説明

測定装置

【課題】高感度な音響波の検出と、広範囲からの信号取得を両立できるような光音響画像化装置を提供する。
【解決手段】光を照射することにより被検体から発生する音響波を検出する音響波検出器と、音響波検出器と被検体との間に配置され、被検体内の平均的な音速値よりも小さい音速値を有する部材と、を有し、部材の厚さは、部材内の音速値を、音響波検出器が検出可能な最小周波数で除算した値よりも大きいことを特徴とする測定装置を用いる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は測定装置に関する。
【背景技術】
【0002】
一般に、エックス線、超音波、MRI(核磁気共鳴法)を用いた画像化装置が医療分野で多く使われている。一方、レーザーなどの光源から生体に照射した光を生体などの被検体内に伝播させ、その伝播光等を検知することで、生体内の情報を得る光画像化装置の研究が医療分野で積極的に進められている。このような光画像化技術の一つとして、光音響トモグラフィー(Photoacoustic Tomography:PAT)がある。
光音響トモグラフィーでは、光源から発生したパルス光を被検体に照射し、被検体内で伝播・拡散した光のエネルギーを吸収した生体組織から発生した音響波(典型的には超音波)の時間による変化を、被検体を取り囲む複数の個所で検出する。そして検出された信号を数学的に解析処理し、被検体内部の光学特性値に関連した情報を可視化する技術である。これにより、被検体内の光照射によって生じた初期圧力発生分布あるいは光エネルギー吸収密度分布などを得ることができ、新生血管の増殖を伴う悪性腫瘍場所の特定などに利用できる。なお、光音響画像化装置は光音響トモグラフィー技術を用いた画像化装置のことを意味している。
一般に、光音響トモグラフィーでは、被検体全体を取り囲む閉じられた空間表面(特に球面状測定表面の様々な点)において、音響波の時間変化を理想的な音響波検出器(広帯域・ポイント検出)を用いて測定することが好ましい。その測定結果に基づき、画像再構成の手法を用いて処理を行うことにより、理論的には光照射により生じた初期音圧分布を完全に可視化できる。
米国特許第6607489号公報には、画像再構成時の補正について記載されている。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】米国特許第6607489号
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、一般の画像再構成理論では、光音響波を検出する音響波検出器がポイント検出(大きさがない)であると仮定している。実際には、音響波検出器は有限の大きさを有しており、その有限の大きさにより受信できる音響波の角度が制限される。通常、同じ強さで音響波検出器に垂直に入射する音響波(この線の角度は0とする)と、垂直な線に対して角度θで入射する音響波の感度の比は以下の式(1)で表すことができる。
【数1】

ここで、k=2π/λでdは音響波検出器の検出幅(ピッチ)、λは入射音響波の波長である。この式から分かるように、音響波検出器の検出幅dが大きくなればなるほど、検出器表面に垂直な方向に対して大きな角度で入射する音響波の感度は低くなり、音響波を検出しにくくなる。なお、このような音響波検出器の特性は指向性と呼ばれ、検出できる角度が小さいほど指向性が高いと言われる。つまり、音響波検出器の検出幅が大きくなると、指向性は高くなる。
このような理論から、画像再構成理論に適合させるためには、光音響トモグラフィーで
使用される音響波検出器は広範囲からの信号取得を可能にするような、指向性の低い物(検出幅が狭いもの)を用いることが好ましい。
【0005】
一方では、検出時の素子感度を向上させるためには、検出幅は大きいことが望まれている。以下に、素子感度の関係を表す式(2)を示す。
【数2】

