説明

溶鋼流速測定方法、溶鋼流速測定装置および連続鋳造の操業方法

【課題】連続鋳造用鋳型内で流動する溶鋼の流速を非接触で測定する際の測定誤差を低減させること。
【解決手段】本発明のある実施の形態の連続鋳造機2は、鋳型21内に外部から静磁場を印加する電磁石231,232と、静磁場の印加によって磁場勾配が発生する電磁石231,232の上端近傍および下端近傍を測定点として設置され、各測定点における静磁場の印加磁場方向成分を検出する磁気センサ24と、各測定点における印加磁場方向成分の変化を検出し、この印加磁場方向成分の変化をもとに各測定点における溶鋼26の流速の磁場勾配方向成分を測定する演算装置25とを備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、連続鋳造用鋳型内に注入された溶鋼の流速を測定する溶鋼流速測定方法、溶鋼流速測定装置および連続鋳造の操業方法に関するものである。
【背景技術】
【0002】
近年、鋼製品の品質向上に対する要求が一段と高まっており、その厳しい品質要求から、清浄度が高く高品質なスラブの製造が求められている。スラブの欠陥には、介在物や気泡に起因するものの他、溶鋼中の成分の偏析に起因するもの等が挙げられるが、連続鋳造用鋳型(以下、単に「鋳型」とも呼ぶ。)内に溶鋼を注入した際に生じる溶鋼の流動がこれらスラブの欠陥に影響を与えることが既に知られている。この種の問題を解決するため、従来から、鋳型内の溶鋼の流速を非接触で測定する技術が種々提案されている。
【0003】
例えば、鋳型壁内部に複数の温度センサを配設し、その温度測定値をもとに鋳型内の溶鋼流速を伝熱工学的に求める技術が知られている(例えば特許文献1を参照)。また、鋳型内の溶鋼表面の上方に交流磁場を発生させるためのコイルを設置し、交流磁場と溶鋼流動との相互作用により誘起される渦電流によって発生した2次的な交流磁場を検出することで、溶鋼流速を測定する技術が知られている(例えば特許文献2を参照)。
【0004】
また、コイルに通電される交流電流とこのコイルに印加される交流電圧との位相差が溶鋼の流速と相関することを利用し、溶鋼流速を測定する技術が知られている(例えば特許文献3を参照)。コイルに流れる交流電流によって移動磁場を発生させると、溶鋼内には移動磁場の速度と溶鋼流動の速度の相対速度で決定される渦電流が発生し、2次的な磁場が生じるが、印加磁場と誘導磁場からなる全体磁場が、コイルに誘起する交流電圧の位相とコイルに通電された交流電流の位相との間に生ずるものであることから、この位相差と溶鋼速度との間には、相関が存在することになる。
【0005】
また、電磁ブレーキの磁束の鋳型厚み方向成分と直交する方向に軸を有する直流磁場を検知する素子を鋳型内に設け、溶鋼流動と印加磁場の干渉により発生する誘導電流が作る磁束密度を測定することで溶鋼流速を測定する技術が知られている(例えば特許文献4を参照)。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】特開2004−291060号公報
【特許文献2】特開平8−211083号公報
【特許文献3】特表2003−500218号公報
【特許文献4】特開2006−122941号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、鋳型の内壁側の溶鋼の表面には、鋼が凝固した凝固シェルが存在する。したがって、特許文献1の技術では、凝固シェルの厚みによって温度センサによる溶鋼の温度測定値に誤差が生じ、この結果溶鋼流速の測定値に誤差が生じるという問題があった。さらに、鋳型の下端側では、鋼の凝固が進んで表面の凝固シェルが鋳型の内壁面から離れた状態となるため、この凝固シェルよりも内側に存在する溶鋼の流速を伝熱的に求めようとすると、誤差が増大する。
【0008】
また、特許文献2の技術では、溶鋼の流速がゼロの場合の基準値に誤差が生じるという問題があった。すなわち、交流磁場によって生ずる渦電流は、溶鋼が静止している状態でも発生するため、温度によって変動する溶鋼の電気伝導度の影響を受けて基準値が変動するという問題があった。さらに、この基準値は、時間経過とともにドリフトするため、測定結果の誤差が増大する。また、特許文献3の技術においても、溶鋼の流速に関わらず溶鋼内に渦電流が発生するため基準値が変動し、同様の問題が生じる。
【0009】
また、特許文献4の技術では、静磁場の磁場勾配が存在しない場合、誘導電流の閉回路が形成されない場合があった。例えば、均一磁場中に均一な溶鋼の流れが存在する場合、均一の誘導起電力が発生するため、このような領域には閉回路としての電流路は形成されない。したがって、より広範囲な領域の電気的影響を受けることになり、流速を正確に測定できないという問題があった。また、磁場勾配が存在する領域においても、この磁場勾配の影響で生ずる誘導電流によって測定誤差が生じるという問題もあった。
【0010】
本発明は、上記に鑑みなされたものであって、連続鋳造用鋳型内で流動する溶鋼の流速を非接触で測定する際の測定誤差を低減させることができる溶鋼流速測定方法、溶鋼流速測定装置および連続鋳造の操業方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上述した課題を解決し、目的を達成するため、本発明にかかる溶鋼流速測定方法は、溶鋼が注入される連続鋳造用鋳型の鋳造空間に前記連続鋳造用鋳型の外部から静磁場を印加する印加工程と、前記静磁場の印加によって磁場勾配が発生する勾配領域の前記静磁場の印加磁場方向成分を検出する検出工程と、前記検出した前記印加磁場方向成分の変化をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算する演算工程と、を含むこと特徴とする。
【0012】
また、本発明にかかる溶鋼流速測定方法は、上記の発明において、前記演算工程は、事前に取得される溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする。
【0013】
また、本発明にかかる溶鋼流速測定方法は、上記の発明において、前記印加工程は、前記鋳造空間の外側近傍に設けられた磁石に通電電流を供給することで前記鋳造空間に前記静磁場を印加し、前記磁石に供給された通電電流を計測する計測工程を含み、前記演算工程は、事前に取得される前記通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から、前記計測工程で計測された通電電流に応じた前記溶鋼流速ゼロ時の印加磁場方向成分を取得し、該取得した前記溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする。
【0014】
また、本発明にかかる溶鋼流速測定装置は、連続鋳造用鋳型の鋳造空間に注入された溶鋼の流速を測定する溶鋼流速測定装置であって、前記連続鋳造用鋳型の外部から前記鋳造空間に静磁場を印加する磁石と、前記静磁場の印加によって磁場勾配が発生する勾配領域近傍に設置され、前記勾配領域における前記静磁場の印加磁場方向成分を検出する磁気センサと、前記磁気センサで検出した前記印加磁場方向成分の変化をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算する演算装置と、を備えることを特徴とする。
【0015】
また、本発明にかかる溶鋼流速測定装置は、上記の発明において、前記勾配領域は、前記磁石の磁極端部間の領域であることを特徴とする。
【0016】
また、本発明にかかる溶鋼流速測定装置は、上記の発明において、前記磁石は、前記磁極端部間の領域が前記鋳造空間内に前記溶鋼を注入するための吐出孔近傍となるように設置されており、前記静磁場の印加によって、前記鋳造空間から引き抜かれる鋳片の引き抜き方向に沿った磁場勾配を発生させ、前記演算装置は、前記吐出孔近傍における前記溶鋼の流速の引き抜き方向成分を演算することを特徴とする。
【0017】
また、本発明にかかる溶鋼流速測定装置は、上記の発明において、前記磁石は、前記磁極端部間の領域が前記鋳造空間内の前記溶鋼のメニスカス近傍となるように設置されており、前記静磁場の印加によって、前記鋳造空間から引き抜かれる鋳片の引き抜き方向に沿った磁場勾配を発生させ、前記演算装置は、前記メニスカス近傍における前記溶鋼の流速の引き抜き方向成分を演算することを特徴とする。
【0018】
また、本発明にかかる溶鋼流速測定装置は、上記の発明において、前記鋳造空間は、横断面が長方形状を有し、前記磁石は、前記磁極端部間の領域が前記鋳造空間内の前記溶鋼のメニスカス近傍となるように設置されており、前記静磁場の印加によって、前記鋳造空間の長辺方向に沿った磁場勾配を発生させ、前記演算装置は、前記メニスカス近傍における前記溶鋼の流速の長辺方向成分を演算することを特徴とする。
