説明

溶接装置および炭酸ガスアーク溶接方法

【課題】スパッタが低減し、溶接品質が向上した炭酸ガスアーク溶接方法および溶接装置を提供する。
【解決手段】溶接装置は、トーチと母材との間に電圧を与えるための電源回路と、電源回路の電圧を制御する電源制御装置とを備える。電源制御装置は、短絡期間Tsの後に続くアーク期間の初期の第1アーク期間Ta1にハイレベル電流が出力され、アーク期間の後期の第2アーク期間Ta2に定電圧制御された溶接電圧に対応したアーク電流が出力されるように、電源回路を制御する。電源制御装置は、ハイレベル電流に一定周波数かつ一定振幅で増減する波形を重畳してハイレベル電流が発生されるように電源回路を制御する。波形の重畳により、溶滴がアーク反力によってせり上がることを防止して、溶滴の形成を安定させることができる。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、溶接装置および炭酸ガスアーク溶接方法に関する。
【背景技術】
【0002】
特公平4−4074号公報(特許文献1)には、消耗電極と母材との間で短絡とアーク発生とを繰り返す消耗電極式アーク溶接方法が開示されている。この消耗電極式アーク溶接方法は、溶滴の形成過程と溶滴の母材への移行過程とを繰り返す。
【0003】
図9は、短絡とアーク発生とを繰り返す消耗電極式アーク溶接方法を説明するための図である。
【0004】
図9を参照して、短絡とアーク発生とを繰り返す消耗電極式アーク溶接方法では、以下に説明する(a)〜(f)の過程が順に繰り返し実行される。(a)溶滴が溶融池と接触した短絡初期状態、(b)溶滴と溶融池との接触が確実になって溶滴が溶融池に移行している短絡中期状態、(c)溶滴が溶融池側へ移行して溶接ワイヤと溶融池との間の溶滴にくびれが生じた短絡後期状態、(d)短絡が破れてアークが発生、(e)溶接ワイヤの先端が溶融して溶滴が成長するアーク発生状態、(f)溶滴が成長し溶融池と短絡する直前のアーク発生状態。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特公平4−4074号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
特公平4−4074号公報で示された従来の短絡移行溶接では、アークと短絡とが規則的に発生する。しかし、高い電流(>200A)で炭酸ガスアーク溶接法によって溶接を行なう場合には、短絡を伴うグロビュール移行では、アーク反力によって溶滴がワイヤ上部にせり上がり、アーク時間が延びて周期的な短絡の発生が困難になり、アークと短絡とが不規則に発生する。
【0007】
このように、短絡とアークとの周期が不規則に変動すると、短絡時の溶滴サイズが不定となり、ビード止端部の揃いが悪くなる。
【0008】
また、高い電流は溶融池に対して不規則な位置に過大なアーク力を作用させるので溶融池を大きくかつ不規則に振動させ、特に溶融池を溶接方向と反対側に押し出すことでハンピングビードが発生し易くなる。
【0009】
特に、生産性を向上させるために溶接スピードを高速(>1m/s)にすることが求められており、高速溶接では上記の問題の影響による溶接品質の劣化が顕著に現れてくる。
【0010】
この発明の目的は、安定した溶滴の成長を実現することができる溶接装置および炭酸ガスアーク溶接方法を提供することである。
【課題を解決するための手段】
【0011】
この発明は、要約すると、炭酸ガスをシールドガスに使用し、短絡状態とアーク状態とを交互に繰り返す炭酸ガスアーク溶接方法によって溶接を行なう溶接装置であって、トーチと母材との間に電圧を与えるための電源回路と、電源回路の電圧を制御する制御部とを備える。制御部は、短絡期間の後に続くアーク期間の初期の第1アーク期間にハイレベル電流が出力され、アーク期間の後期の第2アーク期間に定電圧制御された溶接電圧に対応したアーク電流が出力されるように、電源回路を制御する。制御部は、ハイレベル電流に一定周波数かつ一定振幅で増減する波形を重畳してハイレベル電流が発生されるように電源回路を制御する。
