説明

無線タグ調整方法及び無線タグ調整システム並びに無線タグ

【課題】無線タグを付ける認識対象物がどのようなものであってもアンテナ・インピーダンスやアンテナの長さを変更して無線ICチップとの整合や波長短縮効果への対応を容易に取れるようにする。
【解決手段】アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグに対して、無線タグと無線通信を行って所定の通信特性を測定する通信特性測定ステップS1と、測定した通信特性に基づいてアンテナ調整パターンを算出する調整パターン算出ステップS3と、算出したアンテナ調整パターンに従って、無線タグのアンテナ上及びアンテナの周囲にインクジェット印刷装置を使用して誘電体物質の吐出、磁性体物質の吐出、導電体物質の吐出を組み合わせて調整パターンを形成する調整パターン形成ステップS4とからなる工程を1回又は複数回実行して無線タグのアンテナを調整する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、無線タグ調整方法及び無線タグ調整システム並びに無線タグに関する。
【背景技術】
【0002】
従来、アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグにおいて、無線ICチップの入力インピーダンスとアンテナ・インピーダンスとの整合が不完全であると、両者の接合点において高周波電流が反射し、無線ICチップが動作するためのエネルギーをこの無線ICチップに十分供給することができなくなり、その結果、通信距離が短くなってしまうことが指摘されていた。
【0003】
これに対し、無線タグのアンテナにインピーダンス整合用回路を形成するものが知られている。すなわち、最適化された幅や長さを有するスリットをアンテナに設け、このスリットの端子部分に無線ICチップを接続することにより、無線ICチップの入力インピーダンスとアンテナ・インピーダンスを整合させることが開示されている(例えば、特許文献1参照)。
【0004】
また、無線タグにおいてアンテナに無線ICチップを接続する際に、接続方法や接続材料等で無線ICチップの入力インピーダンスのばらつきが発生する。このため形状が固定されたスリットを無線ICチップに接続する方法では、接続部分での無線ICチップの入力インピーダンス変化に対応できず、アンテナ・インピーダンスと整合させることが困難である。これに対しては、アンテナと無線ICチップを接続し実装した状態でレーザー加工機によりスリット端部のアンテナの導電体部分を除去し、スリットの長さを長くしてアンテナ・インピーダンスを調整する技術が知られている。(例えば、特許文献2参照)。
【0005】
また、無線タグを一定誘電率の誘電体カバーで挟んで構成するものが知られている。すなわち、誘電体カバーによる波長短縮効果によって、アンテナ近傍の波長が短縮するので、この短縮した波長の半波長に整合した長さのアンテナをあらかじめ形成しておくことにより、共振状態が得られ、最大電力を有効に利用でき、また、無線タグ周囲に外部の各種の誘電体が近接しても、無線タグは一定誘電率の誘電体カバーで挟まれているので、外部の誘電体の影響は少なく、波長短縮効果のほとんどは誘電体カバーによるものであり、共振状態が維持できるというものである(例えば、特許文献3参照)。
また、無線タグの周囲の誘電体や磁性体の影響により、無線タグのアンテナ近傍の電磁波の伝播速度が変化し、波長短縮効果があることも知られている(例えば、特許文献4)。
【特許文献1】特開2005−167813号公報
【特許文献2】特開2004−127230号公報
【特許文献3】特開2005−165462号公報
【特許文献4】特開2002−222398号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかし、特許文献1のように、無線ICチップの実装後においてレーザー加工機でスリット長さを調整して無線ICチップの入力インピーダンスとアンテナ・インピーダンスとの整合を取るものでは、レーザー加工機という高価なものを使用しなければならず、また、加工作業が面倒であった。また、レーザー加工機のように除去加工では、スリット部の導電体を除去するので、一旦除去すると元に戻せないという問題があった。
【0007】
また、無線タグ周囲の誘電体や磁性体は、波長短縮によるアンテナ長への影響だけではなく、アンテナ・インピーダンスや無線ICチップの入力インピーダンスにも影響をおよぼす。このような無線タグ周囲の誘電体や磁性体の影響を小さくするには、特許文献3に示すように誘電体カバーが有効であるが、実際には厚い誘電体カバーか、高誘電率の材料を必要とする。
【0008】
しかしながら、誘電体カバーの厚さを厚くすることは、貼り付ける対象物の使用上の制限や貼り付けた無線タグの剥離の問題があり、誘電体カバーの厚さをあまり大きくできない問題がある。また、高誘電率の材料では、誘電損失により電磁波のエネルギーが損失してしまう恐れがある。特に電波が来る方向の高誘電率の誘電体カバーは誘電損失の影響が大きくなるので配置できないという問題がある。
【0009】
無線タグを貼り付ける対象物は、規格の決まった大量生産物であっても、誘電率や透磁率のばらつきを管理することは、電子部品等の工業製品以外では困難である。特に、日用品、食料品、衣料品等は誘電率や透磁率の生産時での管理は、特殊な場合を除いて極めて困難である。生鮮食料品に至っては貼り付ける対象物の誘電率や透磁率は対象物ごとに全て異なる。また、郵便や小口配送物も内容物やパッケージの違いにより、誘電率や透磁率は貼り付ける対象物ごとに全て異なる。このように、どのような誘電率や透磁率の対象物が来るかは、あらかじめ予測することができないので、対象物に整合するアンテナ長やアンテナ・インピーダンスを持つ無線タグを、あらかじめ製造しておくことは困難である。
【0010】
さらに、無線タグ周囲の誘電率や透磁率のばらつきは、無線タグを貼り付ける対象物の物性値そのもの以外に、貼り付ける対象物の形状、さらには貼り付ける時の無線タグの撓み、ゆがみ等にも影響される。
【0011】
本発明は、このような問題に鑑みて為されたもので、無線タグを付ける認識対象物がどのようなものであっても、パッケージやアタッチメント等を使用せずにアンテナ・インピーダンスやアンテナの長さを変更して無線ICチップとの整合や波長短縮効果への対応を容易に取ることができる無線タグ調整方法及び無線タグ調整システム並びに無線タグを提供する。
【課題を解決するための手段】
【0012】
本発明は、アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグに対して、無線タグと無線通信を行って所定の通信特性を測定する通信特性測定ステップと、この通信特性測定ステップで測定した通信特性に基づいてアンテナ調整パターンを算出する調整パターン算出ステップと、この調整パターン算出ステップで算出したアンテナ調整パターンに従って、無線タグのアンテナ上及びアンテナの周囲の一方又は両方に、インクジェット印刷装置を使用して、誘電体物質の吐出、磁性体物質の吐出、導電体物質の吐出の1又は複数を組み合わせて調整パターンを形成する調整パターン形成ステップとからなる工程を1回又は複数回実行して無線タグのアンテナを調整する無線タグ調整方法にある。
【0013】
また、本発明は、アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグが、基板を介してあるいは直接付された認識対象物と、無線タグと無線通信を行って所定の通信特性を測定する通信特性測定手段と、この通信特性測定装置で測定した通信特性に基づいてアンテナ調整パターンを算出する調整パターン算出手段と、この調整パターン算出手段が算出したアンテナ調整パターンに従って、無線タグのアンテナ上及びアンテナの周囲の一方又は両方に、誘電体物質の吐出、磁性体物質の吐出、導電体物質の吐出の1又は複数を組み合わせて調整パターンを印刷形成するインクジェット印刷装置とからなり、通信特性測定手段のアンテナとインクジェット印刷装置を無線タグに対して選択的に対向させる無線タグ調整システムにある。
【0014】
また、本発明は、基板上にアンテナを配置すると共にこのアンテナに接続した無線ICチップを配置した無線タグにおいて、アンテナ上及びアンテナ周囲における基板上の一方又は両方に、誘電体物質、磁性体物質、導電体物質の1又は複数を組み合わせてアンテナの調整パターンを形成した無線タグにある。
【発明の効果】
【0015】
本発明によれば、無線タグを付ける認識対象物がどのようなものであっても、パッケージやアタッチメント等を使用せずにアンテナ・インピーダンスやアンテナの長さを変更して無線ICチップとの整合や波長短縮効果への対応を容易に取ることができる無線タグ調整方法及び無線タグ調整システム並びに無線タグを提供できる。
【発明を実施するための最良の形態】
【0016】
以下、本発明の実施の形態を、図面を参照して説明する。
(第1の実施の形態)
図1の(a)、(b)は無線タグ1の基本的な構成を示す図で、基板11上の中央部に無線ICチップ12を配置し、その無線ICチップ12の周囲及び左右に延出して導電体パターンからなるアンテナ13を配置している。
【0017】
前記アンテナ13は、前記無線ICチップ12の近傍にインピーダンス整合用回路としてスリット14を形成している。前記無線ICチップ12は、認識対象物の認識、情報の書き込み、読み込み等を無線で行うための各種回路を有する集積回路で、前記アンテナ13とは接続部13a,13bを介して左右の2ヶ所で接続している。
【0018】
前記基板11は、ポリエチレン、ポリエチレンテフタレート(PET)、ポリプロピレン、ポリイミド等の可撓性フィルムによって構成されている。なお、可撓性フィルムの代わりに、ポリプロピレン、ポリカーボネイト、POM、PMMA等の高分子材料、ガラスエポキシ、紙フェノール、ガラス、セラミックス等のリジッド基板を使用することも可能である。また、誘電率の高いバリウム、チタン、ケイ素等を元素として含む化合物もしくはその化合物が微粒子として複合された材料や、透磁率の高いフェライト等の磁性体が微粒子として複合された材料も使用できる。
【0019】
また、前記無線タグ1として、無線ICチップ12、アンテナ13、接続部13a,13bの接触による剥離、破壊を防ぐため、図2に示すように、基板11の上に、この基板11と同一もしくは同様な材料からなる保護層15を設けてもよい。前記保護層15は、コーティングにより形成しても、あるいはフィルムにより形成しても、あるいはリジット材料により挟みこみにより形成してもよい。さらには、前記保護層15を、例えばインクジェット装置等で高分子材料等を吐出することで形成してもよい。
【0020】
前記アンテナ13は、例えば、アルミ、ステンレス等の金属打ち抜き加工、もしくはエッチング加工により形成することが可能であるが、多用なアンテナパターンに対応するためには、インクジェット印刷装置による導電体パターン形成を使用する。この方法としては、金属微粒子を含んだ溶液をインクジェット印刷装置にて基板11上に吐出して回路パターンを形成する方法や、無電解メッキ用の触媒を含有する溶液をインクジェット印刷装置にて基板11上に吐出して回路パターンを形成する方法等がある。
【0021】
金属微粒子を含んだ溶液を用いる方法では、白金、金、銀、銅等を成分とする微粒子を含有する溶液を、インクジェット印刷装置から基板11上にアンテナパターン状に吐出し、これを100〜250℃の加熱により導電化することによりアンテナ13の導電体パターンを形成する。
【0022】
無電解メッキ用の触媒を含有する溶液を用いる方法では、パラジウム、銀等を含む触媒溶液をインクジェット印刷装置から基板11上にアンテナパターン状に吐出し、これを100〜250℃の加熱により溶剤を蒸散させ、さらに、アンテナパターンが形成された基板11を銅、ニッケル等の無電解メッキ液に浸漬させてアンテナ13の導電体パターンを無電解メッキで形成する。
さらには、インクジェット印刷装置にて、導電性ポリマー(ポリアニリン、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリエチレンジオキシチオフェン等)を吐出してアンテナ13を形成することも可能である。
【0023】
前記接続部13a,13bは、ワイヤーボンディング等が使用される。この接続部13a,13bに関してもインクジェット印刷装置による導電体パターン形成方法により形成することができる。
前記無線ICチップ12は、シリコンウエハに半導電体プロセスで形成される集積回路であるが、インクジェット印刷装置により基板11上に半導電体や配線パターン等を形成して構成することも可能である。
【0024】