【0019】
また、本発明にかかる溶鋼流速測定装置は、上記の発明において、前記演算装置は、事前に取得される溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする。
【0020】
また、本発明にかかる溶鋼流速測定装置は、上記の発明において、前記磁石の通電電流を計測する電流計を備え、前記演算装置は、事前に取得される前記通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から、前記電流計で計測した前記磁石の通電電流に応じた前記溶鋼流速ゼロ時の前記印加磁場方向成分を取得し、該取得した前記溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする。
【0021】
また、本発明にかかる連続鋳造の操業方法は、静磁場および/または移動磁場を用いた電磁攪拌装置を備えた連続鋳造機において、溶鋼が注入される連続鋳造用鋳型の鋳造空間に前記連続鋳造用鋳型の外部から静磁場を印加する印加工程と、前記静磁場の印加によって磁場勾配が発生する勾配領域における前記静磁場の印加磁場方向成分を検出する検出工程と、前記検出した前記印加磁場方向成分の変化をもとに、前記勾配領域における前記溶鋼の流速の前記磁場勾配方向成分を演算する演算工程と、前記磁場勾配方向成分の値が所定の範囲内となるように前記電磁攪拌装置の静磁場および/または移動磁場の強度を調整して前記鋳造空間に印加し、前記溶鋼の流動を制御する制御工程と、を含むこと特徴とする。
【発明の効果】
【0022】
本発明によれば、溶鋼が注入される連続鋳造用鋳型の鋳造空間に連続鋳造用鋳型の外部から静磁場を印加し、静磁場の印加によって磁場勾配が発生する勾配領域の静磁場の印加磁場方向成分を検出することができる。そして、勾配領域における印加磁場方向成分の変化を検出し、この印加磁場方向成分の変化をもとに勾配領域における溶鋼の流速の磁場勾配方向成分を演算することができる。ここで、溶鋼は、非磁性体であり、測定結果が連続鋳造用鋳型の内壁に初期凝固によって薄く付着した凝固シェルの影響を受けることはなく、鋳型内壁と凝固シェルとの接触状態にも影響を受けない。また、鋳造空間に印加される静磁場は、鋳造空間内の溶鋼の導電率や温度の影響を受けない。これによれば、鋳造空間内が空の状態で検出した静磁場の印加磁場方向成分は、連続鋳造用鋳型の鋳造空間において溶鋼が静止した状態の静磁場(流速がゼロのときの静磁場)と一致するため、鋳造空間内が空の状態での静磁場の印加磁場方向成分を基準値として用いることができ、勾配領域近傍の印加磁場方向成分の変化を適正に検出することが可能である。したがって、連続鋳造用鋳型内で流動する溶鋼の流速を非接触で測定する際の測定誤差を低減させることができる。
【図面の簡単な説明】
【0023】
【図1】図1は、実施の形態の溶鋼流速の測定原理を説明する説明図である。
【図2】図2は、実施の形態の溶鋼流速の測定原理を説明する他の説明図である。
【図3】図3は、実施例1の連続鋳造機の概略構成を説明する平面図である。
【図4】図4は、実施例1の連続鋳造機の短辺側を示す一部断面図である。
【図5】図5は、実施例1の連続鋳造機の長辺側を示す一部断面図である。
【図6】図6は、実施例2の連続鋳造機の概略構成を説明する平面図である。
【図7】図7は、実施例2の連続鋳造機の長辺側を示す一部断面図である。
【図8】図8は、実施例3の連続鋳造機の概略構成を説明する平面図である。
【図9】図9は、実施例3の連続鋳造機の長辺側を示す一部断面図である。
【図10】図10は、実施例4の連続鋳造機の概略構成を説明する平面図である。
【図11】図11は、実施例4の連続鋳造機の長辺側を示す一部断面図である。
【図12】図12は、実施例5の連続鋳造機の概略構成を説明する平面図である。
【図13−1】図13−1は、ある測定点における通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図を示す図である。
【図13−2】図13−2は、他の測定点における通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図を示す図である。
【図13−3】図13−3は、他の測定点における通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図を示す図である。
【図13−4】図13−4は、他の測定点における通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図を示す図である。
【図13−5】図13−5は、他の測定点における通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図を示す図である。
【図13−6】図13−6は、他の測定点における通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図を示す図である。
【発明を実施するための形態】
【0024】
以下、図面を参照して、本発明にかかる溶鋼流速測定方法、溶鋼流速測定装置および連続鋳造の操業方法の好適な実施の形態を詳細に説明する。本実施の形態は、スラブ鋳造用の連続鋳造機において連続鋳造用鋳型内に注入された溶鋼の流速を測定するものである。なお、この実施の形態によって本発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付して示している。
【0025】
(実施の形態)
例えば、コイルに磁石を近づけると、コイルを貫く磁束が増加する。この場合は、レンツの法則によって磁束の増加を抑制するように誘導起電力が生じ、磁場の強さが減少する。反対に、コイルから磁石を遠ざけるとコイルを貫く磁束が減少するが、この場合は、レンツの法則によって磁束の減少を抑制するように誘導起電力が生じ、磁場の強さが増加する。本実施の形態は、このレンツの法則を利用し、連続鋳造用鋳型内に注入された溶鋼の流速を測定する。
【0026】
図1および図2は、溶鋼流速の測定原理を説明する説明図であり、図1では、N,Sの磁極をそれぞれ有する1対の磁石11,12の間を通過する流動領域13における溶鋼131の静止時を示し、図2では、流動領域13における溶鋼131の矢印で示す運動方向D1への流動時を示している。また、各図において、流動領域13の運動方向D1に沿った磁束密度の変化を示している。
【0027】
磁石11,12に挟まれた溶鋼131の流動領域13には、図1に示すように、磁石11,12の磁極端部間の領域である勾配領域としての端部間近傍の領域(端部間近傍領域)141,142において運動方向D1に沿った磁場勾配S11,S12が存在(発生)し、磁石11,12の図1中に向かって左側の端部間近傍領域141では磁束密度が増加する一方、図1中に向かって右側の端部間近傍領域142では磁束密度が減少する。
【0028】
ここで、溶鋼131が、このように端部間近傍領域141,142において磁場勾配S11,S12が存在する流動領域13を運動方向D1へと流動する場合を考える(図2)。溶鋼131は、非磁性体であって導電性の金属流体である。この溶鋼131が運動方向D1へと流動する場合、磁束密度が増加する磁石11,12の左端部間近傍領域141では、運動方向D1に沿って磁束が増加する。したがって、図2に示すように、左端部間近傍領域141の溶鋼131中には、磁束の増加を抑制するように(磁力線15を打ち消す方向に)渦電流161が発生する。この結果、左端部間近傍領域141では、図1に示す静止時に対し、図2中に矢印171で示すように磁束密度が減少するような磁場変化が発生する。
【0029】
一方、磁束密度が減少する磁石11,12の右端部間近傍領域142では、運動方向D1に沿って磁束が減少する。したがって、右端部間近傍領域142の溶鋼131中には、磁束の減少を抑制するように過電流162が発生する。この結果、右端部間近傍領域142では、図1に示す静止時に対し、図2中に矢印172で示すように磁束密度が増加するような磁場変化が発生する。
【0030】
このように、磁場強度が増加する方向に溶鋼131が流動するときには、移動する溶鋼131から見れば磁場強度は増加するので、この磁場増加を抑制するような渦電流(例えば渦電流161)が溶鋼中に発生する結果、元の磁場強度に対し減少するような磁場変化が発生する。一方、磁場勾配が減少する方向に溶鋼131が流動する時には、流動している溶鋼131からみると、磁場強度は減少するので、この磁場減少を抑制するように渦電流(例えば渦電流162)が溶鋼中に発生する結果、もとの磁場強度に対して増加の磁場変化が生ずる。
