説明

照明カバー

【課題】高い光線透過率を維持したままで、難燃特性に優れる照明カバーを提供する。
【解決手段】光源からの光を拡散させるために前記光源を覆うように配置される照明カバー1であって、該照明カバー1が、粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物からなることを特徴とする照明カバー。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光源からの光を拡散させるために前記光源を覆うように配置される照明カバーに関する。さらに詳しくは高い光線透過率と拡散性を維持したままで、難燃特性に優れる難燃性ポリカーボネート樹脂組成物からなる照明カバーに関する。
【背景技術】
【0002】
従来から各種照明カバー、ディスプレイカバー、自動車メーター、各種銘板などの光拡散性が要求される用途に、芳香族ポリカーボネート樹脂、アクリル樹脂、スチレン樹脂といった透明性樹脂に有機物や無機物の光拡散剤を分散させた材料が広く用いられている。この様な透明性樹脂の中で特に芳香族ポリカーボネート樹脂は機械的特性、耐熱性、耐候性に優れている上、高い光線透過率を備えた樹脂として幅広く使用されている。また光拡散剤としては、架橋構造を有する有機系粒子があり、さらに詳しくは架橋アクリル系粒子、架橋シリコーン系粒子、架橋スチレン系粒子などが挙げられる。さらに炭酸カルシウム、硫酸バリウム、水酸化アルミニウム、二酸化ケイ素、酸化チタン、弗化カルシウムなどの無機系粒子あるいはガラス短繊維などの無機系繊維が挙げられる。特に有機系粒子は無機系粒子に比べて成形品の表面平滑性に優れており高度な成形品外観を達成できるため、幅広い用途に適用可能である。
【0003】
これらの用途では近年、樹脂製照明カバーにおいて火災時のもらい火が延焼を促進するとして、光拡散性ポリカーボネート樹脂にもUL規格(米国アンダーライターズラボラトリー規格)−94においてV−0という高度な難燃性が要求され始めている。特にLED照明に対しては米国にて、UL8750(LED Equipment for Use in Lighting Produce)の中で、照明カバーに対して5VAを必須とする新たな規格が2009年12月に出されている。一方、芳香族ポリカーボネート樹脂はアクリル樹脂、スチレン樹脂などの透明性樹脂難燃性に比べて優れた難燃特性を有しているが、高度な難燃特性(V−0)を得るためには燃焼時の樹脂の滴下(ドリップ)を防止する必要がある(特許文献1、2参照)。しかし、一般的に知られているドリップ抑制剤であるポリテトラフルオロエチレンを芳香族ポリカーボネート樹脂に添加すると、V−0は達成しても、面着火試験である5VA試験では、着火部分において急激な熱収縮が起こるために、穴が開いてしまい、結果としてnot5VAとなってしまう。一方、分岐構造を有するポリカーボネートと有機金属塩からなる樹脂組成物(特許文献3参照)、分岐構造を有するポリカーボネートと有機金属塩および特定のシロキサン化合物からなる樹脂組成物(特許文献4、5参照)についても具体的に記載されている。これらにより優れた難燃性と透明性を維持する組成物が提供されるが、これらには、5VAについての記載は一切なく、また照明カバーの軽量化、輝度向上のために製品の薄肉化の要求が高まってきており、さらなる難燃性のアップが求められている。
【先行技術文献】
【特許文献】
【0004】
【特許文献1】特開2009−108281号公報
【特許文献2】特開2006−143949号公報
【特許文献3】特許第3129374号公報
【特許文献4】特許第3163596号公報
【特許文献5】特開2007−31583号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
本発明の目的は、高い光線透過率を維持したままで、難燃特性に優れる照明カバーを提供することにある。
【課題を解決するための手段】
【0006】
本発明者らは、上記目的を達成せんとして鋭意研究を重ねた結果、ある特定の粘度平均分子量および構造粘性指数を有する熱可塑性樹脂組成物、好ましくはポリカーボネート樹脂組成物からなる照明カバーが、5VAの規格を充分に達成可能な難燃性を持ち、かつ高い光線透過率を維持できる照明カバーとなることを見出し、本発明に到達した。
【0007】
すなわち、本発明によれば、(1)光源からの光を拡散させるために前記光源を覆うように配置される照明カバーであって、該照明カバーが、粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物からなることを特徴とする照明カバーが提供される。
【0008】
本発明のより好適な態様の一つは、(2)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩(B成分)0.005〜1.0重量部を含有する難燃性ポリカーボネート樹脂組成物であることを特徴とする上記構成(1)に記載の照明カバーである。
【0009】
本発明のより好適な態様の一つは、(3)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(C)光拡散剤(CD成分)0.005〜3.0重量部を含有することを特徴とする上記構成(2)に記載の照明カバーである。
【0010】
本発明のより好適な態様の一つは、(4)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(D)分子中にSi−H基を含有するシリコーン化合物(D成分)0.05〜7重量部を含有することを特徴とする上記構成(2)または(3)に記載の照明カバーである。
【0011】
本発明のより好適な態様の一つは(5)熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(E)紫外線吸収剤(E成分)0.01〜3.0重量部を含有することを特徴とする上記構成(2)〜(4)のいずれかに記載の照明カバーである。
【0012】
本発明のより好適な態様の一つは(6)熱可塑性樹脂組成物が、厚さ3.0mmの成形品において、UL94規格の難燃レベル5VAを達成する上記構成(1)〜(5)のいずれかに記載の照明カバーである。
【0013】
本発明のより好適な態様の一つは(7)A成分が分岐構造を有する芳香族ポリカーボネート樹脂である上記構成(2)〜(6)のいずれかに記載の照明カバーである。
【0014】
本発明のより好適な態様の一つは(8)A成分が分岐率0.6〜1.1mol%の分岐構造を有する芳香族ポリカーボネート樹脂である上記構成(7)に記載の照明カバーである。
【0015】
以下、更に本発明の詳細について説明する。
本発明の照明カバーに用いられる熱可塑性樹脂組成物は粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物である。
【0016】
粘度平均分子量は1.6×10〜3.0×10の範囲であり、1.6×10〜2.7×10の範囲が好ましく、1.8×10〜2.7×10の範囲がより好ましく、1.8×10〜2.5×10の範囲が最も好ましい。かかる好適な範囲の下限以上であれば、多くの分野において実用上の機械的強度が得られ、かかる上限以下であれば高剪断速度における剪断粘度が低く、各種成形法、特に射出成形において好適である。
【0017】
なお、本発明でいう粘度平均分子量はまず次式にて算出される比粘度を溶媒100mlに熱可塑性樹脂0.7gを20℃で溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは溶媒の落下秒数、tは試料溶液の落下秒数]
求められた比粘度を次式にて挿入して粘度平均分子量Mvを求める。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10−4Mv0.83
c=0.7
【0018】
本発明の照明カバーに用いられる熱可塑性樹脂組成物が溶媒に不溶な成分を含む場合、粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の溶媒と混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の溶媒を除去する。溶媒除去後の固体を十分に乾燥し、溶媒に溶解する成分の固体を得る。かかる固体0.7gを溶媒100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mvを算出する。
【0019】
なお、比粘度を求める際に用いる溶媒は、熱可塑性樹脂が可溶であれば、特に限定されるものではないが、一般的に塩化メチレン、クロロベンゼン、クロロホルムなどのハロゲン系溶媒が好ましく用いられ、特に塩化メチレンが好ましい。
【0020】
構造粘性指数(N)は1.6〜2.5の範囲であり、1.6〜2.2の範囲が好ましく、1.7〜2.2の範囲がより好ましく、1.8〜2.2の範囲が最も好ましい。Nが1.6未満では燃焼時の火種の滴下が抑制されなくなり、Nが2.5より大きいと剪断粘度が高くなりすぎて成形加工性が悪化するために、好ましくない。なお本発明でいう構造粘性指数(N)とは溶融流動特性を特徴付ける指標として用いられ、下記式〔1〕で表される。
【0021】
【数1】

【0022】
上記式〔1〕において、Dは剪断速度(1/sec)、aは定数、σは剪断応力(Pa)、Nは構造粘性指数である。この構造粘性指数は、ISO11443に準拠して測定される。構造粘性指数は成形加工における樹脂の流動性の指標となるとともに、燃焼時の滴下防止能の指標となりうる。N=1のときはニュートン流動性を示し、Nが大きくなるほど非ニュートン流動性が大きくなる。この構造粘性指数が高い場合、樹脂は溶融状態における粘度が高いため燃焼時に滴下しにくくなり、剪断速度が高くなると粘度が低下するため成形加工性に優れる。
【0023】
本発明に使用される熱可塑性樹脂としては、透明性の高いものであれば良く、ポリスチレン樹脂、アクリル樹脂、ポリカーボネート樹脂、環状ポリオレフィン樹脂、非晶ポリアリレート樹脂等が挙げられそのなかでもポリカーボネート樹脂が好ましく使用される。
【0024】
さらに、本発明に用いられる熱可塑性樹脂組成物としては(A)ポリカーボネート樹脂(A成分)および(B)パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩(B成分)からなる難燃性ポリカーボネート樹脂組成物が好ましく使用される。以下各成分について詳細に説明する。
【0025】
<A成分:ポリカーボネート樹脂>
A成分を構成するポリカーボネート樹脂は、下記一般式〔1〕で表されるカーボネート構成単位からなるポリカーボネート樹脂であることが好ましい。
【0026】
【化1】

【0027】
[上記一般式〔1〕において、R及びRは夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜18のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数3〜14のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、それぞれ複数ある場合はそれらは同一でも異なっていても良く、e及びfは夫々1〜4の整数であり、Wは単結合もしくは下記一般式〔2〕で表される基からなる群より選ばれる少なくとも一つの基である。]
【0028】
【化2】

【0029】
[上記一般式〔2〕においてR11,R12,R13,R14,R15,R16,R17及びR18は夫々独立して水素原子、炭素原子数1〜18のアルキル基、炭素原子数3〜14のアリール基及び炭素原子数7〜20のアラルキル基からなる群から選ばれる基を表し、R19及びR20は夫々独立して水素原子、ハロゲン原子、炭素原子数1〜18のアルキル基、炭素原子数1〜10のアルコキシ基、炭素原子数6〜20のシクロアルキル基、炭素原子数6〜20のシクロアルコキシ基、炭素原子数2〜10のアルケニル基、炭素原子数3〜14のアリール基、炭素原子数6〜10のアリールオキシ基、炭素原子数7〜20のアラルキル基、炭素原子数7〜20のアラルキルオキシ基、ニトロ基、アルデヒド基、シアノ基及びカルボキシル基からなる群から選ばれる基を表し、複数ある場合はそれらは同一でも異なっていても良く、gは1〜10の整数、hは4〜7の整数である。]
【0030】
上記一般式〔1〕で表されるカーボネート構成単位を誘導する構成する二価フェノールとしては、例えば、4,4’−ジヒドロキシビフェニル、ビス(4−ヒドロキシフェニル)メタン、1,1−ビス(4−ヒドロキシフェニル)エタン、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、2,2−ビス(4−ヒドロキシ−3,3’−ビフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−イソプロピルフェニル)プロパン、2,2−ビス(3−t−ブチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシフェニル)ブタン、2,2−ビス(4−ヒドロキシフェニル)オクタン、2,2−ビス(3−ブロモ−4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)プロパン、1,1−ビス(3−シクロヘキシル−4−ヒドロキシフェニル)シクロヘキサン、ビス(4−ヒドロキシフェニル)ジフェニルメタン、9,9−ビス(4−ヒドロキシフェニル)フルオレン、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)シクロペンタン、4,4’−ジヒドロキシジフェニルエ−テル、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルエ−テル、4,4’−スルホニルジフェノール、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルフィド、2,2’−ジメチル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、2,2’−ジフェニル−4,4’−スルホニルジフェノール、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルホキシド、4,4’−ジヒドロキシ−3,3’−ジフェニルジフェニルスルフィド、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、1,4−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,3−ビス(4−ヒドロキシフェニル)シクロヘキサン、4,8−ビス(4−ヒドロキシフェニル)トリシクロ[5.2.1.02,6]デカン、4,4’−(1,3−アダマンタンジイル)ジフェノール、および1,3−ビス(4−ヒドロキシフェニル)−5,7−ジメチルアダマンタン等が挙げられる。
【0031】
なかでも、1,1−ビス(4−ヒドロキシフェニル)−1−フェニルエタン、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1−ビス(4−ヒドロキシフェニル)−3,3,5−トリメチルシクロヘキサン、4,4’−スルホニルジフェノール、2,2’−ジメチル−4,4’−スルホニルジフェノール、9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレン、1,3−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼン、および1,4−ビス{2−(4−ヒドロキシフェニル)プロピル}ベンゼンが好ましく、殊に2,2−ビス(4−ヒドロキシフェニル)プロパン、1,1−ビス(4−ヒドロキシフェニル)シクロヘキサン(BPZ)、4,4’−スルホニルジフェノール、および9,9−ビス(4−ヒドロキシ−3−メチルフェニル)フルオレンが好ましい。中でも強度に優れ、良好な耐久性を有する2,2−ビス(4−ヒドロキシフェニル)プロパンが最も好適である。また、これらは単独または二種以上組み合わせて用いてもよい。
【0032】
上記式〔1〕で表されるカーボネート構成単位を含んでなるポリカーボネート樹脂は、分岐化剤を上記のジヒドロキシ化合物と併用する分岐化ポリカーボネート樹脂であることが好ましい。かかる分岐化ポリカーボネート樹脂に使用される分岐化剤としては、フロログルシン、フロログルシド、または4,6−ジメチル−2,4,6−トリス(4−ヒドロキジフェニル)ヘプテン−2、2,4,6−トリメチル−2,4,6−トリス(4−ヒドロキシフェニル)ヘプタン、1,3,5−トリス(4−ヒドロキシフェニル)ベンゼン、1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタン、2,6−ビス(2−ヒドロキシ−5−メチルベンジル)−4−メチルフェノール、4−{4−[1,1−ビス(4−ヒドロキシフェニル)エチル]ベンゼン}−α,α−ジメチルベンジルフェノール等のトリスフェノール、テトラ(4−ヒドロキシフェニル)メタン、ビス(2,4−ジヒドロキシフェニル)ケトン、1,4−ビス(4,4−ジヒドロキシトリフェニルメチル)ベンゼン、またはトリメリット酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸およびこれらの酸クロライド等の三官能以上の多官能性芳香族化合物が挙げられ、中でも1,1,1−トリス(4−ヒドロキシフェニル)エタン、1,1,1−トリス(3,5−ジメチル−4−ヒドロキシフェニル)エタンが好ましく、特に1,1,1−トリス(4−ヒドロキシフェニル)エタンが好ましい。上記分岐化ポリカーボネート樹脂の分岐率は、好ましくは0.05〜1.5mol%、より好ましくは0.2〜1.2mol%、特に好ましくは0.5〜1.2mol%、最も好ましくは0.6〜1.1mol%である。
【0033】
これらのポリカーボネート樹脂は、通常のポリカーボネート樹脂を製造するそれ自体公知の反応手段、例えば芳香族ジヒドロキシ成分にホスゲンや炭酸ジエステルなどのカーボネート前駆物質を反応させる方法により製造される。その製造方法について基本的な手段を簡単に説明する。
【0034】
カーボネート前駆物質として、例えばホスゲンを使用する反応では、通常酸結合剤および溶媒の存在下に反応を行う。酸結合剤としては、例えば水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物またはピリジンなどのアミン化合物が用いられる。溶媒としては、例えば塩化メチレン、クロロベンゼンなどのハロゲン化炭化水素が用いられる。また反応促進のために例えば第三級アミンまたは第四級アンモニウム塩などの触媒を用いることもできる。その際、反応温度は通常0〜40℃であり、反応時間は数分〜5時間である。カーボネート前駆物質として炭酸ジエステルを用いるエステル交換反応は、不活性ガス雰囲気下所定割合の芳香族ジヒドロキシ成分を炭酸ジエステルと加熱しながら撹拌して、生成するアルコールまたはフェノール類を留出させる方法により行われる。反応温度は生成するアルコールまたはフェノール類の沸点などにより異なるが、通常120〜300℃の範囲である。反応はその初期から減圧にして生成するアルコールまたはフェノール類を留出させながら反応を完結させる。また、反応を促進するために通常エステル交換反応に使用される触媒を使用することもできる。前記エステル交換反応に使用される炭酸ジエステルとしては、例えばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネートなどが挙げられる。これらのうち特にジフェニルカーボネートが好ましい。
【0035】
本発明において、重合反応においては末端停止剤を使用する。末端停止剤は分子量調節のために使用され、また得られたポリカーボネート樹脂は、末端が封鎖されているので、そうでないものと比べて熱安定性に優れている。かかる末端停止剤としては、下記一般式〔3〕〜〔5〕で表される単官能フェノール類を示すことができる。
【0036】
【化3】

[式中、Aは水素原子、炭素数1〜9のアルキル基、アルキルフェニル基(アルキル部分の炭素数は1〜9)またはフェニルアルキル基(アルキル部分の炭素数0〜9)であり、rは1〜5、好ましくは1〜3の整数である]。
【0037】
【化4】