このようにして形成された無線タグ1は、図5示すように、基板1の底面を商品等の物品である認識対象物21の表面に貼り付けるなどして使用される。また、認識対象物21の表面を基板の表面とみなし、この認識対象物21上に直接、無線ICチップ12、アンテナ13、接続部13a,13bを形成することも可能である。この場合、アンテナ13の形成において、加熱工程もしくはメッキ液への浸漬工程が必要になるので、認識対象物21の表面材料は、例えば、基板11の材料と同じ材料等に限定される。また、認識対象物21の表面に、無線タグ1が形成しやすいように、高分子材料等による平滑化層を、例えばインクジェット印刷装置で高分子材料を吐出することで形成し、その上に無線ICチップ12、アンテナ13等を形成して無線タグ1を作成することも可能である。
【0025】
次に、無線タグ1におけるインピーダンス不整合について説明する。
無線タグIC1のアンテナ13にこの無線ICタグの利用周波数の電磁波を照射すると、アンテナ13に高周波電流が流れる。このとき、無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスとの整合が不完全であると、接続部13a,13bにおいて高周波電流が反射し、無線ICチップ12が動作するためのエネルギーが十分に供給されなくなる。このため、無線ICチップ12に入力される信号の強度が弱くなり、結果として無線ICタグ通信距離が短くなってしまう。
【0026】
このようなインピーダンスの不整合は以下のような原因で発生する。先ず、半導電体プロセス条件等による無線ICチップ12それ自身の持つ入力インピーダンスのばらつきがある。このばらつきは無線タグ用アンテナ13に無線ICチップ12を実装する前に測定することが可能である。従って、無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスを整合させるために、アンテナ13のパターンを形成するときにスリット14の形状をそれに合わせて形成することが可能になる。
【0027】
また、無線タグ用アンテナ13に無線ICチップ12を接続する際に、接続方法や接続材料等で無線ICチップ12の入力インピーダンスのばらつきが発生する。固定形状のスリット14を有するアンテナ13を無線ICチップ12に接続する方法では、接続部分での無線ICチップ12の入力インピーダンスの変化に対応できず、そのままではアンテナ13のインピーダンスと整合させることは困難となる。
【0028】
また、図5に示すように、無線タグ1を認識対象物21の表面に貼り付けた場合において、無線タグ1の周囲にある認識対象物2に誘電体や磁性体が含まれていると、無線タグ1の利用周波数に対して波長短縮効果を及ぼす。その結果、無線タグ1が認識対象物21に貼り付けられる前に、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスが整合していても、無線タグ1を認識対象物21に貼り付けることでインピーダンスが整合しなくなる場合がある。
【0029】
従って、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスを整合させるためには、無線タグ1が認識対象物21の表面に貼り付けられた状態や無線タグ1が認識対象物21の表面に直接形成された状態の実使用状態においてインピーダンスの整合を行う必要がある。実使用状態でのアンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスの平均的な値は、シミュレーションや統計的なデータから得ることが可能であり、アンテナ13の初期的なパターンはこれらの平均的な値から決定され、それに基づいて導電体パターンが形成される。
【0030】
このようなことから、平均的な値に基づくアンテナ13の初期的なパターンでは、実使用状態での個々の無線タグ1において、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスが不整合になってしまう。従って、平均的な値にもとづくアンテナ13の初期的なパターンから出発し、無線タグ1が認識対象物21に付いている実使用状態での個々の無線タグ1のアンテナ13のインピーダンスを微調整していく方法を取れば正確なインピーダンスの整合を取ることが可能になる。
【0031】
以下、無線タグ1が認識対象物21に付いている実使用状態でインピーダンスを整合する方法について述べる。
実使用状態での、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスの平均的な値に基づいて、インピーダンス整合用回路である、長さがaで、幅がbのスリット14をアンテナ13に設ける。そして、このスリット14及びその周囲の状態を調整することにより、無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスと整合させる。これにより、アンテナ13に流れる高周波電流を無駄なく無線ICチップ12に供給することができる。
【0032】
スリット14は、その周囲のアンテナ13の導電体や基板11と分布定数回路を構成し、例えば、スリット長に沿うアンテナ部分及びその周囲にインダクタンスLが存在し、スリット幅にあたる基板11の部分及びその周囲にキャパシタンスCが存在する。この分布定数回路の特性インピーダンスは、インダクタンスLの平方根に略比例する関係にあり、かつ、キャパシタンスCの平方根に略反比例する関係にある。
無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスとの整合は、以下の方法により、アンテナ13のインピーダンスを調整することで実施される。
【0033】
スリット長に沿うアンテナ部分及びその周囲に、図1の(a)に示すように磁性体吐出予定部位16を想定し、この磁性体吐出予定部位16にインクジェット印刷装置を使用して所要の比透磁率、例えば比透磁率1.1〜100の磁性体材料を含む溶液を吐出し、図3の(a)、(b)に示すように磁性体パターン17を形成する。これにより、スリット14におけるインダクタンスLが増加し、アンテナ13のインピーダンスが増加する。なお、磁性体吐出予定部位16の想定は後述する制御用コンピュータ上で行われるものであり、基板11上に形成されているものではない。
【0034】
スリット幅にあたる基板11の部分及びその周囲に、図1の(a)に示すように誘電体吐出予定部位18を想定し、この誘電体吐出予定部位18にインクジェット印刷装置を使用して所要の比誘電率、例えば比誘電率1.1〜100の誘電体材料を含む溶液を吐出し、図3の(a)、(b)に示すように誘電体パターン19を形成する。なお、図3の(b)は、図3の(a)のA−A断面図である。これにより、スリット14におけるキャパシタンスCが増加し、アンテナ13のインピーダンスが減少する。なお、誘電体吐出予定部位18の想定は後述する制御用コンピュータ上で行われるものであり、基板11上に形成されているものではない。
【0035】
磁性体パターン17及び誘電体パターン19の形成は、一層塗布に限らず多層塗布が可能であり、厚さの調整が可能である。また、磁性体吐出予定部位16及び誘電体吐出予定部位18の領域の一部に、それぞれ磁性体材料及び誘電体材料を吐出することが可能であり、磁性体パターン17及び誘電体パターン19の面積が調整可能である。
【0036】
インクジェット印刷装置を使用しているので、例えば、最小で1〜5plの単位で磁性体材料および誘電体材料を吐出することが可能である。従って、磁性体パターン17及び誘電体パターン19の厚さ、面積は、微細な単位で制御可能であり、アンテナ13のインピーダンスを精度よく調整することが可能である。これにより、無線タグ1の通信特性を実測しながら、少しずつ磁性体パターン17及び誘電体パターン19を形成していく方法が採用できる。
【0037】
さらに、磁性体パターン17はアンテナ13のインピーダンスを増加させ、誘電体パターン19はアンテナ13のインピーダンスを減少させる。従って、アンテナ13のインピーダンスに対して正逆に複数回調整することが可能である。これにより無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスが大きく異なっている場合には、増加もしくは減少の片方で大きく修正し、修正値がオーバーしたら、逆方向で細かく修正していく、両方向調整アプローチが実施できる。
【0038】
インクジェット印刷装置から吐出される磁性材料としては、磁性体、鉄、ニッケル、コバルト等の金属、もしくはフェライトに代表されるこれらの元素の化合物や複合材料が使用でき、これらは直径1〜100nm微粒子として溶媒中に分散して使用する。インクジェット印刷装置から吐出される誘電体材料としては、ポリエチレン、ポリエチレンテフタレート(PET)、ポリプロピレン、ポリイミド、エポキシ、ポリプロピレン、ポリカーボネイト、ポリオキシメチレン、ポリメチルメタクリレート等の高分子材料を溶媒中に分散して使用する。高分子材料については、ポリマー、モノマーとして溶媒無しで使用できるものもある。さらに、誘電体材料としては、バリウム、チタン、ケイ素等を元素として含むガラス、セラミックス等も使用でき、これらは直径1〜100nm微粒子として溶媒中に分散して使用する。
【0039】
溶媒としては、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素、石油ナフサ及びこれらのハロゲン置換体等から選ばれた溶媒が使用できる。例えばヘキサン、オクタン、イソオクタン、デカン、イソデカン、デカリン、ノナン、ドデカン、イソドデカン等がある。また、高級脂肪酸エステルや、シリコーンオイルも使用できる。
【0040】
さらに溶媒としては、例えばメチルアルコール、エチルアルコール、プロピルアルコール、ブチルアルコール、フッ化アルコール等のアルコール類、例えばアセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、例えば酢酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、プロピオン酸メチル、プロピオン酸エチル等のカルボン酸エステル類、例えばジエチルエーテル、ジプロピルエーテル、テトラヒドロフラン、ジオキサン等のエーテル類及び例えばメチレンジクロリド、クロロホルム、四塩化炭素、ジクロロエタン、メチルクロロホルム等のハロゲン化炭化水素類等が単独もしくは混合して使用できる。
【0041】
インクジェット印刷装置から吐出される溶液には、通常の印刷用インクと同様に安定した吐出を保証するために各種添加剤を添加することもできる。インクジェット印刷装置から吐出される磁性体材料および誘電体材料は、通常の印刷用インクと同様に25℃付近において短時間で乾燥する。このためレーザー加工や加熱工程、メッキ液への浸漬工程を含まないため、無線タグ1が付いた認識対象物21に対してダメージを与えない。従って、無線タグ1が認識対象物21に付いた実使用状態で、アンテナ13のインピーダンスの微調整ができ、正確なインピーダンスの整合ができる。基板11上に吐出された磁性体材料及び誘電体材料に対しては、認識対象物21に対してダメージを与えない程度の、50℃以下での乾燥工程、紫外線照射硬化工程等を含む場合もある。
【0042】
図2に示すように、無線ICチップ12及びアンテナ13の上に保護層15が形成されている場合、磁性体吐出予定部位16、誘電体吐出予定部位18は保護層15上に想定されることになる。例えば、保護層15が高分子材料等の薄層で形成されている場合、インクジェット印刷装置から磁性体吐出予定部位16及び誘電体吐出予定部位18に対して磁性体材料及び誘電体材料を吐出し、図4に示すように、保護層15上に磁性体パターン17及び誘電体パターン19を形成する。この場合においても、無線タグ1が認識対象物21に付いた実使用状態で、アンテナ13のインピーダンスの微調整ができ、正確なインピーダンスの整合ができる。
【0043】
また、保護層15が形成されていない場合や保護層15が形成されている場合に関わらず、磁性体パターン17及び誘電体パターン19を形成した後、必要な部分にインクジェット印刷装置で高分子材料等を吐出することで保護層15を形成することもできる。このとき、アンテナ13のインピーダンスが保護層15の影響でずれるおそれがあるので、磁性体パターン17及び誘電体パターン19を形成していく場合と同様に、無線タグ1の通信特性を測定しながら、徐々に保護層15の厚さやパターンを変更して方法が採用できる。また、保護層15の材料としては、アンテナ13のインピーダンスに対して影響が小さくなるように比誘電率や比透磁率が1に近い材料を採用する。
【0044】
無線タグ1においては、共振状態による最大電力を有効に利用した送信、受信を行うために、利用周波数の波長を基準した特定の長さ、例えば半波長や1/4波長等に一致したアンテナを使用する。例えば、ここでは半波長に一致したアンテナ13を使用する。このような利用周波数の半波長に一致した長さを有するアンテナ13を使用している場合にアンテナ13近傍の電磁波の波長がずれてくると、アンテナ長とアンテナ内を流れる高周波電流の周波数の半波長が一致しなくなる。従って、共振状態が得られず、最大電力を有効に利用した送信、受信ができなくなり、結果として通信距離が短くなってしまう。
【0045】
アンテナ13近傍の電磁波の波長のずれは、無線タグ1の周囲の誘電体や磁性体の影響により、アンテナ13近傍の電磁波の伝播速度が変化し波長短縮効果が生じたことによる。無線タグ周囲の誘電体や磁性体の影響が無視できない場合、無線タグ1が貼り付けられる認識対象物21の誘電体や磁性体の影響が最も大きい。
【0046】
認識対象物21は、規格の決まった大量生産物であっても、誘電率や透磁率のばらつきを管理することは困難である。特に、日用品、食料品、衣料品等に対しては誘電率や透磁率の生産時での管理は、特殊な場合を除いて極めて困難である。また、郵便や小口配送物も内容物やパッケージの違いにより、誘電率や透磁率は貼り付け対象物毎に全て異なる。
【0047】
このように、どのような誘電率や透磁率を持つ認識対象物21に貼るか予測することができない場合においては、どのような認識対象物21に対してもアンテナ長がアンテナ内を流れる高周波電流の周波数の半波長と一致するように無線タグ1を予め製造しておくことは困難である。また、無線タグ1の周囲の誘電率や透磁率のばらつきは、認識対象物21の物性値そのもの以外に、認識対象物の形状ばらつき、さらには貼り付け時の無線タグ1の撓み、ゆがみ、基板11の材料のばらつき等にも影響される。
【0048】
そこで、この実施の形態では、無線タグ1が認識対象物21に付いている実使用状態でここの無線タグ1に対してアンテナ内を流れる高周波電流の周波数の半波長とアンテナ長を一致させる方法を採用して確実な共振状態を得る。
以下、無線タグ1が認識対象物21に貼り付けられた実使用状態で、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長を一致させる方法について述べる。
【0049】
図1の(a)に示すように、アンテナ13上及びその周囲に波長短縮材料吐出予定部位22を想定し、この波長短縮材料吐出予定部位22に所要の比誘電率を持つ誘電体材料、あるいは所要の比透磁率を持つ磁性体材料からなる波長短縮材料を、インクジェット印刷装置を使用して吐出し、図3の(a)、(b)に示すように、波長短縮層パターン23をアンテナ13上及びその周囲に形成する。なお、波長短縮材料吐出予定部位22の想定は後述する制御用コンピュータ上で行われるものであり、基板11上に形成されているものではない。
【0050】
無線タグ1のアンテナ近傍の電磁波の伝播速度は、比誘電率と比透磁率に略反比例する。従って、所要の比誘電率を持つ誘電体材料、あるいは所要の比透磁率を持つ磁性体材料からなる長短縮層パターン23をアンテナ13上及びその周囲に形成すると、無線タグ1のアンテナ近傍の電磁波の伝播速度が減少する。このため、無線タグ1が使用する所定の利用周波数の波長に対して、アンテナ13内を流れる高周波電流の波長が短縮する。
アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長との一致は、波長短縮層パターン23の比誘電率、あるいは比透磁率を調整し、アンテナ13内を流れる高周波電流の波長を短縮することで実現できる。
【0051】
想定される認識対象物21の最大誘電率や最大透磁率の値を基準にしてアンテナ13内を流れる高周波電流の周波数の半波長をアンテナ長の初期値とする。この初期値に基づく無線タグ1を作成し認識対象物21に貼り付けるか、認識対象物21の表面に無線タグ1を直接形成する。すなわち、想定される最小長さのアンテナ13が初期的に形成される。
【0052】
アンテナ部分及びその周囲に配置される波長短縮材料吐出予定部位22に、インクジェット印刷装置から所要の比誘電率、例えば、比誘電率1.1〜100の誘電体材料を含む溶液、あるいは比透磁率、例えば、比透磁率1.1〜100の磁性体材料を含む溶液を吐出し、図3に示すような波長短縮層パターン23を形成する。これにより、アンテナ13内を流れる高周波電流の波長を短縮する。吐出される波長短縮材料としては、誘電体材料あるいは磁性体材料単体だけでなく、これらの混合物であってもよい。
【0053】
波長短縮層パターン23は、剥離し易さ、無線タグ1が認識対象物21に付いている実使用状態では認識対象物21自体の取扱い利便性からしても、厚さには限界があり、例えば、0.1〜1mm程度が好ましい。従って、この方法は、認識対象物21の誘電率や透磁率のばらつきが比較的小さい場合に好適である。
【0054】
スリット14の調整での磁性体パターン17及び誘電体パターン19の形成と同様に、波長短縮層パターン23の形成においても、一層塗布に限らず多層塗布が可能で、厚さの調整が可能である。また、波長短縮層パターン23の面積が調整可能である。従って、波長短縮層パターン23の比誘電率あるいは比透磁率を微調整し、アンテナ13内を流れる高周波電流の波長を精度よく短縮し調整することが可能である。これにより、無線タグ1の通信特性を実測しながら、少しずつ波長短縮層パターン23を形成していく方法が採用できる。
【0055】
このとき、波長短縮層パターン23の誘電体材料、あるいは磁性体材料は、アンテナ13内を流れる高周波電流の波長を短縮するだけなので、短縮のし過ぎによるオーバーシュートに注意する必要がある。すなわち、通信特性が、アンテナ内を流れる高周波電流の周波数の半波長とアンテナ長との一致を示す共振状態に近づいてきた場合には、細かい調整量が必要になる。
【0056】
波長短縮材料は、スリット14の調整での磁性体パターン17及び誘電体パターン19の形成の場合と同様の、誘電体材料、あるいは磁性体材料が使用可能である。インクジェット印刷装置から吐出される溶液も同様に、安定した吐出を保証するために各種添加剤が添加され、印刷用インクと同様な使用が可能である。
【0057】
波長短縮材料は、スリット14の調整での磁性体パターン17及び誘電体パターン19の形成の場合と同様であるから、インクジェット印刷装置から吐出される磁性体材料及び誘電体材料は、インクジェット印刷装置から吐出される印刷用インクと同様に、25℃付近において短時間で乾燥する。このため無線タグ1が付いた認識対象物21に対してダメージを与えない。従って、無線タグ1が認識対象物21に付いた実使用状態で、アンテナ13内を流れる高周波電流の波長の微調整ができ、アンテナ長さとの正確な一致を図ることができ、良好な共振状態を得ることができる。また、基板11上に吐出された磁性体材料および誘電体材料に対しては、認識対象物21に対してダメージを与えない程度の、50℃以下での乾燥工程、紫外線照射硬化工程等を含む場合もある。
【0058】
電波が到来する方向に高誘電率や高透磁率の波長短縮層パターン23があると、誘電損失や磁気損失が大きくなり、照射される電磁波のエネルギーが大きく損失する。従って、波長短縮層パターン23が厚くなる場合は、図6に示すように、アンテナ13の周囲に波長短縮材料吐出予定部位24を想定し、この波長短縮材料吐出予定部位24に対して図7の(a)、(b)に示すように、波長短縮層パターン25を形成すればよい。なお、図7の(b)は、図7の(a)のB−B断面図である。このとき、波長短縮層パターン25を基板11の外側である認識対象物21の表面に形成することも認識対象物21に対してダメージを与えない限り可能である。なお、波長短縮材料吐出予定部位24の想定は後述する制御用コンピュータ上で行われるものであり、基板11上に形成されているものではない。
【0059】
次に、無線タグ1が認識対象物21に付いている実使用状態で、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスを整合し、かつアンテナ13内を流れる高周波電流の周波数の半波長とアンテナ13の長を一致させる無線タグ調整システムについて説明する。
【0060】
図8に示すように、可動テーブル31の一端には、無線タグ1が付いている認識対象物21を保持する保持テーブル32が設置されている。無線タグ用のリーダ・アンテナ33は、同軸ケーブル34を介して質問器35と接続している。前記リーダ・アンテナ33は可動テーブル31に搭載されていて、上下、左右、前後の移動は勿論、3軸回転等も可能になっている。前記リーダ・アンテナ33にはアンテナ位置決めカメラ36が設置されており、リーダ・アンテナ33と無線タグ1の相対的な位置関係を正確に測定できるようになっている。
【0061】
前記保持テーブル32とリーダ・アンテナ33の中間には、インクジェット印刷装置37が配置されている。このインクジェット印刷装置37は、インクジェット用可動テーブル38に搭載されており、上下、左右、前後移動が可能になっている。前記インクジェット印刷装置37にはヘッド位置決めカメラ39が設置されており、インクジェット印刷装置37に含まれるインクジェットヘッドと無線タグ1の相対的な位置関係を測定できるようになっている。これによって、無線タグ1の所定の吐出予定部位に、必要とされる吐出物を吐出できる。前記インクジェット用可動テーブル38は可動テーブル31に搭載されている。
【0062】
前記インクジェット印刷装置37は、インクジェット用可動テーブル38によって図中矢印Cで示すように左右に移動可能になっており、前記リーダ・アンテナ33によって無線タグ1の通信特性を測定する際には、電磁波の伝播に影響を与えないように装置退避位置40まで退避する。前記インクジェット印刷装置37は、インクジェットヘッド、インク供給装置、吐出駆動回路等から構成されている。インクジェットヘッドは、導電体吐出ヘッド、誘電体吐出ヘッド、磁性体吐出ヘッドからなり、それぞれ導電体材料を含有した溶液インク、誘電性材料を含有した溶液インク、磁性材料を含有した溶液インクの吐出を行う。
【0063】
前記質問器35に通信ケーブル41を介して制御用コンピュータ42を接続している。前記制御用コンピュータ42は、無線タグ1の通信特性の収集と、通信特性を用いたアンテナ調整パターン算出と、算出されたアンテナ調整パターンを実際にインクジェット印刷装置37において形成するために、システム各部とインターフェースを介して接続している。また、前記制御用コンピュータ42は、その他無線タグ調整システム全体の制御を行うようになっている。
【0064】
図9は無線タグ調整システムの制御構成を示すブロック図で、質問器35、リーダ・アンテナ33、無線タグ1はRFIDシステムを構成している。前記質問器35はリーダ・アンテナ33を介して電波信号を前記無線タグ1に送信する。無線タグ1は、リーダ・アンテナ33からの送信電波を受信し、内部のメモリに記憶された情報に基づいて入力信号に反射変調を与えてリーダ・アンテナ33へ送信する。前記質問器35は、無線タグ1から返送された信号をリーダ・アンテナ33が受信すると、それを変調してタグ情報を取り出す。このようなRFIDシステムにおいては、例えば13.56MHz帯、900MHz帯、2.45GHz帯等の周波数帯域が使用される。
【0065】
前記制御用コンピュータ42は、質問器35とインターフェースを介して接続されていて、無線タグ1から返送されてきた電波の受信特性としての利得や周波数等の情報を収集する。また質問器35からの電波信号の送出を制御する。また、前記制御用コンピュータ42は、無線タグ1と電気的に接続可能な無線タグ検査回路43を介して、無線タグ1での受信特性としての利得や周波数等の情報を直接収集することができる。さらに、前記制御用コンピュータ42は、前記可動テーブル31の駆動回路44及びアンテナ位置決めカメラ36からなるリーダ・アンテナ移動系と接続し、例えば、最大通信可能距離のような空間的な通信特性の測定を制御する。
【0066】
前記制御用コンピュータ42は、質問器35からの電波の受信特性、無線タグ1での受信特性等の情報から、アンテナ13の調整パターンを算出する。例えば、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスを、整合用の、磁性体パターン17及び誘電体パターン19の形状情報である面積、厚さのデータを算出する。同様に、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ13の長さを一致させる、磁性体もしくは誘電体からなる波長短縮層パターン23(又は25)の形状情報である面積、厚さのデータを算出する。
【0067】