【0031】
以上説明した溶鋼131が運動方向D1へと流動することによって端部間近傍領域141,142に生じる磁場変化は、運動方向D1に沿った磁場勾配が大きく、溶鋼流速の磁場勾配方向の成分が大きいほど大きくなる。そして、これら端部間近傍領域141,142における磁場変化は、磁石11,12によって印加される静磁場の印加方向(印加磁場方向)の磁場強度の変化として検出でき、端部間近傍領域141,142における溶鋼131の磁場勾配方向(すなわち運動方向D1)の流速を表す。したがって、溶鋼131のある方向の流速は、流速を測定したい箇所(測定点)において測定したい方向に沿った磁場勾配が発生するように静磁場を印加し、測定点における印加磁場方向の磁場強度の変化を検出することで測定することができる。
【0032】
例えば、図2に示す端部間近傍領域141,142における溶鋼131の運動方向D1の流速を測定したい場合であれば、溶鋼131が存在しない状態での端部間近傍領域141,142の印加磁場方向の磁場強度を事前に検出し、溶鋼流速がゼロの場合の基準値として用いる。また、端部間近傍領域141,142の運動方向D1に沿った磁場勾配S11,S12についても、溶鋼131が存在しない状態で事前に取得しておく。そして、図2に示す溶鋼131の流動時において端部間近傍領域141,142の印加磁場方向の磁場強度を検出し、検出した値と基準値とから印加磁場方向の磁場強度の変化を検出し、検出した変化と、事前に取得しておいた端部間近傍領域141,142の運動方向D1に沿った磁場勾配S11,S12とから溶鋼131の運動方向D1の流速(磁場勾配方向成分)を測定することができる。
【0033】
以下、上記した溶鋼流速の測定原理を適用した実施例として、連続鋳造機の具体例を示して説明する。各実施例1〜5は、連続鋳造用鋳型内の溶鋼流動を制御(制動または駆動)するために外部から印加する静磁場を利用し、この連続鋳造用鋳型内の溶鋼流速を測定するものである。
【0034】
(実施例1)
図3は、実施例1の連続鋳造機2の概略構成を説明する平面図であり、図4は、連続鋳造機2の短辺側を示す一部断面図である。また、図5は、連続鋳造機2の長辺側を示す一部断面図である。図5では、鋳型21の長辺211,211の外側に設置されている電磁石231(232)および磁気センサ24を破線で示すとともに、鋳型21内に注入された溶鋼26の流れを模式的に示している。連続鋳造機2は、図3〜図5に示すように、連続鋳造用鋳型である銅製の鋳型21と、鋳型21内に溶鋼26を注入する浸漬ノズル22とを備える。
【0035】
鋳型21は、上下が開放された長方形環状を有し、その外周側に設けられる不図示の冷却ジャケットによって水冷されている。浸漬ノズル22は、図5に示すように、鋳型21の長辺211,211および短辺212,212によって囲まれた内部の横断面が長方形状を有する鋳造空間に溶鋼26を注入する。この浸漬ノズル22は、例えば先端近傍に2つの吐出孔221,222を有する2孔ノズルであり、吐出孔221,222から連続的に溶鋼26が吐出されるようになっている。なお、浸漬ノズル22は、2孔ノズルに限らず、単孔ノズルを用いてもよいし、3孔ノズル等の他の多孔ノズルを用いてもよい。
【0036】
ここで、図示した浸漬ノズル22は2孔ノズルであり、吐出孔221,222が鋳型21の短辺212,212に向かっているため、図5中に矢印で示すように、浸漬ノズル22から鋳型21内(すなわち鋳造空間内)に注入された溶鋼26は、先ず短辺212,212側に流れ、短辺212,212の近傍で上昇流または下降流となる。そして、上昇流は、溶鋼26の表面(上面)付近で短辺212,212側から内側(浸漬ノズル22側)に向かう流れとなる。一方、下降流は、鋳片内側部の未凝固部分に進入する流れとなる。なお、鋳型21内の溶鋼26の表面(上面)には、鋳型21の内壁と鋳型21内の溶鋼26との潤滑、鋳型21内の溶鋼26の表面の保温や酸化防止等の目的で、パウダーPを配置している。
【0037】
この連続鋳造機2において、浸漬ノズル22により鋳型21内に注入された溶鋼26は、冷却されて側面に凝固シェルを形成し、側面が凝固した鋳片として引き抜き方向である鉛直方向に沿って鋳型21の下方に(矢印D2の向きに)引き抜かれる。ここで、鋳片の幅は鋳型21の長辺211,211の長さに相当し、鋳片の厚みは鋳型21の短辺212,212の長さに相当する。この鋳片は、最終的に適当な長さに切断され、目的のスラブが製造される。
【0038】
また、連続鋳造機2は、N,Sの磁極をそれぞれ有する1対の電磁石231,232と、電磁石231,232の磁力(磁束密度)を検出する磁気センサ24とを備える。
【0039】
電磁石231,232は、鋳型21内の溶鋼流動を制御するための静磁場を外部から印加する。この電磁石231,232は、長方形状の外形形状を有し、鋳型21の長辺211,211の外側にこれら長辺211,211間を挟むように設置されている。より詳細には、電磁石231,232は、長手方向の長さが長辺211,211の長さと略同等の長さに形成されており、図3に示すように、長手方向が鋳型21の長辺方向に沿うように設置される。また、電磁石231,232は、短手方向の長さ(高さ)が鋳型21の高さよりも短い長さに形成され、図4に示すように、上端面が浸漬ノズル22の下端近傍(すなわち吐出孔221,222の近傍)の高さに位置し、下端面が鋳型21の下端面と略一致するように設置される。このように鋳型21の長辺211,211の外側に設置された電磁石231,232は、鋳型21の短辺方向(すなわち鋳片の厚さ方向)を印加磁場方向とする静磁場を鋳型21の長辺方向の全域に印加し、鋳型21内の溶鋼流動を制御する。
【0040】
ここで、図5では、鋳型21内において、引き抜き方向と平行な図5中に示す二点鎖線L1上に存在する磁場勾配S21,S22を併せて示している。図5に示すように、電磁石231,232の上端および下端に近傍する鋳型21の内側の領域には、電磁石231,232によって印加される静磁場により、引き抜き方向に沿った磁場勾配S21,S22が存在する。具体的には、鋳型21内には、電磁石231,232の上端近傍で引き抜き方向に沿って下向き(すなわち鋳片が引き抜かれる矢印D2の向き)に増加する磁場勾配S21が存在する一方、電磁石231,232の下端近傍では、引き抜き方向に沿って下向き(矢印D2の向き)に減少する磁場勾配S22が存在する。実施例1では、この引き抜き方向に沿った磁場勾配S21,S22に着目する。すなわち、電磁石231,232の上端近傍および下端近傍における印加磁場方向の磁場強度の変化を検出することで、電磁石231,232の上端近傍(浸漬ノズル22の吐出孔221,222の近傍)および下端近傍における溶鋼26の引き抜き方向の流速を非接触で測定する。
【0041】
磁気センサ24は、電磁石231,232の上端近傍および下端近傍における印加磁場方向の磁場強度を検出するためのものであり、鋳型21の長辺211,211の外面近傍であって、電磁石231,232の上端近傍および下端近傍に、鋳型21の長辺方向に沿うようにそれぞれ複数個ずつ(図示の例では6個ずつ)配列されて設置される。例えば、各磁気センサ24は、鋳型21を冷却するために鋳型21の外周に設けられる前述の図示しない水冷ジャケット内に収められる。
【0042】
これら磁気センサ24は、例えば不図示の駆動回路によって駆動されるホール素子で実現され、設置位置を測定点としてその測定点における印加磁場方向の磁場強度(印加磁場方向成分)を検出する。すなわち、実施例1では、鋳型21の長辺211,211の外面近傍であって、電磁石231,232の上端近傍および下端近傍のそれぞれ6箇所(計24箇所)を測定点として印加磁場方向成分を検出する。各磁気センサ24は、電気室等に設置される演算装置25と接続されており、随時計測値を演算装置25に出力する。
【0043】
演算装置25は、CPU、フラッシュメモリ等のROMやRAMといった各種ICメモリ、ハードディスク、各種記憶媒体等の記憶装置、通信装置、表示装置や印刷装置等の出力装置、入力装置等を備えた公知のハードウェア構成で実現でき、例えばワークステーションやパソコン等の汎用コンピュータを用いることができる。この演算装置25は、各磁気センサ24から随時入力される計測値をもとに鋳型21内の溶鋼流速を測定(演算)する。
【0044】
