またカン3にはレンズ4を取り付けていて、レンズ4の焦点と二次元赤外線検出素子1の位置関係で各赤外線検出素子の視野を規定している。
【0018】
二次元赤外線検出素子群1の各赤外線検出素子の出力信号は金属線5を介して、プリント基板6に接続され、カン2と共に固定されている。プリント基板6には電源が供給され各種電子部品より成る信号処理回路7が搭載されている。プリント基板7にはコネクタ8が搭載されていて、コネクタ8にはリード線9が接続されていて、信号処理回路7で処理された信号を出力するものである。
【0019】
以上は、樹脂より成るケース10の中に収納されていて、ケース10には赤外線が通過する通過孔11とリード線9を通すためのリード線孔12を設けている。また、駆動手段であるステッピングモータ13は、二次元赤外線検出素子群1を内部に収納したケース8に取り付けられ、ケース8全体を駆動するものであり、図面の奥と手前の方向に往復駆動するものである。駆動制御手段14は、ステッピングモータ13の駆動を制御する。
【0020】
図2は、二次元赤外線検出素子群1の構成を示すものである。二次元赤外線検出素子群1はサーモパイル1a、1d、1gより成る直線状赤外線検出素子群1Aと、サーモパイル1b、1e、1hより成る直線状赤外線検出素子群1Bと、サーモパイル1c、1f、1iより成る直線状赤外線検出素子群1Cとで構成されていて、直線状赤外線検出素子群1Aと1Bの視野の間隔と直線状赤外線検出素子群1Bと1Cの視野の間隔は等しくなるように配置している。
【0021】
その中央に配置された直線状赤外線検出素子群1Bの直線軸2を備えていて、この直線軸2に直交するように図面の左右の方向に、ステッピングモータ13および駆動制御手段14により視野を往復移動するものである。
【0022】
図2において、ステッピングモータ13および駆動制御手段14により各直線状検出素子群1A、1B、1Cを移動させて、その隙間を埋めるようにして温度分布を取得し、例えば図3のような二次元温度分布を検出する。即ち、直線軸2を2−1、2−2、2−3、2−4、2−5と移動させる。
【0023】
そうすると、サーモパイル1a、1d、1gより成る直線状検出素子群1Aは図3中で、Aの領域の温度分布を検出することになり、サーモパイル1b、1e、1hより成る直線状検出素子群1BはBの領域の温度分布を、サーモパイル1c、1f、1iより成る直線状検出素子群1CはCの領域の温度分布をそれぞれ検出することになって、全体としては、直線軸2の移動より十分広い領域の温度分布を検出することができる。
【0024】
これにより、従来と比べて、ステッピングモータによる回転角度を十分小さくして、同じ広さの温度分布を検出することができるので、高速で温度分布を検出することが可能となる。
【0025】
次に信号処理回路7の構成について図4を用いて説明する。切替え器15A、15B、15Cは一般にマルチプレクサと呼ばれ、切替え信号発生器16からの信号に基づき、いずれかの赤外線検出器を選択して後段の信号処理回路への接続を切替える。
【0026】
切替え器15Aは、直線状赤外線検出素子群1Aに属するサーモパイル1a、1d、1gの切替えを、切替え器15Bは、直線状赤外線検出素子群1Bに属するサーモパイル1b、1e、1hの切替えを、切替え器15Cは、直線状赤外線検出素子群1Bに属するサーモパイル1c、1f、1iの切替えをそれぞれ行う。
【0027】
増幅回路17A、17B、17Cは、切替え器15A、16A、17Aで接続されたいずれかの各サーモパイルの信号を増幅する。AD変換器18A、18B、18Cは、増幅された各サーモパイルのアナログ信号をデジタル値に変換する。
【0028】
切替え器15A〜15C、増幅回路17A〜17C、AD変換器18A〜18Cは、いずれも直線状赤外線検出素子群1A、1B、1Cと対応しているものであり、サーモパイル1a、1b、1cが同時に選択され、増幅されAD変換され、またサーモパイル1d、1e、1fが同時に、サーモパイル1d、1h、1iが同時に選択され、増幅され、AD変換されるものである。
【0029】
温度換算部19は、AD変換器18A〜18Cでデジタル値に変換された各サーモパイルの信号を基に順次温度の値を算出する。サーモパイル1a〜1iはそれぞれ感度にばらつきがあるので、精度良く温度換算するために感度を予め測定し、その感度に対応した定数を感度記憶部20に記憶している。
【0030】
温度換算部19では、この感度記憶部20に記憶されている感度定数に従い温度換算することで、サーモパイル1a〜1iの視野となっている箇所の温度を精度良く算出する。
【0031】
一般に、サーモパイルは、視野となる対象物の温度の4乗とサーモパイル自身の温度の4乗との差に比例する電圧を出力するものである。
【0032】
従って、接触型の例えばサーミスタなどの温度センサ(図示せず)によりサーモパイル自身の温度T0を測定しその温度T0の4乗を算出して、そこにAD変換器18A〜18Cでデジタル値に変換された各赤外線検出素子の電圧値を定数K倍したものを加算して、その加算した値の4乗根を算出すれば視野となる対象物の温度となる。
【0033】
この定数Kに相当するものが、サーモパイルの感度の逆数に比例するものであり、各サーモパイルには感度のばらつきがあるので、一通りの定数Kではなく、サーモパイル1a〜1iそれぞれに対応した定数Ka〜Kiを感度定数記憶部20に記憶しているのである。
【0034】
通信制御部21は、送信器22と受信器23を備えていて、温度換算部19で算出された、各サーモパイル1a〜1iの視野となっている箇所の温度を送信器22より順次シリアル送信していく。
【0035】
送信先は、例えばエアコンの冷暖房を制御する制御器や、オーブンレンジの加熱を制御する制御器など、この赤外線センサで検出した温度分布に基づき温度を制御するもので、この通信制御に対応した通信機能を備えているものであり、通信のタイミングを取るために受信器23で送信先からの信号も受信している。
【0036】
このようにして、リード線9をアナログ電圧によって送電するのでなく、デジタル値をシリアル通信するので、ノイズなどの影響を受けにくい精度の良い温度分布検出ができる。
【0037】
(実施の形態2)
次に本発明の実施の形態2について説明する。実施の形態1で説明した図1、図2に示す基本的な構成は変わらないので説明を省略する。
【0038】
図2において、ステッピングモータ13および駆動制御手段14により各直線状検出素子群1A、1B、1Cを移動させて、その隙間を埋めるようにして温度分布を取得し、図5のような二次元温度分布を検出する。
【0039】
このとき、実施の形態1より移動させるステップを一つ多くしていて、Aの領域の右端とBの領域の左端が重なるように、またBの領域の右端とCの領域の左端が重なるようにしている。即ち、AとBの領域の端で重なる箇所においては、サーモパイル1aとサーモパイル1b、サーモパイル1dとサーモパイル1e、サーモパイル1gとサーモパイル1hは、それぞれ同じ視野の温度を検出することになる。
【0040】
また同様に、BとCの領域の端で重なる箇所においては、サーモパイル1bとサーモパイル1c、サーモパイル1eとサーモパイル1f、サーモパイル1hとサーモパイル1iは、それぞれ同じ視野の温度を検出することになる。
【0041】
同時に同じ視野の温度を検出していれば、同じ温度を検出することになるはずである。これが実際にはステッピングモータで視野を移動させているので同時ではないが、十分に短時間であれば、同じ温度を検出しているものとして扱うことができる。
【0042】
図6に信号処理回路7の構成を示す。実施の形態1と異なる点は、温度換算部19に補正部24を備えている点である。補正部24がサーモパイル1a〜1iの感度定数Ka〜Kcを補正する。
【0043】
サーモパイル1a、1b、1cの感度定数Ka、Kb、Kcについてであれば、AとBが重なる領域での1aによる検出温度と1bによる検出温度が等しくなるように、そして且つBとCが重なる領域での1bによる検出温度と1cによる検出温度が等しくなるように感度定数Ka、Kb、Kcを再計算して補正するのである。
【0044】
補正の方法はいろいろあるがその一例を説明する。まずサーモパイル1aとサーモパイル1cを比較して、サーモパイル自身の温度との温度差の大きい方を選んで補正する。それが仮にサーモパイル1aであれば、AとBの領域の重なる点でのサーモパイル1aとサーモパイル1bの温度は等しくその平均値であるものとする。
【0045】
そうすると、正しい温度は二つの平均値であるとして、平均値の温度の4乗とサーモパイル自身の温度の4乗との差、そしてAD変換で得られたサーモパイル1a、1bの出力から再度感度定数Ka、Kbが計算される。そして感度記憶部20に記憶されている感度定数Ka、Kbを書き換える。
【0046】
次に、この書き換えられたKbを基に計算したサーモパイル1bによる視野の温度と、BとCの領域の重なる点でのサーモパイル1cによる視野の温度は等しいものとして、感度補正されたKbにより計算したサーモパイル1bの温度の4乗とサーモパイル自身の温度の4乗との差、および、AD変換で得られたサーモパイル1cの出力から再度感度定数Kcが計算される。そして感度記憶部20に記憶されている感度定数Kcを書き換える。
【0047】
同様にして、領域の重なる箇所でのサーモパイル1d、1e、1fの温度より、Ke、Kf、Kiを書き換え、また領域の重なる箇所でのサーモパイル1g、1h、1iの温度よりKg、Kh、Kiを書き換える。こうして書き換えた感度定数Ka〜Kiで、次の温
度分布検出を行う。
【0048】
感度は予め測定して感度定数として温度記憶部20に記憶させておくが、実際の環境では温度、湿度、対象物の放射率などにより若干ずれた値をとることがよくある。これが複数のサーモパイルで温度分布を検出する上では、サーモパイルにより違った感度のずれ方をするので、Aの領域とBの領域の境目やBの領域とCの領域の境目で不連続な分布となったりすることもあるが、こうした境目の温度は等しい温度を検出しているということで補正を入れることで、より精度の高い温度分布検出ができるようになる。
【0049】
以上の説明において、赤外線検出素子としてサーモパイルを用いたが、これは他に置き換えても良く、例えば焦電センサとチョッパを使って視野が対象物となっているときとチョッパで遮られているときの出力の差を出力としてもよい。
【0050】
また、3素子で直線状赤外線検出素子群を構成したり、それを3列用いることで二次元赤外線検出素子群としたりしたが、これもその構成に拘るものでなく、直線状赤外線検出素子群を構成する赤外線検出素子数を増やせば、より細かな温度分布を検出できるものであり、列数を増やせばより高速で温度分布検出できるものである。
【産業上の利用可能性】
【0051】
以上のように、本発明にかかる温度分布検出装置は、赤外線検出素子群の移動範囲は隣接する直線状赤外線検出素子群との間隔だけであり、移動範囲を最小限にして高速で温度分布を検出することが可能であるので、オーブンレンジなどでの加熱空間の温度分布検出やエアコンなどでの人の居住空間の温度分布検出などの用途に適用可能である。
【符号の説明】
【0052】
1 二次元赤外線検出素子群
1a〜1i サーモパイル
1A〜1C 直線状赤外線検出素子群
7 信号処理回路
13 駆動手段
14 駆動制御手段
18A〜18C AD変換器
19 温度換算部
21 通信制御部
24 補正部

【特許請求の範囲】
【請求項1】
赤外線を検出する複数の赤外線検出素子を直線状に配置した直線状赤外線検出素子群を複数有し、前記複数の直線状赤外線検出素子群を視野が所定の等間隔となるよう開けて配置した構成の二次元赤外線検出素子群と、前記二次元赤外線検出素子群の各赤外線検出素子からの検出信号を選択し増幅し信号処理する信号処理回路と、前記直線状赤外線検出素子群の直線方向と直交する方向に前記二次元赤外線検出素子群を移動させる駆動手段と、前記駆動手段を制御する駆動制御手段を有し、前記駆動制御手段は前記複数の直線状赤外線検出素子群の視野の間隔の角度だけ前記駆動手段にて往復移動させる温度分布検出装置。
【請求項2】
前記信号処理回路は、信号をデジタル化するAD変換器と、前記AD変換器のAD変換結果を基に温度情報に換算する温度換算部と、前記温度換算部で換算した温度情報をシリアル通信で出力する通信制御部を有する請求項1に記載の温度分布検出装置。
【請求項3】
前記駆動制御手段は、往復駆動の端部にて隣接する前記直線状赤外線検出素子群の視野と一致するよう重なる範囲を有して移動するよう制御し、前記信号処理回路は前記往復駆動の端部における隣接する前記直線状赤外線検出素子群の視野が一致する位置の出力に基づき前記温度換算部の温度換算を補正する補正部を有する請求項2に記載の温度分布検出装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate


【公開番号】特開2010−249626(P2010−249626A)
【公開日】平成22年11月4日(2010.11.4)
【国際特許分類】
【出願番号】特願2009−98692(P2009−98692)
【出願日】平成21年4月15日(2009.4.15)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】