ここで、Pminは最小検出音圧を意味し、値が小さいほど小さな音圧の音響波までノイズに埋もれることなく検出でき、高感度な音響波の検出ができる。この式において、kはボルツマン定数、Tは温度、cは検出器材料内での音速、εは検出器材料の誘電率、εは真空の誘電率、g33は圧電定数であり、いずれも検出器の材料によって値が定まる。また、fmaxは検出器の最大測定周波数、Aは探触子の検出幅である。したがって、fmaxが決まれば、後は検出幅Aが大きいほど最小検出音圧は小さくなり、小さな音圧まで検出できる。つまり、指向性を低くするために検出幅Aを小さくすると、最小検出音圧が大きくなる。
【0006】
本発明は上記実情に鑑みてなされたものであって、その目的とするところは、高感度な音響波の検出と、広範囲からの信号取得を両立できるような測定装置を提供することにある。
【課題を解決するための手段】
【0007】
上記の課題を解決するために、本発明は以下の構成を採用する。すなわち、光を照射することにより被検体から発生する音響波を検出する音響波検出器と、前記音響波検出器と被検体との間に配置され、被検体内の平均的な音速値よりも小さい音速値を有する部材と、を有し、前記部材の厚さは、前記部材内の音速値を、前記音響波検出器が検出可能な最小周波数で除算した値よりも大きいことを特徴とする測定装置である。
【発明の効果】
【0008】
本発明の測定装置によれば、高感度な音響波の検出と、広範囲からの信号取得を両立できるようになる。
【図面の簡単な説明】
【0009】
【図1】測定装置の構成の一例を示す模式図。
【図2】低音速部材の効果の一例を説明する模式図。
【図3】画像再構成方法の一例を説明する模式図。
【図4】測定装置の構成の変形例を示す模式図。
【発明を実施するための形態】
【0010】
以下、本発明の実施の形態について図面を参照しながら説明する。ここで説明する測定装置(光音響画像化装置)は、悪性腫瘍や血管疾患などの診断や化学治療の経過観察などを目的として、被検体情報の画像化を可能とするものである。なお被検体情報とは、光照射によって生じた音響波の発生源分布であり、被検体内の初期圧力分布、あるいはそれから導かれる光エネルギー吸収密度分布及び、それらの情報から得られる被検体組織を構成する物質の濃度分布を示す。例えば、物質の濃度分布とは酸素飽和度や酸化・還元ヘモグロビン濃度などである。
【0011】
図1は、本発明の光音響画像化装置の実施形態について示したものである。光音響画像
化装置は、光12を被検体13に照射する光源11と、光源11から照射された光12を被検体13に導くレンズなどの光学装置14とを備える。また、被検体13内の血液などの光吸収体15が光のエネルギーの一部を吸収して発生した音響波16を検出し電気信号に変換する音響波検出器17と、音響波検出器に入射する音響波の入射角度を変換する低音速部材18を備える。低音速部材18はシート状の部材であることが望ましい。また、前記電気信号に増幅やデジタル変換などを行う電子制御システム19と、被検体情報に関する画像を構築する(つまり、画像データを生成する)信号処理装置20と、構築した画像を表示する表示装置21も備える。本実施形態では信号処理装置20としてPCを用いる。表示装置としてはディスプレイ等を用いることができる。
【0012】
被検体に照射する光12をエネルギーが連続的に変化するパルスなどにすることで、被検体内部にある光吸収体15からは熱膨張により音響波16が発生する。これは、パルス光の吸収により、吸収体の温度が上昇し、その温度上昇により体積膨張が起こり、音響波が発生するためである。また、このときの光パルスの時間幅は光吸収体15に吸収エネルギーを効率的に閉じ込めるために、熱・ストレス閉じ込め条件が当てはまる程度にすることが好ましい。典型的には数から数十ナノ秒程度である。発生した光音響波16は低音速部材18を介して音響波検出器17により検出され、検出された電気信号は電子制御システム19により処理される。さらに、信号処理装置20により、その電気信号は被検体情報画像データへと変換され、表示装置21に表示される。
【0013】