具体的には、演算装置25は、事前に各測定点における印加磁場方向成分を基準印加磁場方向成分として取得するとともに、この基準印加磁場方向成分をもとに各測定点近傍における引き抜き方向に沿った磁場勾配を算出し、これらを基準値として記憶装置に記憶しておく。基準印加磁場方向成分は、連続鋳造の操業を開始して鋳型21内に溶鋼26を注入する前に電磁石231,232によって鋳型21の短辺方向に静磁場を印加し、磁気センサ24を駆動して各測定点における印加磁場方向成分を検出することで取得できる。このとき、通常操業時の強度として予め設定される強度の静磁場が印加されるように電磁石231,232を駆動する。
【0045】
そして、その後操業を開始し、電磁石231,232によって静磁場を印加した状態で(印加工程)、鋳型21内に溶鋼26の注入を開始する。操業を開始した後は、磁気センサ24が各測定点における印加磁場方向成分を検出し、検出した印加磁場方向成分である計測値を演算装置25に出力する(検出工程)。演算装置25は、このように各磁気センサ24から随時入力される計測値と基準印加磁場方向成分との差を求めて印加磁場方向成分の変化として検出する。そして、演算装置25は、検出した印加磁場方向成分の変化と、事前に算出した引き抜き方向に沿った磁場勾配とをもとに、各測定点における溶鋼26の引き抜き方向の流速(引き抜き方向成分)を演算する(演算工程)。
【0046】
このようにして測定した各測定点における溶鋼26の引き抜き方向の流速は、溶鋼流動の制御に用いられる。すなわち、連続鋳造機2は、演算工程で演算される流速の値が予め設定される所定の範囲内となるように電磁石231,232によって印加する静磁場の強度を調整し、鋳型21内の溶鋼26の流動を制御する(制御工程)。なお、従来から、鋳型内に静磁場を印加する電磁石(実施例2における電磁石231b,232b)とは別に、鋳型内に移動磁場を印加する電磁石を設け、これら静磁場を印加する電磁石および移動磁場を印加する電磁石を電磁攪拌装置として用いて鋳型内の溶鋼の流動を制御するようにした連続鋳造機が知られている。連続鋳造機2をこのような移動磁場を印加する電磁石を備えた構成とする場合には、演算工程で演算される流速の値をもとに電磁石231,232によって印加する静磁場の強度および/または前述の電磁石によって印加する移動磁場の強度を調整し、鋳型21内の溶鋼26の流動を制御するようにしてもよい。
【0047】
以上説明したように、実施例1では、浸漬ノズル22の下端近傍および鋳型21の下方において鋳片の引き抜き方向に沿って磁場勾配が発生するように電磁石231,232を鋳型21の長辺211,211の外側に設置するとともに、浸漬ノズル22の下端近傍および鋳型21の下方に磁気センサ24を設置することとした。したがって、磁気センサ24の計測値をもとに印加磁場方向の磁場強度の変化を検出することで、磁気センサ24を設置した各測定点での溶鋼26の引き抜き方向の流速を測定することができる。このとき、測定結果が鋳型21の内壁に初期凝固によって薄く付着した凝固シェルの影響を受けることはなく、鋳型21の内壁と凝固シェルとの接触状態にも影響を受けない。また、上記したように、電磁石231,232によって印加される静磁場は、溶鋼26の導電率や温度の影響を受けないため、鋳型21内に溶鋼26が注入される前、鋳型21内が空の状態で検出した静磁場の印加磁場方向成分は、鋳型21内において溶鋼26が静止した状態の静磁場と一致する。したがって、実施例1のように鋳造空間内が空の状態での静磁場の印加磁場方向成分を基準値として用いることで、溶鋼流速を非接触で測定するためのゼロ点校正を正確に行え、ドリフトによる基準値の変動も生じない。これによれば、各測定点での印加磁場方向成分の変化を適正に検出することが可能である。以上のように、実施例1によれば、鋳型21内で流動する溶鋼26の流速を非接触で測定する際の測定誤差を低減させることができる。また、鋳型21内の溶鋼流動を制御するための電磁石231,232によって印加される静磁場を検出することで溶鋼流速を測定できるので、溶鋼流速を測定するための新たな構成を装置に追加する必要がない。
【0048】
この実施例1の連続鋳造機2において、浸漬ノズル22から鋳型21内に溶鋼26を注入し、鋳型21内の溶鋼流速を測定した。具体的には、各磁気センサ24の計測値と基準印加磁場方向成分との差を検出し、測定点における印加磁場方向成分の変化(印加磁場方向の磁場強度の変化)として検出した。その後、事前に基準値として取得しておいた測定点毎の引き抜き方向に沿った磁場勾配を用い、各測定点における溶鋼26の引き抜き方向の流速を測定した。例えば、予め磁場勾配と印加磁場方向成分の変化量と流速との対応関係を定めておき、操業開始前に基準値として算出した磁場勾配と、前述のように算出した各測定点における印加磁場方向成分の変化とをもとに、この変化に相当する流速を得ることで溶鋼26の引き抜き方向の流速を測定した。
【0049】
この結果、電磁石231,232の上端側の各磁気センサ24のうち、鋳型21の長辺方向の両端に設置した磁気センサ24、例えば図5中の磁気センサ24−1,24−2の計測値(印加磁場方向成分)は、それぞれ基準印加磁場方向成分の値よりも約7%低下した。一方、電磁石231,232の下端側の各磁気センサ24のうち、鋳型21の長辺方向の両端に設置した磁気センサ24の計測値は、それぞれ基準印加磁場方向成分の値よりも約6.5%増加した。その後、浸漬ノズル22からの溶鋼26の注入量を約30%減らして溶鋼流速を測定したところ、注入量を減らす前と比較して約45%低下した。
【0050】
また、別の操業において溶鋼流速を測定し、鋳型21の長辺方向の両端に設置した磁気センサ24、例えば図5中の磁気センサ24−1,24−2の計測値を比較した。この結果、鋳型21の長辺方向の一端側に設置した磁気センサ24−1の計測値から測定した溶鋼流速に対し、鋳型21の長辺方向の他端側に設置した磁気センサ24−2の計測値から測定した溶鋼流速が約1.7倍と大きくなり、いわゆる片流れの現象を示した。後に、浸漬ノズル22の吐出孔221,222のうち、長辺方向の一端側の吐出孔221においてアルミナが付着して発生した詰まりが確認された。また、鋳造されたスラブには、片流れによる欠陥が観測された。このように、本実施例1によれば、浸漬ノズル22の吐出孔221,222の詰まり等によって生じる片流れの現象を監視することができる。したがって、この溶鋼流速の測定結果を用いて溶鋼流動を制御することで、鋳片の品質異常を防止することが可能となる。
【0051】
また、浸漬ノズル22の吐出孔221,222の下方における溶鋼26の流動は、鋳片下方への介在物の持ち込みに影響するため、重要な監視項目である。実施例1によれば、吐出孔221,222の下方の磁気センサ、例えば図5中の磁気センサ24−3の計測値をもとに吐出口222下方における溶鋼26の引き抜き方向の流速を測定することができる。そして、例えば測定した溶鋼流速が予め設定される規定値より速い場合に、吐出孔221,222下方の溶鋼26の流動を抑制するように溶鋼流動を制御するといったことが可能となり、鋳片の品質向上が図れる。
【0052】
(実施例2)
図6は、実施例2の連続鋳造機2bの概略構成を説明する平面図である。また、図7は、連続鋳造機2bの長辺側を示す一部断面図である。図7では、鋳型21の長辺211,211の外側に設置されている電磁石231b,232bおよび磁気センサ24bを破線で示すとともに、鋳型21内に注入された溶鋼26の流れを模式的に示している。なお、図6および図7において、実施例1で説明した連続鋳造機2と同様の構成については同一の符号を付して示している。
【0053】
図6および図7に示すように、実施例2の連続鋳造機2bは、連続鋳造用鋳型である鋳型21と、鋳型21内に溶鋼26を注入する浸漬ノズル22と、鋳型21内の溶鋼流動を制御するための静磁場を外部から印加する電磁石231b,232bと、設置位置を測定点として印加磁場方向の磁場強度を検出する複数の磁気センサ24bとを備える。
【0054】
電磁石231b,232bは、長方形状の外形形状を有し、鋳型21の長辺211,211の外側にこれら長辺211,211間を挟むように設置されている。実施例2の電磁石231b,232bは、長手方向の長さが長辺211,211よりも短い長さに形成されており、図7に示すように、鋳型21内に注入された溶鋼26の表面すなわちメニスカス近傍の高さ位置において、長手方向が鋳型21の長辺方向に沿うように設置される。このように鋳型21の長辺211,211の外側に設置された電磁石231b,232bは、鋳型21の短辺方向を印加磁場方向とする静磁場を鋳型21の長辺方向の略全域に印加し、鋳型21内のメニスカス近傍の溶鋼流動、詳細には、短辺212,212の近傍で上昇流となり、メニスカス近傍で短辺212,212側から内側に向かう溶鋼流動を制御する。メニスカス近傍における溶鋼26の流動を適正に制御することができれば、溶鋼26の表面に配置されるパウダーPを溶解する熱供給を高精度に行うことができ、有用である。