【0012】
好ましくは、一定振幅で増減する波形は、三角波または正弦波である。
好ましくは、制御部は、短絡期間中に溶滴のくびれを検出した場合には短絡電流を減少させるくびれ検出制御を行なう。
【0013】
この発明は、他の局面では、炭酸ガスをシールドガスに使用し、短絡状態とアーク状態とを交互に繰り返す炭酸ガスアーク溶接方法であって、短絡期間の後に続くアーク期間の初期の第1アーク期間にハイレベル電流を出力するステップと、アーク期間の後期の第2アーク期間に定電圧制御された溶接電圧に対応したアーク電流を出力するステップとを備える。ハイレベル電流を出力するステップは、ハイレベル電流に一定周波数かつ一定振幅で増減する波形を重畳してハイレベル電流を発生する。
【0014】
好ましくは、波形は、三角波または正弦波である。
好ましくは、短絡状態を発生させるステップは、短絡期間中に溶滴のくびれを検出した場合には短絡電流を減少させるくびれ検出制御を行なう。
【発明の効果】
【0015】
本発明によれば、溶滴がアーク反力によってせり上がることを防止して、溶滴の形成を安定させることができる。これにより、溶接の品質を高めることができる。
【図面の簡単な説明】
【0016】
【図1】実施の形態1に係る溶接装置のブロック図である。
【図2】実施の形態1に係る溶接装置で溶接を行なう際の溶接電圧および溶接電流を示した動作波形図である。
【図3】図2の点Paにおける溶接部分の状態を示した図である。
【図4】図2の点Pbにおける溶接部分の状態を示した図である。
【図5】図2の点Pcにおける溶接部分の状態を示した図である。
【図6】図2の点Pdにおける溶接部分の状態を示した図である。
【図7】実施の形態2に係る溶接装置100Aの構成を示したブロック図である。
【図8】実施の形態2に係る溶接装置で溶接を行なう際の溶接電圧および溶接電流と制御信号とを示した動作波形図である。
【図9】短絡とアーク発生とを繰り返す消耗電極式アーク溶接方法を説明するための図である。
【発明を実施するための形態】
【0017】
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一の符号を付して、その説明は繰り返さない。
【0018】
なお、本実施の形態で説明する溶接方法は、短絡状態とアーク状態を繰り返す溶接方法であり、パルスアーク溶接方法とは異なる。
【0019】
[実施の形態1]
図1は、実施の形態1に係る溶接装置のブロック図である。
【0020】
図1を参照して、溶接装置100は、電源回路102と、電源制御装置104と、ワイヤ送給装置106と、溶接トーチ4とを含む。
【0021】
電源制御装置104は、電源回路102を制御して溶接トーチ4に出力される溶接電流Iwおよび溶接電圧Vwが溶接に適した値となるように制御する。
【0022】
ワイヤ送給装置106は、溶接トーチ4に溶接ワイヤ1を送給する。図示しないが、炭酸ガスを主成分とするシールドガスが、溶接トーチ4の先端部分から放出される。溶接トーチ4の先端から突出した溶接ワイヤ1と母材2との間でアーク3が発生し、溶接ワイヤ1が溶融して母材を溶接する。ワイヤ送給装置106は、送給速度設定回路FRと、送給制御回路FCと、送給モータWMと、送給ロール5とを含む。
【0023】
電源回路102は、電源主回路PMと、リアクトルWL1およびWL2と、トランジスタTR1と、電圧検出回路VDと、電流検出回路IDとを含む。
【0024】
