説明

無線通信装置および無線通信方法。

【課題】符号化方式を用いてOFDMAで通信する場合に、従来よりも効率および信頼性の高い無線通信装置および無線通信方法を提供する。
【解決手段】通信装置(100)は、通信フレームにおいてシンボル処理を行う処理部(160)、伝搬路の変動状態を示す値を検出する検出部(120)、時間軸方向へ所定数のシンボルの組毎にシンボル処理を行う場合に未処理となるシンボルを、変動状態を示す値に応じて、制御用シンボルへ変更するように処理部(160)を制御するか、未処理となるシンボルに対して周波数軸方向へシンボル処理を行うように処理部(160)を制御する変更処理部(170)、制御後の通信フレームを送信する送信部(110)を備える。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)を採用した無線通信装置および無線通信方法に関し、特に、他の通信装置にSTBC(Space Time Block Coding:時空間ブロック符号)方式またはSFBC(Space Frequency Block Coding:周波数空間ブロック符号)方式でデータシンボルを送信する場合に、リソースを有効活用しさらにチャネル推定精度を向上させた、従来よりも効率および信頼性の高い無線通信装置および無線通信方法に関する。
【背景技術】
【0002】
WiMAX(Worldwide Interoperability for Microwave Access)、UMB(Ultra Mobile Broadband)、次世代PHS等で採用されているOFDMA(Orthogonal Frequency Division Multiple Access:直交周波数分割多元接続)方式(またはOFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)方式)の無線通信システムでは、マルチキャリアを使用して、通信速度およびマルチパスフェージングへの耐性の向上を図っている。
【0003】
上記OFDMA方式を用いる無線通信では、送信側(基地局)は、フレームを用いて受信側(端末)と通信を行う。図2は、この無線通信で用いられるフレームの一例を示す図である。図において、横軸は時間、縦軸は周波数を表す。図のように、フレームは、時間軸方向および周波数方向に送信すべきデータシンボルおよびパイロットシンボルを配置した、複数のスロットから成る。OFDMA方式では、図のような時間−周波数の全領域を、上述したスロット(またはタイル)と呼ばれる所定数のシンボルの集合に分割し、そのスロットを、単一のユーザに割り当てている。図に示すように、スロットは、規格によって決まる所定数のデータシンボルおよびパイロットシンボルによって構成され、チャネル推定、重み付け、および各シンボルに対する処理(シンボル処理、詳細は後述する。)等は、このスロット単位で行われる。
【0004】
また、無線通信では、複数の送信アンテナを用いて1つの送信情報系列を送信することで、フェージングの有害な影響を削減して、通信範囲を拡大したり、信頼性を向上させたりする送信ダイバーシチ技術が多数開発されている。この送信ダイバーシチの代表的なものに、STBC(Space Time Block Coding:時空間ブロック符号)方式がある(特許文献1を参照されたい。)。STBCは主にモビリティに対する改善方法として、WiMAXやLTE(Long Term Evolution)、UMBといった規格にも盛り込まれている技術であり、特に、Alamouti方式が有名である。ここで、STBCについて、Alamouti方式を例にとり説明する。
【0005】
図24は、STBCによるシンボル処理を説明する図である。図24は、図2に示すスロットに含まれるシンボル構成の一部を示す。Alamouti方式では、図に示すように、時間的に隣接する2つのシンボルを、アンテナ毎に組み替えて送信を行う。図の例において、時間的に隣接する2つのシンボル(s1,s3)の組ST1(図24(a)参照)について説明する。図24(b)に示すように、時間1において、送信側のアンテナ1およびアンテナ2は、それぞれ、シンボルs1およびs3を送信し、時間2において、シンボル−s3およびs1を送信する。ここで、*は共役複素数を表す。シンボル(s2,s4)の組ST2についても同様に、時間1において、送信側のアンテナ1およびアンテナ2は、それぞれ、シンボルs2およびs4を送信し、時間2において、シンボル−s4およびs2を送信する。受信側では、同じく送信側から送信されるパイロットシンボルから得られるチャネル情報を用いて、受信したシンボルをデコードする。
【0006】
STBC方式は時間軸方向にシンボルを組み替えるが、これを周波数軸方向に隣接するシンボルで行うものがSFBC(Space Frequency Block Code:空間周波数ブロック符号化)方式、時間軸および周波数軸方向の両方で行うものがSTFBC(space-time-frequency block code:時空間周波数ブロック符号化)方式である。SFBCおよびSTFBCによるシンボル処理を、それぞれ図25および26に示す。SFBCでは、図25(a)における周波数軸方向に隣接する2つのシンボル(s1,s2)の組SF1を送信する。送信側のアンテナ1およびアンテナ2は、同図(b)に示すように、周波数1において、それぞれ、シンボルs1およびs2を送信し、周波数2において、シンボル−s2およびs1を送信する。STFBCでは、図26(a)における時間軸方向および周波数軸方向に隣接する4つのシンボル(s1,s2,s3,s4)の組STF1を、送信アンテナ1〜4を用いて送信する。アンテナ1〜4は、それぞれ、時間1および周波数1において、s1,s3,s2,s4を送信する。同様に、異なる時間と周波数との組み合わせで、アンテナ1〜4は、それぞれ異なるシンボルを送信する。
【0007】
図23に、上述した符号化方式を採用して通信を行う、従来技術における通信装置(送信装置、基地局)のブロック構成の一例を示す。通信装置500は、複数のアンテナ(図の例では2本となっている。)ANT、送受信部510、制御部520、およびシンボル処理部530を備える。シンボル処理部530は、上述したSTBC等のシンボル処理を行う。送受信部510は、アンテナANTを介して受信側(ユーザ端末等)とデータの送受信を行う。制御部520は、各部の制御を司る。
【0008】
上述したように、OFDMAのシンボル処理はスロット単位で行われるが、STBC等の符号化を行うには、必ず隣接した2シンボル以上で処理を行わなければならない。従って、符号化を行う場合に、スロットのシンボル構成が符号化に対して最適化されていないとき、すなわち、例えばSTBCのようなダイバーシチを行わない従来のシングルアンテナでの送信に対して最適化されているときに、シンボルを埋めることが出来ない(スロット内の全てのシンボルに対して符号化を実行出来ない)といった問題が発生する恐れがある。このことを、図を用いて説明する。図4は、単一のスロットにおいてSTBCを行った場合のシンボル構成を示す図である。図のように、STBCは、太線で囲った時間軸方向に隣接する2つのシンボルに対して適用される。その結果、図において「R」を付したシンボルが、「余りのシンボル」、すなわち未処理のシンボルとなってしまう。未処理のシンボルは周波数資源(リソース)を浪費し、伝送効率およびスループットを低下させるという問題がある。また、受信側ではチャネル情報を用いてデコードを行うため、STBC等の符号化を用いた通信の信頼性や精度は、チャネル推定の精度に強く依存する。そのため、受信側(ユーザ端末等)の移動速度が速くチャネル推定の精度が落ちると、フェージング耐性等の符号化の効果が減少してしまう。また、STBCはモビリティに対して効果が高いが、逆に、静止状態にある場合は効果がないという欠点もある。