【化5】

[式中、Xは−R−O−、−R−CO−O−または−R−O−CO−である、ここでRは単結合または炭素数1〜10、好ましくは1〜5の二価の脂肪族炭化水素基を示し、nは10〜50の整数を示す。]
【0038】
上記一般式〔3〕で表される単官能フェノール類の具体例としては、例えばフェノール、イソプロピルフェノール、p−tert−ブチルフェノール、p−クレゾール、p−クミルフェノール、2−フェニルフェノール、4−フェニルフェノール、およびイソオクチルフェノールなどが挙げられる。また、上記一般式〔4〕〜〔5〕で表される単官能フェノール類は、長鎖のアルキル基あるいは脂肪族エステル基を置換基として有するフェノール類であり、これらを用いてポリカーボネート樹脂の末端を封鎖すると、これらは末端停止剤または分子量調節剤として機能するのみならず、樹脂の溶融流動性が改良され、成形加工が容易になるばかりでなく、樹脂の吸水率を低くする効果があり好ましく使用される。上記一般式〔4〕の置換フェノール類としてはnが10〜30、特に10〜26のものが好ましく、その具体例としては例えばデシルフェノール、ドデシルフェノール、テトラデシルフェノール、ヘキサデシルフェノール、オクタデシルフェノール、エイコシルフェノール、ドコシルフェノールおよびトリアコンチルフェノール等を挙げることができる。また、上記一般式〔5〕の置換フェノール類としてはXが−R−CO−O−であり、Rが単結合である化合物が適当であり、nが10〜30、特に10〜26のものが好適であって、その具体例としては例えばヒドロキシ安息香酸デシル、ヒドロキシ安息香酸ドデシル、ヒドロキシ安息香酸テトラデシル、ヒドロキシ安息香酸ヘキサデシル、ヒドロキシ安息香酸エイコシル、ヒドロキシ安息香酸ドコシルおよびヒドロキシ安息香酸トリアコンチルが挙げられる。これら単官能フェノール類の内、上記一般式〔3〕で表される単官能フェノール類が好ましく、より好ましくはアルキル置換もしくはフェニルアルキル置換のフェノール類であり、特に好ましくはp−tert−ブチルフェノールまたはp−クミルフェノールである。これらの単官能フェノール類の末端停止剤は、得られたポリカーボネート樹脂の全末端に対して少なくとも5モル%、好ましくは少なくとも10モル% 末端に導入されることが望ましく、また、末端停止剤は単独でまたは2種以上混合して使用してもよい。
【0039】
A成分として用いられるポリカーボネート樹脂は、本発明の趣旨を損なわない範囲で、芳香族ジカルボン酸、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸あるいはその誘導体を共重合したポリエステルカーボネートであってもよい。また光学特性を損なうことがない限り、照明カバーの機械的物性、化学的性質または電気的性質の改良のために、A成分以外の他の熱可塑性樹脂を配合することができる。この他の熱可塑性樹脂の配合量は、その種類および目的によって変わるが、通常、芳香族ポリカーボネート樹脂(A成分)100重量部当たり、1〜30重量部が好ましく、より好ましくは2〜20重量部が適当である。他の熱可塑性樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリアルキルメタクリレート樹脂などに代表される汎用プラスチックス、ポリフェニレンエーテル樹脂、ポリアセタール樹脂、ポリアミド樹脂、環状ポリオレフィン樹脂、ポリアリレート樹脂(非晶性ポリアリレート、液晶性ポリアリレート)等に代表されるエンジニアリングプラスチックス、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリサルフォン、ポリエーテルサルフォン、ポリフェニレンサルファイドなどのいわゆるスーパーエンジニアリングプラスチックスと呼ばれるものを挙げることができる。さらにオレフィン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマーなどの熱可塑性エラストマーも使用することができる。
【0040】
<B成分:難燃剤>
本発明のB成分として使用される難燃剤としてはパーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩が好ましく使用される。(ここで、アルカリ(土類)金属塩の表記は、アルカリ金属塩、アルカリ土類金属塩のいずれも含む意味で使用する。)B成分の含有量はA成分100重量部に対して0.005〜1.0重量部であることが好ましく、より好ましくは0.01〜0.5重量部であり、さらに好ましくは0.01〜0.2重量部である。含有量が0.005重量部未満の場合、十分な難燃性が得られず、1.0重量部を超える場合も十分な難燃性が得られないばかりか、十分な機械物性も得られなくなる場合がある。
【0041】
有機アルカリ(土類)金属塩を構成する金属は、アルカリ金属あるいはアルカリ土類金属であり、より好適にはアルカリ金属である。アルカリ金属としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられ、アルカリ土類金属としては、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウムが挙げられ、特に好ましくはリチウム、ナトリウム、カリウムである。
【0042】
前記パーフルオロアルキルスルホン酸アルカリ(土類)金属塩の好ましい例としては、パーフルオロメタンスルホン酸塩、パーフルオロエタンスルホン酸塩、パーフルオロプロパンスルホン酸塩、パーフルオロブタンスルホン酸塩、パーフルオロメチルブタンスルホン酸塩、パーフルオロヘキサンスルホン酸塩、パーフルオロヘプタンスルホン酸塩、パーフルオロオクタンスルホン酸塩等が挙げられ、特に炭素数が1〜8のものが好ましい。これらは1種もしくは2種以上を併用して使用することができる。
【0043】
この中で最も好ましいのはパーフルオロアルキルスルホン酸アルカリ金属塩である。かかるアルカリ金属の中でも、難燃性の要求がより高い場合にはルビジウムおよびセシウムが好適である一方、これらは汎用的でなくまた精製もし難いことから、結果的にコストの点で不利となる場合がある。一方、コストの点で有利であるがリチウムおよびナトリウムは逆に難燃性の点で不利な場合がある。これらを勘案してパーフルオロアルキルスルホン酸アルカリ金属塩中のアルカリ金属を使い分けることができるが、いずれの点においても特性のバランスに優れたパーフルオロアルキルスルホン酸カリウム塩が最も好適である。かかるカリウム塩と他のアルカリ金属からなるパーフルオロアルキルスルホン酸アルカリ金属塩とを併用することもできる。
【0044】
パーフルオロアルキルスルホン酸アルカリ金属塩の具体例としては、トリフルオロメタンスルホン酸カリウム、パーフルオロブタンスルホン酸カリウム、パーフルオロヘキサンスルホン酸カリウム、パーフルオロオクタンスルホン酸カリウム、ペンタフルオロエタンスルホン酸ナトリウム、パーフルオロブタンスルホン酸ナトリウム、パーフルオロオクタンスルホン酸ナトリウム、トリフルオロメタンスルホン酸リチウム、パーフルオロブタンスルホン酸リチウム、パーフルオロヘプタンスルホン酸リチウム、トリフルオロメタンスルホン酸セシウム、パーフルオロブタンスルホン酸セシウム、パーフルオロオクタンスルホン酸セシウム、パーフルオロヘキサンスルホン酸セシウム、パーフルオロブタンスルホン酸ルビジウム、およびパーフルオロヘキサンスルホン酸ルビジウム等が挙げられ、これらは1種もしくは2種以上を併用して使用することができる。これらの中で特にパーフルオロブタンスルホン酸カリウムが好ましい。
【0045】
前記芳香族スルホン酸アルカリ(土類)金属塩に使用する芳香族スルホン酸としては、モノマー状またはポリマー状の芳香族サルファイドのスルホン酸、芳香族カルボン酸およびエステルのスルホン酸、モノマー状またはポリマー状の芳香族エーテルのスルホン酸、芳香族スルホネートのスルホン酸、モノマー状またはポリマー状の芳香族スルホン酸、モノマー状またはポリマー状の芳香族スルホンスルホン酸、芳香族ケトンのスルホン酸、複素環式スルホン酸、芳香族スルホキサイドのスルホン酸、芳香族スルホン酸のメチレン型結合による縮合体からなる群から選ばれた少なくとも1種の酸を挙げることができ、これらは1種もしくは2種以上を併用して使用することができる。
【0046】
モノマー状またはポリマー状の芳香族サルファイドのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98539号公報に記載されており、例えば、ジフェニルサルファイド−4,4’−ジスルホン酸ジナトリウム、ジフェニルサルファイド−4,4’−ジスルホン酸ジカリウムなどを挙げることができる。
【0047】
芳香族カルボン酸およびエステルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98540号公報に記載されており、例えば5−スルホイソフタル酸カリウム、5−スルホイソフタル酸ナトリウム、ポリエチレンテレフタル酸ポリスルホン酸ポリナトリウムなどを挙げることができる。
【0048】
モノマー状またはポリマー状の芳香族エーテルのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98542号公報に記載されており、例えば1−メトキシナフタレン−4−スルホン酸カルシウム、4−ドデシルフェニルエーテルジスルホン酸ジナトリウム、ポリ(2,6−ジメチルフェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,3−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(1,4−フェニレンオキシド)ポリスルホン酸ポリナトリウム、ポリ(2,6−ジフェニルフェニレンオキシド)ポリスルホン酸ポリカリウム、ポリ(2−フルオロ−6−ブチルフェニレンオキシド)ポリスルホン酸リチウムなどを挙げることができる。
【0049】
芳香族スルホネートのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98544号公報に記載されており、例えばベンゼンスルホネートのスルホン酸カリウムなどを挙げることができる。
【0050】
モノマー状またはポリマー状の芳香族スルホン酸アルカリ(土類)金属塩としては、特開昭50−98546号公報に記載されており、例えばベンゼンスルホン酸ナトリウム、ベンゼンスルホン酸ストロンチウム、ベンゼンスルホン酸マグネシウム、p−ベンゼンジスルホン酸ジカリウム、ナフタレン−2,6−ジスルホン酸ジカリウム、ビフェニル−3,3’−ジスルホン酸カルシウムなどを挙げることができる。
【0051】
モノマー状またはポリマー状の芳香族スルホンスルホン酸アルカリ(土類)金属塩としては、特開昭52−54746号公報に記載されており、例えばジフェニルスルホン−3−スルホン酸ナトリウム、ジフェニルスルホン−3−スルホン酸カリウム、ジフェニルスルホン−3,3’−ジスルホン酸ジカリウム、ジフェニルスルホン−3,4’−ジスルホン酸ジカリウムなどを挙げることができる。
【0052】
芳香族ケトンのスルホン酸アルカリ(土類)金属塩としては、特開昭50−98547号公報に記載されており、例えばα,α,α−トリフルオロアセトフェノン−4−スルホン酸ナトリウム、ベンゾフェノン−3,3’−ジスルホン酸ジカリウムなどを挙げることができる。
【0053】
複素環式スルホン酸アルカリ(土類)金属塩としては、特開昭50−116542号公報に記載されており、例えばチオフェン−2,5−ジスルホン酸ジナトリウム、チオフェン−2,5−ジスルホン酸ジカリウム、チオフェン−2,5−ジスルホン酸カルシウム、ベンゾチオフェンスルホン酸ナトリウムなどを挙げることができる。
【0054】
芳香族スルホキサイドのスルホン酸アルカリ(土類)金属塩としては、特開昭52−54745号公報に記載されており、例えばジフェニルスルホキサイド−4−スルホン酸カリウムなどを挙げることができる。
【0055】
芳香族スルホン酸アルカリ(土類)金属塩のメチレン型結合による縮合体としては、ナフタレンスルホン酸ナトリウムのホルマリン縮合物、アントラセンスルホン酸ナトリウムのホルマリン縮合物などを挙げることができる。
【0056】
前記芳香族系イミドのアルカリ(土類)金属塩としては、例えばサッカリン、N−(p−トリルスルホニル)−p−トルエンスルホンアミド(言い換えるとジ(p−トルエンスルホン)イミド)、N−(N’−ベンジルアミノカルボニル)スルファニルイミド、およびN−(フェニルカルボキシル)スルファニルイミド、ビス(ジフェニルリン酸)イミド等のアルカリ(土類)金属塩などが挙げられる。
【0057】
これらの中でもパーフルオロブタンスルホン酸カリウム、パーフルオロブタンスルホン酸ナトリウム、式〔6〕で示されるジフェニルスルホンのスルホン酸塩、ジ(p−トルエンスルホン)イミドのカリウム塩、および、ジ(p−トルエンスルホン)イミドのナトリウム塩からなる群より選択される1種以上の化合物がより好ましい。さらに最も好ましくはパーフルオロブタンスルホン酸カリウムである。
【0058】
【化6】

[式中、nは0〜3を表し、MはKあるいはNaを表す。]
【0059】
<C成分:光拡散剤>
本発明に用いられるC成分として使用される光拡散剤としては、例えばガラス微粒子に代表される無機微粒子、ポリスチレン樹脂、(メタ)アクリル樹脂、シリコーン樹脂等からなる有機微粒子が挙げられ、なかでも有機微粒子が好ましく、その中でもアクリル−スチレン系共重合微粒子が最も好ましい。かかる有機微粒子としては、架橋した有機微粒子が好ましく、その製造過程において少なくとも部分的に架橋されており、芳香族ポリカーボネート樹脂の加工過程において実用的に変形せず、微粒子状態を維持しているものである。特に好適な具体例として、部分架橋したスチレン−メタクリル酸メチル共重合体微粒子[例えば積水化成品工業(株)製 商品名 MSX405KN]、ゴム状ビニルポリマーのコアとシェルを含んだコア/シェルモノホルジーを有するポリマー[例えばローム・アンド・ハーズ・カンパニー製商品名パラロイドEXL−5136]、架橋シロキサン結合を有するシリコーン樹脂[例えば東芝シリコーン(株)製トスパール120]が挙げられる。
【0060】
上記高分子微粒子の屈折率は1.495〜1.504が好ましく、1.497〜1.504がより好ましく、1.497〜1.502がさらに好ましい。屈折率が1.495より小さいと全光線透過率と光分散度(すなわち光拡散性)のバランスが悪くなり、1.504より大きいと充分な光分散度D50を得るには、多くの光拡散剤の添加が必要となってしまい、結局耐衝撃性の低下を引き起こしてしまう場合がある。
【0061】
上記高分子微粒子の平均粒径は好ましくは0.1〜50μmであり、より好ましくは0.5〜30μmであり、さらに好ましくは0.7〜20μmのものである。かかる高分子微粒子の粒径は、コールカウンター法で測定した重量平均粒径であり、その測定機は株式会社日科機製の粒子数・粒度分布アナライザーMODEL Zmである。重量平均粒子径が0.1μm未満、また50μmを越えると十分な光拡散性が得られず、十分な光拡散効果を得るためには配合量が多くなり、光透過性が損なわれる場合がある。
【0062】
C成分の含有量は、A成分100重量部に対して0.005〜3.0重量部が好ましく、0.05〜2.0重量部がより好ましく、0.05〜1.0重量部がさらに好ましい。C成分の含有量が0.005重量部未満である場合、十分な光拡散性が得られず、3.0重量部を超えると光線透過率が不十分となる場合があるので好ましくない。なお照明カバーとしての光拡散性の付与は上記C成分である光拡散剤を添加する方法以外に、成形品表面をシボ調加工する方法または光拡散剤の添加とシボ調加工の併用などの方法が挙げられる。
【0063】
<D成分:シリコーン化合物>
本発明のD成分として使用されるシリコーン化合物は本発明の目的である難燃性や良好な光学特性を得ることができれば特に限定されないが、良好な光学特性を得るためには、芳香族基を有するシリコーン化合物が好ましい。さらにD成分のシリコーン化合物が効率的に難燃効果を発揮するためには、燃焼過程における分散状態が重要である。かかる分散状態を決定する重要な因子として粘度が挙げられる。これは、燃焼過程においてシリコーン化合物があまりにも揮発しやすい場合、すなわち、粘度が低すぎるシリコーン化合物の場合には、燃焼時に系内に残っているシリコーンが希薄であるため、燃焼時に均一なシリコーンのストラクチャーを形成することが困難となるためと考えられる。またシリコーン化合物の粘度が高すぎると、シリコーン化合物の分散性が悪化し、難燃性、光学特性に悪影響をあたえる。かかる観点より、25℃における粘度は10〜300cStがより好ましく、さらに好ましくは15〜200cSt、最も好ましくは20〜170cStである。
【0064】
本発明で使用されるD成分が有する芳香族基はシリコーン原子に結合しているものであり、ポリカーボネート樹脂との相溶性を高めたり良好な光学特性を維持するのに寄与しており、燃焼時の炭化皮膜形成にも有利であることから難燃効果の発現にも寄与している。芳香族基を有しない場合は本発明の照明カバーにおける良好な光学特性が得られにくく、高度な難燃性を得ることも困難となる傾向がある。
【0065】
本発明のD成分として使用されるシリコーン化合物は好ましくはSi−H基を含有するシリコーン化合物である。特に、分子中にSi−H基および芳香族基を含有するシリコーン化合物であって、
(1)Si−H基が含まれる量(Si−H量)が0.1〜1.2mol/100g
(2)下記一般式〔7〕で示される芳香族基が含まれる割合(芳香族基量)が10〜70重量%、かつ
【化7】

[式〔7〕中、Xはそれぞれ独立にOH基、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を示す。nは0〜5の整数を表わす。さらに式〔7〕中においてnが2以上の場合はそれぞれ互いに異なる種類のXを取ることができる。]
(3)平均重合度が3〜150
であるシリコーン化合物の中から選択される少なくとも一種以上のシリコーン化合物であることが好ましい。
【0066】
さらに好ましくは、Si−H基含有単位として、下記一般式〔8〕および〔9〕で示される構成単位のうち、少なくとも一種以上の式で示される構成単位を含むシリコーン化合物の中から選択される少なくとも一種以上のシリコーン化合物である。
【0067】
【化8】

【化9】

【0068】
[式〔8〕および式〔9〕中、Z〜Zはそれぞれ独立に水素原子、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基、または下記一般式〔10〕で示される化合物を示す。α1〜α3はそれぞれ独立に0または1を表わす。m1は0もしくは1以上の整数を表わす。さらに式〔8〕中においてm1が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。]
【0069】
【化10】

【0070】
[式〔10〕中、Z〜Zはそれぞれ独立に水素原子、ヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を示す。α4〜α8はそれぞれ独立に0または1を表わす。m2は0もしくは1以上の整数を表わす。さらに式[10]中においてm2が2以上の場合の繰返し単位はそれぞれ互いに異なる複数の繰返し単位を取ることができる。]
【0071】
より好ましくは、Mを1官能性シロキサン単位、Dを2官能性シロキサン単位、Tを3官能性シロキサン単位とするとき、MD単位またはMDT単位からなるシリコーン化合物である。
【0072】
上記一般式〔8〕、〔9〕および〔10〕で示される構成単位のZ〜Z、および一般式〔7〕のXにおけるヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、デシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基およびアラルキル基を挙げることができ、さらにこれらの基はエポキシ基、カルボキシル基、無水カルボン酸基、アミノ基、およびメルカプト基などの各種官能基を含むものであってもよい。さらに好ましくは炭素数1〜8のアルキル基、アルケニル基またはアリール基であり、特にはメチル基、エチル基、プロピル基等の炭素数1〜4のアルキル基、ビニル基、またはフェニル基が好ましい。
【0073】
前記一般式〔8〕および〔9〕で示される構成単位のうち、少なくとも一種以上の式で示される構成単位を含むシリコーン化合物において、複数のシロキサン結合の繰返し単位を有する場合は、それらはランダム共重合、ブロック共重合、テーパード共重合のいずれの形態を取ることも可能である。
【0074】
D成分で好ましいSi−H基を含有するシリコーン化合物については、シリコーン化合物中のSi−H量を0.1〜1.2mol/100gの範囲とすることが好ましい。Si−H量が0.1〜1.2mol/100gの範囲にあることで、燃焼時にシリコーンのストラクチャーの形成が容易となる。さらに好ましくはSi−H量が0.1〜1.0mol/100gの範囲、最も好ましくは0.2〜0.6mol/100gの範囲にあるシリコーン化合物である。Si−H量が少ないとシリコーンのストラクチャー形成が困難となり、Si−H量が多いと組成物の熱安定性が低下する。なお、ここでシリコーンのストラクチャーとは、シリコーン化合物相互の反応、または樹脂とシリコーンとの反応により生成する網状構造をさす。
【0075】
また、ここで言うSi−H基量とは、シリコーン化合物100gあたりに含まれるSi−H構造のモル数を言うが、これはアルカリ分解法により、シリコーン化合物の単位重量当たり発生した水素ガスの体積を測定することにより求めることができる。例えば、25℃においてシリコーン化合物1g当たり122mlの水素ガスが発生した場合、下記計算式により、Si−H量は0.5mol/100gとなる。
122×273/(273+25)÷22400×100≒0.5
【0076】
一方、芳香族ポリカーボネート樹脂(A成分)にシリコーン化合物を配合した樹脂組成物において、本発明の照明カバーの白濁、あるいは湿熱処理による光学特性の変化を抑えるためには、前述したとおり、シリコーン化合物の分散状態が重要である。シリコーン化合物が偏在する場合には、樹脂組成物自体が白濁し、さらには本発明の照明カバー表面で剥離などが生じたり、あるいは湿熱処理時にシリコーン化合物が移行して偏在して光学特性が変化するなど、光学特性の良好な照明カバーを得ることが困難となるためである。かかる分散状態を決定する重要な因子としてシリコーン化合物中の芳香族基量、平均重合度が挙げられる。殊に良好な光学特性を維持しうる樹脂組成物において平均重合度は重要である。
【0077】
かかる観点より、本発明に用いられるシリコーン化合物(D成分)としては、シリコーン化合物中の芳香族基量は10〜70重量%であることが好ましい。さらに好ましくは芳香族基量が15〜60重量%の範囲、最も好ましくは25〜55重量%の範囲にあるシリコーン化合物である。シリコーン化合物中の芳香族基量が10重量%より少ないとシリコーン化合物が偏在して分散不良となり、光学特性が良好な照明カバーを得ることが困難となる場合がある。芳香族基量が70重量%より多いとシリコーン化合物自体の分子の剛直性が高くなるためやはり偏在して分散不良となり、光学特性が良好な照明カバーを得ることが困難となる場合がある。
【0078】
なお、ここで芳香族基量とは、シリコーン化合物において、前述した一般式〔7〕で示される芳香族基が含まれる割合のことを言い、下記計算式によって求めることができる。
芳香族基量=〔A/M〕×100(重量%)
ここで、上記式におけるA、Mはそれぞれ以下の数値を表す。
A=シリコーン化合物1分子中に含まれる、全ての一般式〔7〕で示される芳香族基部分の合計分子量
M=シリコーン化合物の分子量
【0079】
さらに本発明のD成分として使用されるシリコーン化合物は、25℃における屈折率が1.40〜1.60の範囲にあることが望ましい。さらに好ましくは屈折率が1.42〜1.59の範囲であり、最も好ましくは、1.44〜1.59の範囲にあるシリコーン化合物である。屈折率が上記範囲内にある場合、芳香族ポリカーボネート中にシリコーン化合物が微分散することで、より白濁の少ない染色性の良好な樹脂組成物が提供される。
【0080】
さらに本発明のD成分として使用されるシリコーン化合物は、105℃/3時間における加熱減量法による揮発量が18%以下であることが好適である。さらに好ましくは揮発量が10%以下であるシリコーン化合物である。揮発量が18%より大きいと本発明の樹脂組成物を押出してペレット化を行う際に、樹脂からの揮発物の量が多くなる問題が生じ、さらに、本発明の照明カバー中に生じる気泡が多くなりやすいという問題がある。
【0081】
D成分として使用されるシリコーン化合物としては、上記の条件を満たすものであれば直鎖状であっても分岐構造を持つものであっても良く、Si−H基を分子構造中の側鎖、末端、分岐点の何れか、または複数の部位に有する各種の化合物を用いることが可能である。
【0082】
一般的に分子中にSi−H基を含有するシリコーン化合物の構造は、以下に示す4種類のシロキサン単位を任意に組み合わせることによって構成される。
M単位:(CHSiO1/2、H(CHSiO1/2、H(CH)SiO1/2、(CH(CH=CH)SiO1/2、(CH(C)SiO1/2、(CH)(C)(CH=CH)SiO1/2等の1官能性シロキサン単位
D単位:(CHSiO、H(CH)SiO、HSiO、H(C)SiO、(CH)(CH=CH)SiO、(CSiO等の2官能性シロキサン単位
T単位:(CH)SiO3/2、(C)SiO3/2、HSiO3/2、(CH=CH)SiO3/2、(C)SiO3/2等の3官能性シロキサン単位
Q単位:SiOで示される4官能性シロキサン単位
【0083】
本発明において使用されるSi−H基を含有するシリコーン化合物の構造は、具体的には、示性式としてDn、Tp、MmDn、MmTp、MmQq、MmDnTp、MmDnQq、MmTpQq、MmDnTpQq、DnTp、DnQq、DnTpQqが挙げられる。この中で好ましいシリコーン化合物の構造は、MmDn、MmTp、MmDnTp、MmDnQqであり、さらに好ましい構造は、MmDnまたはMmDnTpである。
(上記示性式中の係数m、n、p、qは各シロキサン単位の重合度を表す整数である。またm、n、p、qのいずれかが2以上の数値である場合、その係数の付いたシロキサン単位は、結合する水素原子やヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基が異なる2種以上のシロキサン単位とすることができる。)
【0084】
ここで、各示性式における係数の合計がシリコーン化合物の平均重合度となる。本発明においては、この平均重合度を3〜150の範囲とすることが好ましく、より好ましくは4〜80の範囲、さらに好ましくは5〜60の範囲である。重合度が3より小さい場合、シリコーン化合物自体の揮発性が高くなるため、このシリコーン化合物を配合した樹脂組成物の加工時において樹脂からの揮発分が多くなりやすいという問題がある。重合度が150より大きい場合、このシリコーン化合物を配合した樹脂組成物における難燃性や光学特性が不十分となりやすい。
なお、上記のシリコーン化合物は、それぞれ単独で用いてもよく、2種以上を組合せて用いてもよい。
【0085】
このようなSi−H結合を有するシリコーン化合物は、それ自体従来公知の方法によって製造することができる。例えば、目的とするシリコーン化合物の構造に従い、相当するオルガノクロロシラン類を共加水分解し、副生する塩酸や低沸分を除去することによって目的物を得ることができる。また、分子中にSi−H結合や一般式〔7〕で示される芳香族基、その他のヘテロ原子含有官能基を有しても良い炭素数1〜20の炭化水素基を有するシリコーンオイル、環状シロキサンやアルコキシシラン類を出発原料とする場合には、塩酸、硫酸、メタンスルホン酸等の酸触媒を使用し、場合によって加水分解のための水を添加して、重合反応を進行させた後、使用した酸触媒や低沸分を同様に除去することによって、目的とするシリコーン化合物を得ることができる。
【0086】
さらに、Si−H基を含有するシリコーン化合物が下記の構造式で示されるシロキサン単位 M、MH、D、DH 、Dφ、T、Tφ (ただし M:(CHSiO1/2MH:H(CHSiO1/2D:(CHSiODH:H(CH)SiODφ:(CSiT:(CH)SiO3/2Tφ:(C)SiO3/2)を有しており、1分子あたりに有する各シロキサン単位の平均数をそれぞれm、mh、d、dh、dp2、t、tpとした場合、下記関係式のすべてを満足することが好ましい。
2 ≦ m+mh ≦ 40
0.35 ≦ d+dh+dp2 ≦ 148
0 ≦ t+tp ≦ 38
0.35 ≦ mh+dh ≦ 110
【0087】
この範囲を外れると本発明の樹脂組成物において良好な難燃性と優れた光学特性を同時に達成することが困難となり、場合によってはSi−H基を含有するシリコーン化合物の製造が困難となる。
【0088】
本発明のD成分として使用されるシリコーン化合物の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して好ましくは0.05〜7重量部であり、より好ましくは0.1〜4重量部 さらに好ましくは0.3〜2重量部、最も好ましくは0.3〜1重量部である。含有量が多すぎると樹脂の耐熱性が低下したり、加工時にガスが発生しやすくなるという問題あり、少なすぎると難燃性が発揮されないという問題がある。
【0089】
<E成分:紫外線吸収剤>
本発明の照明カバーに用いられる熱可塑性樹脂組成物においては、耐光性を付与するという意味で紫外線吸収剤を含んでいることが好ましい。紫外線吸収剤としては、例えば2,4−ジヒドロキシベンゾフェノン、2−ヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−n−オクトキシベンゾフェノン、2−ヒドロキシ−4−n−ドデシルオキシベンゾフェノン、2−ヒドロキシ−4−ベンジロキシベンゾフェノン、2,2’−ジヒドロキシ−4−メトキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−2’−カルボキシベンゾフェノン、2−ヒドロキシ−4−メトキシ−5−スルホキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシベンゾフェノン、2,2’,4,4’−テトラヒドロキシベンゾフェノン、2,2’−ジヒドロキシ−4,4’−ジメトキシ−5−ソジウムスルホキシベンゾフェノン、ビス(5−ベンゾイル−4−ヒドロキシ−2−メトキシフェニル)メタンなどに代表されるベンゾフェノン系紫外線吸収剤を挙げることができる。
【0090】
また紫外線吸収剤としては例えば2−(2’−ヒドロキシ−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−5’−tert−オクチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−アミルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−ドデシル−5’−メチルフェニル)ベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ビス(α,α’−ジメチルベンジル)フェニルベンゾトリアゾール、2−[2’−ヒドロキシ−3’−(3”,4”,5”,6”−テトラフタルイミドメチル)−5’−メチルフェニル]ベンゾトリアゾール、2−(2’−ヒドロキシ−3’−tert−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェニル)−5−クロロベンゾトリアゾール、2,2’メチレンビス[4−(1,1,3,3−テトラメチルブチル)−6−(2H−ベンゾトリアゾール−2−イル)フェノール]、メチル−3−[3−tert−ブチル−5−(2H−ベンゾトリアゾール−2−イル)−4−ヒドロキシフェニルプロピオネート−ポリエチレングリコールとの縮合物に代表されるベンゾトリアゾール系紫外線吸収剤を挙げることができる。
【0091】
さらに紫外線吸収剤としては例えば、2−(4,6−ジフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシ−フェノール、2−(4,6−ビス−(2,4−ジメチルフェニル−1,3,5−トリアジン−2−イル)−5−ヘキシルオキシ−フェノールなどのヒドロキシフェニルトリアジン系化合物を挙げることができる。
【0092】
紫外線吸収剤の含有量は、それぞれ芳香族ポリカーボネート樹脂(A成分)100重量部当たり0.01〜3.0重量部が好ましく、より好ましくは0.02〜1.0重量部であり、最も好ましくは0.05〜0.3重量部である。
【0093】
<その他の成分>
一方、本発明の照明カバーに用いられる熱可塑性樹脂組成物には、難燃性や光学特性を損なうことがない限り、他の樹脂や充填剤は配合しても差し支えない。
本発明の照明カバーに用いられる樹脂組成物には、照明カバーに種々の機能の付与や特性改善のために、それ自体知られた添加物を少割合配合することができる。これら添加物は本発明の目的を損なわない限り、通常の配合量である。
【0094】
かかる添加剤としては、ドリップ防止剤(フィブリル形成能を有する含フッ素ポリマーなど)、熱安定剤、光安定剤、離型剤、滑剤、摺動剤(PTFE粒子など)、着色剤(カーボンブラック、酸化チタンなどの顔料、染料)、蛍光増白剤、蓄光顔料、蛍光染料、帯電防止剤、流動改質剤、結晶核剤、無機および有機の抗菌剤、光触媒系防汚剤(微粒子酸化チタン、微粒子酸化亜鉛など)、グラフトゴムに代表される衝撃改質剤、赤外線吸収剤またはフォトクロミック剤が挙げられる。
【0095】
本発明に用いられる樹脂組成物の熱安定性、酸化防止性、および離型性の改良のために、芳香族ポリカーボネート樹脂において、これらの改良に使用されている添加剤が有利に使用される。以下これら添加剤について具体的に説明する。
【0096】
本発明に用いられる樹脂組成物は、熱安定剤としてリン含有安定剤を配合することができる。かかるリン含有安定剤としては、ホスファイト化合物、ホスホナイト化合物、およびホスフェート化合物のいずれも使用可能である。
【0097】
ホスファイト化合物としては、さまざまなものを用いることができる。具体的には例えば下記一般式〔11〕で表わされるホスファイト化合物、下記一般式〔12〕で表わされるホスファイト化合物、および下記一般式〔13〕で表わされるホスファイト化合物を挙げることができる。
【0098】
【化11】

【0099】
[式中Rは、水素原子または炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルカリール基、炭素数7〜30のアラルキル基、またはこれらのハロ、アルキルチオ(アルキル基は炭素数1〜30)またはヒドロキシ置換基を示し、3個のRは互いに同一または互いに異なるのいずれの場合も選択でき、また2価フェノール類から誘導されることにより環状構造も選択できる。]
【0100】
【化12】

【0101】
[式中R、R10はそれぞれ水素原子、炭素数1〜20のアルキル基、炭素数6〜20のアリール基ないしアルキルアリール基、炭素数7〜30のアラルキル基、炭素数4〜20のシクロアルキル基、炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示す。なお、シクロアルキル基およびアリール基は、アルキル基で置換されていないもの、またはアルキル基で置換されているもののいずれも選択できる。]
【0102】
【化13】

【0103】
[式中R11、R12は炭素数12〜15のアルキル基である。なお、R11およびR12は互いに同一または互いに異なるのいずれの場合も選択できる。]で表わされるホスファイト化合物を挙げることができる。
【0104】
ホスホナイト化合物としては下記一般式〔14〕で表わされるホスホナイト化合物、および下記一般式〔15〕で表わされるホスホナイト化合物を挙げることができる。
【0105】
【化14】

【化15】

【0106】
[式中、Ar、Arは炭素数6〜20のアリール基ないしアルキルアリール基、または炭素数15〜25の2−(4−オキシフェニル)プロピル置換アリール基を示し、4つのArは互いに同一、または互いに異なるいずれも選択できる。または2つのArは互いに同一、または互いに異なるいずれも選択できる。]
【0107】
上記一般式〔11〕で表されるホスファイト化合物の好ましい具体例としては、ジフェニルイソオクチルホスファイト、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェニル)オクチルホスファイト、ジフェニルモノ(トリデシル)ホスファイト、フェニルジイソデシルホスファイト、フェニルジ(トリデシル)ホスファイトが挙げられる。
【0108】
上記一般式〔12〕で表されるホスファイト化合物の好ましい具体例としては、ジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイト、フェニルビスフェノールAペンタエリスリトールジホスファイト、ジシクロヘキシルペンタエリスリトールジホスファイトなどが挙げられ、好ましくはジステアリルペンタエリスリトールジホスファイト、ビス(2,4−ジ−tert−ブチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,6−ジ−tert−ブチル−4−メチルフェニル)ペンタエリスリトールジホスファイトを挙げることができる。かかるホスファイト化合物は1種、または2種以上を併用することができる。
【0109】
上記一般式〔13〕で表されるホスファイト化合物の好ましい具体例としては、4,4’−イソプロピリデンジフェノールテトラトリデシルホスファイトを挙げることができる。
【0110】
上記一般式〔14〕で表されるホスホナイト化合物の好ましい具体例としては、テトラキス(2,4−ジ−iso−プロピルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−n−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−iso−プロピルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−n−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト、テトラキス(2,6−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト等が挙げられ、テトラキス(ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトが好ましく、テトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトがより好ましい。このテトラキス(2,4−ジ−tert−ブチルフェニル)−ビフェニレンジホスホナイトは、2種以上の混合物が好ましく、具体的にはテトラキス(2,4−ジ−tert−ブチルフェニル)−4,4’−ビフェニレンジホスホナイト(E2−1成分)、テトラキス(2,4−ジ−tert−ブチルフェニル)−4,3’−ビフェニレンジホスホナイト(E2−2成分)および、テトラキス(2,4−ジ−tert−ブチルフェニル)−3,3’−ビフェニレンジホスホナイト(E2−3成分)の1種もしくは2種以上を併用して使用可能であるが、好ましくはかかる3種の混合物である。また、3種の混合物の場合その混合比は、F−1成分、F−2成分およびF−3成分を重量比で100:37〜64:4〜14の範囲が好ましく、100:40〜60:5〜11の範囲がより好ましい。
【0111】
上記一般式〔15〕で表されるホスホナイト化合物の好ましい具体例としては、ビス(2,4−ジ−iso−プロピルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトビス(2,6−ジ−iso−プロピルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−n−ブチルフェニル)−3−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、ビス(2,6−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイト等が挙げられ、ビス(ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトが好ましく、ビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトがより好ましい。このビス(2,4−ジ−tert−ブチルフェニル)−フェニル−フェニルホスホナイトは、2種以上の混合物が好ましく、具体的にはビス(2,4−ジ−tert−ブチルフェニル)−4−フェニル−フェニルホスホナイト、およびビス(2,4−ジ−tert−ブチルフェニル)−3−フェニル−フェニルホスホナイトの1種もしくは2種を併用して使用可能であるが、好ましくはかかる2種の混合物である。また、2種の混合物の場合その混合比は、重量比で5:1〜4の範囲が好ましく、5:2〜3の範囲がより好ましい。
【0112】
一方、ホスフェート化合物としては、トリブチルホスフェート、トリメチルホスフェート、トリクレジルホスフェート、トリフェニルホスフェート、トリクロルフェニルホスフェート、トリエチルホスフェート、ジフェニルクレジルホスフェート、ジフェニルモノオルソキセニルホスフェート、トリブトキシエチルホスフェート、ジブチルホスフェート、ジオクチルホスフェート、ジイソプロピルホスフェートなどを挙げることができ、好ましくはトリメチルホスフェートである。
【0113】
上記のリン含有熱安定剤の中で、さらに好ましい化合物としては、以下の一般式〔16〕および〔17〕で表される化合物を挙げることができる。
【0114】
【化16】

[式〔16〕中、R13およびR14は、それぞれ独立して炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示す。]
【0115】
【化17】

(式〔17〕中、R15、R16、R17、R18、R21、R22、およびR23はそれぞれ独立して水素原子、炭素原子数1〜12のアルキル基、シクロアルキル基、アリール基またはアラルキル基を示し、R19は水素原子または炭素原子数1〜4のアルキル基を示し、およびR20は水素原子またはメチル基を示す。)
【0116】
式〔16〕中、好ましくはR13およびR14は炭素原子数1〜12のアルキル基であり、より好ましくは炭素原子数1〜8のアルキル基である。式〔16〕で表される化合物としては具体的に、トリス(ジメチルフェニル)ホスファイト、トリス(ジエチルフェニル)ホスファイト、トリス(ジ−iso−プロピルフェニル)ホスファイト、トリス(ジ−n−ブチルフェニル)ホスファイト、トリス(2,4−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイト、トリス(2,6−ジ−tert−ブチルフェニル)ホスファイトなどが挙げられ、特にトリス(2,6−ジ−tert−ブチルフェニル)ホスファイトが好ましい。
【0117】
式〔17〕で表される化合物としては具体的に、2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)と2,6−ジ−tert−ブチルフェノールから誘導されるホスファイト、 2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)とフェノールから誘導されるホスファイト、が挙げられ、特に2,2’−メチレンビス(4,6−ジ−tert−ブチルフェノール)とフェノールから誘導されるホスファイトが好ましい。
【0118】
本発明の照明カバーに用いられる熱可塑性樹脂組成物に配合することができる酸化防止剤としてはフェノール系酸化防止剤を挙げることができる。フェノール系酸化防止剤により熱暴露時の変色を抑制できると共に、難燃性の向上に対してもある程度の効果を発揮する。かかるフェノール系酸化防止剤としては種々のものを使用することができる。
【0119】
かかるフェノール系酸化防止剤の具体例としては、例えばビタミンE、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、2,6−ジ−tert−ブチル−4−(N,N−ジメチルアミノメチル)フェノール、3,5−ジ−tert−ブチル−4−ヒドロキシベンジルホスホネートジエチルエステル、2,2’−メチレンビス(4−メチル−6−tert−ブチルフェノール)、2,2’−メチレンビス(4−エチル−6−tert−ブチルフェノール)、4,4’−メチレンビス(2,6−ジ−tert−ブチルフェノール)、2,2’−メチレンビス(4−メチル−6−シクロヘキシルフェノール)、2,2’−ジメチレン−ビス(6−α−メチル−ベンジル−p−クレゾール)2,2’−エチリデン−ビス(4,6−ジ−tert−ブチルフェノール)、2,2’−ブチリデン−ビス(4−メチル−6−tert−ブチルフェノール)、4,4’−ブチリデンビス(3−メチル−6−tert−ブチルフェノール)、トリエチレングリコール−N−ビス−3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオネート、1,6−へキサンジオールビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート、ビス[2−tert−ブチル−4−メチル6−(3−tert−ブチル−5−メチル−2−ヒドロキシベンジル)フェニル]テレフタレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、4,4’−チオビス(6−tert−ブチル−m−クレゾール)、4,4’−チオビス(3−メチル−6−tert−ブチルフェノール)、2,2’−チオビス(4−メチル−6−tert−ブチルフェノール)、ビス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)スルフィド、4,4’−ジ−チオビス(2,6−ジ−tert−ブチルフェノール)、4,4’−トリ−チオビス(2,6−ジ−tert−ブチルフェノール)、2,4−ビス(n−オクチルチオ)−6−(4−ヒドロキシ−3’,5’−ジ−tert−ブチルアニリノ)−1,3,5−トリアジン、N,N’−ヘキサメチレンビス−(3,5−ジ−tert−ブチル−4−ヒドロキシヒドロシンナミド)、N,N’−ビス[3−(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニル]ヒドラジン、1,1,3−トリス(2−メチル−4−ヒドロキシ−5−tert−ブチルフェニル)ブタン、1,3,5−トリメチル−2,4,6−トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)ベンゼン、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)イソシアヌレート、トリス(3,5−ジ−tert−ブチル−4−ヒドロキシベンジル)イソシアヌレート、1,3,5−トリス(4−tert−ブチル−3−ヒドロキシ−2,6−ジメチルベンジル)イソシアヌレート、1,3,5−トリス2[3(3,5−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオニルオキシ]エチルイソシアヌレート、テトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンなどを挙げることができ、好ましく使用できる。
【0120】
より好ましくは、n−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネート、2−tert−ブチル−6−(3’−tert−ブチル−5’−メチル−2’−ヒドロキシベンジル)−4−メチルフェニルアクリレート、3,9−ビス{2−[3−(3−tert−ブチル−4−ヒドロキシ−5−メチルフェニル)プロピオニルオキシ]−1,1,−ジメチルエチル}−2,4,8,10−テトラオキサスピロ[5,5]ウンデカン、およびテトラキス[メチレン−3−(3’,5’−ジ−tert−ブチル−4−ヒドロキシフェニル)プロピオネート]メタンであり、さらにn−オクタデシル−β−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェル)プロピオネートが好ましい。
【0121】
また、酸化防止剤としてイオウ含有酸化防止剤を使用することもできる。特に樹脂組成物が回転成形や圧縮成形に使用される場合には好適である。かかるイオウ含有酸化防止剤の具体例としては、ジラウリル−3,3’−チオジプロピオン酸エステル、ジトリデシル−3,3’−チオジプロピオン酸エステル、ジミリスチル−3,3’−チオジプロピオン酸エステル、ジステアリル−3,3’−チオジプロピオン酸エステル、ラウリルステアリル−3,3’−チオジプロピオン酸エステル、ペンタエリスリトールテトラ(β−ラウリルチオプロピオネート)エステル、ビス[2−メチル−4−(3−ラウリルチオプロピオニルオキシ)−5−tert−ブチルフェニル]スルフィド、オクタデシルジスルフィド、メルカプトベンズイミダゾール、2−メルカプト−6−メチルベンズイミダゾール、1,1’−チオビス(2−ナフトール)などを挙げることができる。より好ましくは、ペンタエリスリトールテトラ(β−ラウリルチオプロピオネート)エステルを挙げることができる。
【0122】
上記に挙げたリン含有熱安定剤、フェノール系酸化防止剤、およびイオウ含有酸化防止剤はそれぞれ単独または2種以上併用することができる。これらの安定剤の組成物中の割合としては、芳香族ポリカーボネート樹脂(A成分)100重量部当たり、リン含有安定剤、フェノール系酸化防止剤、またはイオウ含有酸化防止剤はそれぞれ0.0001〜1重量部であることが好ましい。より好ましくは0.0005〜0.5重量部であり、さらに好ましくは0.001〜0.2重量部である。
【0123】
本発明の照明カバーに用いられる熱可塑性樹脂組成物には、必要に応じて離型剤を配合することができる。かかる離型剤としてはそれ自体公知のものが使用できる。例えば、飽和脂肪酸エステル、不飽和脂肪酸エステル、ポリオレフィン系ワックス(ポリエチレンワックスまたは1−アルケン重合体が挙げられる。これらは酸変性などの官能基含有化合物で変性されているものも使用できる)、シリコーン化合物(本発明のC成分以外のもの。例えば直鎖状または環状のポリジメチルシロキサンオイルやポリメチルフェニルシリコーンオイルなどが挙げられる。これらは酸変性などの官能基含有化合物で変性されているものも使用できる)、フッ素化合物(ポリフルオロアルキルエーテルに代表されるフッ素オイルなど)、パラフィンワックス、蜜蝋などを挙げることができる。これらの中でも飽和脂肪酸エステル類、直鎖状または環状のポリジメチルシロキサンオイルやポリメチルフェニルシリコーンオイルなど、およびフッ素オイルを挙げることができる。好ましい離型剤としては飽和脂肪酸エステルが挙げられ、例えばステアリン酸モノグリセライドなどのモノグリセライド類、デカグリセリンデカステアレートおよびデカグリセリンテトラステアレート等のポリグリセリン脂肪酸エステル類、ステアリン酸ステアレートなどの低級脂肪酸エステル類、セバシン酸ベヘネートなどの高級脂肪酸エステル類、ペンタエリスリトールテトラステアレートなどのエリスリトールエステル類が使用される。かかる離型剤の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部に対して0.01〜0.3重量部が好ましい。
【0124】
また、本発明の照明カバーに用いられる熱可塑性樹脂組成物には紫外線吸収剤などに基づく黄色味を打ち消すためにブルーイング剤を配合することができる。ブルーイング剤としては通常ポリカーボネート樹脂に使用されるものであれば、特に支障なく使用することができる。一般的にはアンスラキノン系染料が入手容易であり好ましい。具体的なブルーイング剤としては、例えば一般名Solvent Violet13[CA.No(カラーインデックスNo)60725;商標名 バイエル社製「マクロレックスバイオレットB」、三菱化学(株)製「ダイアレジンブルーG」、住友化学工業(株)製「スミプラストバイオレットB」]、一般名Solvent Violet31[CA.No68210;商標名 三菱化学(株)製「ダイアレジンバイオレットD」]、一般名Solvent Violet33[CA.No60725;商標名 三菱化学(株)製「ダイアレジンブルーJ」]、一般名Solvent Blue94[CA.No61500;商標名 三菱化学(株)製「ダイアレジンブルーN」]、一般名Solvent Violet36[CA.No68210;商標名 バイエル社製「マクロレックスバイオレット3R」]、一般名Solvent Blue97[商標名 バイエル社製「マクロレックスブルーRR」]および一般名Solvent Blue45[CA.No61110;商標名 サンド社製「テラゾールブルーRLS」]等が挙げられ、特に、マクロレックスブルーRR、マクロレックスバイオレットBやテラゾールブルーRLSが好ましい。ブルーイング剤の含有量は芳香族ポリカーボネート樹脂(A成分)100重量部当たり0.000005〜0.0010重量部が好ましく、より好ましくは0.00001〜0.0001重量部である。
【0125】
本発明の照明カバーに用いられる熱可塑性樹脂組成物はドリップ防止性に優れるが、かかる性能をさらに補強するため通常のドリップ防止剤を併用することができる。しかしながら該熱可塑性樹脂組成物において、本発明の照明カバーの光学特性を損なわないためその配合量はA成分100重量部に対し0.2重量部以下が適切であり、0.1重量部以下が好ましく、0.08重量部以下がより好ましい。かかるドリップ防止剤としてはフィブリル形成能を有する含フッ素ポリマーを挙げることができる。特にポリテトラフルオロエチレン(以下PTFEと称することがある)が好ましい。フィブリル形成能を有するPTFEの分子量は極めて高い分子量を有し、せん断力などの外的作用によりPTFE同士を結合して繊維状になる傾向を示すものである。その分子量は、標準比重から求められる数平均分子量において100万〜1,000万、より好ましくは200万〜900万である。かかるPTFEは、固体形状の他、水性分散液形態のものも使用可能である。またかかるフィブリル形成能を有するPTFEは樹脂中での分散性を向上させ、さらに良好な難燃性および良好な光学特性を得るために他の樹脂との混合形態のPTFE混合物を使用することも可能である。混合形態のPTFEの市販品としては、三菱レイヨン(株)の「メタブレン A3000」(商品名)、「メタブレン A3700」(商品名)、「メタブレン A3750」(商品名)、およびGEスペシャリティーケミカルズ社製「BLENDEX B449」(商品名)などを挙げることができる。
【0126】
<樹脂組成物の製造について>
本発明の樹脂組成物を製造するには、任意の方法が採用される。例えばA成分、B成分、C成分およびD成分、更には他の成分をそれぞれV型ブレンダー、ヘンシェルミキサー、メカノケミカル装置、押出混合機などの予備混合手段を用いて充分に混合した後、必要に応じて押出造粒器やブリケッティングマシーンなどにより造粒を行い、その後ベント式二軸ルーダーに代表される溶融混練機で溶融混練、およびペレタイザー等の機器によりペレット化する方法が挙げられる。別法として、A成分および任意にB成分、C成分、D成分更には他の成分をそれぞれ独立にベント式二軸ルーダーに代表される溶融混練機に供給する方法、A成分および他の成分の一部を予備混合した後、残りの成分と独立に溶融混練機に供給する方法なども挙げられる。なお、配合する成分に液状のものがある場合には、溶融混練機への供給にいわゆる液注装置、または液添装置を使用することができる。
【0127】
<照明カバーの製造>
本発明の照明カバーは、通常、本発明に用いる熱可塑性樹脂組成物を射出成形して得ることができる。かかる射出成形においては、通常のコールドランナー方式の成形法だけでなく、ランナーレスを可能とするホットランナーによって製造することも可能である。また射出成形においても、通常の成形方法だけでなくガスアシスト射出成形、射出圧縮成形、超高速射出成形、射出プレス成形、二色成形、サンドイッチ成形、インモールドコーティング成形、インサート成形、ブロー成形、発泡成形(超臨界流体を利用するものを含む)、急速加熱冷却金型成形、断熱金型成形および金型内再溶融成形、並びにこれらの組合せからなる成形法等を使用することができる。
【0128】
さらに本発明の照明カバーには、各種の表面処理を行うことが可能である。表面処理としては、加飾塗装、ハードコート、撥水・撥油コート、親水コート、紫外線吸収コート、赤外線吸収コート、電磁波吸収コート、発熱コート、帯電防止コート、制電コート、導電コート、並びにメタライジング(メッキ、化学蒸着(CVD)、物理蒸着(PVD)、溶射など)などの各種の表面処理を行うことができる。殊に透明シートに透明導電層が被覆されたものは好適である。
【発明の効果】
【0129】
本発明の照明カバーは、ある特定の粘度平均分子量と構造粘性指数を有する熱可塑性樹脂組成物、好ましくはポリカーボネート樹脂組成物からなる照明カバーであり、5VAの規格を充分に達成可能な難燃性を持ち、かつ良好な成形性と高い光線透過率を維持できる照明カバーである。これらの技術は従来の照明カバーの技術にはないものであり、各種照明用途に極めて有用であり、その奏する工業的効果は極めて大である。
【図面の簡単な説明】
【0130】
【図1】実施例において外観の評価に使用した照明カバーである。
【図2】実施例において落下衝撃性の評価に使用した鉄製のおもりを取り付けた照明カバーである。
【発明を実施するための形態】
【0131】
本発明者らが現在最良と考える本発明の形態は、前記の各要件の好ましい範囲を集約したものとなるが、例えば、その代表例を下記の実施例中に記載する。もちろん本発明はこれらの形態に限定されるものではない。
【実施例】
【0132】
以下に実施例を挙げてさらに説明するが、本発明はそれに限定されるものではない。
尚、評価としては以下の項目について実施した。
【0133】
(i)構造粘性指数
実施例の各組成から得られたペレットについて、ISO11443(JIS K 7199)に準拠し、キャピラリー型レオメーター(東洋精機製作所(株)製 キャピログラフ1D)を使用し、キャピラリーとして東洋精機製作所(株)製 キャピラリー型式EF(径:1.0mm、長さ:10.0mm、L/D:10)を用いて、炉体温度300℃で、剪断速度D(60.8−6080 sec−1)に対する剪断応力σ(Pa)を測定し、それぞれの値を両対数グラフにプロットして得られる回帰直線の勾配から構造粘性指数Nを求めた。
【0134】
(ii)粘度平均分子量
実施例の各組成から得られたペレットについて、次式にて算出される比粘度(ηSP)を、20℃で塩化メチレン100mlに各ペレット0.7gを溶解した溶液からオストワルド粘度計を用いて求め、
比粘度(ηSP)=(t−t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
求められた比粘度(ηSP)から次の数式により粘度平均分子量Mvを算出する。
ηSP/c=[η]+0.45×[η]c (但し[η]は極限粘度)
[η]=1.23×10−4 Mv0.83
c=0.7
なお、実施例の各組成から得られたペレットが不溶な成分を含む場合(実施例6〜10)、粘度平均分子量の算出は次の要領で行なわれる。すなわち、該組成物を、その20〜30倍重量の塩化メチレンと混合し、組成物中の可溶分を溶解させる。かかる可溶分をセライト濾過により採取する。その後得られた溶液中の塩化メチレンを除去する。塩化メチレン除去後の固体を十分に乾燥し、塩化メチレンに溶解する成分の固体を得る。かかる固体0.7gを塩化メチレン100mlに溶解した溶液から、上記と同様にして20℃における比粘度を求め、該比粘度から上記と同様にして粘度平均分子量Mvを算出する。
【0135】
(iii)難燃性
実施例の各組成から得られたペレットを120℃で6時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]により、シリンダー温度300℃、金型温度80℃でUL規格94―5Vに従い難燃性評価用の厚み3.0mmの試験片を成形し、評価した。なお、判定が5VAの基準も満たすことが出来なかった場合「not 5V」と示すこととする。
【0136】
(iv)外観
実施例の各組成から得られたペレットを120℃で6時間、熱風循環式乾燥機にて乾燥し、射出成形機[東芝機械(株)IS150EN−5Y]により、シリンダー温度300℃、金型温度80℃で成形した、図1に示す直径50mm×高さ60mm×厚み2.0mmの照明カバーの表面外観を目視確認した。判定は成形品がフルショットや、やけがない物を○、ショートショットや、やけがある物を×で示した。
【0137】
(v)落下衝撃性
(iv)で作成した直径50mm×高さ60mm×厚み2.0mmの照明カバーの内側に、図2に示すように径30mmの球( 重量1.0kg)の鉄製のおもりを取り付け、照明カバーをコンクリート製の床に高さ1mから自然落下させることにより落下衝撃性を評価した。判定は、クラックが入らなかったものを○、クラックが入ったものを×で示した。
【0138】
[実施例1〜10、および比較例1〜4]
表1〜表2記載の配合割合からなる樹脂組成物を以下の要領で作成した。尚、説明は以下の表中の記号にしたがって説明する。表の割合の各成分を計量して、タンブラーを用いて均一に混合し、かかる混合物を押出機に投入して樹脂組成物の作成を行った。押出機としては径30mmφのベント式二軸押出機((株)神戸製鋼所KTX−30)を使用した。スクリュー構成はベント位置以前に第1段のニーディングゾーン(送りのニーディングディスク×2、送りのローター×1、戻しのローター×1および戻しニーディングディスク×1から構成される)を、ベント位置以後に第2段のニーディングゾーン(送りのローター×1、および戻しのローター×1から構成される)を設けてあった。シリンダ−温度およびダイス温度が290℃、およびベント吸引度が3000Paの条件でストランドを押出し、水浴において冷却した後ペレタイザーでストランドカットを行い、ペレット化した。得られたペレットを上記の方法を用い、難燃性評価用の試験片および照明カバーを成形した。なお、表1〜表2に記載の使用した原料等は以下の通りである。
【0139】
(A−1成分)
PC−1M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.96mol%、粘度平均分子量14,000)
(PC−1Mの製造方法)
温度計、攪拌機、還流冷却器付き反応器にイオン交換水2340部、25%水酸化ナトリウム水溶液947部、ハイドロサルファイト0.7部を仕込み、攪拌下に2,2−ビス(4−ヒドロキシフェニル)プロパン(以下「ビスフェノールA」と称する事がある)710部を溶解した(ビスフェノールA溶液)後、塩化メチレン2299部と48.5%水酸化ナトリウム水溶液112部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液38.1部(1.00mol%)を加えて、15〜25℃でホスゲン354部を約90分かけて吹き込みホスゲン化反応を行った。ホスゲン化終了後、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液241部と48.5%水酸化ナトリウム水溶液88部を加えて、攪拌を停止し、10分間静置分離後、攪拌を行い乳化させ5分後、ホモミキサー(特殊機化工業(株))で回転数1200rpm、バス回数35回で処理し高乳化ドープを得た。該高乳化ドープを重合槽(攪拌機付き)で、無攪拌条件下、温度35℃で3時間反応し重合を終了した。反応終了後、塩化メチレン5728部を加えて希釈した後、反応混合液から塩化メチレン相を分離し、分離した塩化メチレン相にイオン交換水5000部を加え攪拌混合した後、攪拌を停止し、水相と有機相を分離した。次に水相の導電率がイオン交換水と殆ど同じになるまで水洗浄を繰返し精製ポリカーボネート樹脂溶液を得た。次に、該精製ポリカーボネート樹脂溶液をイオン交換水100Lを投入した1000Lニーダーで、液温75℃にて塩化メチレンを蒸発させて粉粒体を得た。該粉粒体25部と水75部を攪拌機付熱水処理槽に投入し、水温95℃で30分間攪拌混合した。次いで、該粉粒体と水の混合物を遠心分離機で分離して、塩化メチレン0.5重量%、水45重量%を含む粉粒体を得た。次に、この粉粒体を140℃にコントロールされているSUS316L製伝導受熱式溝型2軸攪拌連続乾燥機に50kg/hr(ポリカーボネート樹脂換算)で連続供給して、平均乾燥時間3時間の条件で乾燥して、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量14,000、分岐率0.96mol%であった。
【0140】
PC−2M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量16,100)
(PC−2Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液200部に変更した以外は、PC-1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量16,100、分岐率0.91mol%であった。
【0141】
PC−3M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量18,200)
(PC−3Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液167部に変更した以外は、PC-1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,200、分岐率0.91mol%であった。
【0142】
PC−4M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.72mol%、粘度平均分子量18,200)
(PC−4Mの製造方法)
14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液29.0部(0.76mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液167部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,200、分岐率0.72mol%であった。
【0143】
PC−5M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率1.26mol%、粘度平均分子量18,100)
(PC−5Mの製造方法)
14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液53.3部(1.40mol%)、11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液176部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,100、分岐率1.26mol%であった。
【0144】
PC−6M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量28,100)
(PC−6Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液89.5部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量28,100、分岐率0.91mol%であった。
【0145】
PC−7M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.91mol%、粘度平均分子量32,000)
(PC−7Mの製造方法)
11%濃度のp−tert−ブチルフェノールの塩化メチレン溶液74.2部に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量32,000、分岐率0.91mol%であった。
【0146】
PC−8M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率0.34mol%、粘度平均分子量18,100)
(PC−8Mの製造方法)
14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液15.2部(0.40mol%)に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,100、分岐率0.34mol%であった。
【0147】
PC−9M:分岐構造を有する芳香族ポリカーボネート樹脂(分岐率2.31mol%、粘度平均分子量18,100)
(PC−9Mの製造方法)
ホスゲンを354部、14%濃度の水酸化ナトリウム水溶液に1,1,1−トリス(4−ヒドロキシフェニル)エタンを25%濃度で溶解した水溶液107部(2.80mol%)に変更した以外は、PC−1Mの製造方法と同様に行い、分岐構造を有するポリカーボネート樹脂粉粒体を得た。このようにして得られた分岐構造を有するポリカーボネート樹脂は粘度平均分子量18,100、分岐率2.31mol%であった。
【0148】
(B成分)
B−1:パーフルオロブタンスルホン酸カリウム塩(大日本インキ(株)製メガファックF−114P)
B−2:パーフルオロブタンスルホン酸ナトリウム塩(大日本インキ(株)製メガファックF−114S)
【0149】
(C成分)
C−1:ビーズ状架橋アクリル粒子(積水化成品工業(株)製:MBX−5(商品名)、平均粒子径5μm)
C−2:ビーズ状架橋シリコーン(モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社(株)製:トスパール120(商品名)、平均粒子径2μm)
【0150】
(D成分)
D−1:Si−H基および芳香族基を含有するシリコーン化合物
(D−1の製造)
攪拌機、冷却装置、温度計を取り付けた1Lフラスコに水301.9gとトルエン150gを仕込み、内温5℃まで冷却した。滴下ロートにトリメチルクロロシラン21.7g、メチルジクロロシラン23.0g、ジメチルジクロロシラン12.9およびジフェニルジクロロシラン76.0の混合物を仕込み、フラスコ内へ攪拌しながら2時間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温20℃で攪拌を4時間続けて熟成した後、静置して分離した塩酸水層を除去し、10%炭酸ナトリウム水溶液を添加して5分間攪拌後、静置して分離した水層を除去した。その後、さらにイオン交換水で3回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸点物を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−1を得た。このシリコーン化合物B−1はSi−H基量が0.21mol/100g、芳香族基量が49重量%、平均重合度が8.0であった。
【0151】
D−2:Si−H基および芳香族基を含有するシリコーン化合物
(D−2の製造)
撹拌装置、冷却装置、温度計を取り付けた1Lフラスコに1,1,3,3−テトラメチルジシロキサン100.7g、1,3,5,7−テトラメチルシクロテトラシロキサン60.1g、オクタメチルシクロテトラシロキサン129.8g、オクタフェニルシクロテトラシロキサン143.8gおよびフェニルトリメトキシシラン99.1gを仕込み、さらに撹拌しながら濃硫酸25.0gを添加した。内温10℃まで冷却した後、水13.8gをフラスコ内へ撹拌しながら30分間かけて滴下した。この間、内温を20℃以下に維持するよう、冷却を続けた。滴下終了後、さらに内温10〜20℃で撹拌を5時間続けて熟成した後、水8.5gとトルエン300gを添加して30分間撹拌後、静置して分離した水層を除去した。その後、さらに5%硫酸ナトリウム水溶液で4回洗浄し、トルエン層が中性になったことを確認した。このトルエン溶液を減圧下内温120℃まで加熱してトルエンと低沸分を除去した後、濾過により不溶物を取り除いてシリコーン化合物B−2を得た。このシリコーン化合物B−2はSi−H基量が0.50mol/100g、芳香族基量が30重量%、平均重合度が10.95のシリコーン化合物であった。
【0152】
<各シリコーン化合物の示性式>
D−1: Mφ2
D−2: M3.5φ21.45φ
なお、上記示性式における各記号は以下のシロキサン単位を表し、各記号の係数(下付文字)は1分子中における各シロキサン単位の数(重合度)を示す。
M :(CHSiO1/2
: H(CHSiO1/2
D :(CHSiO
: H(CH)SiO
φ2 :(CSiO
φ :(C)SiO3/2
【0153】
(E成分)
E−1:ベンゾトリアゾール系紫外線吸収剤(ケミプロ化成工業(株)製:ケミソーブ79)
【0154】
(その他の成分)
PSR:蛍光増白剤(ハッコールケミカル(株)製:ハッコールPSR)
IRX:ヒンダードフェノール系酸化防止剤(チバ・スペシャルティ・ケミカルズ社製:Irganox1076)
【0155】
【表1】

【0156】
【表2】

【符号の説明】
【0157】
1 照明カバー
2 鉄製のおもり

【特許請求の範囲】
【請求項1】
光源からの光を拡散させるために前記光源を覆うように配置される照明カバーであって、該照明カバーが、粘度平均分子量が1.6×10〜3.0×10であり、構造粘性指数(N)が1.6〜2.5である熱可塑性樹脂組成物からなることを特徴とする照明カバー。
【請求項2】
熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(B)パーフルオロアルキルスルホン酸アルカリ(土類)金属塩、芳香族スルホン酸アルカリ(土類)金属塩、および芳香族系イミドのアルカリ(土類)金属塩からなる群より選択される1種以上の有機アルカリ(土類)金属塩(B成分)0.005〜1.0重量部を含有する難燃性ポリカーボネート樹脂組成物であることを特徴とする請求項1に記載の照明カバー。
【請求項3】
熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(C)光拡散剤(C成分)0.005〜3重量部を含有することを特徴とする請求項2に記載の照明カバー。
【請求項4】
熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(D)分子中にSi−H基を含有するシリコーン化合物(D成分)0.05〜7重量部を含有することを特徴とする請求項2または3に記載の照明カバー。
【請求項5】
熱可塑性樹脂組成物が、(A)ポリカーボネート樹脂(A成分)100重量部に対し、(E)紫外線吸収剤(E成分)0.01〜3.0重量部を含有することを特徴とする請求項2〜4のいずれか1項に記載の照明カバー。
【請求項6】
熱可塑性樹脂組成物が、厚さ3.0mmの成形品において、UL94規格の難燃レベル5VAを達成する請求項1〜5のいずれか1項に記載の照明カバー。
【請求項7】
A成分が分岐構造を有するポリカーボネート樹脂である請求項2〜6のいずれかに記載の照明カバー。
【請求項8】
A成分が分岐率0.6〜1.1mol%の分岐構造を有するポリカーボネート樹脂である請求項7に記載の照明カバー。

【図1】
image rotate

【図2】
image rotate


【公開番号】特開2012−36324(P2012−36324A)
【公開日】平成24年2月23日(2012.2.23)
【国際特許分類】
【出願番号】特願2010−179395(P2010−179395)
【出願日】平成22年8月10日(2010.8.10)
【出願人】(000215888)帝人化成株式会社 (504)
【Fターム(参考)】