【0055】
ここで、図7では、鋳型21内において、鋳型21の長辺方向(以下、「鋳型長辺方向」と呼ぶ。)と平行な図7中に示す二点鎖線L2上に存在する磁場勾配S31,S32を併せて示している。実施例2では、電磁石231b,232bの長手方向の長さが長辺211,211よりも短いため、電磁石231b,232bの両端に近傍する鋳型21内の領域には、電磁石231b,232bによって印加される静磁場により、鋳型長辺方向に沿った磁場勾配S31,S32が存在する。具体的には、鋳型21内には、電磁石231b,232bの図7中に向かって左側の一端近傍において、鋳型長辺方向に沿って右向き(矢印D3の向き)に増加する磁場勾配S31が存在する。一方、電磁石231b,232bの図7中に向かって右側の他端近傍では、鋳型長辺方向に沿って右向き(矢印D3の向き)に減少する磁場勾配S32が存在する。そこで、実施例2では、この鋳型長辺方向に沿った磁場勾配S31,S32に着目する。すなわち、電磁石231b,232bの両端近傍における印加磁場方向の磁場強度の変化を検出することで、この電磁石231b,232bの両端近傍における溶鋼26の鋳型長辺方向の流速を非接触で測定する。
【0056】
磁気センサ24bは、鋳型21の長辺211,211の外面近傍であって、電磁石231b,232bの両端部近傍の計4箇所に設置されている。各磁気センサ24bは、電気室等に設置される演算装置25bと接続されており、随時計測値を演算装置25bに出力する。この演算装置25bは、各磁気センサ24bから随時入力される計測値をもとに鋳型21内の溶鋼流速を測定(演算)する。
【0057】
具体的には、演算装置25bは、鋳型21内に溶鋼26を注入する前の各測定点における印加磁場方向成分を基準印加磁場方向成分として取得するとともに、この基準印加磁場方向成分をもとに、各測定点近傍における鋳型長辺方向に沿った磁場勾配を算出し、これらを基準値として記憶装置に記憶しておく。そして、その後操業を開始し、鋳型21内に溶鋼26の注入を開始した後は、演算装置25bは、前述の基準値と各磁気センサ24bから随時入力される計測値とをもとに印加磁場方向成分の変化を検出する。そして、検出した印加磁場方向成分の変化と、事前に算出した鋳型長辺方向に沿った磁場勾配とをもとに、各測定点における溶鋼26の鋳型長辺方向の流速(長辺方向成分)を演算する。その後、連続鋳造機2bは、以上のようにして測定した各測定点における溶鋼26の鋳型長辺方向の流速を、溶鋼流動の制御に用いる。
【0058】
以上説明したように、実施例2では、鋳型21内のメニスカス近傍において鋳型長編方向に沿った磁場勾配が発生するように電磁石231b,232bを鋳型21の長辺211,211の外側に設置するとともに、メニスカス近傍に磁気センサ24bを設置することとした。したがって、磁気センサ24bの計測値をもとに印加磁場方向の磁場強度の変化を検出することで、磁気センサ24bを設置した各測定点での溶鋼26の鋳型長編方向の流速を測定することができる。より詳細には、メニスカス近傍で短辺212,212側から内側に向かう溶鋼26の流速を測定することができる。
【0059】
鋳型21内の溶鋼26の初期凝固部付近における鋳型長辺方向に沿った流動は、鋳片側面における介在物捕捉に影響すると考えられている。また、鋳型内に移動磁場を印加する電磁石を備えた連続鋳造機に実施例2を適用すれば、各磁気センサ24bの計測値をもとにメニスカス近傍における溶鋼26の鋳型長辺方向の流速を測定することができ、この測定結果をもとに溶鋼26の流動を制御できるので、鋳片の品質向上がより一層図れる。
【0060】
(実施例3)
図8は、実施例3の連続鋳造機2cの概略構成を説明する平面図である。また、図9は、連続鋳造機2cの長辺側を示す一部断面図である。図9では、鋳型21の長辺211,211の外側に設置されている電磁石231c,232cおよび磁気センサ24cを破線で示すとともに、鋳型21内に注入された溶鋼26の流れを模式的に示している。なお、図8および図9において、実施例1で説明した連続鋳造機2と同様の構成については同一の符号を付して示している。
【0061】
図8に示すように、実施例3の連続鋳造機2cは、連続鋳造用鋳型である鋳型21と、鋳型21内に溶鋼26を注入する浸漬ノズル22と、鋳型21内の溶鋼流動を制御するための静磁場を外部から印加する2組の電磁石231c,232cと、設置位置を測定点として印加磁場方向の磁場強度を検出する複数の磁気センサ24cとを備える。
【0062】
2組の電磁石231c,232cは、長方形状の外形形状を有し、鋳型21の長辺211,211の外側においてこれら長辺211,211間を挟むように互いに対向配置されて設置されている。実施例3のこれら2組の電磁石231c,232cは、それぞれ長手方向の長さが長辺211,211の半分以下の長さに形成されており、図9に示すように、鋳型21内に注入された溶鋼26の表面すなわちメニスカス近傍の高さ位置において、長手方向が鋳型21の長辺方向に沿うように設置される。より詳細には、各長辺211,211の外側で隣り合う電磁石231c,232cは、隣接する端部間に所定の間隔を配して左右に並べて設置される。このように鋳型21の長辺211,211の外側に設置された2組の電磁石231c,232cは、鋳型21の短辺方向を印加磁場方向とする静磁場を鋳型21の長辺方向の中央部を除く略全域に印加し、鋳型21内のメニスカス近傍の溶鋼流動、詳細には、短辺212,212の近傍で上昇流となり、メニスカス近傍で短辺212,212側から内側に向かう溶鋼流動を制御する。
【0063】
ここで、図9では、鋳型21内において、鋳型長辺方向と平行な図9中に示す二点鎖線L3上に存在する磁場勾配S41,S42を併せて示している。上記したように、実施例3では、1組の電磁石231c,232cが鋳型21の長辺方向に間隔を隔てて設置されており、長辺方向に沿って隣り合う電磁石231c,232cの隣接する端部に近傍する鋳型21内の領域には、電磁石231c,232cによって印加される静磁場により、鋳型長辺方向に沿った磁場勾配S41,S42が存在する。具体的には、鋳型21内には、長辺方向に沿って隣り合う電磁石231c,232cの隣接する端部間の領域において、それぞれこの隣接する端部間の間隙の中央に向けて減少する磁場勾配S41,S42が存在する。このとき、図8の例では、鋳型21の長辺方向に隣接する電磁石231c,232cの磁極を逆にしているため、この磁場勾配S41,S42を大きくすることができる。なお、鋳型21の長辺方向に隣接する電磁石の磁極は必ずしも逆である必要はなく、隣接する電磁石の磁極が同じになるように2組の電磁石231c,232cを設置しても構わない。
【0064】
実施例3では、この鋳型長辺方向に沿った磁場勾配S41,S42に着目する。すなわち、長辺方向に沿って隣り合う電磁石231c,232cの隣接する端部近傍における印加磁場方向の磁場強度の変化を検出することで、この長辺方向に沿って隣り合う電磁石231c,232cの隣接する端部近傍における溶鋼26の鋳型長辺方向の流速を非接触で測定する。
【0065】
磁気センサ24cは、鋳型21の長辺211,211の外面近傍であって、長辺方向に沿って隣り合う電磁石231c,232cの隣接する端部近傍の計4箇所に設置されている。各磁気センサ24cは、電気室等に設置される演算装置25cと接続されており、随時計測値を演算装置25cに出力する。この演算装置25cは、各磁気センサ24cから随時入力される計測値をもとに鋳型21内の溶鋼流速を測定(演算)する。
【0066】
具体的には、演算装置25cは、実施例2と同様の要領で鋳型21内に溶鋼26を注入する前の各測定点における印加磁場方向成分を基準印加磁場方向成分として取得するとともに、この基準印加磁場方向成分をもとに、各測定点近傍における鋳型長辺方向に沿った磁場勾配を算出し、これらを基準値として記憶装置に記憶しておく。そして、その後操業を開始し、鋳型21内に溶鋼26の注入を開始した後は、演算装置25cは、前述の基準値と各磁気センサ24cから随時入力される計測値とをもとに印加磁場方向成分の変化を検出する。そして、検出した印加磁場方向成分の変化と、事前に算出した鋳型長辺方向に沿った磁場勾配とをもとに、各測定点における溶鋼26の鋳型長辺方向の流速(長辺方向成分)を演算する。その後、連続鋳造機2cは、実施例2と同様に、以上のようにして測定した各測定点における溶鋼26の鋳型長辺方向の流速を、溶鋼流動の制御に用いる。
【0067】
以上説明したように、実施例3によれば、実施例2と同様の効果を奏することができ、メニスカス近傍で短辺212,212側から内側に向かう溶鋼26の流速を測定することができる。
【0068】
(実施例4)
図10は、実施例4の連続鋳造機2dの概略構成を説明する平面図である。また、図11は、連続鋳造機2dの長辺側を示す一部断面図である。図11では、鋳型21の長辺211,211の外側に設置されている電磁石231d,232dおよび磁気センサ24dを破線で示すとともに、鋳型21内に注入された溶鋼26の流れを模式的に示している。なお、図10および図11において、実施例1で説明した連続鋳造機2と同様の構成については同一の符号を付して示している。
【0069】
図10に示すように、実施例4の連続鋳造機2dは、連続鋳造用鋳型である鋳型21と、鋳型21内に溶鋼26を注入する浸漬ノズル22と、鋳型21内の溶鋼流動を制御するための静磁場を外部から印加する電磁石231d,232dと、設置位置を測定点として印加磁場方向の磁場強度を検出する複数の磁気センサ24dとを備える。
【0070】
電磁石231d,232dは、実施例1と同様に長方形状の外形形状を有し、鋳型21の長辺211,211の外側にこれら長辺211,211間を挟むように設置されている。実施例4の電磁石231d,232dは、図11に示すように、その上端面が鋳型21内の溶鋼26のメニスカス近傍となる高さ位置において、長手方向が鋳型21の長辺方向に沿うように設置される。このように鋳型21の長辺211,211の外側に設置された電磁石231d,232dは、鋳型21の短辺方向を印加磁場方向とする静磁場を鋳型21の長辺方向の略全域に印加し、鋳型21内の短辺212,212近傍の溶鋼流動、詳細には、浸漬ノズル22の吐出孔221,222から吐出されて短辺212,212側に流れ、短辺212,212の近傍で上昇流となる溶鋼流動を制御する。
【0071】
ここで、図11では、鋳型21内において、引き抜き方向と平行な図11中に示す二点鎖線L4上に存在する磁場勾配S51,S52を併せて示している。この鋳型21内には、実施例1と同様に、電磁石231d,232dによって印加された静磁場により、引き抜き方向に沿った磁場勾配S51,S52が存在するが、実施例4では、電磁石231d,232dをその上端がメニスカス近傍となる高さに設置しており、電磁石231d,232dの上端が位置するメニスカス近傍で引き抜き方向に沿って下向き(すなわち鋳片が引き抜かれる矢印D2の向き)に増加する磁場勾配S51が存在する。一方、電磁石231d,232dの下端が位置するメニスカスよりも下方では、引き抜き方向に沿って下向きに(矢印D2の向きに)減少する磁場勾配S52が存在する。実施例4では、これら引き抜き方向に沿った磁場勾配S51,S52のうち、磁場勾配S52に着目する。そして、電磁石231d,232dの下端側であって、電磁石231d,232dの両端近傍、すなわち鋳型21の短辺212,212の近傍における印加磁場方向の磁場強度の変化を検出することで、この電磁石231d,232dの下端側の鋳型21の短辺212,212の近傍における溶鋼26の引き抜き方向の流速を非接触で測定する。これにより、メニスカスよりも下方であって、鋳型21の短辺212,212の近傍における上昇流の流速が求まる。
【0072】
磁気センサ24dは、鋳型21の長辺211,211の外面近傍において、電磁石231d,232dの下端側であって、両端部近傍の計4箇所に設置されている。各磁気センサ24dは、電気室等に設置される演算装置25dと接続されており、随時計測値を演算装置25dに出力する。この演算装置25dは、各磁気センサ24dから随時入力される計測値をもとに鋳型21内の溶鋼流速を測定(演算)する。
【0073】
具体的には、演算装置25dは、実施例1と同様の要領で鋳型21内に溶鋼26を注入する前の各測定点における印加磁場方向成分を基準印加磁場方向成分として取得するとともに、この基準印加磁場方向成分をもとに、各測定点近傍における引き抜き方向に沿った磁場勾配を算出し、これらを基準値として記憶装置に記憶しておく。そして、その後操業を開始し、鋳型21内に溶鋼26の注入を開始した後は、演算装置25dは、前述の基準値と各磁気センサ24dから随時入力される計測値とをもとに印加磁場方向成分の変化を検出する。そして、検出した印加磁場方向成分の変化と、事前に算出した引き抜き方向に沿った磁場勾配とをもとに、各測定点における溶鋼26の引き抜き方向の流速を演算する。その後、連続鋳造機2dは、実施例1と同様に、以上のようにして測定した各測定点における溶鋼26の引き抜き方向の流速を、溶鋼流動の制御に用いる。
【0074】
以上説明したように、実施例4によれば、メニスカスよりも下方であって、鋳型21の短辺212,212の近傍における上昇流の流速を測定することができる。この上昇流が大きいと、溶鋼26の表面が波立って表面に配置されているパウダーPの一部が溶鋼26内に巻き込まれる事態が生じ得る。このため、スラブに欠陥が生じる可能性が高くなる。また、前述の上昇流が小さすぎると、溶鋼26の表面の流動が遅すぎてしまいパウダーPへの熱供給が少なくなり、パウダーPの不足による鋳片の引き抜き不良を引き起こす場合がある。この場合も、この引き抜き不良に起因してスラブに欠陥が生じる可能性が高くなる。実施例4によれば、各磁気センサ24dの計測値をもとに鋳型21の短辺212,212の近傍における溶鋼26の上昇流の流速を測定することができるので、測定結果をもとに電磁ブレーキや電磁攪拌装置の制御、あるいはノズル吐出角度の設定を行うことができ、鋳片の品質向上が図れ、高品質なスラブを製造することが可能となる。
【0075】
(実施例5)
実施例1〜4の連続鋳造機が備える電磁石は、例えば、鋳型内の溶鋼流動を制御するための静磁場(直流磁場)を印加する電磁ブレーキとしてのものである。すなわち、実施例1〜4では、この電磁ブレーキによる静磁場を利用して溶鋼流速を測定している。ここで、電磁ブレーキは、操業条件に応じてその静磁場の印加磁場強度が最適となるように制御される。操業条件は、例えば、定常操業時と、操業の開始時や終了時に相当する非定常操業時とで異なる。また、操業条件は、鋳造速度や鋳造温度、鋼種等の鋳造条件を変更する場合にも変更される。
【0076】
ところで、実施例1〜4では、電磁石の通電電流は一定とし、この通電電流のもとで取得しておいた基準値を用いている。このため、操業条件が標準的で定常的(一定)な操業時は十分効果が得られるが、実際の操業時には操業条件が状況に応じて随時変更されるため、実際の一連の連続鋳造操業に対して本発明を適用する場合には、操業条件に応じた電磁ブレーキの制御に伴う印加磁場強度の変動、すなわち、電磁石231,232の通電電流の変動を考慮することが望ましい。
【0077】
一方で、電磁ブレーキとしての電磁石には、通常定電流制御された通電電流が供給されるが、厳密にはこの定電流制御には限界があり、実際の電磁石の通電電流は微妙に変動する。この通電電流の変動も、印加磁場強度の変動の要因となる。そこで、実施例5では、電磁石231,232の通電電流の変動を考慮して溶鋼の流速測定を行う。
【0078】
図12は、実施例5の連続鋳造機2eの概略構成を説明する平面図である。なお、図12において、実施例1で説明した連続鋳造機2と同様の構成については同一の符号を付して示している。
【0079】
図12に示すように、実施例5の連続鋳造機2eは、実施例1の連続鋳造機2と略同様の構成を有し、連続鋳造用鋳型である鋳型21と、鋳型21内に溶鋼26を注入する浸漬ノズル22と、鋳型21内の溶鋼流動を制御するための静磁場を外部から印加する電磁石231,232と、設置位置を測定点として印加磁場方向の磁場強度を検出する複数の磁気センサ24とを備える。
【0080】
ここで、電磁石231,232は、実施例1(図3)では不図示としたが、実際には、配線233によって接続され、電源装置234が直列接続されている。電源装置234は、例えば定電流直流電源であり、電磁石231,232に通電電流を供給する。なお、定電流回路を設けることで電磁石231,232に流れる通電電流を定電流制御する構成としてもよい。実施例5の連続鋳造機2eは、この電源装置234による電磁石231,232への通電電流を測定する電流計235を備える。電流計235は、電気室等に設置される演算装置25eと接続されており、計測値(通電電流の電流値)を演算装置25eに出力する。
【0081】
また、磁気センサ24は、図5を参照して実施例1で説明したように、電磁石231,232の上端近傍および下端近傍の各設置位置における印加磁場方向の磁場強度を検出するためのものであり、鋳型21の長辺211,211の外面近傍であって、電磁石231,232の上端近傍および下端近傍に、鋳型21の長辺方向に沿うようにそれぞれ例えば6個ずつ配列されて設置される。なお、各磁気センサ24は、ホール素子を非磁性の保護管内に収めた構成とすることで、耐久性の増強が図れる。また、各磁気センサ24の設置場所における環境温度の変化が大きい場合には、ホール素子の近傍に熱電対等の温度センサを設けて環境温度を計測するようにしてもよい。そして、計測した環境温度をもとに、ホール素子の温度係数を用いて感度補正を行うようにしてもよく、精度の向上が図れる。
【0082】
実施例5では、演算装置25eは、各磁気センサ24から随時入力される計測値および電流計235から随時入力される計測値をもとに、鋳型21内の溶鋼流速を測定(演算)する。
【0083】
ここで、操業中において電磁石231,232の通電電流が変動した場合を考える。この場合、基準値として事前に取得される印加磁場方向の磁場強度(基準印加磁場方向成分)が変動する場合がある。したがって、電磁石231,232の通電電流の変動に応じてこの基準印加磁場方向成分を補正することが望ましい。しかしながら、電磁石231,232の通電電流の変動の割合と、電磁石231,232の通電電流の変動に伴う基準印加磁場方向成分の変動の割合とは一致しないことが多い。これは、電磁石231,232に磁性体の磁極が使用されており、この磁極の磁化状態が飽和しているためであり、磁極から発生する磁場強度の変動は、通電電流の変動と比較して小さい。また、磁極の飽和特性は、電磁石の磁極の形状や材質、組み立て精度等に起因するバラツキや、飽和の程度によって変化するため、磁極の部位によって飽和特性が異なる場合があり、基準印加磁場方向成分を補正するためには、この飽和特性についても考慮する必要がある。そこで、実施例5では、事前に鋳型21内が空の状態で電磁石231,232の通電電流と、各磁気センサ24の設置位置である各測定点における静磁場の印加磁場方向の磁場強度(溶鋼流速ゼロ時の印加磁場方向成分)との関係を取得しておく。そして、通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から、実際の電磁石231,232の通電電流に応じた溶鋼流速ゼロ時の印加磁場方向成分を取得し、取得した溶鋼流速ゼロ時の印加磁場方向成分を基準印加磁場方向成分として用いることで、溶鋼流速を測定する。
【0084】
具体的には、演算装置25eは、連続鋳造の操業を開始して鋳型21内に溶鋼26を注入する前に電磁石231,232によって鋳型21の短辺方向に静磁場を印加し、磁気センサ24を駆動して各測定点における印加磁場方向成分を検出するが、このとき、通常操業時の強度範囲として予め設定される強度範囲の静磁場が印加されるように電磁石231,232を駆動する。具体的には、鋳型21内が空の状態で、操業時における通電電流として想定される範囲内において電磁石231,232の通電電流を段階的に変化させながら、磁気センサ24によって複数の通電電流値での各測定点における印加磁場方向成分を検出する。そして、得られた印加磁場方向成分を、該当する通電電流値と対応付けて通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係として記憶装置に記憶しておく。さらに、各通電電流値での溶鋼流速ゼロ時の印加磁場方向成分をもとに、各測定点近傍における引き抜き方向に沿った磁場勾配を算出し、通電電流に応じた磁場勾配の基準値として記憶装置に記憶しておく。
【0085】
図13−1〜図13−6は、以上のようにして事前に取得される通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図であり、横軸を通電電流、縦軸を磁束密度として、鋳型21内が空の状態で電磁石231,232の通電電流を変化させながら検出した溶鋼流速ゼロ時の印加磁場方向の磁束密度の変化曲線を示している。具体的には、図13−1は、図5に示す磁気センサ24−11の設置位置である測定点について取得した通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図、図13−2は、図5に示す磁気センサ24−12の設置位置である測定点について取得した通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図、図13−3は、図5に示す磁気センサ24−13の設置位置である測定点について取得した通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図、図13−4は、図5に示す磁気センサ24−14の設置位置である測定点について取得した通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図、図13−5は、図5に示す磁気センサ24−15の設置位置である測定点について取得した通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図、図13−6は、図5に示す磁気センサ24−16の設置位置である測定点について取得した通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を示す図である。
【0086】
図13−1〜図13−6に示すように、溶鋼流速ゼロ時の印加磁場方向成分、すなわち、鋳型21内が空の状態で電磁石231,232の通電電流を変化させながら検出した静磁場の印加磁場方向の磁束密度は、電磁石231,232の通電電流に対して飽和特性を有しており、さらに、その飽和特性は、各磁気センサ24−11〜24−16の設置位置毎に若干異なっていることがわかる。この違いは、上記した電磁石231,232の磁極の飽和特性に起因する。操業時においてこれら図13−1〜図13−6に示す通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を参照すれば、実際の電磁石231,232の通電電流に応じた溶鋼流速ゼロ時の印加磁場方向成分を取得することができる。なお、ここでは、複数の通電電流値毎に間欠的に溶鋼流速ゼロ時の印加磁場方向成分を検出しているため、この通電電流値間の値については、検出値を曲線的あるいは直線的に補間することで取得することができる。通電電流に応じた磁場勾配の基準値についても同様であり、実際に溶鋼流速ゼロ時の印加磁場方向成分を検出した通電電流値間の値については、算出した基準値を曲線的あるいは直線的に補間することで取得することができる。
【0087】
そして、その後操業を開始し、電磁石231,232によって静磁場を印加した状態で(印加工程)、鋳型21内に溶鋼26の注入を開始する。操業を開始した後は、磁気センサ24が各測定点における印加磁場方向成分を検出し、検出した印加磁場方向成分である計測値を演算装置25eに出力する(検出工程)とともに、電流計235が電磁石231,232の通電電流を計測して計測値を演算装置25eに出力する(計測工程)。そして、演算装置25eは、事前に取得しておいた通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から、現時点での電磁石231,232の通電電流、すなわち、電流計235から随時入力される計測値に応じた溶鋼流速ゼロ時の印加磁場方向成分を取得する。続いて、演算装置25eは、取得した溶鋼流速ゼロ時の印加磁場方向成分を基準印加磁場方向成分として用い、現時点での各測定点における印加磁場方向成分、すなわち、各磁気センサ24から随時入力される計測値と、決定した基準印加磁場方向成分との差を求め、印加磁場方向成分の変化として検出する。そして、演算装置25は、事前に算出しておいた通電電流に応じた磁場勾配の基準値から現時点での電磁石231,232の通電電流に応じた磁場勾配の基準値を取得し、検出した印加磁場方向成分の変化と、取得した磁場勾配の基準値とをもとに、各測定点における溶鋼26の引き抜き方向の流速(引き抜き方向成分)を測定する(測定工程)。
【0088】
このようにして測定した各測定点における溶鋼26の引き抜き方向の流速は、実施例1と同様に、溶鋼流動の制御に用いられる。すなわち、連続鋳造機2は、演算工程で演算される流速の値が予め設定される所定の範囲内となるように電磁石231,232によって印加する静磁場の強度を調整し、鋳型21内の溶鋼26の流動を制御する(制御工程)。
【0089】
以上説明したように、実施例5では、事前に鋳型21内が空の状態で電磁石231,232の通電電流を例えば段階的に変化させながら磁気センサ24によって複数の通電電流値での各測定点における印加磁場方向成分を検出し、通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係を取得しておくこととした。また、操業中の実際の電磁石231,232の通電電流についても計測し、通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から計測値に応じた溶鋼流速ゼロ時の印加磁場方向成分を取得し、取得した溶鋼流速ゼロ時の印加磁場方向成分を基準印加磁場方向成分として用いることで溶鋼26の引き抜き方向の流速を測定することとした。したがって、操業条件によって電磁ブレーキとしての電磁石231,232の通電電流を変動させた場合や、定電流制御される電磁石231,232の通電電流の供給誤差によって実際の通電電流が変動した場合等、操業中に電磁石231,232の通電電流が変動した場合であっても、電磁石231,232の通電電流の計測値をもとに溶鋼流速ゼロ時の印加磁場方向成分を適切に取得し、これを基準印加磁場方向成分として用いることができる。
【0090】
したがって、随時操業条件が変更される実際の一連の連続鋳造操業に対して本発明を適用した場合であっても、溶鋼流速測定におけるゼロ点校正を電磁石231,232の通電電流の変動を考慮して自動的に行うことができる。これによれば、操業開始時や終了時等の非定常操業時や、鋼種変更等の鋳造条件変更時等といった操業条件の変更時であっても、実施例1と同等に鋳型21内の溶鋼流速を非接触で測定することができ、測定結果をもとに鋳造条件の改善を行うことが可能となる。一方、電磁石231,232の通電電流の定電流制御の性能上の制限から生じる通電電流の変動についても、同様に考慮して溶鋼流速測定におけるゼロ点校正を自動的行うことができるので、信頼性の高い溶鋼流速測定が実現できる。
【0091】
なお、実施例5では、実施例1の構成の連続鋳造機2との組み合わせについて説明したが、実施例2〜実施例4の連続鋳造機2b,2c,2dにも同様に適用が可能である。
【産業上の利用可能性】
【0092】
以上のように、本発明の溶鋼流速測定方法、溶鋼流速測定装置および連続鋳造の操業方法は、連続鋳造用鋳型内で流動する溶鋼の流速を非接触で測定する際の測定誤差を低減させるのに適している。
【符号の説明】
【0093】
11,12 磁石
13 流動領域
131 溶鋼
D1 運動方向
S11,S12 磁場勾配
2,2b,2c,2d,2e 連続鋳造機
21 鋳型
211 長辺
212 短辺
22 浸漬ノズル
221,222 吐出孔
231,232,231b,232b,231c,232c,231d,232d 電磁石
234 電源装置
235 電流計
24,24b,24c,24d 磁気センサ
25,25b,25c,25d,25e 演算装置
26 溶鋼
S21,S22,S31,S32,S41,S42,S51,S52 磁場勾配

【特許請求の範囲】
【請求項1】
溶鋼が注入される連続鋳造用鋳型の鋳造空間に前記連続鋳造用鋳型の外部から静磁場を印加する印加工程と、
前記静磁場の印加によって磁場勾配が発生する勾配領域の前記静磁場の印加磁場方向成分を検出する検出工程と、
前記検出した前記印加磁場方向成分の変化をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算する演算工程と、
を含むこと特徴とする溶鋼流速測定方法。
【請求項2】
前記演算工程は、事前に取得される溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする請求項1に記載の溶鋼流速測定方法。
【請求項3】
前記印加工程は、前記鋳造空間の外側近傍に設けられた磁石に通電電流を供給することで前記鋳造空間に前記静磁場を印加し、
前記磁石に供給された通電電流を計測する計測工程を含み、
前記演算工程は、事前に取得される前記通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から、前記計測工程で計測された通電電流に応じた前記溶鋼流速ゼロ時の印加磁場方向成分を取得し、該取得した前記溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする請求項1に記載の溶鋼流速測定方法。
【請求項4】
連続鋳造用鋳型の鋳造空間に注入された溶鋼の流速を測定する溶鋼流速測定装置であって、
前記連続鋳造用鋳型の外部から前記鋳造空間に静磁場を印加する磁石と、
前記静磁場の印加によって磁場勾配が発生する勾配領域近傍に設置され、前記勾配領域における前記静磁場の印加磁場方向成分を検出する磁気センサと、
前記磁気センサで検出した前記印加磁場方向成分の変化をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算する演算装置と、
を備えることを特徴とする溶鋼流速測定装置。
【請求項5】
前記勾配領域は、前記磁石の磁極端部間の領域であることを特徴とする請求項4に記載の溶鋼流速測定装置。
【請求項6】
前記磁石は、前記磁極端部間の領域が前記鋳造空間内に前記溶鋼を注入するための吐出孔近傍となるように設置されており、前記静磁場の印加によって、前記鋳造空間から引き抜かれる鋳片の引き抜き方向に沿った磁場勾配を発生させ、
前記演算装置は、前記吐出孔近傍における前記溶鋼の流速の引き抜き方向成分を演算することを特徴とする請求項4または5に記載の溶鋼流速測定装置。
【請求項7】
前記磁石は、前記磁極端部間の領域が前記鋳造空間内の前記溶鋼のメニスカス近傍となるように設置されており、前記静磁場の印加によって、前記鋳造空間から引き抜かれる鋳片の引き抜き方向に沿った磁場勾配を発生させ、
前記演算装置は、前記メニスカス近傍における前記溶鋼の流速の引き抜き方向成分を演算することを特徴とする請求項4または5に記載の溶鋼流速測定装置。
【請求項8】
前記鋳造空間は、横断面が長方形状を有し、
前記磁石は、前記磁極端部間の領域が前記鋳造空間内の前記溶鋼のメニスカス近傍となるように設置されており、前記静磁場の印加によって、前記鋳造空間の長辺方向に沿った磁場勾配を発生させ、
前記演算装置は、前記メニスカス近傍における前記溶鋼の流速の長辺方向成分を演算することを特徴とする請求項4または5に記載の溶鋼流速測定装置。
【請求項9】
前記演算装置は、事前に取得される溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする請求項4〜8のいずれか1つに記載の溶鋼流速測定装置。
【請求項10】
前記磁石の通電電流を計測する電流計を備え、
前記演算装置は、事前に取得される前記通電電流と溶鋼流速ゼロ時の印加磁場方向成分との関係から、前記電流計で計測した前記磁石の通電電流に応じた前記溶鋼流速ゼロ時の印加磁場方向成分を取得し、該取得した前記溶鋼流速ゼロ時の印加磁場方向成分と、前記検出した前記印加磁場方向成分との差分をもとに、前記勾配領域における前記溶鋼の流速の磁場勾配方向成分を演算することを特徴とする請求項4〜8のいずれか1つに記載の溶鋼流速測定装置。
【請求項11】
静磁場および/または移動磁場を用いた電磁攪拌装置を備えた連続鋳造機において、
溶鋼が注入される連続鋳造用鋳型の鋳造空間に前記連続鋳造用鋳型の外部から静磁場を印加する印加工程と、
前記静磁場の印加によって磁場勾配が発生する勾配領域における前記静磁場の印加磁場方向成分を検出する検出工程と、
前記検出した前記印加磁場方向成分の変化をもとに、前記勾配領域における前記溶鋼の流速の前記磁場勾配方向成分を演算する演算工程と、
前記磁場勾配方向成分の値が所定の範囲内となるように前記電磁攪拌装置の静磁場および/または移動磁場の強度を調整して前記鋳造空間に印加し、前記溶鋼の流動を制御する制御工程と、
を含むこと特徴とする連続鋳造の操業方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13−1】
image rotate

【図13−2】
image rotate

【図13−3】
image rotate

【図13−4】
image rotate

【図13−5】
image rotate

【図13−6】
image rotate


【公開番号】特開2011−174911(P2011−174911A)
【公開日】平成23年9月8日(2011.9.8)
【国際特許分類】
【出願番号】特願2010−219840(P2010−219840)
【出願日】平成22年9月29日(2010.9.29)
【出願人】(000001258)JFEスチール株式会社 (8,589)
【Fターム(参考)】