次に、本発明の低音速部材の効果について、図2を用いて詳細に説明する。図2は被検体13と音響波検出器17、低音速部材18の配置の一例を示したものである。本発明において、低音速部材18は被検体13と音響波検出器17の間に設置される。ここでは図示していないが、被検体13と低音速部材18、低音速部材18と音響波検出器17の間に音響インピーダンスマッチングのために、別の材料が挿入されていてもかまわない。ただし、その材料はできるだけ薄い方が好ましい。なお、低音速部材内の音響波の伝搬速度(低音速部材内の音速値)v、被検体内の平均的な音響波の伝搬速度(被検体内の平均音速値)vとすると、v>vとなるようにしなければならない。その理由は後述する。また、低音速部材18の音響インピーダンス値は、被検体13と低音速部材18の間に音響インピーダンスマッチング材料を挿入しない場合は、被検体の音響インピーダンス値と近い値とすることが望ましい。この理由は、音響インピーダンスの差が大きいと、被検体から低音速部材18に入射した音響波の一部が反射されるからである。
【0014】
また、低音速部材の厚さdは低音速部材の音速v2を音響波検出器17の検出可能な最小周波数fminで除算した値よりも大きいことが望ましい(d>v/fmin)。ここで言う音響波検出器17の検出可能な最小周波数fminとは、典型的には最大感度の周波数fに対して、感度が半分になる最小の周波数である。その理由は、低音速部材の厚さが検出する音響波の波長よりも大きくなければ、音速差による屈折が起こらないためである。具体的な数値をあげると、低音速部材としてシリコーンゴム(音速:〜1000m/秒)を考え、音響波検出器の検出可能な最小周波数を0.5MHzとすると、低音速部材の最小の厚さdは2mmとなる。
なお、低音速部材の厚さが上記の条件を満たす場合、被検体側から低音速部材に入射した音響波の角度θと低音速部材から音響波検出器に入射する音響波の角度θは下の式(3)に示したスネルの法則により決定される。そのため、低音速部材の音速vが被検体の音速vよりも小さければ、低音速部材から音響波検出器に入射する音響波の角度θは被検体側から低音速部材に入射した音響波の角度θよりも小さくなる。すなわち、低音速部材が設置されていない場合、指向性により検出しにくかった角度(例えばθ)で音響波検出器に入射した音響波も、低音速部材を入れることで、音速の差により音響波が屈折して入射角度(例えばθ)が変化する。これにより検出器が大きな感度を持つようになり、従来では検出できなかった角度からの音響波も検出できるようになる。
/v=sinθ/sinθ …(3)
さらに、低音速部材の最大の厚さdは低音速部材での音響波の減衰を抑えるために、低音速部材での減衰が20dB以下になる厚さが望ましい。さらに望ましくは、低音速部材の最大の厚さdは低音速部材の減衰が10dB以下になる厚さである。例えば、許容する低音速部材の減衰をA、低音速部材の周波数依存性減衰係数をα(単位:dB/MHz・cm)、音響波検出器17の検出可能な最大周波数をfmaxとすると低音速部材の最大厚さdmaxはdmax=A/(fmax×α)となる。なお、ここで言う音響波検出器17の検出可能な最大周波数fmaxとは、典型的には最大感度の周波数fに対して、感度が半分になる最大の周波数である。このような厚さ以下に設定することで、低音速部材での音響波の減衰を低減できる。具体的な数値をあげると、低音速部材としてシリコーンゴム(減衰率:1.0dB/MHz・cm)を考え、許容する減衰を20dB、音響波検出器の検出可能な最大周波数を2MHzとすると、低音速部材の最大の厚さdは10mmとなる。低音速部材として他の部材を用いても、低音速部材の厚さは10mm以下が好ましい。さらに、低音速部材の厚さは8mm以下がより好ましく、最適には5mm以下がよい。
【0015】
なお、低音速部材としては、被検体の平均音速よりも小さい音速を持つものであれば良い。被検体が生体の場合、平均的な音速が〜1530m/秒である。それよりも音速が低い重水(〜1381m/秒)やエチルアルコール(〜1207m/秒)やメチルアルコール(〜1103m/秒)などの液体、シリコーンゴム(〜1000m/秒)などのゴムなどが使用できる。つまり、無機材料のような硬いものではなく、比較的やわらかい材料を選択することが好ましい。これらの材料は被検体の形状に対して柔軟に形状を変更できるため、被検体と低音速部材の間に空隙などの音響波伝播の阻害となる要因を低減できる。
【0016】
次に、図3を用いて本発明の信号処理装置で行う処理の例について説明する。図3において、13は被検体、18は低音速部材、17は音響波検出器、34は音波の屈折点である。まず、画像再構成処理においては、画像化する被検体の領域13を離散化、すなわち、小さい領域に分解する。3次元画像を作る場合はボクセルに分割し、図3に示したように2次元画像を作る場合は、ピクセルに分割する。通常の画像再構成の場合は、注目している画素(ボクセルまたはピクセル)と検出点の距離及び、そのなす角度からその注目画素に加算する値を決定する。しかしながら、本実施形態では、低音速部材と被検体の界面(ここでは屈折点34)で音波が屈折するため音波の伝播距離が変化する。そのため、幾何学的な形状から屈折点の位置を求め、そこから注目画素から検出器までの音波の伝播距離(ここではr+r)を求める。さらに、角度θ2を求め、それらの値から注目画素
に加算する値を計算する。このような処理を施すことにより、低音速部材の音速により歪んだ画像を高精細化できる。
【0017】
次に、本実施形態を具体的に説明する。
図1において、光源11は被検体を構成する成分のうち特定の成分に吸収される波長の光を照射することを目的とする。光源は光音響画像化装置と一体として設けられていても良いし、装置と分離して別体として設けられていても良い。
また光源は、数ナノから数百ナノ秒オーダーのパルス光を発生可能なパルス光源を少なくとも一つは備える。なお、検出する音響波の音圧が小さくてよい場合は、上記で記述したオーダーのパルス光ではなく、サイン波など時間的に強度が変化する光でもよい。本実施形態においては、光源11が一つである例を示しているが、複数の光源を用いても良い。その場合は、被検体に照射する光の照射強度を上げるため、同じ波長を発振する光源を複数用いても良いし、光学特性値分布の波長による違いを測定するために、発振波長の異なる光源を複数個用いても良い。
【0018】
なお、光源としては大きな出力が得られるレーザーが好ましいが、レーザーのかわりに
発光ダイオードなどを用いることも可能である。レーザーとしては、固体レーザー、ガスレーザー、色素レーザー、半導体レーザーなど様々なレーザーを使用することができる。光源11として、発振する波長の変換可能な色素やOPO(Optical Parametric Oscillators)やチタンサファイヤ及びアレキサンドライトの結晶を用いれば、光学特性値分布の波長による違いを測定することも可能になる。
使用する光源の波長に関しては、被検体内において吸収が少ない700nmから1100nmの領域が好ましい。ただし、比較的被検体表面付近の被検体組織の光学特性値分布を求める場合は、上記の波長領域よりも範囲の広い、例えば400nmから1600nmの波長領域を使用することも可能である。
【0019】
図1において、光源から照射された光12は、光導波路などを用いて、伝搬させることも可能である。図で示してはいないが光導波路としては、光ファイバが好ましい。光ファイバを用いる場合は、それぞれの光源に対して複数の光ファイバを使用して、被検体表面に光を導くことも可能であるし、複数の光源からの光を一本の光ファイバに導き、一本の光ファイバのみを用いて、すべての光を被検体に導いても良い。
図1の光学部品14は、主に光を反射するミラーや、光を集めたり拡大したり、形状を変化させるレンズなどを意味している。このような光学部品は、所望の形状で光源から発せられた光12が被検体13に照射されれば、どのようなものを用いてもかまわない。なお、一般的に光はレンズで集光させるより、ある程度の面積に広げる方が好ましい。また、光を被検体に照射する領域は移動可能であることが好ましい。言い換えると、本発明の光音響画像化装置は、光源から発生した光が被検体上を移動可能となるように構成されていることが好ましい。移動可能であることにより、より広範囲に光を照射することができる。また、光を被検体に照射する領域(被検体に照射される光)は、音響波検出器と同期して移動するとさらに好ましい。光を被検体に照射する領域を移動させる方法としては、上記ミラー等を可動式にして、照射領域を移動させてもよいし、光源自体を機械的に移動させてもよい。
【0020】
被検体13としては、人や動物の悪性腫瘍や血管疾患などの診断や化学治療の経過観察などが目的であれば、人体や動物の乳房や指・手足などの部位を用いることができる。被検体の光吸収体15としては、被検体内で吸収係数が高いものが利用される。例えば、人体が測定対象であれば酸化ヘモグロビンあるいは還元ヘモグロビンや、それらを多く含む血管、あるいは新生血管を多く含む悪性腫瘍である。また、被検体の外部から導入した造影剤を光吸収体として利用することもできる。
【0021】
図1の音響波検出器17は光吸収体から発生した音響波を検知し、電気信号に変換するものである。音響波検出器は、圧電現象を用いたトランスデューサー、光の共振を用いたトランスデューサー、容量の変化を用いたトランスデューサーなど音響波を検知できるものであれば、どのようなものでもよい。
なお、音響波検出器としては、複数の検出素子を2次元的に配置したものを好適に用いることができる。このような2次元配列素子を用いることで、同時に複数の場所で音響波を検出することができ、検出時間を短縮できると共に、被検体の振動などの影響を低減できる。このとき、検出幅d(ピッチ)は、一つの素子幅のことを指す。
【0022】
図1の低音速部材18は上で説明したように音響波検出器17に入射する音響波の入射角度を調整する。低音速部材18の音速値は被検体13の平均音速値よりも小さければ、どのような材料でも使用できる。典型的には液体やゴムなどのやわらかい材料であり、これにより被検体の形状に合わせて容易に自身の形状を変形できる利点がある。液体の場合はビニールなどからなる袋体または容器により保持することが好ましい。ゴムなどの場合はそのまま使用できる。なお、低音速部材18と被検体13、低音速部材18と音響波検出器17との間には、図示してはいないが音響波の反射を抑えるためのジェルなどの音響
インピーダンスマッチング剤を使うこともできる。また低音速部材は均質かつ厚さ一定なシート状の部材で構成することができる。つまり、低音速部材の厚さdを全領域で一定にし、かつ、均一な材料でシートを作成することができる。これにより、音響波検出器が2次元配列の素子で構成される時に、個々の素子について低音速部材を配置する必要がなくなる。また、音響波の屈折が起こったときの入射角や距離の演算が容易になる。
【0023】
図1の電子制御システム19は音響波検出器17より得られた電気信号を増幅し、アナログ信号からデジタル信号に変換する。信号処理装置20は、電子制御システムから得られた測定データを記憶し、その測定データを演算手段により、光学特性値分布の画像データ(ボリュームデータ)に変換する。信号処理装置としては例えば、様々なデータを解析できるPCなどが使用できる。なお、画像データの生成手法(画像再構成手法)としては通常の光音響トモグラフィーで使われているユニバーサルバックプロジェクションなどのタイムドメイン法、フーリエドメイン法などを用いることができる。そして再構成した画像に上記の低音速部材の効果を考慮した補正を行うことで、より高精細な画像を形成できる。図1の画像表示装置21は信号処理装置20で作られた画像データを画像として表示できれば、どのようなものでも用いることができる。たとえば、液晶ディスプレイなどを利用できる。
【0024】
以上のように、上述の条件を満たした低音速部材を用いた光音響画像化装置を用いることで、音響波検出器の検出幅を大きくしても、より大きな角度に入射した光音響波も検出できるので、より高精細な診断画像を形成できる。すなわち、検出幅の広い音響波検出器による高感度な検出と、広範囲からの信号取得との両立が可能になる。
【0025】
なお、光源に複数の波長の光を用いた場合は、それぞれの波長に関して、上記のシステムにより被検体内の吸収係数分布を算出する。そして、それらの値と被検体組織を構成する物質(グルコース、コラーゲン、酸化・還元ヘモグロビンなど)固有の波長依存性とを比較することによって、被検体を構成する物質の濃度分布を画像化することも可能である。
【0026】
<変形例>
続いて、測定装置(光音響画像化装置)の構成を一部変形した例について説明する。図4は、この変形例における装置の構成を示すブロック図である。図1の装置と異なる点は、被検体13を、第1の保持板22と、第2の保持板23で圧迫していることである。第1の保持板22としては、光源からの光に対して高透過性と低減衰特性を持つ平板が用いられる。第2の保持板23としては、音響波に対して高透過性と低減衰特性を持つ平板が用いられる。このように2つの保持板を用いれば、被検体13の動きを抑制、保持することが可能となる。
そして、第2の保持板23と音響波検出器17との間に低音速部材18を配置する。これにより、上の実施形態と同様に、高感度な音響波の検出と広範囲からの信号取得を両立するという効果を得ることができる。なお必要に応じて、第2の保持板23と、被検体13または低音速部材18の間に音響インピーダンスマッチングのための材料を挿入してもかまわない。
特に低音速部材としてシート状の材料を用いる場合、第2の保持板23にシートを貼り付けるだけで良いので、装置を容易に構成することができる。この場合、低音速部材は第2の保持板上に配置されていることになる。
【符号の説明】
【0027】
11:光源,17:音響波検出器,18:低音速部材,19:電子制御システム,20:信号処理装置,21:画像表示装置

【特許請求の範囲】
【請求項1】
光を照射することにより被検体から発生する音響波を検出する音響波検出器と、
前記音響波検出器と被検体との間に配置され、被検体内の平均的な音速値よりも小さい音速値を有する部材と、を有し、
前記部材の厚さは、前記部材内の音速値を、前記音響波検出器が検出可能な最小周波数で除算した値よりも大きい
ことを特徴とする測定装置。
【請求項2】
前記音響波検出器が検出可能な最小周波数とは、前記音響波検出器が最大感度で検出可能な周波数に対して、半分の感度で検出できる周波数である
ことを特徴とする請求項1に記載の測定装置。
【請求項3】
検出した音響波に基づいて被検体情報を取得する信号処理装置をさらに有し、
前記信号処理装置は、音響波の発生した位置を決定する際に、前記部材内の音速値と被検体内の平均的な音速値との比による前記音響波検出器への音響波の入射角度の変化に基づいて、音響波の発生した位置までの距離を求め、被検体情報を取得する
ことを特徴とする請求項1又は2に記載の測定装置。
【請求項4】
第1の保持板と、
前記部材と被検体の間にあり、前記第1の保持板と共に被検体を保持する第2の保持板をさらに有し、
前記部材は前記第2の保持板上に配置されている
ことを特徴とする請求項1乃至3のいずれか1項に記載の測定装置。
【請求項5】
前記部材は、シート状であることを特徴とする請求項1乃至4のいずれか1項に記載の測定装置。
【請求項6】
前記部材は、被検体の形状に合わせて自身の形状が変わることを特徴とする請求項1乃至4のいずれか1項に記載の測定装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate


【公開番号】特開2011−183149(P2011−183149A)
【公開日】平成23年9月22日(2011.9.22)
【国際特許分類】
【出願番号】特願2011−9845(P2011−9845)
【出願日】平成23年1月20日(2011.1.20)
【出願人】(000001007)キヤノン株式会社 (59,756)
【Fターム(参考)】