【0009】
上述したSTBCやSFBCを用いてマルチキャリア方式で通信を行う従来技術として、特許文献2に、STBCを用いた通信において、マルチパス環境下で送信側又は受信側が高速に移動する場合に、パイロット信号を用いたチャネル推定行列を送信側又は受信側の移動速度を考慮して位相補正し、チャネル推定精度の向上を図る技法が開示されている。
【0010】
【特許文献1】特表2004−530330号公報
【特許文献2】特開2007−081908号公報
【発明の開示】
【発明が解決しようとする課題】
【0011】
しかしながら、特許文献2の技術では、マルチパスおよび送受信機の高速移動により、パイロット信号自体が受信できないおそれがある。また、STBCを用いる場合の、未処理のシンボルの存在によるスループットの低下と、その問題への対策については記載されていない。本発明の目的は、上述した諸課題を解決し、STBC方式またはSFBC方式のような符号化方式を用いてデータシンボルを送信する場合に、リソースを有効活用し、さらにチャネル推定精度を向上させた、従来よりも効率および信頼性の高い無線通信装置および無線通信方法を提供することにある。
【課題を解決するための手段】
【0012】
上述した課題を解決すべく、第1の発明による無線通信装置は、
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で(直行周波数分割多重(OFDM)または直交周波数分割多元接続(OFDMA)で)通信を行う通信装置(送信装置)であって、
前記スロット毎にシンボル処理を行う処理部と、
前記他の通信装置と自装置との間の伝搬路(チャネル)の変動状態を示す値を検出する検出部と、
前記処理部によりスロット毎に時間軸方向へ所定数のシンボルの組毎にシンボル処理(STBC)が行われる場合に、単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて、制御用シンボル(パイロットシンボル)へ変更するように前記処理部を制御する、あるいは、前記未処理となるシンボルに対して周波数軸方向へシンボル処理を行うように前記処理部を制御する変更処理部と、
前記変更処理部による制御後のスロットを含む通信フレームを前記他の通信装置へ送信する送信部と、
を備えることを特徴とする。
【0013】
また、第2の発明による無線通信装置は、
(所定の値を格納する記憶部をさらに備え、)
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボルを制御用シンボルへ変更するように前記処理部を制御し、前記変動状態を示す値が所定の値に満たない場合には、前記未処理となるシンボルに対して周波数軸方向へシンボル処理を行うように前記処理部を制御する、
ことを特徴とする。
【0014】
また、第3の発明による無線通信装置は、
前記変動状態を示す値は、前記他の通信装置と自装置との間の相対速度またはドップラー周波数である、
ことを特徴とする。
【0015】
また、第4の発明による無線通信装置は、
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボル以外のシンボルも制御用シンボルへ変更するように前記処理部をさらに制御し、
前記処理部は、前記未処理となるシンボルおよび/または前記変更処理部による変更により新たに未処理となるシンボルに対して時間軸方向へのシンボル処理を行う、
ことを特徴とする。
【0016】
また、第5の発明による無線通信装置は、
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で(直行周波数分割多重(OFDM)または直交周波数分割多元接続(OFDMA)で)通信を行う通信装置(送信装置)であって、
前記スロット毎にシンボル処理を行う処理部と、
前記他の通信装置と自装置との間の伝搬路の変動状態を示す値を検出する検出部と、
前記処理部により単一のスロットにおいて周波数軸方向へ所定数のシンボルの組毎にシンボル処理(SFBC)が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて、制御用シンボル(パイロットシンボル)へ変更するように前記処理部を制御するか、あるいは、当該未処理となるシンボルに対して時間軸方向へシンボル処理を行うように前記処理部を制御する変更処理部と、
前記変更処理部による制御後の通信フレームを前記他の通信装置へ送信する送信部と、
を備えることを特徴とする。
【0017】
また、第6の発明による無線通信装置は、
(所定の値を格納する記憶部をさらに備え、)
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボルを制御用シンボルへ変更するように前記処理部を制御し、前記変動状態を示す値が所定の値に満たない場合には、前記未処理となるシンボルに対して時間軸方向へシンボル処理を行うように前記処理部を制御する、
ことを特徴とする。
【0018】
また、第7の発明による無線通信装置は、
前記変動状態を示す値は、前記他の通信装置と自装置との間の相対速度またはドップラー周波数である、
ことを特徴とする。
【0019】
また、第8の発明による無線通信装置は、
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボル以外のシンボルも制御用シンボルへ変更するように前記処理部を制御し、
前記処理部は、前記未処理となるシンボルおよび/または前記変更処理部による変更により未処理となるシンボルに対して周波数軸方向へのシンボル処理を行う、
ことを特徴とする。
【0020】
上述したように本発明の解決手段を装置として説明してきたが、本発明はこれらに実質的に相当する方法、プログラム、プログラムを記録した記憶媒体としても実現し得るものであり、本発明の範囲にはこれらも包含されるものと理解されたい。なお、方法やプログラムの各ステップは、データの処理においては必要に応じて、CPU、DSPなどの演算処理装置を使用するものであり、入力したデータや加工・生成したデータなどをHDD、メモリなどの記憶装置に格納するものである。
【0021】
例えば、本発明を方法として実現させた第9の発明による無線通信方法は、
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で(直行周波数分割多重(OFDM)または直交周波数分割多元接続(OFDMA)で)通信を行う通信方法(送信方法)であって、