電源主回路PMは、3相200V等の商用電源(図示は省略)を入力として、後述する誤差増幅信号Eaに従ってインバータ制御による出力制御を行い、アーク溶接に適した溶接電流Iw及び溶接電圧Vwを出力する。図示は省略するが、電源主回路PMは、例えば、商用電源を整流する1次整流器と、整流された直流を平滑するコンデンサと、平滑された直流を高周波交流に変換するインバータ回路と、高周波交流をアーク溶接に適した電圧値に降圧する高周波変圧器と、降圧された高周波交流を整流する2次整流器と、誤差増幅信号Eaを入力としてパルス幅変調制御を行いこの結果に基づいて上記のインバータ回路を駆動する駆動回路とを含んで構成される。
【0025】
リアクトルWL1とリアクトルWL2は、電源主回路PMの出力を平滑する。リアクトルWL2には、並列にトランジスタTR1が接続されている。トランジスタTR1は、後に図2で説明する第2アーク期間にLowとなるナンド(NAND)論理信号Naに応じて、第2アーク期間Ta2のみOFFとなる。
【0026】
送給速度設定回路FRは、予め定められた定常送給速度設定値に相当する送給速度設定信号Frを出力する。送給制御回路FCは、送給速度設定信号Frの値に相当する送給速度で溶接ワイヤ1を送給するための送給制御信号Fcを送給モータWMに出力する。溶接ワイヤ1は、ワイヤ送給装置106の送給ロール5の回転によって溶接トーチ4内を通って送給され、母材2との間にアーク3が発生する。
【0027】
電流検出回路IDは、溶接電流Iwを検出して、溶接電流検出信号Idを出力する。電圧検出回路VDは、溶接電圧Vwを検出して、溶接電圧検出信号Vdを出力する。
【0028】
電源制御装置104は、アーク検出回路ADと、タイマー回路TMと、ナンド(NAND)回路NAと、反転回路NOTと、振幅中心電流設定回路IHと、周波数設定回路FHと、振幅設定回路WHと、溶接電流設定回路IRと、電流誤差増幅回路EIと、溶接電圧設定回路VRと、電圧誤差増幅回路EVと、外部特性切換回路SWとを含んで構成される。
【0029】
アーク検出回路ADは、溶接電圧検出信号Vdを入力として、溶接電圧検出信号Vdの値が閾値以上になったことによってアークの発生を判別するとハイ(High)レベルになるアーク検出信号Adを出力する。タイマー回路TMは、アーク検出信号Adを入力として、アーク検出信号Adがロウ(Low)レベルである期間及びアーク検出信号Adがハイレベルになってから予め定めた期間ハイレベルになるタイマー信号Tmを出力する。ナンド回路NAは、タイマー信号Tmが反転回路NOTによって反転された信号と、アーク検出信号Adとを入力に受けて、ナンド論理信号Naを出力する。
【0030】
振幅中心電流設定回路IHCRは、予め定めたハイレベル電流である振幅中心電流設定信号Ihcrを出力する。周波数設定回路FHは、予め定めた周波数設定信号Fhを出力する。振幅設定回路WHは、予め定めた振幅設定信号Whを出力する。溶接電流設定回路IRは、振幅中心電流設定信号Ihcr、周波数設定信号Fh及び振幅設定信号Whを入力として、溶接電流設定信号Irを出力する。電流誤差増幅回路EIは、溶接電流設定信号Irと溶接電流検出信号Idとの誤差を増幅して、電流誤差増幅信号Eiを出力する。
【0031】
溶接電圧設定回路VRは、予め定めた溶接電圧設定信号Vrを出力する。電圧誤差増幅回路EVは、溶接電圧設定信号Vrと溶接電圧検出信号Vdとの誤差を増幅して、電圧誤差増幅信号Evを出力する。
【0032】
外部特性切換回路SWは、タイマー信号Tm、電流誤差増幅信号Ei及び電圧誤差増幅信号Evを入力として受ける。
【0033】
外部特性切換回路SWは、タイマー信号Tmがハイレベルのときは入力端子a側に切り換わり電流誤差増幅信号Eiを誤差増幅信号Eaとして出力する。このときには電流誤差が電源主回路PMにフィードバックされるので、定電流制御が行なわれる。
【0034】
外部特性切換回路SWは、タイマー信号Tmがロウレベルのときは入力端子b側に切り換わり電圧誤差増幅信号Evを誤差増幅信号Eaとして出力する。これらのブロックによって、溶接電流Iwが制御される。このときには電圧誤差が電源主回路PMにフィードバックされるので、定電圧制御が行なわれる。
【0035】
図2は、実施の形態1に係る溶接装置で溶接を行なう際の溶接電圧および溶接電流を示した動作波形図である。
【0036】
図1、図2を参照して、溶接は、短絡期間Tsとアーク期間とが繰り返されることにより進行する。アーク期間は、初期の第1アーク期間Ta1と、後期の第2アーク期間Ta2とに分かれる。
【0037】
時刻t0〜t1の短絡期間Tsでは、溶接ワイヤ1と母材2とが接触して短絡電流が流れ溶接ワイヤ1の先端にジュール熱が発生し溶接ワイヤ1の先端部が高温となる。
【0038】
時刻t1で溶接ワイヤ1の先端部の溶滴が移行してアークが発生すると、電源制御装置104は、溶接電圧が急上昇したことに応じてアークが発生したことを判別する。これに応じて、電源制御装置104は、制御を定電流制御に切り替え、第1アーク期間Ta1に移行する。溶接電流は、ハイレベル電流IHまで上昇する。その後、一定期間溶接電流としてハイレベル電流IHが流される。このハイレベル電流IHは、アーク力による溶滴のせり上がりが発生しない程度の電流値に抑制される。このとき生産効率を上げるため溶接速度Vmを少しでも増加させることが望ましい。この第1アーク期間Ta1に流れる溶接電流をハイレベル電流と呼ぶ。
【0039】
溶接ワイヤの溶融速度Vmは、Vm=αI+βI2Rであらわされる。ここで、α,βは係数を示し、Iは溶接電流を示し、Rは溶接ワイヤがトーチ先端のコンタクトチップから突出している部分(突き出し長さ)の抵抗値を示す。溶接電流Iを増加させると溶接ワイヤの溶融速度Vmも大きくなることが分かる。
【0040】
しかし、溶接電流Iを増加すると溶滴に対して働く上向きのアーク力も増加する。アーク力は溶接電流Iの2乗に比例する。その一方で、溶滴には重力も働いているので、重力とアーク力がちょうど釣り合う電流値を境に、電流値が大きければ上向きの力が働き、電流値が小さければ下向きの力が働く。溶接電流Iに交流電流を重畳させると、溶滴には上向きの力と下向きの力が交互に働くことになる。本願発明者によれば、このように電流を増減させることにより上下向きの力を交互に溶滴に働かせた方が、全体的に電流を増加させて上向きの力を連続して溶滴に働かせるよりも溶滴が安定しており、スパッタを低減させることができることが分かった。そこで、本実施の形態では、第1アーク期間に電流を増減させて、溶滴の安定的かつ段階的な成長を図っている。
【0041】
時刻t1〜t2の第1アーク期間には、以下に説明する三角波を振幅中心電流Ihcに重畳させる。
【0042】
三角波は、振幅中心電流Ihc(200〜400A)を中心として、2.5kHz〜5kHzの周波数、+−50〜100Aの振幅とし、第1アーク期間Ta1は、1ms〜1.5msとする。例えば、振幅中心電流IhcがIhc=400A、振幅がIHA=+−100A、周波数がf=4kHzで、第1アーク期間がTa1=1.0msで、重畳する三角波は4周期というように設定しても良い。なお、重畳させる波形は三角波に限定されるものではなく、正弦波などの他の波形でも構わない。
【0043】
以下、第1アーク期間Ta1における溶接部分の状態について詳細に説明する。
(1)三角波の0〜1/2周期
図3は、図2の点Paにおける溶接部分の状態を示した図である。点Paは、三角波の重畳が開始された点である。
【0044】
図3を参照して、溶接ワイヤ1の先端と母材2との間にはアーク3が発生している。アーク3による熱により溶接ワイヤ1の先端が加熱され先端部が溶融し、溶滴6が形成される。溶接ワイヤ1は送給装置によって母材2方向に送給される。
【0045】
重畳した電流によってワイヤ溶融速度が増加し溶滴が大きくなり、溶滴にかかる力は1/4周期で最大となり、溶滴がアーク反力によってせり上がりが加速されようとする。しかし、1/2周期に向かって電流が減少するに伴いアーク反力も低下するので、せり上がりを防止することができる。
【0046】
図4は、図2の点Pbにおける溶接部分の状態を示した図である。点Pbは、三角波の1/2周期が経過した点である。図4に示すように、溶接ワイヤ1の先端部の溶滴6は少し成長し、少しせり上がった状態となっている。
【0047】
(2)三角波の1/2〜3/4周期
この期間は、電源制御装置104によって溶接電流が振幅中心電流Ihcよりも減少され、溶滴に対するアーク反力が更に下げられる。
【0048】
(3)三角波の3/4〜1周期
三角波の3/4〜1周期では、三角波の下側ピーク値から振幅中心電流Ihcまで再び溶接電流を増加させる。
【0049】
図5は、図2の点Pcにおける溶接部分の状態を示した図である。点Pcは、三角波の1周期が経過した点である。図5に示すように、アーク反力が低下したことにより、溶滴6に働く重力とアーク反力とがちょうどよいバランスとなる。これによって、溶滴6のせり上りが解消されて、溶滴6が垂れ下がった状態になる。
【0050】
そして、(1)〜(3)で説明した三角波を4回繰り返して振幅中心電流Ihcに重畳する。これにより、アーク反力によるせり上がりを防止させつつ徐々に溶滴が増加されて、所望なサイズの溶滴を形成させることになる。
【0051】
なお、第1アーク期間Ta1のインダクタンス値WL1は、三角波の重畳を容易に行なうために、次の第2アーク期間Ta2(インダクタンス値はWL1+WL2)よりも小さくしている。
【0052】
以下、第2アーク期間Ta2における溶接部分の状態について詳細に説明する。
再び図2を参照して、時刻t2において、第1アーク期間Ta1が終了して第2アーク期間Ta2に移行する。第2アーク期間Ta2では、電源制御装置104は、電源回路102のインダクタンス値を大きくして、アーク長制御のために制御を定電流制御から定電圧制御に切り替える。この切替は、図1では、SWを端子aから端子bに切り替えることに相当する。インダクタンスが大きいので、溶接電流波形はアーク負荷に応じて緩やかに減少する。また、溶接電圧も緩やかに減少する。
【0053】
図6は、図2の点Pdにおける溶接部分の状態を示した図である。
第1アーク期間Ta1で形成された溶滴は、図6に示すように、せり上がることなく、第2アーク期間Ta2において少し大きくなりながら、溶融池の方へ近づいていく。せり上がりによるアーク長の変化が防止されかつ定電圧制御によってアーク長が調整され、アーク力の変化が緩やかになるので、溶融池を振動させることが少ない。さらに溶接電流が緩やかに減少するので、母材への入熱が十分行われ、ビードの止端部のなじみが良くなる。
【0054】
時刻t3において、溶滴が溶融池に接触して短絡が発生すると、溶滴が急降下する。この溶接電圧の急降下によって短絡を判別すると、溶接電流を所望の立ち上がり速度で増加させる。溶接電流の上昇によって溶滴の上部に電磁ピンチ力が働いてくびれが発生して、溶滴6が溶融池7へ移行する。
【0055】
以上説明したように、実施の形態1に示した溶接方法は、低スパッタ制御を行なう炭酸ガスアーク溶接法であるが、パルスアーク溶接方法とは異なる。
【0056】
すなわち、実施の形態1に示した溶接方法は、短絡状態とアーク状態を繰り返す溶接方法である。このような溶接方法では、溶接速度を上げるため溶接電流を増加させるとグロビュール移行領域で溶接が行なわれ、短絡状態とアーク状態との繰り返しが不規則になる。