この調整パターンの算出には、インクジェット印刷装置37からの吐出物、初期形成されているアンテナ13、無線タグ1の基板11、無線タグ1が貼りついている認識対象物21を含む全空間での電磁界シミュレーションを利用することができる。シミュレーションの手法としては、例えば、「宇野亨著:FDTD法による電磁界およびアンテナ解析(コロナ社、1998年発行)」に開示されている方法が使用できる。
【0068】
これらの形成情報は、インクジェット用可動テーブル38の駆動回路45、インクジェット印刷装置37の吐出駆動回路46に、導電体、磁性体、誘電体の吐出位置情報及び吐出量として伝達される。インクジェット印刷装置37の吐出駆動回路46は、導電体吐出ヘッド47、誘電体吐出ヘッド48、磁性体吐出ヘッド49の駆動を制御する。
【0069】
前記制御用コンピュータ42は、インクジェット用可動テーブル38の駆動回路45、ヘッド位置決めカメラ39からなるインクジェットヘッド移動系、及びインクジェット印刷装置37の吐出駆動回路46に接続され、アンテナ調整パターンの形成を3次元的に制御するようになっている。
【0070】
次に、図8及び図9に示した無線タグ調整システムを使用し、無線タグ1が認識対象物21に付いている実使用状態で、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスを整合し、かつアンテナ13内を流れる高周波電流の周波数の半波長とアンテナ13の長さを一致させる、無線タグ1のアンテナ調整基本アルゴリズムについて説明する。このアンテナ調整基本アルゴリズムは前記制御用コンピュータ42が実行するようになっている。
【0071】
このアンテナ調整基本アルゴリズムは、図10に示すように、通信特性測定ステップS1、測定結果判定ステップS2、測定結果判定ステップS3、調整パターン形成ステップS4から形成されている。
先ず、調整開始後、初期のアンテナパターン13に対して通信特性測定ステップS1にて無線タグ1の通信特性を測定する。通信特性は、例えば、無線タグ1から返送されてきた電波の受信特性としての利得や周波数、あるいは通信可能距離等を測定結果として出力する。
【0072】
次に、測定結果判定ステップS2にて測定結果の判定を行う。そして、初期のアンテナパターン13が十分な通信特性を保証しているなら調整は終了となる。例えば、測定の電波の受信特性としての利得、周波数及び通信可能距離が、予想される電波の受信特性の最大利得、予定周波数あるいは、最大通信可能距離に近い値なっている場合に調整終了となる。
【0073】
また、アンテナ・インピーダンスやアンテナ長さの状態が後戻りできない調整方法において、例えば通信可能距離が最大通信可能距離から離れてしまうオーバーシュート状態などでも調整終了となる。また、これ以上のアンテナ調整の余地がなく、かつ測定の電波の受信特性としての利得、周波数及び通信可能距離が、前回の測定結果判定と同じ場合にも、調整終了となる。アンテナ調整の余地がない状態とは、例えば、要求される調整用の吐出溶液の量が、インクジェット印刷装置37で形成できる最小液滴体積以下の場合などである。
【0074】
通信特性が不十分な場合には、続いて、調整パターン計算ステップS3にて、調整パターン計算処理を行う。すなわち、制御用コンピュータ42での電波の通信特性等に基づく導電体パターン、磁性体パターン17、誘電体パターン19及び波長短縮層パターン23(又は25)の形状情報からなる無線タグアンテナ調整パターンの計算を処理する。無線タグアンテナ調整パターンは吐出材料毎に算出する。この計算には誤差が含まれるため、無線タグアンテナ調整パターンは、例えば調整量を5〜10回に分割して少しずつ調整する微調整パターンに変換する。従って、以降、1回の調整の都度、通信特性を測定し、調整パターンを再計算していく誤差修正アプローチを実施する。
【0075】
続いて、調整パターン形成ステップS4にて、算出された吐出材料毎の微調整パターンの吐出材料情報に基づいて導電体吐出、誘電体吐出、磁性体吐出を行う。1回の調整パターン形成ステップでは、1つの吐出材料の吐出を行う、あるいは、複数の吐出材料の吐出を実施する。
【0076】
この制御方法は、インクジェット印刷装置37で、イエロー、マゼンダ、シアン、ブラックに対応した4個のインクジェットヘッドを用いて、フルカラー印刷を行う場合の制御と全く同じで、インクジェット用可動テーブル38の動作によって、導電体、誘電体、磁性体の任意の組み合わせからなる3次元パターンの形成ができる。例えば、波長一致とインピーダンス整合を同時に調整する場合には、磁性体パターン17と誘電体パターン19を同時に形成する。また、波長短縮層パターン23(又は25)を作成する場合、磁性体材料と誘電体材料を1回の調整パターン形成ステップにて吐出して、無線タグ1上で磁性体材料と誘電体材料の複合物を形成することもできる。
【0077】
続いて、S1の通信特性測定ステップに戻り、少しずつアンテナを調整する誤差修正アプローチを繰り返すことになる。
なお、アンテナ調整アルゴリズムはこれに限るものではなく、無線タグや対象物によって異なる方法を採用してもよい。
【0078】
次に、誤差修正アプローチのいくつかの例について説明する。
インピーダンス整合は、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスを整合する。アンテナ共振調整は、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ13の長さを一致させる。これらの2つの調整アイテムを、最終的に同時に満たしている必要がある。
【0079】
この2つの調整アイテムを満たしていくアプローチ方法の例として、アイテム別調整アプローチについて説明する。この方法は、「アンテナ共振調整」、「インピーダンス整合調整」のどちらから一方をまず最大限に繰返し調整し、その後他方を最大限に繰返し調整し、その後交互に再調整していく方法である。
【0080】
図11は、図10における調整パターン計算ステップS3の内部処理を示す流れ図で、先ず、「アンテナ共振調整」を行い、次に「インピーダンス整合調整」を行うアイテム別調整アプローチのアルゴリズムによって構成されている。
【0081】
測定結果判定ステップS2から調整パターン算出ステップS3に移行すると、先ず、S11にて、調整モード選択処理を実行する。ここでは、「アンテナ共振調整モード」と「インピーダンス整合調整モード」のどちらの調整モードを選択するかを、調整モードフラグFlg1で判別する。Flg1=Aの場合は、「アンテナ共振調整モード」を選択する。Flg1=Zの場合は、「インピーダンス整合調整モード」を選択する。但し、初期条件を、Flg1=Aとして、「アンテナ共振調整モード」から先行処理するようになっている。
【0082】
「アンテナ共振調整モード」が選択されると、続いて、S12にて、アンテナ共振調整飽和判定処理を実行する。例えば、測定の電波の受信特性としての利得、周波数及び通信可能距離が、予想される電波の受信特性の最大利得、予定周波数、あるいは、最大通信可能距離に近い値なっている場合、あるいは、これ以上のアンテナ調整余地がなく、かつ、測定結果であるの電波の受信特性としての利得、周波数および通信可能距離が、前回のアンテナ共振調整飽和判定と同じ場合には調整が飽和したと判定する。
【0083】
調整が飽和したと判定した場合は、S13にて、調整モードフラグ切り替え処理を実行する。また、調整が未飽和であると判定した場合は、S14にて、アンテナ共振調整パターン算出処理を実行する。調整モードフラグ切り替え処理(S13)では、調整モードフラグFlg1を、「アンテナ共振調整モード」=Aから「インピーダンス整合調整モード」=Zに変更する。すなわち、Flg1=Z、とする。そして、S15にて、インピーダンス整合調整パターン算出処理を実行する。ここで、インピーダンス整合調整もすでに飽和している場合は、図10のアンテナ調整基本アルゴリズムの測定結果判定ステップS2において終了判定されているので、このステップに至ることはない。
【0084】
アンテナ共振調整パターン算出処理(S14)では、通信特性等に基づいて導電体パターン及び波長短縮層パターン23(又は25)等の形状情報からなる、アンテナ共振調整パターンの計算を実行する。調整パターンは吐出材料毎に算出する。そして、図10のアンテナ調整基本アルゴリズムの調整パターン形成ステップS4へ移行する。
【0085】
「インピーダンス整合調整モード」が選択された場合は、続いて、S16にて、インピーダンス整合調整飽和判定処理を実行する。例えば、測定の電波の受信特性としての利得、周波数及び通信可能距離が、予想される電波の受信特性の最大利得、予定周波数、あるいは、最大通信可能距離に近い値なっている場合、あるいは、これ以上のアンテナ調整余地が無く、かつ、測定結果であるの電波の受信特性としての利得、周波数及び通信可能距離が、前回のインピーダンス整合調整飽和判定と同じ場合には調整が飽和したと判定される。
【0086】
調整が飽和したと判定した場合は、S17にて、調整モードフラグ切り替え処理を実行する。また、調整が未飽和であると判定した場合は、S15にて、インピーダンス整合調整パターン算出処理を実行する。調整モードフラグ切り替え処理(S17)では、調整モードフラグFlg1を、「インピーダンス整合調整モード」=Zから「アンテナ共振調整モード」=Aに変更する。すなわち、Flg1=A、とする。そして、S14にて、アンテナ共振調整パターン算出処理を実行する。ここで、アンテナ共振調整もすでに飽和している場合は、図10のアンテナ調整基本アルゴリズムの測定結果判定ステップS2において終了判定されているので、このステップに至ることはない。
【0087】
インピーダンス整合調整パターン算出処理(S15)では、通信特性等に基づいて導電体パターン、磁性体パターン17、誘電体パターン19等の形状情報からなるインピーダンス整合調整パターンの計算を実行する。調整パターンは吐出材料毎に算出する。そして、図10のアンテナ調整基本アルゴリズムの調整パターン形成ステップS4へ移行する。
なお、調整アプローチのアルゴリズムはこれに限るものではなく、無線タグや対象物によって異なる方法を採用してもよい。
【0088】
微調整パターンが小さいと、調整精度は向上するが調整時間がかかってしまう。そこで、インピーダンス整合調整においては、磁性体パターン17がアンテナ13のインピーダンスを増加させ、誘電体パターン19がアンテナ13のインピーダンスを減少させることを利用して、調整時間が短縮できる両方向調整アプローチを実施することが可能である。
【0089】
以下、この両方向調整アプローチをインピーダンス整合調整に適用した場合について説明する。
図12は、図11におけるインピーダンス整合調整パターン算出処理(S15)の内部処理を示す流れ図で、両方向調整アプローチのアルゴリズムによって構成されている。
【0090】
インピーダンス整合調整パターン算出処理(S15)に移行すると、先ず、S21にて、インピーダンス調整方向選択処理を実行する。ここでは、「インピーダンス減少方向調整」と「インピーダンス整合調整モード」のどちらの調整方向を選択するかを、調整方向フラグFlg2で判別する。
【0091】
Flg2=Nの場合は、「インピーダンス減少方向調整」を選択する。例えば、誘電体パターン19の算出、形成を処理として選択する。Flg2=Pの場合は、「インピーダンス増加方向調整」を選択する。例えば、磁性体パターン17の算出、形成を処理として選択する。但し、初期条件を、Flg2=Nとして、「インピーダンス減少方向調整」から先行処理するようになっている。
【0092】
初期条件は、例えば、初期のスリット14のパターンは、アンテナ13のインピーダンスが無線ICチップ12の入力インピーダンスに対して十分大きい条件とし、「インピーダンス減少方向調整」、すなわち誘電体パターン19の算出、形成を初期設定とする。
Flg2=Nにより「インピーダンス減少方向調整」が選択された場合には、S22にて、インピーダンス整合性向上判定処理を実行する。
【0093】
インピーダンス整合性向上判定は、例えば、図10の通信特性測定ステップS1での測定結果である、電波の受信特性としての利得、周波数及び通信可能距離等を、前回のインピーダンス整合性向上判定で使用した値と比較し、例えば、利得が大きくなった、通信可能距離が長くなった等、インピーダンスの整合性が前回より向上したと判定した場合には、S23にて、インピーダンス減少方向調整パターン算出処理を実行する。また、例えば、利得が小さくなった、通信可能距離が短くなった等、インピーダンスの整合性が前回より低下したと判定した場合には、S24にて、調整方向フラグ切り替え処理を実行する。
【0094】
なお、インピーダンスの整合性が前回と同じ場合は、図11におけるインピーダンス整合調整飽和判定処理(S16)にて調整モードフラグが切り替えられるので、この処理が実行されることは無い。また、初期値のインピーダンスの整合性は最低レベルとする。
【0095】
調整方向フラグ切り替え処理(S24)では、インピーダンスの整合性の最良点(ピーク)を通過してしまったと判断し、調整モードフラグFlg2を、「インピーダンス減少方向調整」(N)から、「インピーダンス増加方向調整」(P)に変更する。すなわち、Flg2=Pとする。また、例えば、導電体、誘電体、磁性体の1回の吐出量、すなわち、1回の調整量Adjを減少させる。例えば、今回の調整で使用する調整量Adj(n)を前回の調整量Adj(n-1)の1/2にする。すなわち、Adj(n)=Adj(n-1)/2とする。そして、S25のインピーダンス増加方向調整パターン算出処理へ移行する。
【0096】
S23のインピーダンス減少方向調整パターン算出処理では、通信特性等に基づいて導電体パターン、磁性体パターン17、誘電体パターン19等の形状情報からなるインピーダンス減少方向調整パターンの算出を行う。調整パターンは吐出材料毎に算出する。
例えば、誘電体吐出予定部位18に、誘電体パターン19を規定の調整量Adj(n)だけ形成するように調整パターンを算出する。この調整パターンはアンテナ13のインピーダンスを減少させる。
調整パターンの算出後、図11のインピーダンス整合調整パターン算出処理(S15)は終了となり、図10の調整パターン形成ステップS4へ移行する。
【0097】
また、Flg2=Pにより「インピーダンス増加方向調整」が選択された場合には、S26にて、インピーダンス整合性向上判定処理を実行する。
【0098】
例えば、図10の通信特性測定ステップS1での測定結果である、電波の受信特性としての利得、周波数および通信可能距離等を、前回のインピーダンス整合性向上判定で使用した値と比較し、例えば、利得が大きくなった、通信可能距離が長くなった等、インピーダンスの整合性が前回より向上したと判定した場合には、S25にて、インピーダンス増加方向調整パターン算出処理を実行する。また、例えば、利得が小さくなった、通信可能距離が短くなった等、インピーダンスの整合性が前回より低下したと判定した場合には、S27にて、調整方向フラグ切り替え処理を実行する。
【0099】
なお、インピーダンスの整合性が前回と同じ場合は、図11におけるインピーダンス整合調整飽和判定処理(S16)にて調整モードフラグが切り替えられるので、この処理が実行されることは無い。
【0100】
S27における調整方向フラグ切り替え処理では、インピーダンスの整合性の最良点(ピーク)を通過してしまったと判断し、調整モードフラグFlg2を、「インピーダンス増加方向調整」(P)から、「インピーダンス方向減少調整」(N)に変更する。すなわち、Flg2=Nとする。また、例えば、導電体、誘電体、磁性体の1回の吐出量、すなわち、1回の調整量Adjを減少させる。例えば、今回の調整で使用する調整量Adj(n)を前回の調整量Adj(n-1)の1/2にする。すなわち、Adj(n)=Adj(n-1)/2となる。そして、S23のインピーダンス減少方向調整パターン算出処理へ移行する。
【0101】
S25のインピーダンス増加方向調整パターン算出処理では、通信特性等に基づいて導電体パターン、磁性体パターン17、誘電体パターン19等の形状情報からなるインピーダンス増加方向調整パターンの算出を行う。調整パターンは吐出材料毎に算出する。
例えば、磁性体吐出予定部位16に、磁性体パターン17を規定の調整量Adj(n)だけ形成するように調整パターンを算出する。この調整パターンはアンテナ13のインピーダンスを増加させる。
調整パターンの算出後、図11のインピーダンス整合調整パターン算出処理(S15)は終了となり、図10の調整パターン形成ステップS4へ移行する。
【0102】
この図12の方式を用いると、初期的には大きな調整量から出発できるので、最初から微量の調整量で処理する場合と比較して短時間にアンテナ調整を終了することができる。
なお、ここでは両方向調整アプローチをインピーダンス整合調整に適用した場合について述べたが、正逆両方向の調節機能を有する調節方法であれば他の調整アイテムに対しても両方向調整アプローチは適用可能である。
【0103】
次に、アンテナ共振調整を、アンテナ内を流れる高周波電流の波長を短縮する方法のみで行う場合について説明する。この場合、調整方向は短縮方向の一方向だけなので、短縮し過ぎによるオーバーシュートに注意する必要がある。これは、一旦オーバーシュートしたら元に戻せなくなるからである。
このアンテナ共振調整においては、通信特性がアンテナ内を流れる高周波電流の周波数の半波長とアンテナ長の一致を示す共振状態に近づいてきた場合には、調整量を減少させることが必要になる。
【0104】
図13は、図11におけるアンテナ共振調整パターン算出処理(S14)の内部処理を示す流れ図で、一方向調整アプローチのアルゴリズムによって構成されている。なお、通信特性は説明のために通信可能距離を採用するが、他の値との複合値であってもよい。また、初期設定としては、認識対象物21に対して想定される最小長さのアンテナ13が初期的に形成される。
【0105】
アンテナ共振調整パターン算出処理S14に移行すると、先ず、S31にて、共振状態通過可能性判定処理を実行する。ここでは、今回の調整量で共振状態のピークを通過してしまう可能性を判定する。例えば、前回の調整量での通信可能距離の増加量をΔLng、最大通信可能距離をLngMax、現在状態での通信可能距離をLngとし、今回の調整量で共振状態のピークを通過してしまう可能性Kpを、Kp=(LngMax−Lng)/ΔLng、と設定する。
【0106】
Kp<1の場合は、今回の調整量では共振状態のピークを通過してしまう可能性が高いと判定し、S32の調整量微小減少処理へ移行する。
また、Kp≧1の場合は、今回の調整量では共振状態のピークを通過してしまう可能性が低いと判定し、S33のアンテナ共振状態向上判定処理へ移行する。
【0107】
S32における調整量微小減少処理では、通信可能距離から判断して現在のアンテナの長さが共振状態のピークを得る状態に近いと判断する。ここでは、例えば、導電体、誘電体、磁性体の1回の吐出量である1回の調整量Adjを前回の値より減少させる。
例えば、今回の調整で使用する調整量Adj(n)を前回の調整量Adj(n-1)のKp/2倍にする。すなわち、Adj(n)=Kp×Adj(n-1)/2、となる。このとき、調整量Adj(n-1)には、1未満の値Kpが掛けてあるので、単に1/2倍するよりも調整量はさらに少なくなり、共振状態を越えしまう危険性を回避できる。
【0108】
S33におけるアンテナ共振状態向上判定処理では、通信可能距離から判断して、現在のアンテナの長さが共振状態のピーク得る状態から遠いと判断する。ここでは、前回と現在の測定結果を比べて、アンテナ共振状態が向上したか否かを判定する。
【0109】
例えば、図10の通信特性測定ステップS1での測定結果である通信可能距離等を前回の値と比較し、例えば、通信可能距離の増加量が前回に比べて低下した場合には、アンテナ共振状態の向上度合が前回よりも低下したと判定し、S34の調整量減少処理へ移行する。また、例えば、通信可能距離の増加量が前回に比べて向上したか同一の場合には、アンテナ共振状態の向上度合が前回よりも向上、あるいは同一と判定し、S35の波長短縮方向調整パターン算出処理へ移行する。但し、1回目のアンテナ共振状態向上判定では、アンテナ共振状態の向上度合が前回と同一であると初期設定する。
【0110】
S34における調整量減少処理では、通信可能距離から判断して、現在のアンテナの長さが共振状態のピークを得る状態から遠いが、アンテナ共振状態の向上度合が前回より低下したので、アンテナの長さが共振状態のピークを得る状態に近づいていると判断する。そして、導電体、誘電体、磁性体の1回の吐出量である1回の調整量Adjを前回の値より減少させる。例えば、今回の調整で使用する調整量Adj(n)を前回の調整量Adj(n-1)の1/2倍にする。すなわち、Adj(n)=Adj(n-1)/2、となる。
【0111】
S35における波長短縮方向調整パターン算出処理では、通信特性等に基づいて導電体パターン、磁性体パターン17、誘電体パターン19等の形状情報からなる波長短縮方向調整パターンの算出を行う。調整パターンは吐出材料毎に算出する。例えば、波長短縮材料吐出予定部位22(又は24)に、所要の比誘電率を持つ誘電体材料、もしくは所要の比透磁率を持つ磁性体材料からなる波長短縮材料を、インクジェット印刷装置37から吐出し、波長短縮層パターン23(又は25)を、規定の調整量Adj(n)だけ形成するように調整パターンを算出する。
【0112】
調整パターンの算出後、図11のアンテナ共振調整パターン算出処理(S14)は終了となり、図10の調整パターン形成ステップS4へ移行する。
この図13の方式を用いると、一方向の調整機能しか持たない場合でも、精度よくアンテナ調整を行なうことができる。
なお、ここでは減少方向の一方向調整アプローチをアンテナ共振調整に適用した場合について述べたが、一方向の調節機能を有する調節方法であれば他の調整アイテムに対しても一方向調整アプローチは適用可能である。
【0113】
以上のように、無線タグ1が認識対象物21に付いている実使用状態で、無線タグ1及びその周囲に、インクジェット印刷装置37を使用して磁性体材料、誘電体材料及び導電体材料を吐出して無線タグ調整パターンを形成するので、無線タグ1が付いた認識対象物2に対してダメージを与えることなく、アンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスを整合し、かつ、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ13の長を一致させることができる。
【0114】
また、認識対象物21に無線タグ1が付いた実使用状態での正確な通信特性を測定できる。また、個々の無線タグ1の通信特性に基づいてそれぞれの無線タグに対する個別のアンテナ調整ができる。また、インクジェット印刷装置37を使用して調整パターンを形成するため、調整量が微量で略無段階な微調整ができる。
【0115】
さらに、無線タグに対して測定と調整を短時間に繰返し複数回施すことができ、これにより、少しずつ修正しながら最適な調整パターンにアプローチしていくことができ、高精度の調整を短時間で行うことができる。また、無線タグ1を一体的に形成した認識対象物21や剥離困難な認識対象物にも対応できる。
【0116】
(第2の実施の形態)
この実施の形態は無線タグ1のアンテナ13の長さを、インクジェット印刷装置を使用して延長し共振状態を確保するものについて述べる。なお、前述した実施の形態と同一の部分には同一の符号を付し詳細な説明は省略する。また、この実施の形態で使用する無線タグ調整システムの構成は基本的には前述した第1の実施の形態と同様であり、図8及び図9の構成のものを使用する。
【0117】
アンテナ長の変更において、総変更長さが例えば0.1〜1mm程度である場合には、インクジェット印刷装置37から導電体材料を吐出し、アンテナ13の端部を延長するようにパターンを形成することでアンテナ長の変更が可能である。これ以上の長さの延長ではアンテナの抵抗損失が大きくなる。
これは、導電体吐出で使用される導電体材料が、白金、金、銀、銅等を成分とする金属微粒子の場合には、加熱工程無しではアンテナパターン全体の導電率が低くなるためである。また、導電性ポリマー(ポリアニリン、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリエチレンジオキシチオフェン等)が使用される場合には、導電性ポリマー自体の導電率が低いためである。
【0118】
上述した導電体材料は、安定した吐出を保証するために各種添加剤が添加されており、印刷用インクと同様な使用が可能な溶液インクとして生成される。
認識対象物が加熱工程や浸漬工程に耐えられる場合には、十分に導電率が大きい導電体の形成が可能であり、アンテナの導電体部分を任意の長さに延長可能である。
【0119】
この場合、金属微粒子を含んだ導電性ペーストをインクジェット印刷装置37にて基板11上に吐出し、200℃程度の温度で金属微粒子を焼結することによりアンテナの長さを延長する導電体パターンを形成する。あるいは、無電解メッキ用の触媒を含有する溶液をインクジェット印刷装置37にて基板11上に吐出し、無電界メッキ用薬液に浸漬して無電解メッキを施すことによりアンテナの長さを延長する導電体パターンを形成する。
【0120】
従って、この実施の形態で使用する無線タグ調整システムは、図8及び図9の構成に、さらに、加熱工程を施す加熱炉や浸漬工程を施す無電界メッキ槽、あるいは導電体吐出予定部位のみを局部的に無電界メッキ用薬液に浸漬させる装置等が付加されることになる。
このような、無線タグ調整システムで、認識対象物が加熱工程や浸漬工程に耐えられない場合には、無線タグ単体を基板上に形成し、認識対象物に貼り付けることで無線タグ付き認識対象物を形成する。
【0121】
次に、アンテナの長さを延長する導電体形成について説明する。
図14は、初期状態の上からみた平面図である。図15、図16、図17は、図14の丸枠Dの部分の拡大図で、各段階でのアンテナ延長時のアンテナ左翼部でのアンテナ延長用導電体パターン形成を示す図で、(a)は平面図、(b)は(a)のE1−E1、E2−E2、E3−E3断面図である。
【0122】
図14に示すように、アンテナ13の両翼部先端から延出した部位に、アンテナ延長用導電体吐出予定部位27を想定する。なお、アンテナ延長用導電体吐出予定部位27の想定は制御用コンピュータ42上で行われるものであり、基板11上に形成されているものではない。前記アンテナ延長用導電体吐出予定部位27は、アンテナ13を構成する導電体に連続して1個あるいは複数個想定する。ここでは、両翼にそれぞれ3個想定する。
【0123】
このアンテナ延長用導電体吐出予定部位27に、インクジェット印刷装置37から導電体材料を含む溶液を吐出して図15、図16、図17に示すように、アンテナ延長用導電体パターン28、29、30を段階的に形成することによって、必要な長さの導電体をアンテナ13に電気的に接続しアンテナの長さを延長する。
【0124】
図14に示すように、アンテナ13は左右対称であるから、初期状態のアンテナ13の長さLa0は、アンテナ13の片翼の各部の長さを加算したものを基準とし、それを2倍することで求めることが可能である。すなわち、片翼の各部の長さを図に示すように、それぞれL0、H0、L01とすると、La0=2×(L0+H0+L01)、となる。
【0125】
そして、図15に示すように、第1段階としてアンテナ延長用導電体パターン28まで形成すると、第1段階でのアンテナ13の長さLa1は、略2×(L0+H0+2×L01)、となり、初期状態のアンテナの長さLa0より延長される。
また、図16に示すように、第2段階としてアンテナ延長用導電体パターン29まで形成すると、第2段階でのアンテナ13の長さLa2は、略2×(L0+H0+3×L01)、となり、第1段階時のアンテナ13の長さLa1より延長される。
また、図17に示すように、第3段階としてアンテナ延長用導電体パターン30まで形成すると、第3段階でのアンテナ13の長さLa3は、略2×(L0+H0+4×L01)、となり、第2段階時のアンテナ13の長さLa2より延長される。
【0126】
このように、段階的にアンテナ13の長さを延長することができる。そして、アンテナ延長用導電体吐出予定部位27に対して、アンテナ延長用導電体パターン28、29、30を、例えば0.01〜0.1mmのように微小長さ単位で形成することが可能である。従って、段階的延長であるが無段階延長に略等しい内容でアンテナを延長できる。このためアンテナの長さを精度良く、アンテナ内を流れる高周波電流の周波数の半波長に一致させることができる。
【0127】
また、この導電体材料吐出方法、及び加熱工程や浸漬工程を付加した低抵抗率導電体形成方法を用いて、無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスとの整合を図ることもできる。
例えば、スリット長を短縮することでスリット14に対するインダクタンスLが減少し、アンテナ13のインピーダンスが減少する。また、スリット幅を短縮することでスリット14に対するキャパシタンスCが増加し、アンテナ13のインピーダンスが減少する。
この方法を使用すればスリット長およびスリット幅の短縮幅は、例えば0.01〜0.1mm範囲で任意に選択可能なので、精度良くアンテナ13のインピーダンスを調整することができる。
【0128】
(第3の実施の形態)
この実施の形態は無線タグ1のアンテナ13の長さを、インクジェット印刷装置を使用して延長し共振状態を確保するものについて述べる。なお、前述した実施の形態と同一の部分には同一の符号を付し詳細な説明は省略する。また、この実施の形態で使用する無線タグ調整システムの構成は基本的には前述した第1の実施の形態と同様であり、図8及び図9の構成のものを使用する。
【0129】
図18は、初期状態の上からみた平面図である。図19、図20、図21は、図18の丸枠Fの部分の拡大図で、各段階でのアンテナ延長時のアンテナ左翼部でのアンテナ延長用導電体パッチ51を示す図で、(a)は平面図、(b)は(a)のG1−G1、G2−G2、G3−G3断面図である。
【0130】
前記アンテナ延長用導電体パッチ51は、アンテナ13の先端部に1個あるいは複数個所定の間隔を開けて配置されている。例えば、アンテナ13及び互いに、例えば0.01〜0.1mm程度の一定の狭い間隔を開けて配置している。前記アンテナ延長用導電体パッチ51は、アンテナ13を構成する導電体と同じものであり、アンテナ13と同時に形成される。
【0131】
この一定の狭い間隔を覆う部位をアンテナ延長用導電体吐出予定部位52とし、この導電体吐出予定部位52に、インクジェット印刷装置37から導電体材料を含む溶液を吐出して、アンテナ延長用導電体パターン53を形成し、必要なアンテナ延長用導電体パッチ51を電気的に接続してアンテナ長を延長する。
【0132】
図18に示すように、初期状態のアンテナ13の長さLa0は、アンテナ13の片翼の各部の長さを加算したものを基準とし、それを2倍することで求めることができる。すなわち、片翼の各部の長さを図に示すように、それぞれL0、H0、L01とすると、La0=2×(L0+H0+L01)、となる。
【0133】
そして、図19に示すように、第1段階としてアンテナ延長用導電体パターン53aを形成し1つ目のアンテナ延長用導電体パッチ51まで延長すると、第1段階でのアンテナ13の長さLa1は、略2×(L0+H0+2×L01)、となり、初期状態のアンテナの長さLa0より延長される。
また、図20に示すように、第2段階としてアンテナ延長用導電体パターン53bを形成し2つ目のアンテナ延長用導電体パッチ51まで延長すると、第2段階でのアンテナ13の長さLa2は、略2×(L0+H0+3×L01)、となり、第1段階時のアンテナ13の長さLa1より延長される。
また、図21に示すように、第3段階としてアンテナ延長用導電体パターン53cを形成し3つ目のアンテナ延長用導電体パッチ51まで延長すると、第3段階でのアンテナ13の長さLa3は、略2×(L0+H0+4×L01)、となり、第2段階時のアンテナ13の長さLa2より延長される。
【0134】
このようにして段階的にアンテナ13の長さを延長できる。なお、アンテナ13の長さを延長するアンテナ延長用導電体パッチ51の形状はこの実施の形態に限定されるものではない。
【0135】
導電体吐出で使用される導電体材料は、白金、金、銀、銅等を成分とする金属微粒子、導電性ポリマー(ポリアニリン、ポリピロール、ポリチオフェン、ポリイソチアナフテン、ポリエチレンジオキシチオフェン等)等が使用され、安定した吐出を保証するために各種添加剤が添加され、印刷用インクと同様な使用が可能な溶液インクとして生成される。
【0136】
金属微粒子は100〜250℃の加熱工程を経ないので導電率が低い。また、導電性ポリマーも導電率が低い。導電率が低いとアンテナの抵抗損失が大ききなり、無線ICチップ12が動作するためのエネルギーを十分供給することできなくなる恐れがある。そこで、図18に示すように、0.01〜0.1mm程度に設定された一定の狭い間隔を、間隔の総延長距離が長くなるように蛇行形成し、この一定の狭い間隔を埋める導電体材料の導電率が、例えば、1〜500S/cmと、多少低くても、アンテナ13全体の抵抗値が大きくならないようにしている。
なお、条件によっては、認識対象物21に対してダメージを与えない程度、例えば、50℃以下での乾燥工程が可能な場合もある。
【0137】
この用に、アンテナ延長用導電体パッチ51を使用することで無線タグ1が付いた認識対象物21に対してダメージを与えないで、アンテナ13の長さを延長することができる。そして、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長を一致させることができる。
【0138】
アンテナ延長用導電体パッチ51は、抵抗損失の増加を防ぐために、例えば0.5〜5mm程度の長さを必要とする。従って、アンテナ13内を流れる高周波電流の周波数の半波長に対してアンテナ長を一致させるときに、アンテナ延長用導電体パッチ51の長さ以下の微調整ができなくなってしまう。これを解消するには波長短縮層パターン25を併用すればよい。
【0139】
アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長を一致させるには以下の方法を実施する。
先ず、想定される認識対象物21の最大誘電率や最大透磁率の値を基準にして、アンテナ13内を流れる高周波電流の周波数の半波長をアンテナ長の初期値とする。この初期値に基づく無線タグ1を作成し認識対象物21に貼り付けるか、認識対象物21の表面に無線タグ1を直接形成する。すなわち、想定される最小長さのアンテナ13が初期的に形成される。
【0140】
想定される認識対象物21の最小誘電率や最小透磁率の値を基準にして、アンテナ13内を流れる高周波電流の周波数の半波長を、アンテナ延長用導電体パッチ51とアンテナ長の初期値を合わせた総アンテナ長とする。この総アンテナ長に基づくアンテナ延長用導電体パッチ51を形成した無線タグを作成し、認識対象物21に貼り付けるか、認識対象物21の表面にアンテナ延長用導電体パッチ付き無線タグ1を直接形成する。すなわち、想定される最大長さのアンテナに対応する延長用導電体パッチが形成される。
【0141】
現在調整中の認識対象物の最大誘電率や最大透磁率の値を基準にして、アンテナ13内を流れる高周波電流の周波数の半波長を基準にアンテナ長を算出する。アンテナ長を越えない長さで、延長用導電体パッチ51の接続枚数を決定し、その接続枚数を接続するアンテナ延長用導電体吐出予定部位52に、インクジェット印刷装置37から導電体材料を含む溶液を吐出して、アンテナ延長用導電体パターン53を形成する。すなわち、現在調整中の認識対象物21に対して、最も近い最小長さのアンテナに対応する延長用導電体パッチが形成される。
【0142】
アンテナ部分及びその周囲に配置される波長短縮材料吐出予定部位24に、インクジェット印刷装置37から所要の比誘電率(例えば1.1〜100)の誘電体材料を含む溶液、もしくは比透磁率(例えば1.1〜100)の磁性体材料を含む溶液を吐出し、波長短縮層パターン25を形成する。これにより、アンテナ13内を流れる高周波電流の波長を短縮する。そして、最終的にアンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長を、高精度に一致させる。
【0143】
このように、アンテナ延長用導電体パッチ51と波長短縮材料吐出予定部位24に対して形成される波長短縮層パターン25を併用することによって、認識対象物21の誘電率や透磁率のばらつきが大きい場合でも、波長短縮層パターン25を、例えば0.1〜1mm程度の厚さに保った状態で、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長を無線タグ1が付いた認識対象物21に対してダメージを与えないで状態で高精度に一致させることができる。従って、初期的に製作される無線タグの種類が少なくできる。また、波長短縮層パターン25が厚くならないので、トータルのインクジェット印刷装置37からの各種材料の吐出量を少なくでき、アンテナ調整時間が短縮できる。
【0144】
(第4の実施の形態)
この実施の形態は無線タグ1のアンテナ13の長さを、インクジェット印刷装置を使用して短縮するものについて述べる。なお、前述した実施の形態と同一の部分には同一の符号を付し詳細な説明は省略する。また、この実施の形態で使用する無線タグ調整システムの構成は基本的には前述した第1の実施の形態と同様であり、図8及び図9の構成のものを使用する。
【0145】
図22の(a)、(b)及び図23の(a)、(b)は、無線タグ1の部分の拡大図で、アンテナ短縮時の各段階でのアンテナ左翼部でのアンテナ短縮用導電体パッチ61を示す図である。
図22の(a)に示すように、アンテナ短縮用導電体パッチ61は、アンテナ13の左翼部がコの字形に折れ曲がっている曲がり部の中に、アンテナ13を構成する導電体及び互いに、例えば0.01〜0.1mm程度の一定の狭い間隔を開けて縦横に複数配置している。前記アンテナ短縮用導電体パッチ61は、アンテナ13を構成する導電体と同じものであり、アンテナ13と同時に形成される。
【0146】
この一定の狭い間隔を覆う部位をアンテナ短縮用導電体吐出予定部位62とし、このアンテナ短縮用導電体吐出予定部位62に、インクジェット印刷装置37から導電体材料を含む溶液を吐出して、アンテナ短縮用導電体パターン63を形成し、必要なアンテナ短縮用導電体パッチ61を電気的に接続し、アンテナ長の短縮を行なうものである。
【0147】
図22の(a)に示すように、初期状態のアンテナ13の長さLb0は、略アンテナの片翼の各部の長さを加算したものを基準とし、それを2倍することで求めることができる。すなわち、片翼の各部の長さを図に示すように、それぞれL0、H0、L00とすると、Lb0=2×(L0+H0+L00)、となる。
【0148】
また、図22の(b)に示すように、第1段階として第1列のアンテナ短縮用導電体パターン63を形成し、1列目のアンテナ短縮用導電体パッチ61をアンテナ13に電気的に接続することでアンテナ長の短縮を行う。すなわち、1列目のアンテナ短縮用導電体パッチ61をアンテナ13に接続すると、アンテナ13の長さLb1は、略2×(L1+H1+2×L11)、となり、L1<L0、L11<L00により、初期状態のアンテナ13の長さLb0より短縮される。
【0149】
また、図23の(a)に示すように、第2段階として第2列のアンテナ短縮用導電体パターン63を形成し、2列目のアンテナ短縮用導電体パッチ61を1列目のアンテナ短縮用導電体パッチ61に電気的に接続することでアンテナ長のさらなる短縮を行う。すなわち、2列目のアンテナ短縮用導電体パッチ61を1列目のアンテナ短縮用導電体パッチ61に接続すると、アンテナ13の長さLb2は、略2×(L2+H2+2×L22)、となり、L2<L1、L22<L11により、第1段階のアンテナ13の長さLb1より短縮される。
【0150】
さらに、図23の(b)に示すように、第3段階として第3列のアンテナ短縮用導電体パターン63を形成し、3列目のアンテナ短縮用導電体パッチ61を2列目のアンテナ短縮用導電体パッチ61に電気的に接続することでアンテナ長のさらなる短縮を行う。すなわち、3列目のアンテナ短縮用導電体パッチ61を2列目のアンテナ短縮用導電体パッチ61に接続すると、アンテナ13の長さLb3は、略2×(L3+H3)、となり、L3<L2、L00=0により、第2段階のアンテナ13の長さLb2より短縮される。
【0151】
このようにして段階的にアンテナ13の長さを短縮できる。なお、アンテナ13の長さを短縮するアンテナ短縮用導電体パッチ61の形状はこの実施の形態に限定されるものではない。
また、アンテナ短縮用導電体パッチ61は、波長短縮層パターン25を併用すると、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長の一致させるときの微調整が可能になる。さらに、アンテナ短縮と波長短縮は、互いに相反する方向なので両方向調整アプローチが可能になる。
【0152】
アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長との一致は以下の方法により実施される。
想定される認識対象物21の平均誘電率や平均透磁率の値を基準にして、アンテナ13内を流れる高周波電流の周波数の半波長をアンテナ長の初期値とする。この初期値に基づいて無線タグ1を作成し認識対象物21に貼り付けるか、認識対象物21の表面に無線タグ1を直接形成する。すなわち、想定される平均的長さのアンテナ13が初期的に形成される。
【0153】
想定される認識対象物21の最大誘電率や最大透磁率の値を基準にして、アンテナ13内を流れる高周波電流の周波数の半波長を、アンテナ短縮用導電体パッチ61とアンテナ長の初期値を合わせた総アンテナ長とする。この総アンテナ長に基づくアンテナ短縮用導電体パッチ61を形成した無線タグ1を作成し、認識対象物21に貼り付けるか、認識対象物21の表面にアンテナ延長用導電体パッチ付き無線タグ1を直接形成する。すなわち、想定される最小長さのアンテナに対応するアンテナ短縮用導電体パッチのパターンが形成される。
【0154】
現在調整中の認識対象物21の最大誘電率や最大透磁率の値を基準にして、アンテナ13内を流れる高周波電流の周波数の半波長とアンテナ長を算出する。アンテナ長を越えない長さで、アンテナ短縮用導電体パッチ61の接続枚数を決定し、その接続枚数を接続するアンテナ短縮用導電体吐出予定部位62に、インクジェット印刷装置37から導電体材料を含む溶液を吐出してアンテナ短縮用導電体パターン63を形成する。こうして、現在調整中の認識対象物21に対して、最も近い最小長さのアンテナに対応するアンテナ短縮用導電体パッチ61のパターンが形成される。
【0155】
アンテナ部分及びその周囲に想定される波長短縮材料吐出予定部位24に、インクジェット印刷装置37から所要の比誘電率(例えば1.1〜100)の誘電体材料を含む溶液、あるいは比透磁率(例えば1.1〜100)の磁性体材料を含む溶液を吐出し、波長短縮層パターン25を形成する。こうして、アンテナ13内を流れる高周波電流の波長を短縮する。これにより、アンテナ内を流れる高周波電流の周波数の半波長とアンテナ長を高精度に一致させることができる。
【0156】
調整ミス等により、アンテナ短縮用導電体パッチ61の接続においてアンテナ13の長さを短くし過ぎた場合には、波長短縮層パターン25を厚くすればよい。逆に、波長短縮層パターン25を厚くし過ぎた場合には、アンテナ短縮用導電体パッチ61の接続によりアンテナ13の長さをさらに短くすればよい。
このように、両方向調整アプローチが可能になり、アンテナ調整の速度とフレキシビリティが増加する。
【0157】
アンテナ短縮用導電体パッチ61と波長短縮材料吐出予定部位24に対して形成される波長短縮層パターン25を併用することによって、認識対象物21の誘電率や透磁率のばらつきが大きい場合でも、波長短縮層パターン25を、例えば0.1〜1mm程度に薄くでき、アンテナ内を流れる高周波電流の周波数の半波長とアンテナ長を、無線タグ1が付いた認識対象物21に対してダメージを与えないで状態で、高精度に一致させることができる。従って、初期的に製作される無線タグの種類が少なくできる。また、波長短縮層パターン25が厚くならないので、トータルのインクジェット印刷装置37からの各種材料の吐出量を少なくでき、アンテナ調整時間が短縮できる。また、両方向調整アプローチが可能になり、アンテナ調整の速度とフレキシビリティが増加する。
【0158】
(第5の実施の形態)
この実施の形態は無線タグ1のアンテナ13の長さを、インクジェット印刷装置を使用して延長及び短縮の両方に自在に変更できるものについて述べる。なお、前述した実施の形態と同一の部分には同一の符号を付し詳細な説明は省略する。また、この実施の形態で使用する無線タグ調整システムの構成は基本的には前述した第1の実施の形態と同様であり、図8及び図9の構成のものを使用する。
【0159】
図24は、無線タグ1の部分の拡大図で、(a)は、アンテナ長変更用導電体パッチ71の接続前の初期状態を示し、(b)は、アンテナ長変更用導電体パッチ71を電気的に接続し、アンテナの長さを延長した状態を示し、(c)は、一旦延長したアンテナの長さを、アンテナ長変更用導電体パッチ71をさらに電気的に接続し、アンテナの長さを短縮した状態を示している。
【0160】
図24の(a)に示すように、アンテナ長変更用導電体パッチ71は、アンテナ13の直線部から、導電体パッチを格子状に2次元配列したもので、アンテナ13を構成する導電体及びアンテナ長変更用導電体パッチ71同士と、例えば0.01〜0.1mm程度の一定の狭い間隔をおいて複数個配置している。前記アンテナ長変更用導電体パッチ71はアンテナ13を構成する導電体と同じものである。
【0161】
この一定の狭い間隔を覆う部位をアンテナ長変更用導電体吐出予定部位72とし、このアンテナ長変更用導電体吐出予定部位72に、インクジェット印刷装置37から導電体材料を含む溶液を吐出してアンテナ長変更用導電体パターン73を形成し、アンテナ長の変更を行うものである。
【0162】
図24の(a)に示すように、初期状態のアンテナ13の長さLc0は、アンテナ13の片翼の長さを加算したものを基準とし、それを2倍することで求めることができる。すなわち、片翼の長さを図に示すようにL4とすると、Lc0=2×L4、となる。
また、図24の(b)に示すように、第1段階としてアンテナ長変更用導電体パターン73を図のように形成してアンテナ13の両翼の先端をアンテナ長変更用導電体パッチ71によって渦を巻くように延長すると、第1段階でのアンテナ13の長さLc1は、略2×(L0+H0+L00+H4)、となり、初期状態のアンテナ13の長さLc0より充分に延長される。
【0163】
また、図24の(c)に示すように、第2段階として第1段階で接続したアンテナ長変更用導電体パッチ71で囲まれた部分のアンテナ長変更用導電体パッチ71を、アンテナ長変更用導電体パターン73を形成して接続すると、第2段階でのアンテナ13の長さLc2は、略2×(L1+H5+L11)、となり、L11<L00、H4=0により第1段階でのアンテナ13の長さLc1より短縮される。
このように、段階的にアンテナ13の長さを増減変更できる。なお、アンテナの長さを変更する接続パターンは図24の(b)、(c)に示すパターンに限定するものではない。
【0164】
また、アンテナ長変更用導電体パッチ71は、図24に示す波長短縮材料吐出予定部位24に対して形成される波長短縮層パターン25を併用すると、アンテナ内を流れる高周波電流の周波数の半波長とアンテナ長の一致に対して微調整が可能になる。さらに、アンテナ13の短縮と波長の短縮は、互いに相反する方向なので両方向調整アプローチが可能になる。また、アンテナ13の延長も可能である。従って、アンテナ長変更用導電体パッチ71からなるパターンは、アンテナ延長用導電体パッチ51からなるパターンとアンテナ短縮用導電体パッチ61からなるパターンの機能と効果を合わせ持つことになり、アンテナ調整の速度とフレキシビリティを一層向上させることができる。
【0165】
(第6の実施の形態)
この実施の形態は無線タグ1のスリット14の形状を変形してアンテナ13のインピーダンスと無線ICチップ12の入力インピーダンスの整合を図るものについて述べる。なお、前述した実施の形態と同一の部分には同一の符号を付し詳細な説明は省略する。また、この実施の形態で使用する無線タグ調整システムの構成は基本的には前述した第1の実施の形態と同様であり、図8及び図9の構成のものを使用する。
【0166】
図25は、無線タグ1のスリット14を形成した部分の拡大図で、(a)は、スリット変形用導電体パッチ81の接続前の初期状態を示し、(b)は、スリット変形用導電体パッチ81を電気的に接続し、スリットの長さを短縮した第1段階を示し、(c)は、スリット変形用導電体パッチ81をさらに電気的に接続し、スリットの幅を短縮した第2段階を示している。
【0167】
図25の(a)に示すように、スリット変形用導電体パッチ81は、スリット14に導電体パッチを格子状に2次元配列したもので、アンテナ13を構成する導電体及びスリット変形用導電体パッチ81同士と、例えば0.01〜0.1mm程度の一定の狭い間隔をおいて、複数個配置している。前記スリット変形用導電体パッチ81はアンテナ13を構成する導電体と同じものである。
【0168】
この一定の狭い間隔を覆う部位をスリット変形用導電体吐出予定部位82とし、このスリット変形用導電体吐出予定部位82にインクジェット印刷装置37から導電体材料を含む溶液を吐出してスリット変形用導電体パターン83を形成し、スリットの変形を行うものである。
【0169】
図25の(a)に示すように、初期状態では、スリット長Ls0=L6、スリット幅Hs0=H6になっている。そして、第1段階としてスリット変形用導電体パターン82を形成して1列目のスリット変形用導電体パッチ81をアンテナ13に接続すると、図25の(b)に示すように、スリット長だけが短縮される。この第1段階のときのスリット長Ls1は、L7(<L6)となり、スリット幅Hs1は、H6のままとなる。
【0170】
また、第2段階としてスリット変形用導電体パターン82を形成して2列目の上下のスリット変形用導電体パッチ81をアンテナ13及び1列目のスリット変形用導電体パッチ81に接続すると、スリット幅だけが短縮される。この第2段階のときのスリット長Ls2は、L7のままであるが、スリット幅Hs2は、H7(<H6)に短縮される。このように、段階的にスリットの形状を変更できる。なお、スリットの形状を変更する接続パターンは図25の(b)、(c)に示すパターンに限定するものではない。
【0171】
スリット14は、その周囲のアンテナ13の導電体や基板11と分布定数回路を構成しており、例えば、スリット長に沿うアンテナ部分及びその周囲にインダクタンスLが存在し、スリット幅にあたる基板11の部分及びその周囲にキャパシタンスCが存在している。そこで、無線ICチップ12の入力インピーダンスとアンテナ13のインピーダンスとの整合は、以下の方法により、アンテナ13のインピーダンスを調整することで実施される。
【0172】
図25の(b)に示すように、スリット長が短縮すると、スリット14におけるインダクタンスLが減少し、アンテナ13のインピーダンスが減少する。また、図25の(c)に示すように、スリット幅が短縮するとスリット14におけるキャパシタンスCが増加し、アンテナ13のインピーダンスが減少する。
【0173】
スリット変形用導電体パッチ81は、段階的にスリット14の形状を変更できるので、大きな調整量を必要とする場合には、調整時間が短縮される。しかしながら、スリット変形用導電体パッチ81のインピーダンス調整の方向は、アンテナ13のインピーダンスを減少させる一方向だけであり、しかも、段階的なインピーダンスの減少となる。このため、アンテナ13のインピーダンスを増加させ、あるいは減少させる双方向が可能で、かつ微小調整量が実現できる磁性体パターン17及び誘電体パターン19の形成と、スリット変形用導電体パッチ81によるスリット14形状の変更を併用することが望ましい。これによりインピーダンス整合の速度とフレキシビリティが増加する。
【0174】
なお、認識対象物21が加熱工程や浸漬工程に耐えられる場合には、無線タグ調整システムを用いてアンテナ13の導電体部分を初期状態から形成することは可能である。この場合、無線タグ調整システムは、加熱工程を施す加熱炉や浸漬工程を施す無電界メッキ槽、あるいは導電体吐出予定部位のみを局部的に無電界メッキ用薬液に浸漬させる装置等を付加することになる。
【0175】
このような、無線タグ調整システムで、認識対象物21が加熱工程や浸漬工程に耐えられない場合には、無線タグ単体を基板11上に形成し、認識対象物21に貼り付けることで無線タグ付き認識対象物を形成する。
【0176】
無線タグ調整システムは、認識対象物21に貼りついていない無線タグ単体の調整システムとして利用することもできる。この場合は、予め実使用状態として想定した認識対象物に無線タグを貼り付けた状態で調整データを収集し、その調整データに基づいて導電体材料を含有した溶液インク、誘電性材料を含有した溶液インク、磁性材料を含有した溶液インクの吐出を行い、アンテナの初期形成および調整を実施する。従って、無線タグ単体に対しても高速で正確な調整ができる。
【0177】
インクジェット印刷装置37で導電体材料を吐出して、集積回路である無線ICチップ12とアンテナ13を電気的に接続することにより、無線タグ1への集積回路である無線ICチップ12の実装が可能になる。また、インクジェット印刷装置37で半導電体材料を吐出して必要な加熱工程等を実施すれば、無線ICチップ12を基板11上、もしくは認識対象物21上に直接形成することができる。
この場合、実装もしくは形成された無線ICチップ12にはデータが書き込まれていないので、データを書き込むときには無線タグの調整システムに無線タグへのデータ書込み装置を付加することになる。
【0178】
また、無線タグの調整システムは、インクジェット印刷装置37の駆動回路を有しているので、イメージ書込み用のインクジェットヘッドも搭載である。この場合、無線タグ1および認識対象物21上に、イメージやメッセージを書き込むことができる。例えば、物流の末端や中間点等、様々な現場での無線タグ調整システムの使用に対応するため、認識対象物21を認識するためのバーコードや調整データ、調整年月日、無線タグ内の情報の印刷等が可能である。
【図面の簡単な説明】
【0179】
【図1】本発明の第1の実施の形態に係る無線タグの基本的な構成を示す図で、(a)は平面図、(b)は側面図。
【図2】同実施の形態における無線タグに保護層を形成した変形例を示す一部断面した側面図。
【図3】同実施の形態において無線タグに磁性体パターン、誘電体パターン及び波長短縮層パターンを形成した状態を示す図で、(a)は平面図、(b)は(a)のA−A断面図。
【図4】図3において無線タグに保護層を形成した変形例を示す断面図。
【図5】同実施の形態において認識対象物に無線タグを付けた状態を示す斜視図。
【図6】同実施の形態において無線タグに想定する波長短縮材料吐出予定部位の変形例を示す平面図。
【図7】図6の変形例において磁性体パターン、誘電体パターン及び波長短縮層パターンを形成した状態を示す図で、(a)は平面図、(b)は(a)のB−B断面図。
【図8】同実施の形態で使用する無線タグ調整システムの構成を示す斜視図。
【図9】同無線タグ調整システムの制御構成を示すブロック図。
【図10】同無線タグ調整システムの制御用コンピュータが実行するアンテナ調整基本アルゴリズムを示す流れ図。
【図11】図10のアンテナ調整基本アルゴリズムにおける調整パターン計算ステップの内部処理を示す流れ図。
【図12】図11の調整パターン計算ステップにおけるインピーダンス整合調整パターン算出処理の内部処理を示す流れ図。
【図13】図11の調整パターン計算ステップにおけるアンテナ共振調整パターン算出処理の内部処理を示す流れ図。
【図14】本発明の第2の実施の形態に係る無線タグの基本的な構成を示す平面図。
【図15】同実施の形態においてアンテナ延長用導電体パターンによりアンテナ延長するときの第1段階を示す図で、(a)は部分拡大平面図、(b)は(a)のE1−E1断面図。
【図16】同実施の形態においてアンテナ延長用導電体パターンによりアンテナ延長するときの第2段階を示す図で、(a)は部分拡大平面図、(b)は(a)のE2−E2断面図。
【図17】同実施の形態においてアンテナ延長用導電体パターンによりアンテナ延長するときの第3段階を示す図で、(a)は部分拡大平面図、(b)は(a)のE3−E3断面図。
【図18】本発明の第3の実施の形態に係る無線タグの基本的な構成を示す平面図。
【図19】同実施の形態においてアンテナ延長用導電体パッチによりアンテナ延長するときの第1段階を示す図で、(a)は部分拡大平面図、(b)は(a)のG1−G1断面図。
【図20】同実施の形態においてアンテナ延長用導電体パッチによりアンテナ延長するときの第2段階を示す図で、(a)は部分拡大平面図、(b)は(a)のG2−G2断面図。
【図21】同実施の形態においてアンテナ延長用導電体パッチによりアンテナ延長するときの第3段階を示す図で、(a)は部分拡大平面図、(b)は(a)のG3−G3断面図。
【図22】本発明の第4の実施の形態に係るアンテナ短縮用導電体パッチによりアンテナ短縮するときの部分拡大平面図で、(a)は初期状態を示す図、(b)は第1段階を示す図。
【図23】図22と同じくアンテナ短縮用導電体パッチによりアンテナ短縮するときの部分拡大平面図で、(a)は第2段階を示す図、(b)は第3段階を示す図。
【図24】本発明の第5の実施の形態に係るアンテナ長変更用導電体パッチによりアンテナ長変更するときの部分拡大平面図で、(a)は初期状態を示す図、(b)は第1段階を示す図、(c)は第2段階を示す図。
【図25】本発明の第6の実施の形態に係る無線タグのスリットをスリット変形用導電体パッチにより変形するときの部分拡大平面図で、(a)は初期状態を示す図、(b)は第1段階を示す図、(c)は第2段階を示す図。
【符号の説明】
【0180】
1…無線タグ、11…基板、12…無線ICチップ、13…アンテナ、14…スリット、17…磁性体パターン、19…誘電体パターン、21…認識対象物、23…波長短縮層パターン、33…リーダ・アンテナ、35…質問器、37…インクジェット印刷装置、42…制御用コンピュータ。

【特許請求の範囲】
【請求項1】
アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグに対して、
前記無線タグと無線通信を行って所定の通信特性を測定する通信特性測定ステップと、
この通信特性測定ステップで測定した通信特性に基づいてアンテナ調整パターンを算出する調整パターン算出ステップと、
この調整パターン算出ステップで算出したアンテナ調整パターンに従って、前記無線タグのアンテナ上及びアンテナの周囲の一方又は両方に、インクジェット印刷装置を使用して、誘電体物質の吐出、磁性体物質の吐出、導電体物質の吐出の1又は複数を組み合わせて調整パターンを形成する調整パターン形成ステップと、
からなる工程を1回又は複数回実行して無線タグのアンテナを調整することを特徴とする無線タグ調整方法。
【請求項2】
アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグを、基板を介してあるいは直接、認識対象物に付けた状態で、
前記無線タグと無線通信を行って所定の通信特性を測定する通信特性測定ステップと、
この通信特性測定ステップで測定した通信特性に基づいてアンテナ調整パターンを算出する調整パターン算出ステップと、
この調整パターン算出ステップで算出したアンテナ調整パターンに従って、前記無線タグのアンテナ上及びアンテナの周囲の一方又は両方に、インクジェット印刷装置を使用して、誘電体物質の吐出、磁性体物質の吐出、導電体物質の吐出の1又は複数を組み合わせて調整パターンを形成する調整パターン形成ステップと、
からなる工程を1回又は複数回実行して無線タグのアンテナを調整することを特徴とする無線タグ調整方法。
【請求項3】
アンテナ及びこのアンテナに接続した無線ICチップからなる無線タグが、基板を介してあるいは直接付された認識対象物と、
前記無線タグと無線通信を行って所定の通信特性を測定する通信特性測定手段と、
この通信特性測定装置で測定した通信特性に基づいてアンテナ調整パターンを算出する調整パターン算出手段と、
この調整パターン算出手段が算出したアンテナ調整パターンに従って、前記無線タグのアンテナ上及びアンテナの周囲の一方又は両方に、誘電体物質の吐出、磁性体物質の吐出、導電体物質の吐出の1又は複数を組み合わせて調整パターンを印刷形成するインクジェット印刷装置と、
からなり、前記通信特性測定手段のアンテナとインクジェット印刷装置を前記無線タグに対して選択的に対向させることを特徴とする無線タグ調整システム。
【請求項4】
基板上にアンテナを配置すると共にこのアンテナに接続した無線ICチップを配置した無線タグにおいて、
前記アンテナ上及びアンテナ周囲における前記基板上の一方又は両方に、誘電体物質、磁性体物質、導電体物質の1又は複数を組み合わせて前記アンテナの調整パターンを形成したことを特徴とする無線タグ。
【請求項5】
認識対象物上に直接、アンテナを配置すると共にこのアンテナに接続した無線ICチップを配置した無線タグにおいて、
前記アンテナ上及びアンテナ周囲における前記認識対象物上の一方又は両方に、誘電体物質、磁性体物質、導電体物質の1又は複数を組み合わせて前記アンテナの調整パターンを形成したことを特徴とする無線タグ。
【請求項6】
無線ICチップに接続したアンテナにインピーダンス整合回路を形成するスリットを設け、このスリット部位に誘電体物質でアンテナの調整パターンを形成したことを特徴とする請求項4又は5記載の無線タグ。
【請求項7】
無線ICチップに接続したアンテナにインピーダンス整合回路を形成するスリットを設け、このスリットの外周部のアンテナ上に磁性体物質でアンテナの調整パターンを形成したことを特徴とする請求項4又は5記載の無線タグ。
【請求項8】
基板上にアンテナを配置すると共にこのアンテナに接続した無線ICチップを配置した無線タグにおいて、
前記アンテナの先端部あるいは周囲の基板上に、このアンテナと同じ導電体からなる所定サイズの導電体パッチを1つ又は複数、前記アンテナ及び隣接する導電体パッチと所定の間隔を開けて配置し、前記アンテナとの間隔、あるいは前記アンテナとの間隔と隣接する導電体パッチとの間隔の両方に、導電体パターンを選択的に形成して前記アンテナの長さを調整することを特徴とする無線タグ。
【請求項9】
アンテナの先端に1つ又は複数の導電体パッチを、前記アンテナ及び隣接する導電体パッチと所定の間隔を開けて直列に配置したことを特徴とする請求項8記載の無線タグ。
【請求項10】
複数の導電体パッチを、前記アンテナ及び隣接する導電体パッチと所定の間隔を開けて格子状に2次元配置したことを特徴とする請求項8記載の無線タグ。
【請求項11】
無線ICチップに接続したアンテナにインピーダンス整合回路を形成するスリットを設け、このスリット内に1つ又は複数の導電体パッチを、前記アンテナ及び隣接する導電体パッチと所定の間隔を開けて配置したことを特徴とする請求項8記載の無線タグ。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2007−156632(P2007−156632A)
【公開日】平成19年6月21日(2007.6.21)
【国際特許分類】
【出願番号】特願2005−348099(P2005−348099)
【出願日】平成17年12月1日(2005.12.1)
【出願人】(000003562)東芝テック株式会社 (5,631)
【Fターム(参考)】