前記スロット毎にシンボル処理を行うシンボル処理ステップと、
前記他の通信装置と自装置との間の伝搬路(チャネル)の変動状態を示す値を検出する検出ステップと、
前記シンボル処理ステップにて単一のスロットにおいて時間軸方向へ所定数のシンボルの組毎にシンボル処理(STBC)が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて、制御用シンボル(パイロットシンボル)へ変更するように前記処理部を制御するか、あるいは、当該未処理となるシンボルに対して周波数軸方向へシンボル処理を行うように前記処理部を制御する制御ステップと、
前記制御ステップによる制御後の通信フレームを前記他の通信装置へ送信する送信ステップと、
を含むことを特徴とする。
【0022】
また、第10の発明による無線通信方法は、
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で(直行周波数分割多重(OFDM)または直交周波数分割多元接続(OFDMA)で)通信を行う通信方法(送信方法)であって、
前記スロット毎にシンボル処理を行うシンボル処理ステップと、
前記他の通信装置と自装置との間の伝搬路(チャネル)の変動状態を示す値を検出する検出ステップと、
前記シンボル処理ステップにて単一のスロットにおいて周波数軸方向へ所定数のシンボルの組毎にシンボル処理(SFBC)が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて、制御用シンボル(パイロットシンボル)へ変更するように前記処理部を制御するか、あるいは、当該未処理となるシンボルに対して時間軸方向へシンボル処理を行うように前記処理部を制御する制御ステップと、
前記制御ステップによる制御後の通信フレームを前記他の通信装置へ送信する送信ステップと、
を含むことを特徴とする。
【発明の効果】
【0023】
本発明により、直交周波数分割多元接続(OFDMA:Orthogonal Frequency Division Multiple Access)を用い、他の通信装置にSTBC(時空間ブロック符号)方式またはSFBC(周波数空間ブロック符号)方式でデータシンボルを送信する場合に、リソースを有効活用しさらにチャネル推定精度を向上させた、従来よりも効率および信頼性の高い無線通信装置および無線通信方法を提供することができる。
【発明を実施するための最良の形態】
【0024】
以降、諸図面を参照しながら、本発明による無線通信装置の実施態様を詳細に説明する。図1(a)は、本発明の実施態様による無線通信システムの構成図である。図に示すように、無線通信システムは、主として送信機として機能する第1の通信装置(送信局、基地局)100、および主として受信機として機能する第2の通信装置(ユーザ端末)200から構成されている。同図(b)および(c)は、それぞれ、第1の通信装置および第2の通信装置のブロック構成の一例を示す図である。図1(b)に示すように、第1の通信装置100は、送受信部110、移動状態検出部120、判定部130、メモリ140、装置全体の制御を司る制御部150、シンボル処理部160、変更処理部170、通知部180、および2本のアンテナ群ANT1を具える。図1(c)のように、第2の通信装置200は、送受信部210、装置全体の制御を司る制御部220、およびアンテナANT2を具える。第1の通信装置100と第2の通信装置200との間では、通信フレームを用いた無線通信が行われる。
【0025】
移動状態検出部120は、送受信部110でアンテナ群ANT1を介して受信した、第2の通信装置200から送信された信号からドップラー周波数を検出し、検出したドップラー周波数を、移動情報として判定部130へ出力する。判定部130は、入力された移動情報に基づいて、スロット内のデータシンボルをパイロットシンボル(制御用シンボル)に変更するか否かを判定する。ここでは、ドップラー周波数がある閾値(所定値)を超えた場合に、データシンボルをパイロットシンボルに変更すると判定する。メモリ140は、判定部130の判定に用いる閾値を格納する。制御部150は、判定部130による判定結果に応じて、データシンボルの制御情報を変更処理部170へ出力する。変更処理部170は、入力された制御情報に基づきシンボル処理部160を制御する。なお、制御情報については後述する。
【0026】
(第1の実施例)
第1の実施例では、スロット内のデータシンボルにSTBCを適用した場合に、STBCのための組合せを作ることができないシンボル、すなわち余りのシンボルに対し、伝搬路(チャネル)の状態に応じて所定の処理を行う。例えば図4を参照すると、図のようにSTBCを行うべく組み合わせた、太線で囲った時間軸方向に隣接する2つのシンボルを、「STBCの1組」とする。すると、図において「R」を付したシンボルが、「余りのシンボル」、すなわち未処理のシンボルとなる。
【0027】
第1の実施例によるシンボル処理を、フローチャートおよびスロット内のシンボル構成図を用いて説明する。図3は、本発明の第1の実施例による、通信装置のシンボル処理を説明するフローチャートの一例である。また、図4〜9は、スロット内のシンボル構成の一例を示す図である。なお、図では単一のスロットのみ示しているが、同様のスロットが時間軸方向および周波数軸方向に隣接している。まず、ステップS11にて、第1の通信装置(基地局)100における送受信部110が、アンテナ群ANT1を介して第2の通信装置(端末)200からの信号(搬送波)を受信し、移動状態検出部120が、受信した搬送波から第2の通信装置200の移動情報を取得(検出)する。この移動情報は、例えば搬送波のドップラー周波数、または通信装置間の相対速度(第1の通信装置100が停止している場合は、第2の通信装置200の移動速度)とすることができる。ステップS12にて、判定部130が、移動状態検出部120により検出された移動情報の値が閾値を超えているか否かを判定する。この閾値は、メモリ140に予め格納された、チャネル推定の精度が低下する境界値(ドップラー周波数および/または相対速度の値)を、搬送波の周波数に対して定めたテーブルとすることができる。すなわち、移動情報の値が閾値を越えている場合は、端末200の移動速度が速く、チャネル推定の精度が低下する可能性があることを示す。従って、ステップS12にて移動情報の値が閾値を超えていると判定された場合、ステップS13へ進み、変更処理部170は、データシンボルをパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。
【0028】
次に、ステップS14にて、変更処理部170は、フレーム内のデータにSTBCを適用することによって発生する余りのシンボルの数を計算する。ステップS15にて、判定部130は、余りのシンボルがあるか否かを判定する。余りのシンボルがあると判定された場合は、ステップS16へ進み、変更処理部170は、データシンボルを余りのシンボルの数だけパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。次に、ステップS17へ進み、シンボル処理部160は、時間軸方向に既存のパイロットが位置しない位置にパイロットシンボルを配置する。ここで、パイロットシンボルの目的から、パイロットシンボルが送出されない期間は長くならないほうが好ましい。従って、ステップS17にて、シンボル処理部160は、パイロットシンボルが送出されない期間をほぼ等分するような位置に、新たにパイロットシンボルを配置する。またこのとき、パイロットシンボルを配置することによって減少するSTBCの組合せ数が最小となるようにする。
【0029】
図4および5を用いて、ステップS13〜S17を実行した場合のシンボル構成の変化について説明する。ステップS14にてスロットにSTBCを適用した場合に、図4のように10個の余りのシンボル「R」が発生するものとする。従って、ステップS17にて10個の追加のパイロットシンボルが配置される。このとき、追加のパイロットシンボルは、時間軸方向に既存のパイロットシンボルが位置しない、パイロットシンボルが送出されない期間をほぼ等分するような位置であって、パイロットシンボルを追加することによってSTBCの組合せ(図4の例では24組存在する。)の数が減少しても、その減少数が最小となるような位置に配置される。すなわち、パイロットシンボルが送信される回数を増やしてチャネル推定の精度を高めつつ、送信すべきデータの減少は最低限に抑えて、シンボル処理前(パイロットシンボルを追加する前)のスループットを維持する。従って、図4の例では、パイロットシンボルが送出されない期間を等分するような位置である、時間軸方向に左から4列目のシンボル位置の近くで、STBCの組合せが減少しない、時間軸方向に左から5列目のシンボル位置に、パイロットシンボルが10個追加される(図5を参照されたい。)。さらに、図5のように、新たなSTBCの組合せST10が作られる。なお、時間軸方向に左から3列目のシンボル位置にパイロットシンボルを追加してもよく、左から5列目のシンボル位置に追加するのと同様の効果を得ることができる。
【0030】
図3のフローチャートの説明に戻る。ステップS15にて、余りのシンボルがないと判定された場合は、ステップS19へ進み、変更処理部170は、データシンボルを所定の数だけパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。この所定の数とは、周波数軸方向に存在する既存のパイロット数に、STBCの1組のシンボル数(STBCを行うべく組み合わせたシンボルの数)を掛け合わせた数である。図6および7を用いて、ステップS13〜S15,S19およびS17を実行した場合のシンボル構成の変化について説明する。ステップS14にてスロットにSTBCを適用した場合に、図6のように余りのシンボルが発生しないものとする。従って、ステップS19へ進み、追加すべきパイロットシンボルの所定の数が設定される。図6の例では、所定の数は、周波数軸方向に位置する既存のパイロット数(3)×STBCの1組のシンボル数(2)=6となる。従って、ステップS17にて6個の追加のパイロットシンボルが配置される。ステップS17におけるパイロットシンボルの追加位置は、上述と同様の処理で決定されるため説明を省略する。図6の例では、図7のように6個の追加のパイロットシンボル「P」が配置される。
【0031】
図3のフローチャートの説明に再度戻り、ステップS12にて移動情報の値が閾値を超えていないと判定された場合について説明する。ステップS12にて移動情報の値が閾値を超えていないと判定された場合、ステップS20へ進み、変更処理部170は、データシンボルをパイロットシンボルに変更しない旨(制御情報)をシンボル処理部160へ通知する。次に、ステップS21にて、変更処理部170は、フレーム内のデータにSTBCを適用することによって発生する余りのシンボルの数を計算する。ステップS22にて、判定部130は、余りのシンボルがあるか否かを判定する。余りのシンボルがあると判定された場合は、ステップS23へ進み、変更処理部170は、余りのシンボルでSFBCを行う旨(制御情報)を、シンボル処理部160へ通知する。ステップS24にて、シンボル処理部160は、変更処理部170の通知(制御情報)に基づきSTBCおよびSFBCを行う。ステップS22にて余りのシンボルがないと判定された場合は、ステップS25にて、変更処理部170は、STBCのみを行う旨(制御情報)をシンボル処理部160に通知する。ステップS26にて、シンボル処理部160は、変更処理部170の通知(制御情報)に基づきSTBCを行う。
【0032】
図4、8および9を用いて、ステップS20〜S26を実行した場合のシンボル構成の変化について説明する。ステップS21にてスロットにSTBCを適用した場合に、図4のように10個の余りのシンボル「R」が発生するものとする。従って、ステップS23にて、余りのシンボルでSFBCを行う旨が通知される。これは、SFBCを用いて、STBCでは余りとなるシンボルも送信することで、シンボル処理(余りのシンボルにSFBCを適用する処理)前よりもスループットを向上させることを目的とする。シンボル処理部160は、変更処理部170の通知(制御情報)に基づき、余りのシンボルでSFBCの組を作成する。これは、例えば図8に示すSFBCの組SF10のように作成することができる。なお、余りのシンボルをさらに有効活用しスループットを向上させるために、図9に示すようにSFBCの組SF11を作成することもできる。
【0033】
図3に示すフローチャートによるシンボル処理が終了すると、制御部150は、シンボル処理部160で作成した送信信号を送受信部110へ出力し、送受信部110は、アンテナ群ANT1を介して、入力された送信信号を送信する。なお、図1において第1の通信装置(基地局)100はアンテナを2本備えているが、本発明はこれに限られるものではない。例えば、2系統ある送信信号を重み付けするなどして、任意のアンテナ本数で送信することができるため、アンテナ本数は2本ではなく他の本数にすることもできる。
【0034】
また、判定部130により行われる判定(ステップS12,S15、およびS22)の結果に基づく変更処理部170の各通知制御は、判定後即時に実行されても、一定時間経過後に実行されてもよい。即時に実行される場合は、通知情報(データシンボルをパイロットに変更する旨や、余りのシンボル数だけパイロットシンボルに変更する旨などの情報)は、例えばWiMAX規格にあるMAPと呼ばれる制御情報領域で知らせることができる。また、一定時間経過後に実行される場合は、通知情報をまずデータとして第2の通信装置(端末)200へ送信し、後続する通信フレームから上述のシンボル変更処理を実行することができる。
【0035】
(第2の実施例)
第2の実施例では、スロット内のデータシンボルにSFBCを適用した場合に、SFBCのための組合せを作ることができないシンボル(余りのシンボル)に対し、伝搬路(チャネル)の状態に応じて所定の処理を行う。例えば図11を参照すると、図のようにSFBCを行うべく組み合わせた、太線で囲った周波数軸方向に隣接する2つのシンボルを、「SFBCの1組」とする。すると、図において「R」を付したシンボルが、「余りのシンボル」、すなわち未処理のシンボルとなる。
【0036】
第2の実施例によるシンボル処理を、フローチャートおよびスロット内のシンボル構成図を用いて説明する。図10は、本発明の第2の実施例による、通信装置のシンボル処理を説明するフローチャートの一例である。また、図11〜15は、スロット内のシンボル構成の一例を示す図である。なお、図では単一のスロットのみ示しているが、同様のスロットが時間軸方向および周波数軸方向に隣接している。まず、ステップM11にて、第1の通信装置(基地局)100における送受信部110が、アンテナ群ANT1を介して第2の通信装置(端末)200からの信号(搬送波)を受信し、移動状態検出部120が、受信した搬送波から第2の通信装置200の移動情報を取得(検出)する。この移動情報は、例えば搬送波のドップラー周波数、または通信装置間の相対速度(第1の通信装置100が停止している場合は、第2の通信装置200の移動速度)とすることができる。ステップM12にて、判定部130が、移動状態検出部120により検出された移動情報の値が閾値を超えているか否かを判定する。この閾値は、メモリ140に予め格納された、チャネル推定の精度が低下する境界値(ドップラー周波数および/または相対速度の値)を、搬送波の周波数に対して定めたテーブルとすることができる。ステップM12にて移動情報の値が閾値を超えていると判定された場合、ステップM13へ進み、変更処理部170は、データシンボルをパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。
【0037】
次に、ステップM14にて、変更処理部170は、フレーム内のデータにSFBCを適用することによって発生する余りのシンボルの数を計算する。ステップM15にて、判定部130は、余りのシンボルがあるか否かを判定する。余りのシンボルがあると判定された場合は、ステップM16へ進み、変更処理部170は、データシンボルを余りのシンボルの数だけパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。次に、ステップM17へ進み、シンボル処理部160は、周波数軸方向に既存のパイロットが位置しない位置にパイロットシンボルを配置する。ここで、パイロットシンボルの目的から、パイロットシンボルが送出されない周波数がは少ないほうが好ましい。従って、ステップM17にて、シンボル処理部160は、パイロットシンボルが送出されない周波数をほぼ等分するような位置に、新たにパイロットシンボルを配置する。またこのとき、パイロットシンボルを配置することによって減少するSFBCの組合せ数が最小となるようにする。
【0038】
図11および12を用いて、ステップM13〜M17を実行した場合のシンボル構成の変化について説明する。ステップM14にてスロットにSFBCを適用した場合に、図11のように12個の余りのシンボル「R」が発生するものとする。従って、ステップM17にて12個の追加のパイロットシンボルが配置される。このとき、追加のパイロットシンボルは、周波数軸方向に既存のパイロットシンボルが位置しない、パイロットシンボルが送出されない周波数帯をほぼ等分するような位置であって、パイロットシンボルを追加することによってSFBCの組合せ(図11の例では23組存在する。)の数が減少しても、その減少数が最小となるような位置に配置される。すなわち、パイロットシンボルが送信される周波数を増やしてチャネル推定の精度を高めつつ、送信すべきデータの減少は最低限に抑えて、シンボル処理前(パイロットシンボルを追加する前)のスループットを維持する。従って、図11の例では、パイロットシンボルが送出されない周波数帯を等分するような位置であり、周波数軸方向に上から3,7列目のシンボル位置の近くで、SFBCの組合せが減少しない、周波数軸方向に上から4,8列目のシンボル位置に、パイロットシンボルが4個追加される(図11を参照されたい。)。また、周波数軸方向に上から10列目の余りのシンボルも、パイロットシンボルに変更される。なお、周波数軸方向に上から2,6列目のシンボル位置にパイロットシンボルを追加しても、同様の効果を得ることができる。
【0039】
図10のフローチャートの説明に戻る。ステップM15にて、余りのシンボルがないと判定された場合は、ステップM19へ進み、変更処理部170は、データシンボルを所定の数だけパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。この所定の数とは、時間軸方向に存在する既存のパイロット数に、SFBCの1組のシンボル数(SFBCを行うべく組み合わせたシンボルの数)を掛け合わせた数である。図13および14を用いて、ステップM13〜M15,M19およびM17を実行した場合のシンボル構成の変化について説明する。ステップM14にてスロットにSFBCを適用した場合に、図13のように余りのシンボルが発生しないものとする。従って、ステップM19へ進み、追加すべきパイロットシンボルの所定の数が設定される。図13の例では、所定の数は、時間軸方向に位置する既存のパイロット数(4)×SFBCの1組のシンボル数(2)=8となる。従って、ステップM17にて8個の追加のパイロットシンボルが配置される。ステップM17におけるパイロットシンボルの追加位置は、上述と同様の処理で決定されるため説明を省略する。図13の例では、図14のように8個の追加のパイロットシンボル「P」が配置される。
【0040】
図10のフローチャートの説明に再度戻り、ステップM12にて移動情報の値が閾値を超えていないと判定された場合について説明する。ステップM12にて移動情報の値が閾値を超えていないと判定された場合、ステップM20へ進み、変更処理部170は、データシンボルをパイロットシンボルに変更しない旨(制御情報)をシンボル処理部160へ通知する。次に、ステップM21にて、変更処理部170は、フレーム内のデータにSFBCを適用することによって発生する余りのシンボルの数を計算する。ステップM22にて、判定部130は、余りのシンボルがあるか否かを判定する。余りのシンボルがあると判定された場合は、ステップM23へ進み、変更処理部170は、余りのシンボルでSTBCを行う旨(制御情報)を、シンボル処理部160へ通知する。ステップM24にて、シンボル処理部160は、変更処理部170の通知(制御情報)に基づきSFBCおよびSTBCを行う。ステップM22にて余りのシンボルがないと判定された場合は、ステップM25にて、変更処理部170は、SFBCのみを行う旨(制御情報)をシンボル処理部160に通知する。ステップM26にて、シンボル処理部160は、変更処理部170の通知(制御情報)に基づきSFBCを行う。
【0041】
図11および15を用いて、ステップM20〜M26を実行した場合のシンボル構成の変化について説明する。ステップM21にてスロットにSFBCを適用した場合に、図11のように12個の余りのシンボル「R」が発生するものとする。従って、ステップM23にて、余りのシンボルでSTBCを行う旨が通知される。これは、STBCを用いて、SFBCでは余りとなるシンボルも送信することで、シンボル処理(余りのシンボルにSTBCを適用する処理)前よりもスループットを向上させることを目的とする。シンボル処理部160は、変更処理部170の通知(制御情報)に基づき、余りのシンボルでSTBCの組を作成する。これは、例えば図15に示すSTBCの組ST20(図では単一のSTBCの組のみ符号を付している。)のように作成することができる。
【0042】
図10に示すフローチャートによるシンボル処理が終了すると、制御部150は、シンボル処理部160で作成した送信信号を送受信部110へ出力し、送受信部110は、アンテナ群ANT1を介して、入力された送信信号を送信する。なお、図1において第1の通信装置(基地局)100はアンテナを2本備えているが、本発明はこれに限られるものではない。例えば、2系統ある送信信号を重み付けするなどして、任意のアンテナ本数で送信することができるため、アンテナ本数は2本ではなく他の本数にすることもできる。
【0043】
また、判定部130により行われる判定(ステップM12,M15、およびM22)の結果に基づく変更処理部170の各通知制御は、判定後即時に実行されても、一定時間経過後に実行されてもよい。即時に実行される場合は、通知情報(データシンボルをパイロットに変更する旨や、余りのシンボル数だけパイロットシンボルに変更する旨などの情報)は、WiMAX規格にあるMAPと呼ばれる制御情報領域で知らせることができる。また、一定時間経過後に実行される場合は、通知情報をまずデータとして第2の通信装置(端末)200へ送信し、後続する通信フレームから上述のシンボル変更処理を実行することができる。
【0044】
(第3の実施例)
第3の実施例では、スロット内のデータシンボルにSTFBCを適用した場合に、STFBCのための組合せを作ることができないシンボル、すなわち余りのシンボルに対し、伝搬路(チャネル)の状態に応じて所定の処理を行う。例えば図18を参照すると、図のようにSTFBCを行うべく組み合わせた、太線で囲った時間軸方向および周波数軸方向に隣接する2つのシンボルを、「STFBCの1組」とする。すると、図において「R」を付したシンボルが、「余りのシンボル」、すなわち未処理のシンボルとなる。
【0045】
図16に、第3の実施例による無線通信システムの構成図およびブロック図の一例を示す。図16(a)に示すように、無線通信システムは、主として送信機として機能する第3の通信装置(送信局、基地局)300、および主として受信機として機能する第2の通信装置(ユーザ端末)200から構成されている。同図(b)および(c)は、それぞれ、第1の通信装置および第2の通信装置のブロック構成の一例を示す図である。ここで、図1(b)に示す第1の通信装置100と同一の構成部には同一の符号を付し、説明を省略する。第3の通信装置300は、4本のアンテナで構成されるアンテナ群ANT3を備える。
【0046】
第3の実施例によるシンボル処理を、フローチャートおよびスロット内のシンボル構成図を用いて説明する。図17は、本発明の第3の実施例による、通信装置のシンボル処理を説明するフローチャートの一例である。また、図18〜22は、スロット内のシンボル構成の一例を示す図である。なお、図では単一のスロットのみ示しているが、同様のスロットが時間軸方向および周波数軸方向に隣接している。まず、ステップN11にて、第3の通信装置(基地局)300における送受信部110が、アンテナ群ANT3を介して第2の通信装置(端末)200からの信号(搬送波)を受信し、移動状態検出部120が、受信した搬送波から第2の通信装置200の移動情報を取得(検出)する。この移動情報は、例えば搬送波のドップラー周波数、または通信装置間の相対速度とすることができる。ステップN12にて、判定部130が、移動状態検出部120により検出された移動情報の値が閾値を超えているか否かを判定する。この閾値は、メモリ140に予め格納された、チャネル推定の精度が低下する境界値(ドップラー周波数および/または相対速度の値)を、搬送波の周波数に対して定めたテーブルとすることができる。すなわち、移動情報の値が閾値を越えている場合は、端末200の移動速度が速く、チャネル推定の精度が低下する可能性があることを示す。従って、ステップN12にて移動情報の値が閾値を超えていると判定された場合、ステップN13へ進み、変更処理部170は、データシンボルをパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。
【0047】
次に、ステップN14にて、変更処理部170は、フレーム内のデータにSTBCを適用することによって発生する余りのシンボルの数を計算する。ステップN15にて、判定部130は、余りのシンボルがあるか否かを判定する。余りのシンボルがあると判定された場合は、ステップN16へ進み、変更処理部170は、データシンボルを余りのシンボルの数だけパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。次に、ステップN17へ進み、シンボル処理部160は、時間軸方向に既存のパイロットが位置しない位置にパイロットシンボルを配置する。ここで、パイロットシンボルの目的から、パイロットシンボルが送出されない期間は長くならないほうが好ましい。従って、ステップN17にて、シンボル処理部160は、パイロットシンボルが送出されない期間をほぼ等分するような位置に、新たにパイロットシンボルを配置する。またこのとき、パイロットシンボルを配置することによって減少するSTFBCの組合せ数が最小となるようにする。
【0048】
図18および19を用いて、ステップN13〜N17を実行した場合のシンボル構成の変化について説明する。ステップN14にてスロットにSTFBCを適用した場合に、図18のように22個の余りのシンボル「R」が発生するものとする。従って、ステップN17にて22個の追加のパイロットシンボルが配置される。このとき、追加のパイロットシンボルは、時間軸方向に既存のパイロットシンボルが位置しない、パイロットシンボルが送出されない期間をほぼ等分するような位置であって、パイロットシンボルを追加することによってSTFBCの組合せ(図18の例では9組存在する。)の数が減少しても、その減少数が最小となるような位置に配置される。すなわち、パイロットシンボルが送信される回数を増やしてチャネル推定の精度を高めつつ、送信すべきデータの減少は最低限に抑えて、シンボル処理前(パイロットシンボルを追加する前)のスループットを維持する。従って、図18の例では、パイロットシンボルが送出されない期間を等分するような位置である、時間軸方向に左から4列目のシンボル位置の近くで、STFBCの組合せが減少しない、時間軸方向に左から5列目のシンボル位置に、パイロットシンボルが10個追加される(図19を参照されたい。)。さらに、図19のように、新たなSTFBCの組合せSTF10が作られ、それ以外の余りのシンボルはパイロットシンボルに変更される。なお、時間軸方向に左から3列目のシンボル位置にパイロットシンボルを追加してもよく、左から5列目のシンボル位置に追加するのと同様の効果を得ることができる。
【0049】
図18のフローチャートの説明に戻る。ステップN15にて、余りのシンボルがないと判定された場合は、ステップN19へ進み、変更処理部170は、データシンボルを所定の数だけパイロットシンボルに変更する旨(制御情報)をシンボル処理部160へ通知する。この所定の数とは、周波数軸方向に存在する既存のパイロット数に、STFBCの1組のシンボル数(STFBCを行うべく組み合わせたシンボルの数)を掛け合わせた数である。図20および21を用いて、ステップN13〜N15,N19およびN17を実行した場合のシンボル構成の変化について説明する。ステップN14にてスロットにSTFBCを適用した場合に、図20のように余りのシンボルが発生しないものとする。従って、ステップN19へ進み、追加すべきパイロットシンボルの所定の数が設定される。図20の例では、所定の数は、周波数軸方向に位置する既存のパイロット数(2)×STFBCの1組のシンボル数(4)=8となる。従って、ステップN17にて8個の追加のパイロットシンボルが配置される。ステップN17におけるパイロットシンボルの追加位置は、上述と同様の処理で決定されるため説明を省略する。図20の例では、図21のように8個の追加のパイロットシンボル「P」が配置される。
【0050】
図18のフローチャートの説明に再度戻り、ステップN12にて移動情報の値が閾値を超えていないと判定された場合について説明する。ステップN12にて移動情報の値が閾値を超えていないと判定された場合、ステップN20へ進み、変更処理部170は、データシンボルをパイロットシンボルに変更しない旨(制御情報)をシンボル処理部160へ通知する。次に、ステップN21にて、変更処理部170は、フレーム内のデータにSTFBCを適用することによって発生する余りのシンボルの数を計算する。ステップN22にて、判定部130は、余りのシンボルがあるか否かを判定する。余りのシンボルがあると判定された場合は、ステップN23へ進み、変更処理部170は、余りのシンボルでSTBCおよび/またはSFBCを行う旨(制御情報)を、シンボル処理部160へ通知する。ステップN24にて、シンボル処理部160は、変更処理部170の通知(制御情報)に基づきSTFBC,STBCおよび/またはSFBCを行う。ステップN22にて余りのシンボルがないと判定された場合は、ステップN25にて、変更処理部170は、STFBCのみを行う旨(制御情報)をシンボル処理部160に通知する。ステップN26にて、シンボル処理部160は、変更処理部170の通知(制御情報)に基づきSTFBCを行う。
【0051】
図18および19を用いて、ステップN20〜N26を実行した場合のシンボル構成の変化について説明する。ステップN21にてスロットにSTFBCを適用した場合に、図18のように22個の余りのシンボル「R」が発生するものとする。従って、ステップN23にて、余りのシンボルでSTBCまたはSFBCを行う旨が通知される。これは、STBCおよび/またはSFBCを用いて、STFBCでは余りとなるシンボルも送信することで、シンボル処理(余りのシンボルにSTBCおよび/またはSFBCを適用する処理)前よりもスループットを向上させることを目的とする。シンボル処理部160は、変更処理部170の通知(制御情報)に基づき、余りのシンボルでSTBCまたはSFBCの組を作成する。これは、例えば図22に示すSTBCの組ST30、SFBCの組SF20のように作成することができる(なお、図ではそれぞれ1組のみに符号を付している。)。
【0052】
図17に示すフローチャートによるシンボル処理が終了すると、制御部150は、シンボル処理部160で作成した送信信号を送受信部110へ出力し、送受信部110は、アンテナ群ANT3を介して、入力された送信信号を送信する。なお、図16において第3の通信装置(基地局)300はアンテナを4本備えているが、本発明はこれに限られるものではない。例えば、4系統ある送信信号を重み付けするなどして、任意のアンテナ本数で送信することができるため、アンテナ本数は4本ではなく他の本数にすることもできる。
【0053】
また、判定部130により行われる判定(ステップN12,N15、およびN22)の結果に基づく変更処理部170の各通知制御は、判定後即時に実行されても、一定時間経過後に実行されてもよい。即時に実行される場合は、通知情報(データシンボルをパイロットに変更する旨や、余りのシンボル数だけパイロットシンボルに変更する旨などの情報)は、例えばWiMAX規格にあるMAPと呼ばれる制御情報領域で知らせることができる。また、一定時間経過後に実行される場合は、通知情報をまずデータとして第2の通信装置(端末)200へ送信し、後続する通信フレームから上述のシンボル変更処理を実行することができる。
【0054】
本発明によるシンボル処理の利点を再度述べる。本発明によれば、余りのシンボルを有効活用してスループットを向上させ、さらに、伝搬路の状態が悪くチャネル推定精度が低下する可能性がある場合に、パイロットシンボルを追加することでチャネル推定精度を維持することができるようになる。
【0055】
本発明を諸図面や実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形や修正を行うことが容易であることに注意されたい。従って、これらの変形や修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップなどに含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の手段やステップなどを1つに組み合わせたり、あるいは分割したりすることが可能である。
【図面の簡単な説明】
【0056】
【図1】本発明の実施態様による無線通信システムの構成図および無線通信装置のブロック図である。
【図2】無線通信で用いられるフレームを示す図である。
【図3】本発明の第1の実施例による、通信装置のシンボル処理を説明するフローチャートの一例である。
【図4】スロット内のシンボル構成の一例を示す図である。
【図5】スロット内のシンボル構成の一例を示す図である。
【図6】スロット内のシンボル構成の一例を示す図である。
【図7】スロット内のシンボル構成の一例を示す図である。
【図8】スロット内のシンボル構成の一例を示す図である。
【図9】スロット内のシンボル構成の一例を示す図である。
【図10】本発明の第2の実施例による、通信装置のシンボル処理を説明するフローチャートの一例である。
【図11】スロット内のシンボル構成の一例を示す図である。
【図12】スロット内のシンボル構成の一例を示す図である。
【図13】スロット内のシンボル構成の一例を示す図である。
【図14】スロット内のシンボル構成の一例を示す図である。
【図15】スロット内のシンボル構成の一例を示す図である。
【図16】第3の実施例による無線通信システムの構成図およびブロック図の一例を示す図である。
【図17】本発明の第3の実施例による、通信装置のシンボル処理を説明するフローチャートの一例である。
【図18】スロット内のシンボル構成の一例を示す図である。
【図19】スロット内のシンボル構成の一例を示す図である。
【図20】スロット内のシンボル構成の一例を示す図である。
【図21】スロット内のシンボル構成の一例を示す図である。
【図22】スロット内のシンボル構成の一例を示す図である。
【図23】符号化方式を採用して通信を行う、従来技術における通信装置(送信装置、基地局)のブロック構成の一例を示す図である。
【図24】STBCによるシンボル処理を説明する図である。
【図25】SFBCによるシンボル処理を説明する図である。
【図26】STFBCによるシンボル処理を説明する図である。
【符号の説明】
【0057】
100 第1の通信装置(基地局)
110 送受信部
120 移動状態検出部
130 判定部
140 メモリ
150 制御部
160 シンボル処理部
170 変更処理部
180 通知部
200 第2の通信装置(端末)
210 送受信部
220 制御部
300 第3の通信装置(基地局)
500 通信装置
510 送受信部
520 制御部
530 特定処理部
ANT,ANT2 アンテナ
ANT1,ANT3 アンテナ群
ST1,ST2,ST10,ST20,ST30 STBCの組合せ
SF10,SF11,SF20 SFBCの組合せ
STF10 STFBCの組合せ
SLOT スロット

【特許請求の範囲】
【請求項1】
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で通信を行う通信装置であって、
前記スロット毎にシンボル処理を行う処理部と、
前記他の通信装置と自装置との間の伝搬路の変動状態を示す値を検出する検出部と、
前記処理部により単一のスロットにおいて時間軸方向へ所定数のシンボルの組毎にシンボル処理が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて、制御用シンボルへ変更するように前記処理部を制御する、あるいは、前記未処理となるシンボルに対して周波数軸方向へシンボル処理を行うように前記処理部を制御する変更処理部と、
前記変更処理部による制御後のスロットを含む通信フレームを前記他の通信装置へ送信する送信部と、
を備えることを特徴とする通信装置。
【請求項2】
請求項1に記載の通信装置において、
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボルを制御用シンボルへ変更するように前記処理部を制御し、前記変動状態を示す値が所定の値に満たない場合には、前記未処理となるシンボルに対して周波数軸方向へシンボル処理を行うように前記処理部を制御する、
ことを特徴とする通信装置。
【請求項3】
請求項1または2に記載の通信装置において、
前記変動状態を示す値は、前記他の通信装置と自装置との間の相対速度またはドップラー周波数である、
ことを特徴とする通信装置。
【請求項4】
請求項1〜3のいずれか一項に記載の通信装置において、
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボル以外のシンボルも制御用シンボルへ変更するように前記処理部をさらに制御し、
前記処理部は、前記未処理となるシンボルおよび/または前記変更処理部による変更により新たに未処理となるシンボルに対して時間軸方向へのシンボル処理を行う、
ことを特徴とする通信装置。
【請求項5】
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で通信を行う通信装置であって、
前記スロット毎にシンボル処理を行う処理部と、
前記他の通信装置と自装置との間の伝搬路の変動状態を示す値を検出する検出部と、
前記処理部により単一のスロットにおいて周波数軸方向へ所定数のシンボルの組毎にシンボル処理が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて、制御用シンボルへ変更するように前記処理部を制御する、あるいは、当該未処理となるシンボルに対して時間軸方向へシンボル処理を行うように前記処理部を制御する変更処理部と、
前記変更処理部による制御後の通信フレームを前記他の通信装置へ送信する送信部と、
を備えることを特徴とする通信装置。
【請求項6】
請求項5に記載の通信装置において、
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボルを制御用シンボルへ変更するように前記処理部を制御し、前記変動状態を示す値が所定の値に満たない場合には、前記未処理となるシンボルに対して時間軸方向へシンボル処理を行うように前記処理部を制御する、
ことを特徴とする通信装置。
【請求項7】
請求項5または6に記載の通信装置において、
前記変動状態を示す値は、前記他の通信装置と自装置との間の相対速度またはドップラー周波数である、
ことを特徴とする通信装置。
【請求項8】
請求項5〜7のいずれか一項に記載の通信装置において、
前記変更処理部は、前記変動状態を示す値が所定の値を超えた場合には、前記未処理となるシンボル以外のシンボルも制御用シンボルへ変更するように前記処理部を制御し、
前記処理部は、前記未処理となるシンボルおよび/または前記変更処理部による変更により未処理となるシンボルに対して周波数軸方向へのシンボル処理を行う、
ことを特徴とする通信装置。
【請求項9】
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で通信を行う通信方法であって、
前記スロット毎にシンボル処理を行うシンボル処理ステップと、
前記他の通信装置と自装置との間の伝搬路の変動状態を示す値を検出する検出ステップと、
前記シンボル処理ステップにて単一のスロットにおいて時間軸方向へ所定数のシンボルの組毎にシンボル処理が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて制御用シンボルへ変更する、あるいは、当該未処理となるシンボルに対して、周波数軸方向へシンボル処理を行うようにする変更処理ステップと、
前記変更処理ステップによる制御後の通信フレームを前記他の通信装置へ送信するステップと、
を含むことを特徴とする通信方法。
【請求項10】
時間軸方向および周波数軸方向に並べられた複数のシンボルで構成された複数のスロットを含む通信フレームを用いて他の通信装置と自装置との間で通信を行う通信方法であって、
前記スロット毎にシンボル処理を行うシンボル処理ステップと、
前記他の通信装置と自装置との間の伝搬路の変動状態を示す値を検出する検出ステップと、
前記シンボル処理ステップにて単一のスロットにおいて周波数軸方向へ所定数のシンボルの組毎にシンボル処理が行われる場合に、前記単一のスロットにおいて未処理となるシンボルを、前記変動状態を示す値に応じて制御用シンボルへ変更する、あるいは、当該未処理となるシンボルに対して、時間軸方向へシンボル処理を行うようにする変更処理ステップと、
前記変更処理ステップによる制御後の通信フレームを前記他の通信装置へ送信するステップと、
を含むことを特徴とする通信方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate


【公開番号】特開2009−194847(P2009−194847A)
【公開日】平成21年8月27日(2009.8.27)
【国際特許分類】
【出願番号】特願2008−36247(P2008−36247)
【出願日】平成20年2月18日(2008.2.18)
【出願人】(000006633)京セラ株式会社 (13,660)
【Fターム(参考)】