【0057】
そこで、実施の形態1に示した溶接方法では、一定期間の第1アーク期間Ta1にハイレベル電流を出力し、この第1アーク期間Ta1に定電流制御を行って、交流電流、例えば、三角波、又はサイン波のように周期的に変化する一定周波数で一定振幅の低周波電流を重畳する。これによって、溶滴がアーク反力によってせり上がることを防止して、溶滴の形成を安定させることができる。
【0058】
第1アーク期間Ta1が経過すると、第2アーク期間Ta2にアーク長制御を行なうために、溶接電源の制御を定電流制御から定電圧制御に切り替える。溶接電源のリアクトルのインダクタンス値を第1アーク期間Ta1よりも大きくして、溶接電流を緩やかに減少させる。これによって、アーク力の変化が緩やかになるので、溶融池を振動させることが少なくなる。さらに溶接電流が緩やかに減少するので、母材への入熱が十分行われ、ビードの止端部のなじみが良くなる。
【0059】
上述した実施の形態1において、第2アーク期間Ta2に溶接電源のリアクトルのインダクタンス値を第1アーク期間Ta1よりも大きくするために、実際のリアクトルWL2を挿入している。この代わりに、リアクトルを電子的に制御してインダクタンス値を大きくしてもよい。
【0060】
上述した実施の形態1において、短絡期間Tsでは、定電圧制御のままで電流を所望の値まで立ち上げたり、又は、定電流制御に切り替えて電流を所望の値まで立ち上げても良い。
【0061】
[実施の形態2]
実施の形態2では、実施の形態1で説明した溶接方法に加え、アークが発生する前に溶滴のくびれを検出することによって、アークが発生する前に電流を下げてスパッタを低減させる。
【0062】
図7は、実施の形態2に係る溶接装置100Aの構成を示したブロック図である。以下の説明では、実施の形態1と異なる部分のみについて説明し、実施の形態1と同様な部分については同一の符号を付して説明は繰り返さない。
【0063】
図7を参照して、溶接装置100Aは、電源回路102Aと、電源制御装置104Aと、ワイヤ送給装置106と、溶接トーチ4とを含む。
【0064】
溶接装置100Aは、図1に示した溶接装置100の構成に加えて、トランジスタTR2と減流抵抗器Rとを含む。トランジスタTR2は電源主回路PMの出力にリアクトルWL1およびWL2と直列に挿入される。トランジスタTR2に並列に減流抵抗器Rが接続されている。溶接装置100Aの他の部分の構成は、溶接装置100と同様であるので説明は繰り返さない。
【0065】
電源回路102Aは、図1に示した電源回路102の構成に加えて、くびれ検出回路NDと、くびれ検出基準値設定回路VTNと、駆動回路DRとを含む。電源回路102Aの他の部分の構成は、電源回路102と同様であるので説明は繰り返さない。
【0066】
図8は、実施の形態2に係る溶接装置で溶接を行なう際の溶接電圧および溶接電流と制御信号とを示した動作波形図である。
【0067】
図8の波形が、図2の実施の形態1と異なる箇所は、時刻t0aにおいて、溶滴のくびれが検出されると溶接電流を減少させて、その後時刻t1において、アークが発生するようにした点である。
【0068】
時刻t1におけるアークが発生したときの電流値の大きさにスパッタの量は比例するので、アークが発生するときに電流値を下げておくとスパッタの発生を低減させることができる。
【0069】
図7、図8を参照して、くびれ検出基準値設定回路VTNは、予め定めたくびれ検出基準値信号Vtnを出力する。くびれ検出回路NDは、このくびれ検出基準値信号Vtnと、図1で説明した溶接電圧検出信号Vd及び溶接電流検出信号Idを入力として、短絡期間中の電圧上昇値ΔVがくびれ検出基準値信号Vtnの値に達した時点(時刻t0a)でハイレベルとなり、アークが再発生して溶接電圧検出信号Vdの値がアーク判別値Vta以上になった時点(時刻t1)でロウレベルになるくびれ検出信号Ndを出力する。したがって、このくびれ検出信号Ndがハイレベルの期間がくびれ検出期間Tnとなる。
【0070】
なお、短絡期間中の溶接電圧検出信号Vdの微分値がこれに対応するように設定したくびれ検出基準値信号Vtnの値に達した時点でくびれ検出信号Ndをハイレベルに変化させるようにしても良い。さらに、溶接電圧検出信号Vdの値を溶接電流検出信号Idの値で除算して溶滴の抵抗値を算出し、この抵抗値の微分値がこれに対応するように設定したくびれ検出基準値信号Vtnの値に達した時点でくびれ検出信号Ndをハイレベルに変化させるようにしても良い。くびれ検出信号Ndは、電源主回路PMに入力される。電源主回路PMは、くびれ検出期間Tnにおいては出力を停止する。
【0071】
駆動回路DRは、このくびれ検出信号Ndがロウレベルのとき(非くびれ検出時)はトランジスタTR2をオン状態にする駆動信号Drを出力する。くびれ検出期間Tnにおいては駆動信号Drはロウレベルであるので、トランジスタTR2はオフ状態になる。この結果、減流抵抗器Rが溶接電流Iwの通電路(電源主回路PMから溶接トーチ4に至る経路)に挿入される。この減流抵抗器Rの値は、短絡負荷(0.01〜0.03Ω程度)の10倍以上大きな値(0.5〜3Ω程度)に設定される。このために、溶接電源内の直流リアクトル及びケーブルのリアクトルに蓄積されたエネルギーが急放電されて、図8の時刻t0a〜t1に示すように、溶接電流Iwは急激に減少して小電流値となる。
【0072】
時刻t1において、短絡が開放されてアークが再発生すると、溶接電圧Vwが予め定めたアーク判別値Vta以上になる。これを検出して、くびれ検出信号Ndはロウレベルになり、駆動信号Drはハイレベルになる。この結果、トランジスタTR2はオン状態になり、以降は図2を用いて実施の形態1で説明したアーク溶接の制御となる。以降の第1アーク期間Ta1と第2アーク期間Ta2については、図2で説明しているので説明は繰り返さない。
【0073】
実施の形態2に係る溶接装置は、アーク再発生時(時刻t1)のアーク再発生時電流値を小さくすることができるので、実施の形態1で説明した溶接装置が奏する効果に加えて、アーク発生開始時のスパッタをさらに低減させることができる。
【0074】
なお、実施の形態2では、くびれを検出したときに溶接電流Iwを急速に減少させる手段として、減流抵抗器Rを通電路に挿入する方法を説明した。これ以外の手段として、溶接装置の出力端子間にスイッチング素子を介してコンデンサを並列に接続し、くびれを検出するとスイッチング素子をオン状態にしコンデンサから放電電流を通電して溶接電流Iwを急速に減少させる方法を用いても良い。
【0075】
最後に、再び本実施の形態1および2について、図1および図7等を参照して総括する。溶接装置100および100Aは、炭酸ガスをシールドガスに使用し、短絡状態とアーク状態とを交互に繰り返す炭酸ガスアーク溶接方法によって溶接を行なう溶接装置である。溶接装置100および100Aは、溶接トーチ4と母材2との間に電圧を与えるための電源回路102または102Aと、電源回路102の電圧を制御する電源制御装置104または104Aとを備える。電源制御装置104または104Aは、図2、図8に示すように、短絡期間Tsの後に続くアーク期間の初期の第1アーク期間Ta1にハイレベル電流が出力され、アーク期間の後期の第2アーク期間Ta2に定電圧制御された溶接電圧に対応したアーク電流が出力されるように、電源回路102を制御する。電源制御装置104は、ハイレベル電流IHに一定周波数かつ一定振幅で増減する波形を重畳してハイレベル電流が発生されるように電源回路102を制御する。
【0076】
このようにハイレベル電流に一定振幅で増減する波形を重畳したので、ハイレベル電流を一律に振幅中心電流Ihcより高くするよりもアーク反力が弱まり溶滴の挙動が安定する。またハイレベル電流を振幅中心電流Ihcに一定にするよりも溶滴の成長速度を速めることができる。
【0077】
好ましくは、一定振幅で増減する波形は、三角波または正弦波である。一定振幅で増減する波形であればこれらに限定されるものではなく、他の波形であっても良いが、三角波や正弦波は波形を発生させやすいので好ましい。
【0078】
好ましくは、図8に示すように、電源制御装置104Aは、短絡期間中に溶滴のくびれを検出した場合には短絡電流を急減させるくびれ検出制御を行なう。溶滴のくびれ検出と組み合わせることによって、溶滴の挙動が一層安定化し、スパッタの発生をさらに抑制することができる。
【0079】
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
【符号の説明】
【0080】
1 溶接ワイヤ、2 母材、3 アーク、4 溶接トーチ、5 送給ロール、6 溶滴、7 溶融池、100,100A 溶接装置、102,102A 電源回路、104,104A 電源制御装置、106 送給装置、AD アーク検出回路、DR 駆動回路、EI 電流誤差増幅回路、EV 電圧誤差増幅回路、FC 送給制御回路、FH 周波数設定回路、FR 送給速度設定回路、ID 電流検出回路、IHCR 振幅中心電流設定回路、IR 溶接電流設定回路、NA ナンド回路、ND くびれ検出回路、NOT 反転回路、PM 電源主回路、R 減流抵抗器、SW 外部特性切換回路、TM タイマー回路、TR1,TR2 トランジスタ、VD 電圧検出回路、VR 溶接電圧設定回路、VTN くびれ検出基準値設定回路、WH 振幅設定回路、WL1,WL2 リアクトル、WM 送給モータ。

【特許請求の範囲】
【請求項1】
炭酸ガスをシールドガスに使用し、短絡状態とアーク状態とを交互に繰り返す炭酸ガスアーク溶接方法によって溶接を行なう溶接装置であって、
トーチと母材との間に電圧を与えるための電源回路と、
前記電源回路の電圧を制御する制御部とを備え、
前記制御部は、短絡期間の後に続くアーク期間の初期の第1アーク期間にハイレベル電流が出力され、アーク期間の後期の第2アーク期間に定電圧制御された溶接電圧に対応したアーク電流が出力されるように、前記電源回路を制御し、
前記制御部は、ハイレベル電流に一定周波数かつ一定振幅で増減する波形を重畳してハイレベル電流が発生されるように前記電源回路を制御する、溶接装置。
【請求項2】
一定振幅で増減する前記波形は、三角波または正弦波である、請求項1に記載の溶接装置。
【請求項3】
前記制御部は、短絡期間中に溶滴のくびれを検出した場合には短絡電流を減少させるくびれ検出制御を行なう、請求項1または2に記載の溶接装置。
【請求項4】
炭酸ガスをシールドガスに使用し、短絡状態とアーク状態とを交互に繰り返す炭酸ガスアーク溶接方法であって、
短絡期間の後に続くアーク期間の初期の第1アーク期間にハイレベル電流を出力するステップと、
前記アーク期間の後期の第2アーク期間に定電圧制御された溶接電圧に対応したアーク電流を出力するステップとを備え、
前記ハイレベル電流を出力するステップは、ハイレベル電流に一定周波数かつ一定振幅で増減する波形を重畳してハイレベル電流を発生する、炭酸ガスアーク溶接方法。
【請求項5】
前記波形は、三角波または正弦波である、請求項4に記載の炭酸ガスアーク溶接方法。
【請求項6】
前記短絡状態を発生させるステップは、短絡期間中に溶滴のくびれを検出した場合には短絡電流を減少させるくびれ検出制御を行なう、請求項4または5に記載の炭酸ガスアーク溶接方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate