説明

測定方法

【課題】 短い測定時間で燃料用変性エタノール等の試料中に含有されている各化合物の濃度を算出することができる測定方法の提供。
【解決手段】 第一カラム5と、第二カラム6と、第一検出器3と、第二カラム6の出口端と接続される第二検出器7と、流路変更用接続機構40とを備えるガスクロマトグラフ1を用いた測定方法であって、設定開始時間と設定終了時間との間には、第一カラム5の出口端と第一検出器3とを流通する流通流路から、第一カラム5の出口端と第二カラム6の入口端とを流通する流通流路となるように、流路変更用接続機構40を制御する流路変更工程と、第一検出器3及び第二検出器7で検出された検出信号に基づいて、燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出する算出工程とを含む。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出する測定方法に関する。
【背景技術】
【0002】
地球温暖化対策の一環として二酸化炭素排出削減に関する関心が高まっており、ガソリンの代替燃料として燃料用エタノール(EtOH)が注目されている。米国では、このような燃料用エタノールに対して他用途での使用を防止するための措置として、ガソリン(数種類の炭化水素の混合物)等の変性剤の添加が義務付けられている。そして、変性剤が添加された燃料用エタノール(以下、「燃料用変性エタノール」ともいう)の品質規格は、米国材料試験協会企画(ASTM)によって定められており、ASTM D5501では、燃料用変性エタノール中のエタノールの濃度(92.1体積%以上)とメタノール(MeOH)の濃度(0.5体積%以下)とを確認することとしている。なお、燃料用変性エタノールに要求される品質は、ASTM D4806により定められている。
【0003】
このような燃料用変性エタノール中のエタノールの濃度とメタノールの濃度とを算出するために、ガスクロマトグラフが使用されている(例;特許文献1参照)。
ここで、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度と変性剤の濃度とを算出することができるガスクロマトグラフの一例について説明する。図7は、従来のガスクロマトグラフの一例の概略構成図である。ガスクロマトグラフ51は、試料(燃料用変性エタノール)が導入され、気化される試料気化室52と、試料気化室52と入口端が接続されるカラム55と、カラム55の出口端と接続される水素炎イオン化検出器(FID)53と、カラム55の温度を制御する温度制御装置56と、コンピュータ(制御部)60とを備える。
【0004】
カラム55は管状であり、その内径は0.25mmであり、その長さは100m〜150mである。そして、カラム55の内部には、固定相が塗布されており、試料ガスがカラム55の内部を通過する際には、各化合物(エタノール、メタノール、炭化水素)の分配係数若しくは溶解度に応じた速度で各化合物が移動していき、化合物が出口端から順次排出されるようになっている。
【0005】
コンピュータ60は、FID53で順次検出されていくイオン強度信号(検出信号)に基づいて、時間t対イオン強度Iであるクロマトグラムを作成することにより、修正面積百分率法によって、エタノールのピーク面積値AEとメタノールのピーク面積値AMとから、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度とを算出する。
図8は、長さ150mであるカラムを用いて作成されたクロマトグラムの一例である。なお、燃料用変性エタノールの注入量は0.5μLであり、Heガスの流速は24cm/秒であり、カラムの温度を60℃(15分)−30℃/分−250℃(23分)に制御した。図8に示すように、時間t=14分の位置にエタノールを示すピークがあり、時間t=13分の位置にメタノールを示すピークがあり、さらに全化合物が検出されるまでの時間t=38分となっている。
図9は、長さ100mであるカラムを用いて作成されたクロマトグラムの一例である。なお、燃料用変性エタノールの注入量は0.5μLであり、Heガスの流速は24cm/秒であり、カラムの温度を15℃(12分)−30℃/分−250℃(19分)に制御した。図9に示すように、時間t=10分の位置にエタノールを示すピークがあり、時間t=8分の位置にメタノールを示すピークがあり、さらに全化合物が検出されるまでの時間t=29分となっている。
なお、図8及び図9に示すクロマトグラムにおける縦軸はイオン強度Iを示し、横軸は時間tを示す。
【0006】
一方、第一カラム及び第二カラムを備えるガスクロマトグラフ、いわゆるマルチディメンジョナルGCが知られている(例;特許文献2参照)。このマルチディメンジョナルGCを用いて、環境汚染物質の分析例が報告されている(例;非特許文献1参照)。
【先行技術文献】
【特許文献】
【0007】
【特許文献1】特開2008−190942号公報
【特許文献2】特開2006−226678号公報
【非特許文献】
【0008】
【非特許文献1】第16回環境化学討論会講演要旨集 P644−645「MDGCMSによる環境汚染物質の測定」
【発明の概要】
【発明が解決しようとする課題】
【0009】
ところで、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度を定量するためには、カラム55の出口端からエタノールとメタノールと変性剤として添加されている炭化水素類とが共溶出しないように、カラム55の長さを100m若しくは150mと長くすることが必要である。しかしながら、カラム55の長さが100m以上であると、全化合物が検出されるまでの測定時間が上述したように29分〜38分程度と非常に長くなった。
さらに、長さ150mのカラムを用いる場合には、カラム55の出口端からエタノールとメタノールと炭化水素とが共溶出しないようにするために、温度制御装置56によってカラム55の温度を60℃(15分)−30℃/分−250℃(23分)と制御すれば充分であるが、長さ100mであるカラムを用いる場合には、温度制御装置56によってカラム55の温度を15℃(12分)−30℃/分−250℃(19分)と制御する必要があり、すなわち温度制御装置56は低温付加装置を備える必要があり、コストがかかった。
そこで、本発明は、低温付加装置等を必要とせず、短い測定時間で燃料用変性エタノール中に含有されているエタノールの濃度及びメタノールの濃度を算出するためのマルチディメンジョナルガスクロマトグラフを用いた測定方法を提供することを目的とする。
【課題を解決するための手段】
【0010】
上記課題を解決するためになされた本発明の測定方法は、入口端から試料が導入されることにより、当該試料を各成分画分に分離していき、出口端から成分画分を順次排出する第一カラムと、入口端から成分画分が内部に導入されることにより、当該成分画分を各化合物に分離していき、出口端から化合物を順次排出する第二カラムと、第一検出器と、前記第二カラムの出口端と接続される第二検出器と、前記第一カラムの出口端と第二カラムの入口端と第一検出器とが接続される流路変更用接続機構とを備えるガスクロマトグラフを用いて、前記試料中に含有されていた各化合物の濃度を算出する測定方法であって、前記試料は、極性を有する化合物群と極性を有さない化合物群との混合物である燃料用変性エタノールであり、前記第一カラムの内部には、無極性の液相が塗布されるとともに、前記第二カラムの内部には、極性の液相が塗布されており、前記流路変更用接続機構は、前記第一カラムの出口端と第二カラムの入口端とを流通するように連結するか、或いは、前記第一カラムの出口端と第一検出器とを流通するように連結するかのいずれかとなるように切替可能となっており、設定開始時間と設定終了時間との間には、前記第一カラムの出口端と第一検出器とを流通する流通流路から、前記第一カラムの出口端と第二カラムの入口端とを流通する流通流路となるように、前記流路変更用接続機構を制御する流路変更工程と、前記第一検出器及び第二検出器で検出された検出信号に基づいて、前記燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出する算出工程とを含むようにしている。
【0011】
本発明の測定方法によれば、試料は、燃料用変性エタノールであるので、試料が極性を有する化合物群と極性を有さない化合物群との混合物となる。そこで、マルチディメンジョナルGCにおいて、第一カラムの内部には、無極性の液相を塗布するとともに、第二カラムの内部には、極性の液相を塗布する。
これにより、例えば、流路変更用接続機構は、まず、第一カラムの出口端と第一検出器とを連結する。これにより、第一カラムで極性を有する化合物群(エタノール及びメタノール)と極性を有さない化合物群とが分離されることになる。
設定開始時間になると、第一カラムの出口端と第一検出器とを連結する流通流路から、第一カラムの出口端と第二カラムの入口端とを連結する流通流路となるように変更する。これにより、第一カラムで極性を有する化合物群同士は分離されていないので、極性を有する化合物群(成分画分)は、第二カラムに導入されて、第二カラムを移動していきながら各化合物に分離されることになる。
【0012】
設定終了時間になると、第一カラムの出口端と第二カラムの入口端とを連結する流通流路から、第一カラムの出口端と第一検出器とを連結する流通流路となるように変更する。これにより、極性を有する全ての化合物群を、第二カラムに導入すると、残りの極性を有さない化合物群を第二カラムに導入しないことになる。つまり、残りの極性を有さない化合物群は、第一カラムの長さのみしか通過せずに、短い測定時間で第一検出器に到達する。
このようにして第一検出器及び第二検出器で検出された検出信号に基づいて、燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出する。
【発明の効果】
【0013】
以上のように、本発明の測定方法によれば、燃料用変性エタノールは極性を有する化合物群と極性を有さない化合物群との混合物であるが、第一カラムの内部には、無極性の液相を塗布するとともに、第二カラムの内部には、極性の液相を塗布することで、高い分解性能を達成でき、その結果、低温付加装置等を必要とせず、短い測定時間で燃料用変性エタノール中に含有されているエタノールの濃度とメタノールの濃度とを算出することができる。
【0014】
(他の課題を解決するための手段および効果)
また、上記の発明において、前記第一カラムの内部には、100%ジメチルポリシロキサンが塗布されており、前記第二カラムの内部には、ポリエチレングリコールの液相が塗布されているようにしてもよい。
そして、上記の発明において、前記算出工程において、前記第一検出器で検出された変性剤のピーク面積値と、前記第二検出器で検出された変性剤のピーク面積値と、前記第一検出器と第二検出器との感度差とに基づいて、前記燃料用変性エタノール中に含有されていた全変性剤の第二検出器におけるピーク面積値を算出して、当該全変性剤の第二検出器におけるピーク面積値を基準として、前記第二検出器におけるエタノールのピーク面積値とメタノールのピーク面積値とに基づいて、前記燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出するようにしてもよい。
さらに、上記の発明において、前記算出工程で燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出するために、前記第一検出器と第二検出器との感度差、及び、前記第二検出器におけるエタノールの濃度とピーク面積値との関係を示す感度補正係数、及び、前記第二検出器におけるメタノールの濃度とピーク面積値との関係を示す感度補正係数を設定する設定工程を含むようにしてもよい。
【図面の簡単な説明】
【0015】
【図1】実施形態に係るガスクロマトグラフの一例の概略構成図である。
【図2】図1に示す流路変更用接続機構の一例の概略構成図である。
【図3】クロマトグラムの一例である。
【図4】クロマトグラムの一例である。
【図5a】設定部による設定方法の一例について説明するためのフローチャートである。
【図5b】設定部による設定方法の一例について説明するためのフローチャートである。
【図6】MDGC法の一例について説明するためのフローチャートである。
【図7】従来のガスクロマトグラフの一例の概略構成図である。
【図8】長さ150mであるカラムを用いて作成されたクロマトグラムの一例である。
【図9】長さ100mであるカラムを用いて作成されたクロマトグラムの一例である。
【発明を実施するための形態】
【0016】
以下、本発明の実施形態について図面を用いて説明する。なお、本発明は、以下に説明するような実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の態様が含まれることはいうまでもない。
【0017】
図1は、実施形態に係る燃料用変性エタノール中のエタノール及びメタノールの分析を行うガスクロマトグラフの一例の概略構成図である。また、図2は、図1に示す流路変更用接続機構の一例の概略構成図である。
ガスクロマトグラフ1は、試料(燃料用変性エタノール)が導入され、気化される試料気化室2と入口端が接続される第一カラム5と、第一水素炎イオン化検出器(第一FID)3と、第二カラム6と、第二カラム6の出口端と接続される第二水素炎イオン化検出器(第二FID)7と、第一カラム5の出口端と第二カラム6の入口端と第一FID3とが接続される流路変更用接続機構40と、第一カラム5及び第二カラム6の温度を制御する温度制御装置9a、9bと、ガスクロマトグラフ1全体を制御するコンピュータ(制御部)10とを備える。第一カラム5と第二カラム6はカラムオーブン(図示せず)内に収容されており、カラムオーブンは温度制御装置9a、9bにより試料の分析の間、所定の温度プログラムに従って制御される。温度プログラムとしては、分析開始から少なくとも燃料用変性エタノール中の測定目的成分であるメタノール及びエタノールが第一カラム5から排出される時間の間は35℃〜40℃の温度で保持し、その後、第一カラム5の耐熱温度付近まで適当な昇温速度でもって上げることが好ましい。このような温度プログラムとすることにより、35℃〜40℃といった低温条件で第一カラム5中で極性を有する化合物(エタノール及びメタノール)と極性が低く沸点の低い化合物(例えばある種の炭化水素群)との分離を行い第一カラム5から排出して第二カラム6に導入後、残りの化合物群の第一カラム5からの排出を早めて、測定時間の短縮を図ることが可能である。
なお、以下の実施例では、35℃で2.5分保持の後、昇温速度20℃/分にて230℃に達するように設定した。
【0018】
第一カラム5は管状であり、その内径は0.25mmであり、その長さは30mである。そして、第一カラム5の内部には、固定相として100%ジメチルポリシロキサンが塗布されており、試料ガスが第一カラム5を通過する際には、各化合物の分配係数若しくは溶解度に応じた速度で各化合物が移動していき、出口端から化合物を順次排出するようになっている。つまり、第一カラム5の内部に塗布された固定相が、極性を有さないので、極性を有する化合物群(エタノール、メタノール)は、第一カラム5を速い速度で移動していき、あまり各化合物に分離されないが、一方、極性を有さない化合物群(複数種の炭化水素群)は、第一カラム5を遅い速度で移動していきながら、沸点別に各化合物に分離されることになる。このとき、燃料用変性エタノールの測定では、エタノールの濃度とメタノールの濃度とを算出することができればいいので、数種類の炭化水素群はそれぞれ分離されてなくてもよい。
固定相として100%ジメチルポリシロキサンが塗布された第一カラムとしては、例えば、「Rtx−1(Restex社製)」等が挙げられる。
【0019】
第二カラム6は管状であり、その内径は0.32mmであり、その長さは30mである。そして、第二カラム6の内部には、固定相としてポリエチレングリコールが塗布されており、試料ガスが第二カラム6を通過する際には、各化合物の分配係数若しくは溶解度に応じた速度で各化合物が移動していき、出口端から化合物を順次排出するようになっている。つまり、第二カラム6の内部に塗布された固定相が、極性を有するので、極性を有する化合物群(エタノール、メタノール)は、第二カラム6を移動していきながら、各化合物に分離されることになる。
固定相としてポリエチレングリコールが塗布された第二カラムとしては、例えば、「Rtx−WAX(Restex社製)」等が挙げられる。
【0020】
流路変更用接続機構40は、スイッチング素子(コネクタ)41と、キャリアガス(Heガス)を設定圧力Pで供給する圧力制御装置(APC)42と、三方電磁弁43とを備える。
スイッチング素子41は、第一カラム5の出口端が右側から挿入される空間である第一カラム導入部41aと、第二カラム6の入口端が左側から挿入される空間である第二カラム導入部41bと、中央部で第一カラム導入部41aと第二カラム導入部41bとを連結する接続流路41cとを有する。
さらに、第一カラム導入部41aの左側には、第一FID3と連結される流路が形成されているとともに、第一カラム導入部41aの中央部には、Heガスの圧力ΔP1を降下させる第一抵抗管41dを介してAPC42と連結される流路が形成されている。これにより、第一カラム導入部41aの圧力は、常に一定の圧力P−ΔP1となるようになっている。
【0021】
また、第二カラム導入部41bの中央部には、Heガスの圧力ΔP2(>ΔP1)を降下させる第二抵抗管41eを介してAPC42と連結されるか(図2(b)参照)、或いは、第二抵抗管41eを介さずAPC42と連結されるか(図2(a)参照)のいずれかとなるように三方電磁弁43によって切替可能となる流路が形成されている。これにより、第二抵抗管41eを介してAPC42と連結された場合には、第二カラム導入部41bの圧力は、P−ΔP2となり、その結果、第一カラム導入部41aはP−ΔP1であるので、第一カラム5の出口端と第二カラム6の入口端とを流通するようになる。一方、第二抵抗管41eを介さずAPC42と連結された場合には、第二カラム導入部41bの圧力は、Pとなり、その結果、第一カラム導入部41aの圧力はP−ΔP1であるので、第一カラム5の出口端と第一FID3とを流通するようになる。
【0022】
コンピュータ10は、CPU(制御部)11を備え、さらにメモリ(記憶部)12と、入力装置(図示せず)であるキーボードやマウスと、モニタ画面等を有する表示装置(図示せず)とが連結されている。
CPU11が処理する機能をブロック化して説明すると、流路変更用接続機構40の三方電磁弁43を制御する接続機構制御部21と、第一FID3を制御する第一検出器制御部22と、第二FID7を制御する第二検出器制御部23と、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度とを算出する測定部24と、第一FID3と第二FID7との感度差F1や感度補正係数αE、αM等を設定する設定部25とを有する。なお、感度差F1、感度補正係数αE,αMの詳細は後述する。また、メモリ12は、設定開始時間Ts及び設定終了時間Te(例えば、Ts=1.42分、Te=1.96分)を記憶する設定時間記憶領域12aと、感度差F1や感度補正係数αE、αMを記憶する設定条件記憶領域12bとを有する。
【0023】
接続機構制御部21は、設定時間記憶領域12aに記憶された設定時間Ts、Te、又は、入力装置からの操作信号に基づいて、流路変更用接続機構40の三方電磁弁43を制御する。燃料用変性エタノール中に含有されている各化合物の濃度を算出する場合には、まず、第二カラム導入部41bに第二抵抗管41eを介さずAPC42を連結することにより、第一カラム5の出口端と第一FID3とを流通するように連結する。
次に、設定開始時間Ts(例えば、Ts=1.42分)になると、第二カラム導入部41bに第二抵抗管41eを介してAPC42を連結することにより、第一カラム5の出口端と第二カラム6の入口端とを流通するように連結する。
そして、設定終了時間Te(例えば、Te=1.96分)になると、第二カラム導入部41bに第二抵抗管41eを介さずAPC42を連結することにより、第一カラム5の出口端と第一FID3とを流通するように連結する。
なお、設定開始時間Ts及び設定終了時間Te(例えば、Ts=1.42分、Te=1.96分)は、予め設定時間記憶領域12aに記憶されているが、エタノールとメタノールとが第一カラム5の出口端から排出される時間を予め確認することで、決定されたものである(図3(b)参照)。すなわち、図3(b)は、第一カラム5の出口端と第一FID3とを流通するように連結した状態で、燃料用変性エタノールを実際のサンプル測定条件と同じ条件(キャリアガス線速度、カラムオーブンの温度プログラム等)で予め分析して得られたクロマトグラムであり、これより、メタノール及びエタノールの保持時間がおよそ1.47分〜1.91分であることが分かる。この分析結果より、これと同じ分析条件では、設定開始時間Tsを例えば1.42分とするとともに、設定終了時間Teを例えばTe=1.96分とするように設定することができる。
【0024】
第一検出器制御部22は、第一FID3で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する制御を行う。例えば、図3(a)は、燃料用変性エタノール中に含有されている各化合物の濃度を算出する場合に作成されたクロマトグラムの一例である。第一カラム5の長さが30mとなっているため、全化合物が検出されるまでの時間t=9分となっている。
第二検出器制御部23は、第二FID7で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する制御を行う。例えば、図4は、燃料用変性エタノール中に含有されている各化合物の濃度を算出する場合に作成されたクロマトグラムの一例である。時間t=4分の位置にエタノールを示すピークがあり、時間t=3.5分の位置にメタノールを示すピークがあり、さらに全化合物が検出されるまでの時間t=4分となっている。
【0025】
設定部25は、第一FID3と第二FID7との感度差F1や感度補正係数αE、αM等を設定する制御を行う。ガスクロマトグラフ1では、第一FID3と第二FID7とで検出されたイオン強度信号(検出信号)に基づいて試料を測定するため、測定部24で試料を測定する前に、第一標準試料と第二標準試料と第三標準試料とを用いて第一FID3と第二FID7との感度差F1や感度補正係数αE、αM等を設定することになる。
ここで、設定部25により第一FID3と第二FID7との感度差F1や感度補正係数αE、αMを設定する設定方法(設定工程)について説明する。図5a及び図5bは、設定部25による設定方法の一例について説明するためのフローチャートである。
まず、ステップS101の処理において、操作者は、5.0wt%のn−ヘプタンと95.0wt%のエタノールとを含有する0.5μLの第一標準試料を準備する。なお、「第一標準試料」は、第一FID3と第二FID7とにおけるn−ヘプタンのピーク面積値A1、A2と濃度との関係を算出するためのものである。ここで、n−ヘプタンは、燃料用変性エタノールに変性剤として添加されている複数種の炭化水素群の標準成分として用意した。この標準成分としてはn−ヘプタンに限らずブタン、オクタン等の一般的な炭化水素を用いることができる。
【0026】
次に、ステップS102の処理において、接続機構制御部21は、入力装置からの操作信号に基づいて、第一カラム5の出口端と第一FID3とを連結するように、流路変更用接続機構40の三方電磁弁43を制御する。
次に、ステップS103の処理において、第一標準試料は、第一カラム5を通過していきながら、n−ヘプタンとエタノールとに分離されて、第一FID3で検出される。
次に、ステップS104の処理において、第一検出器制御部22は、第一FID3で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する。これにより、第一FID3における5.0wt%のn−ヘプタンのピーク面積値A1が算出される。
【0027】
次に、ステップS105の処理において、操作者は、5.0wt%のn−ヘプタンと95.0wt%のエタノールとを含有する0.5μLの第一標準試料を準備する。
次に、ステップS106の処理において、接続機構制御部21は、入力装置からの操作信号に基づいて、第一カラム5の出口端と第二カラム6の入口端とを連結するように、流路変更用接続機構40の三方電磁弁43を制御する。
次に、ステップS107の処理において、第一標準試料は、第一カラム5と第二カラム6とを順次通過していきながら、n−ヘプタンとエタノールとに分離されて、第二FID7で検出される。
次に、ステップS108の処理において、第二検出器制御部23は、第二FID7で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する。これにより、第二FID7における5.0wt%のn−ヘプタンのピーク面積値A2が算出される。
【0028】
次に、ステップS109の処理において、設定部25は、ピーク面積値A1とピーク面積値A2とに基づいて、下記式(1)を用いて第一FID3と第二FID7との感度差F1を算出して設定条件記憶領域12bに記憶する。
F1=A2/A1・・・(1)
【0029】
次に、ステップS110の処理において、接続機構制御部21は、入力装置からの操作信号に基づいて、第一カラム5の出口端と第二カラム6の入口端とを連結するように、流路変更用接続機構40の三方電磁弁43を制御する。
次に、ステップS111の処理において、操作者は、95.0wt%のエタノールと5.0wt%のn−ヘプタンとを含有する0.5μLの第二標準試料を準備する。なお、「第二標準試料」は、第二FID7におけるエタノールのピーク面積値AEと濃度との関係を算出するためのものである。
次に、ステップS112の処理において、第二標準試料は、第一カラム5と第二カラム6とを順次通過していきながら、n−ヘプタンとエタノールとに分離されて、第二FID7で検出される。
【0030】
次に、ステップS113の処理において、第二検出器制御部23は、第二FID7で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する。これにより、第二FID7における95.0wt%のエタノールのピーク面積値AEとn−ヘプタンの面積値AH1が算出される。
次に、ステップS114の処理において、操作者は、0.5wt%のメタノールと5.0wt%のn−ヘプタンと94.5wt%のトルエンとを含有する0.5μLの第三標準試料を準備する。なお、「第三標準試料」は、第二FID7におけるメタノールのピーク面積値AMと濃度との関係を算出するためのものである。
次に、ステップS115の処理において、第三標準試料は、第一カラム5と第二カラム6とを順次通過していきながら、n−ヘプタンとメタノールとトルエンとに分離されて、第二FID7で検出される。
【0031】
次に、ステップS116の処理において、第二検出器制御部23は、第二FID7で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する。これにより、第二FID7における0.5wt%のメタノールのピーク面積値AMとn−ヘプタンの面積値AH2が算出される。
次に、ステップS117の処理において、設定部25は、エタノールのピーク面積値AEとメタノールのピーク面積値AMとに基づいて、感度補正係数αE、αMを算出して設定条件記憶領域12bに記憶する。ここで、αEは、エタノールのn−ヘプタンを基準とした相対感度補正係数であり、αMはメタノールのn−ヘプタンを基準とした相対感度補正係数である。
αE=(AH1/5.0)/(AE/95.0) ・・・(2)
αM=(AH2/5.0)/(AM/0.5) ・・・(3)
なお、感度差F1や感度補正係数αE、αM等を設定するには、第一標準試料と第二標準試料と第三標準試料とを用いてデータを採取、解析し、その後、PC等で計算を行うことにより算出された感度差F1や感度補正係数αE、αM等を設定してもよい。
【0032】
測定部24は、第一検出器制御部22で作成されたクロマトグラムと、第二検出器制御部23で作成されたクロマトグラムと、設定条件記憶領域12bに記憶された感度差F1及び感度補正係数αE、αMとに基づいて、燃料用変性エタノール(試料)中のエタノールの濃度とメタノールの濃度とを算出する制御を行う。
ここで、測定部24により、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度とを算出する算出方法(以下、「MDGC法」ともいう)について説明する。図6は、MDGC法の一例について説明するためのフローチャートである。
まず、ステップS201の処理において、操作者は、測定対象となるサンプルとして、0.5μLの燃料用変性エタノールを準備する。ここで、ステップS201の前工程として、設定開始時間Ts及び設定終了時間Teを求めるために、燃料用変性エタノールについて、第一カラム5及び第一FID3を用いて分析した後、ステップS201以降の工程を実施してもよい。
【0033】
次に、ステップS202の処理において、接続機構制御部21は、第一カラム5の出口端と第一FID3とを連結するように、流路変更用接続機構40の三方電磁弁43を制御する。
次に、ステップS203の処理において、燃料用変性エタノールは、第一カラム5を順次通過していきながら、分離されて、第一FID3で検出される。
次に、ステップS204の処理において、接続機構制御部21は、設定開始時間Tsであるか否かを判定する。設定開始時間Tsでないと判定したときには、ステップS203の処理に戻る。
一方、設定開始時間Tsであると判定したときには、ステップS205の処理において、接続機構制御部21は、第一カラム5の出口端と第二カラム6の入口端とを連結するように、流路変更用接続機構40の三方電磁弁43を制御する(流路変更工程)。
【0034】
次に、ステップS206の処理において、試料は、第一カラム5と第二カラム6とを通過していきながら、分離されて、第二FID7で検出される。
次に、ステップS207の処理において、接続機構制御部21は、設定終了時間Teであるか否かを判定する。設定終了時間Teでないと判定したときには、ステップS206の処理に戻る。
一方、設定終了時間Teであると判定したときには、ステップS208の処理において、接続機構制御部21は、第一カラム5の出口端と第一FID3とを連結するように、流路変更用接続機構40の三方電磁弁43を制御する(流路変更工程)。
次に、ステップS209の処理において、燃料用変性エタノールは、第一カラム5を順次通過していきながら、分離されて、第一FID3で検出される。
次に、ステップS210の処理において、測定を終了するか否かを判断する。測定を終了しないと判断したときには、ステップS209の処理に戻る。
【0035】
一方、測定を終了すると判断したときには、ステップS211の処理において、第一検出器制御部22は、第一FID3で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成するとともに(図3(a)参照)、第二検出器制御部23は、第二FID7で検出されたイオン強度信号に基づいて、時間t対イオン強度Iであるクロマトグラムを作成する(図4参照)。そして、測定部24は、第一FID3で作成されたクロマトグラムにおける炭化水素群のピーク面積値AHCs1と、第二FID7で作成されたクロマトグラムにおける炭化水素群のピーク面積値AHCs2と、感度差F1とに基づいて、下記式(4)を用いて全炭化水素のピーク面積値ATsを算出する。
ATs=AHCs1×F1+AHCs2・・・(4)
次に、ステップS212の処理において、測定部24は、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度とを修正面積百分率法により算出する(算出工程)。各々の濃度は各次式(5)、(6)で求めることができる。
試料中のエタノール濃度(wt%)=(AEs×αE)/ATs×100・・・(5)
試料中のメタノール濃度(wt%)=(AMs×αM)/ATs×100・・・(6)
ここで、AEs及びAMsは、それぞれ、第二FID7で作成されたクロマトグラムにおけるエタノールのピーク面積値及びメタノールのピーク面積値である。
また、第一FID3の信号に基づいて作成されたクロマトグラム(図3(a))におけるピーク、第二FID7の信号に基づいて作成されたクロマトグラム(図4)におけるエタノール及メタノール以外のピークは全て炭化水素由来のピークとした。さらに、全炭化水素由来のピークの相対感度補正係数は1とした。
【0036】
以上のように、本発明のガスクロマトグラフ1によれば、燃料用変性エタノールは極性を有する化合物群と極性を有さない化合物群との混合物であるが、第一カラム5の内部には、無極性の液相が塗布されており、第二カラム6の内部には、極性の液相が塗布されているので、高い分解性能を達成でき、その結果、低温付加装置等を必要とせず、短い測定時間(10分以内)で燃料用変性エタノール中に含有されているエタノールの濃度とメタノールの濃度とを算出することができる。
【実施例】
【0037】
(1)MDGC法(実施例)
ガスクロマトグラフ1(第一カラム5としてRtx−1(内径0.25mm、長さ30m)、第二カラム6としてRtx−WAX(内径0.32mm、長さ30m)を使用)によって、Sample1〜6(試料)を測定し、式(5)及び式(6)式より、Sample1〜6中のエタノールの濃度とメタノールの濃度とを算出した。その結果を表1に示す。
(2)ASTM法(比較例)
内径0.25mm、長さ150mであるカラム(Rtx−1)を備えたガスクロマトグラフ51によって、Sample1〜6を測定し、修正面積百分率法を用いて全炭化水素のピーク面積値ATの相対感度補正係数を1として、Sample1〜6中のエタノールの濃度とメタノールの濃度とを算出した。その結果を表1に示す。
【0038】
【表1】

【0039】
表1に示すように、実施例で得られた測定結果と、比較例で得られた測定結果とはほぼ一致しており、同等の測定精度であることが確認された。
【産業上の利用可能性】
【0040】
本発明は、燃料用変性エタノール中のエタノールの濃度とメタノールの濃度と変性剤の濃度とを算出することができるガスクロマトグラフ等に利用することができる。
【符号の説明】
【0041】
1、51 ガスクロマトグラフ
3 第一FID(第一検出器)
5 第一カラム
6 第二カラム
7 第二FID(第二検出器)
10、60 コンピュータ(制御部)
24 測定部
40 流路変更用接続機構

【特許請求の範囲】
【請求項1】
入口端から試料が導入されることにより、当該試料を各成分画分に分離していき、出口端から成分画分を順次排出する第一カラムと、
入口端から成分画分が内部に導入されることにより、当該成分画分を各化合物に分離していき、出口端から化合物を順次排出する第二カラムと、
第一検出器と、
前記第二カラムの出口端と接続される第二検出器と、
前記第一カラムの出口端と第二カラムの入口端と第一検出器とが接続される流路変更用接続機構とを備えるガスクロマトグラフを用いて、前記試料中に含有されていた各化合物の濃度を算出する測定方法であって、
前記試料は、極性を有する化合物群と極性を有さない化合物群との混合物である燃料用変性エタノールであり、
前記第一カラムの内部には、無極性の液相が塗布されるとともに、前記第二カラムの内部には、極性の液相が塗布されており、
前記流路変更用接続機構は、前記第一カラムの出口端と第二カラムの入口端とを流通するように連結するか、或いは、前記第一カラムの出口端と第一検出器とを流通するように連結するかのいずれかとなるように切替可能となっており、
設定開始時間と設定終了時間との間には、前記第一カラムの出口端と第一検出器とを流通する流通流路から、前記第一カラムの出口端と第二カラムの入口端とを流通する流通流路となるように、前記流路変更用接続機構を制御する流路変更工程と、
前記第一検出器及び第二検出器で検出された検出信号に基づいて、前記燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出する算出工程とを含むことを特徴とする測定方法。
【請求項2】
前記第一カラムの内部には、100%ジメチルポリシロキサンが塗布されており、前記第二カラムの内部には、ポリエチレングリコールの液相が塗布されていることを特徴とする請求項1に記載の測定方法。
【請求項3】
前記算出工程において、前記第一検出器で検出された変性剤のピーク面積値と、前記第二検出器で検出された変性剤のピーク面積値と、前記第一検出器と第二検出器との感度差とに基づいて、前記燃料用変性エタノール中に含有されていた全変性剤の第二検出器におけるピーク面積値を算出して、
当該全変性剤の第二検出器におけるピーク面積値を基準として、前記第二検出器におけるエタノールのピーク面積値とメタノールのピーク面積値とに基づいて、前記燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出することを特徴とする請求項1又は請求項2に記載の測定方法。
【請求項4】
前記算出工程で燃料用変性エタノール中に含有されていたエタノールの濃度及びメタノールの濃度を算出するために、前記第一検出器と第二検出器との感度差、前記第二検出器におけるエタノールの濃度とピーク面積値との関係を示す感度補正係数、及び、前記第二検出器におけるメタノールの濃度とピーク面積値との関係を示す感度補正係数を設定する設定工程を含むことを特徴とする請求項1〜請求項3のいずれかに記載の測定方法。


【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5a】
image rotate

【図5b】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate