説明

照明装置および表示装置

【課題】視野角の大きい範囲における光の漏洩を低減しつつ、表示輝度を向上させることの可能な照明装置および表示装置を提供する。
【解決手段】導光板10に接着された光変調素子30内に、バルク34Aおよび微粒子34Bを含んだ光変調層34が設けられている。バルク34Aおよび微粒子34Bは共に光学異方性を有しており、これらの電場に対する応答速度が互いに異なっている。これにより、電場制御によって、バルク34Aおよび微粒子34Bの光軸の向きを互いに一致させたり、互いに異ならせたりすることが可能となる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光に対して散乱性または透明性を示す光変調素子を備えた照明装置および表示装置に関する。
【背景技術】
【0002】
近年、液晶ディスプレイの高画質化や省エネ化が急進展し、部分的にバックライトの光強度を変調することによって暗所コントラストの向上を実現する方式が提案されている。この手法は主に、バックライトの光源として用いられる発光ダイオード(LED;Light Emitting Diode)を部分的に駆動して、表示画像に合わせてバックライト光を変調するものである。また、大型の液晶ディスプレイにおいて、小型の液晶ディスプレイと同様、薄型化の要求が強まってきており、冷陰極管(CCFL;Cold Cathode Fluorescent Lamp)やLEDを液晶パネルの直下に配置する方式ではなく、導光板の端部に光源を配置するエッジライト方式が注目されている。しかし、エッジライト方式では、光源の光強度を部分的に変調する部分駆動を行うことは難しい。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開平6−347790号公報
【特許文献2】特許第3479493号
【発明の概要】
【発明が解決しようとする課題】
【0004】
ところで、導光板内を伝播している光の取り出し技術としては、例えば、特許文献1において、透明と散乱を切り換える高分子分散液晶(PDLC;Polymer Dispersed Liquid Crystal)を用いた表示装置が提案されている。これは、写り込み防止などを目的としたものであり、PDLCに対して部分的に電圧を印加して、透明と散乱を切り換える技術である。しかし、この方式では、PDLCが正面方向(PDLCの法線方向)において透明状態となっている場合に、導光板内を斜めに伝播している光の一部が液晶材料と高分子材料との屈折率差によって散乱される。そのため、視野角の大きい範囲において光が漏れ出てしまい、視野角特性が悪化してしまう。そこで、視野角特性を改善するために、例えば、斜め方向に漏れ出た光を偏光板に吸収させることが考えられる(特許文献2参照)。
【0005】
しかし、この方策では、斜め方向に漏れ出た光が偏光板に吸収されてしまうので、表示が暗くなってしまうという問題があった。
【0006】
本発明はかかる問題点に鑑みてなされたもので、その目的は、視野角の大きい範囲における光の漏洩を低減しつつ、表示輝度を向上させることの可能な照明装置および表示装置を提供することにある。
【課題を解決するための手段】
【0007】
本発明の第1の照明装置は、導光板と、導光板の側面に配置された光源と、導光板の表面または内部に配置されると共に導光板と接着された光変調素子とを備えたものである。上記光変調素子は、離間して互いに対向配置された一対の透明基板と、一対の透明基板のそれぞれの表面に設けられた一対の電極と、一対の透明基板の間隙に設けられた光変調層とを有している。上記光変調層は、光学異方性を有すると共に電場に対する応答速度が互いに異なる第1領域および第2領域を含んでいる。ここで、第1領域は、一対の電極の間に電圧が印加されていない時に当該第1領域の光軸が導光板の側面のうち光源の光が入射する光入射面と平行となると共に透明基板の表面と第1角度で交差する構成となっている。第1領域は、さらに、一対の電極の間に電圧が印加されている時に当該第1領域の光軸が光入射面と平行となると共に透明基板の表面と第1角度よりも大きな第2角度で交差する構成となっている。一方、第2領域は、一対の電極の間への電圧印加の有無に拘らず、当該第2領域の光軸が光入射面と平行となると共に透明基板の表面と第1角度で交差する構成となっている。
【0008】
本発明の第1の表示装置は、マトリクス状に配置された複数の画素を有すると共に、複数の画素が画像信号に基づいて駆動される表示パネルと、表示パネルを照明する照明装置とを備えたものである。この表示装置に搭載された照明装置は、上記第1の照明装置と同一の構成要素を有している。
【0009】
本発明の第1の照明装置および第1の表示装置では、導光板に接着された光変調素子内に、第1領域および第2領域を含んだ光変調層が設けられている。第1領域および第2領域は光学異方性を有しており、電場に対して上述した配向特性を有している。これにより、電場制御によって、第1領域および第2領域の光軸の向きを互いに一致させたり、互いに異ならせたりすることが可能となる。従って、例えば、双方の常光屈折率を互いに近接させると共に、双方の異常光屈折率も互いに近接させ、かつ、電場制御によって、第1領域および第2領域の光軸の向きを互いに一致させたときには、正面方向および斜め方向を含むあらゆる方向において屈折率差が小さくなり、高い透明性が得られる。また、例えば、電場制御によって、第1領域および第2領域の光軸の向きを互いに交差(もしくは直交)させたときには、正面方向および斜め方向を含むあらゆる方向において屈折率差が大きくなり、高い散乱性が得られる。
【0010】
本発明の第2の照明装置は、導光板と、導光板の側面に配置された光源と、導光板の表面または内部に配置されると共に導光板と接着された光変調素子とを備えたものである。上記光変調素子は、離間して互いに対向配置された一対の透明基板と、一対の透明基板のそれぞれの表面に設けられた一対の電極と、一対の透明基板の間隙に設けられた光変調層とを有している。上記光変調層は、光学異方性を有すると共に電場に対する応答速度が互いに異なる第3領域および第4領域を含んでいる。ここで、第3領域は、一対の電極の間に電圧が印加されていない時に当該第3領域の光軸が導光板の側面のうち光源の光が入射する光入射面と平行となると共に透明基板の表面と第3角度で交差する構成となっている。第3領域は、さらに、一対の電極の間に電圧が印加されている時に当該第3領域の光軸が光入射面と平行となると共に透明基板の表面と第3角度よりも大きな第4角度で交差するか、または透明基板の表面と平行となる構成となっている。一方、第4領域は、一対の電極の間への電圧印加の有無に拘らず、当該第4領域の光軸が光入射面と平行となると共に透明基板の表面と第3角度で交差する構成となっている。
【0011】
本発明の第2の表示装置は、マトリクス状に配置された複数の画素を有すると共に、複数の画素が画像信号に基づいて駆動される表示パネルと、表示パネルを照明する照明装置とを備えたものである。この表示装置に搭載された照明装置は、上記第2の照明装置と同一の構成要素を有している。
【0012】
本発明の第2の照明装置および第2の表示装置では、導光板に接着された光変調素子内に、第3領域および第4領域を含んだ光変調層が設けられている。第3領域および第4領域は光学異方性を有しており、電場に対して上述した配向特性を有している。これにより、電場制御によって、第3領域および第4領域の光軸の向きを互いに一致させたり、互いに異ならせたりすることが可能となる。従って、例えば、双方の常光屈折率を互いに近接させると共に、双方の異常光屈折率も互いに近接させ、かつ、電場制御によって、第3領域および第4領域の光軸の向きを互いに一致させたときには、正面方向および斜め方向を含むあらゆる方向において屈折率差が小さくなり、高い透明性が得られる。また、例えば、電場制御によって、第3領域および第4領域の光軸の向きを互いに交差(もしくは直交)させたときには、正面方向および斜め方向を含むあらゆる方向において屈折率差が大きくなり、高い散乱性が得られる。
【発明の効果】
【0013】
本発明の第1の照明装置および第1の表示装置によれば、電場制御によって、第1領域および第2領域の光軸の向きを互いに一致させたり異ならせたりすることにより、全方向において、高い透明性が得られたり、高い散乱性が得られたりできるようにした。これにより、暗状態において、視野角の大きい範囲における光の漏洩を低減またはほとんどなくすることができる。また、高い散乱性により、部分的な明状態の部分を明るくすることができ、さらに、光の漏洩量が減少した分だけ、部分的な明状態の部分をより明るくすることができる。従って、本発明では、視野角の大きい範囲における光の漏洩を低減またはほとんどなくしつつ、表示輝度を向上させることができる。
【0014】
本発明の第2の照明装置および第2の表示装置によれば、電場制御によって、第3領域および第4領域の光軸の向きを互いに一致させたり異ならせたりすることにより、全方向において、高い透明性が得られたり、高い散乱性が得られたりできるようにした。これにより、暗状態において、視野角の大きい範囲における光の漏洩を低減またはほとんどなくすることができる。また、高い散乱性により、部分的な明状態の部分を明るくすることができ、さらに、光の漏洩量が減少した分だけ、部分的な明状態の部分をより明るくすることができる。従って、本発明では、視野角の大きい範囲における光の漏洩を低減またはほとんどなくしつつ、表示輝度を向上させることができる。
【図面の簡単な説明】
【0015】
【図1】本発明の第1の実施の形態に係るバックライトの構成の一例を表す断面図である。
【図2】図1の電極の構成の一例を表す断面図である。
【図3】図1のバックライトの構成の他の例を表す断面図である。
【図4】図1の光変調素子の作用について説明するための模式図である。
【図5】図1の光変調素子の作用について説明するための模式図である。
【図6】図1のバックライトの作用について説明するための模式図である。
【図7】図1のバックライトの製造工程について説明するための断面図である。
【図8】図7に続く製造工程について説明するための断面図である。
【図9】図8に続く製造工程について説明するための断面図である。
【図10】本発明の第2の実施の形態に係るバックライトに搭載された光変調素子の作用について説明するための模式図である。
【図11】図10の光変調素子の作用について説明するための模式図である。
【図12】図1のバックライトの構成のその他の例を表す断面図である。
【図13】図1のバックライトの構成のその他の例を表す断面図である。
【図14】図1のバックライトの構成のその他の例を表す断面図である。
【図15】図1の光変調素子の作用について説明するための模式図である。
【図16】図1の光変調素子の作用について説明するための模式図である。
【図17】図1の光変調素子および比較例の効果について説明するための図である。
【図18】光変調素子の光学特性を測定する装置の一例を表す図である。
【図19】図18の装置で測定した結果を示す図である。
【図20】図18の装置で測定した結果を示す図である。
【図21】異方性散乱について説明するための概念図である。
【図22】等方性散乱について説明するための概念図である。
【図23】一適用例にかかる表示装置の一例を表す断面図である。
【図24】実施例1のセルに電圧を印加しているときのバルクの偏光顕微鏡像の一例を表す図である。
【図25】比較例1のセルに電圧を印加しているときのバルクの偏光顕微鏡像の一例を表す図である。
【発明を実施するための形態】
【0016】
以下、発明を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.第1の実施の形態(バックライト、光変調素子(水平配向PDLC))
2.第2の実施の形態(バックライト、光変調素子(垂直配向PDLC))
3.変形例(光変調素子の位置、光学シートの追加)
4.異方性拡散
5.適用例(表示装置)
6.実施例
【0017】
<第1の実施の形態>
図1(A)は、本発明の第1の実施の形態に係るバックライト1(照明装置)の断面構成の一例を表したものである。図1(B)は、図1のバックライト1の断面構成の一例を表したものである。なお、図1(A),(B)は、模式的に表したものであり、実際の寸法や形状と同一であるとは限らない。このバックライト1は、例えば、液晶表示パネルなどを背後から照明するものであり、導光板10と、導光板10の側面に配置した光源20と、導光板11の背後に配置した光変調素子30および反射板40と、光変調素子30を駆動する駆動回路50とを備えている。
【0018】
導光板10は、導光板10の側面に配置した光源20からの光を導光板10の上面に導くものである。この導光板10は、導光板10の上面に配置される表示パネル(図示せず)に対応した形状、例えば、上面、下面および側面で囲まれた直方体状となっている。なお、以下では、導光板10の側面のうち光源20からの光が入射する側面を光入射面10Aと称するものとする。導光板10は、例えば、上面および下面の少なくとも一方の面に、所定のパターン化された形状を有しており、光入射面10Aから入射した光を散乱し、均一化する機能を有している。なお、バックライト1に印加する電圧を変調することによって輝度の均一化を行う場合には、パターン化されていない平坦な導光板を導光板10として用いることも可能である。この導光板10は、例えば、表示パネルとバックライト1との間に配置される光学シート(例えば、拡散板、拡散シート、レンズフィルム、偏光分離シートなど)を支持する支持体としても機能する。導光板10は、例えば、ポリカーボネート樹脂(PC)やアクリル樹脂(ポリメチルメタクリレート(PMMA)などの透明熱可塑性樹脂を主に含んで構成されている。
【0019】
光源20は、線状光源であり、例えば、熱陰極管(HCFL;Hot Cathode Fluorescent Lamp)、CCFL、または複数のLEDを一列に配置したものなどからなる。光源20が複数のLEDからなる場合には、効率、薄型化、均一性の観点から、全てのLEDがホワイトLEDであることが好ましい。なお、光源20が、例えば、赤色LED、緑色LEDおよび青色LEDを含んで構成されていてもよい。光源20は、図1(A)に示したように、導光板10の一の側面にだけ設けられていてもよいし、導光板10の2つの側面、3つの側面または全ての側面に設けられていてもよい。
【0020】
反射板40は、導光板10の背後から光変調素子30を介して漏れ出てきた光を導光板10側に戻すものであり、例えば、反射、拡散、散乱などの機能を有している。これにより、光源20からの射出光を効率的に利用することができ、また、正面輝度の向上にも役立っている。この反射板40は、例えば、発泡PET(ポリエチレンテレフタレート)や銀蒸着フィルム、多層膜反射フィルム、白色PETなどからなる。
【0021】
光変調素子30は、本実施の形態において、導光板10の背後(下面)に空気層を介さずに密着しており、例えば接着剤(図示せず)を介して導光板10の背後に接着されている。この光変調素子30は、例えば、図1(B)に示したように、透明基板31、下側電極32、配向膜33、光変調層34、配向膜35、上側電極36および透明基板37を反射板40側から順に配置されたものである。
【0022】
透明基板31,37は、光変調層34を支持するものであり、一般に、可視光に対して透明な基板、例えば、ガラス板や、プラスチックフィルムによって構成されている。下側電極32は、透明基板31のうち透明基板37との対向面上に設けられたものであり、例えば、図2に光変調素子30の一部を抜き出して示したように、面内の一の方向に延在する帯状の形状となっている。また、上側電極36は、透明基板37のうち透明基板31との対向面上に設けられたものであり、例えば、図2に示したように、面内の一の方向であって、かつ下側電極32の延在方向と交差(直交)する方向に延在する帯状の形状となっている。
【0023】
なお、下側電極32および上側電極36の形状は、駆動方式に依存するものである。例えば、これらが上述したような帯状の形状となっている場合には、例えば、各電極を単純マトリクス駆動することが可能である。一方の電極がベタ膜となっており、他方の電極が微小な方形状となっている場合には、例えば、各電極をアクティブマトリクス駆動することが可能である。また、一方の電極がベタ膜となっており、他方の電極が細かな引出線がついたブロック状となっている場合には、例えば、それぞれの分割ブロックを独自に駆動できるセグメント方式にすることもできる。
【0024】
下側電極32および上側電極36のうち少なくとも上側電極36(バックライト1の上面側の電極)は透明な導電性材料、例えば、酸化インジウムスズ(ITO;Indium Tin Oxide)からなる。ただし、下側電極32(バックライト1の下面側の電極)については、透明な材料でなくてもよく、例えば、金属によって構成されていてもよい。なお、下側電極32が金属によって構成されている場合には、下側電極32は、反射板40と同様、導光板10の背後から光変調素子30に入射する光を反射する機能も兼ね備えていることになる。従って、この場合には、例えば、図3に示したように、反射板40をなくすることも可能である。
【0025】
下側電極32および上側電極36を光変調素子30の法線方向から見たときに、光変調素子30のうち下側電極32および上側電極36が互いに対向している箇所に対応する部分が光変調セル30Aを構成している。各光変調セル30Aは、下側電極32および上側電極36に所定の電圧を印加することにより別個独立に駆動することの可能なものであり、下側電極32および上側電極36に印加される電圧値の大きさに応じて、光源20からの光に対して透明性を示したり、散乱性を示したりする。なお、透明性、散乱性については、光変調層34を説明する際に詳細に説明する。
【0026】
配向膜33,35は、例えば、光変調層34に用いられる液晶やモノマーを配向させるものである。配向膜の種類としては、例えば、垂直用配向膜および水平用配向膜があるが、本実施の形態では、配向膜33,35には水平用配向膜が用いられる。水平用配向膜としては、例えば、ポリイミド、ポリアミドイミド、ポリビニルアルコールなどをラビング処理することにより形成された配向膜、転写やエッチングなどにより溝形状が付与された配向膜が挙げられる。また、水平用配向膜としては、例えば、酸化ケイ素などの無機材料を斜方蒸着することにより形成された配向膜、イオンビーム照射により形成されたダイヤモンドライクカーボン配向膜、電極パターンスリットの形成された配向膜が挙げられる。透明基板31,37としてプラスチックフィルムを用いる場合には、製造工程において、透明基板31,37の表面に配向膜33,35を塗布した後の焼成温度ができるだけ低いことが好ましいことから、配向膜33,35として、100℃以下の温度で形成可能なポリアミドイミドを用いることが好ましい。
【0027】
また、垂直、水平いずれの配向膜においても、液晶とモノマーを配向させる機能があれば十分であり、通常の液晶ディスプレイに要求される電圧の繰り返し印加による信頼性などは必要ない。デバイス作成後の電圧印加による信頼性は、モノマーを重合したものと液晶との界面で決まるためである。また、配向膜を用いなくても、例えば、下側電極32および上側電極36間に電場や磁場を印加することによっても、光変調層34に用いられる液晶やモノマーを配向させることが可能である。つまり、下側電極32および上側電極36間に電場や磁場を印加しながら、紫外線照射して電圧印加状態での液晶やモノマーの配向状態を固定させることができる。配向膜の形成に電圧を用いる場合には、配向用と駆動用とで別々の電極を形成するか、液晶材料に周波数によって誘電率異方性の符号が反転する二周波液晶などを用いることができる。また、配向膜の形成に磁場を用いる場合、配向膜として磁化率異方性の大きい材料を用いることが好ましく、例えば、ベンゼン環の多い材料を用いることが好ましい。
【0028】
光変調層34は、例えば、図1(B)に示したように、バルク34A(第2領域)と、バルク34A内に分散された微粒子状の複数の微粒子34B(第1領域)とを含んだ複合層となっている。バルク34Aおよび微粒子34Bは光学異方性を有している。
【0029】
図4(A)は、下側電極32および上側電極36間に電圧が印加されていない時の、微粒子34B内の配向状態の一例を模式的に表したものである。なお、図4(A)において、バルク34A内の配向状態についての記載を省略した。図4(B)は、下側電極32および上側電極36間に電圧が印加されていない時の、バルク34Aおよび微粒子34Bの屈折率異方性を示す屈折率楕円体の一例を表したものである。この屈折率楕円体は、様々な方向から入射した直線偏光の屈折率をテンソル楕円体で表したものであり、光が入射する方向からの楕円体の断面を見ることによって、幾何的に屈折率を知ることができるものである。図4(C)は、下側電極32および上側電極36間に電圧が印加されていない時の、正面方向に向かう光L1と、斜め方向に向かう光L2とが光変調層34を透過する様子の一例を模式的表したものである。
【0030】
図5(A)は、下側電極32および上側電極36間に電圧が印加されている時の、微粒子34B内の配向状態の一例を模式的に表したものである。なお、図5(A)において、バルク34A内の配向状態についての記載を省略した。図5(B)は、下側電極32および上側電極36間に電圧が印加されている時の、バルク34Aおよび微粒子34Bの屈折率異方性を示す屈折率楕円体の一例を表したものである。図5(C)は、下側電極32および上側電極36間に電圧が印加されている時の、正面方向に向かう光L1と、斜め方向に向かう光L2とが光変調層34において散乱される様子の一例を模式的表したものである。
【0031】
バルク34Aおよび微粒子34Bは、例えば、図4(A),(B)に示したように、下側電極32および上側電極36間に電圧が印加されていない時に、バルク34Aの光軸AX1および微粒子34Bの光軸AX2の向きが互いに一致する(平行となる)構成となっている。なお、光軸AX1,AX2とは、偏光方向によらず屈折率が一つの値になるような光線の進行方向と平行な線を指している。また、光軸AX1および光軸AX2の向きは常に互いに一致している必要はなく、光軸AX1の向きと光軸AX2の向きとが、例えば製造誤差などによって多少ずれていてもよい。
【0032】
また、微粒子34Bは、例えば、下側電極32および上側電極36間に電圧が印加されていない時に、光軸AX2が導光板10の光入射面10Aと平行となる構成となっている。微粒子34Bは、さらに、例えば、下側電極32および上側電極36間に電圧が印加されていない時に、光軸AX2が透明基板31,37の表面と僅かな角度θ1(第1角度)で交差する構成となっている(図4(B)参照)。なお、角度θ1については、微粒子34Bを構成する材料を説明する際に詳述する。
【0033】
一方、バルク34Aは、例えば、下側電極32および上側電極36間への電圧印加の有無に拘らず、バルク34Aの光軸AX1が一定となる構成となっている。具体的には、バルク34Aは、例えば、図4(A),(B),図5(A),(B)に示したように、バルク34Aの光軸AX1が導光板10の光入射面10Aと平行となると共に透明基板31,37の表面と所定の角度θ1(第1角度)で交差する構成となっている。つまり、バルク34Aの光軸AX1は、下側電極32および上側電極36間に電圧が印加されていない時に、微粒子34Bの光軸AX2と平行となっている。
【0034】
なお、光軸AX2が常に、導光板10の光入射面10Aと平行となると共に透明基板31,37の表面と角度θ1で交差している必要はなく、例えば製造誤差などによって透明基板31,37の表面と、角度θ1とは若干異なる角度で交差していてもよい。また、光軸AX1,AX2が常に導光板10の光入射面10Aと平行となっている必要はなく、例えば製造誤差などによって導光板10の光入射面10Aと、小さな角度で交差していてもよい。
【0035】
ここで、バルク34Aおよび微粒子34Bの常光屈折率が互いに等しく、かつバルク34Aおよび微粒子34Bの異常光屈折率が互いに等しいことが好ましい。この場合に、例えば、下側電極32および上側電極36間に電圧が印加されていない時には、図4(A)に示したように、正面方向および斜め方向を含むあらゆる方向において屈折率差がほとんどなく、高い透明性が得られる。これにより、例えば、図4(C)に示したように、正面方向に向かう光L1および斜め方向に向かう光L2は、光変調層34内で散乱されることなく、光変調層34を透過する。その結果、例えば、図6(A),(B)に示したように、光源20からの光L(斜め方向からの光)は、透明領域30Aの界面(透明基板31または導光板10と空気との界面)において全反射され、透明領域30Aの輝度(黒表示の輝度)が、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて下がる。
【0036】
また、バルク34Aおよび微粒子34Bは、例えば、下側電極32および上側電極36間に電圧が印加されている時には、図5(A)に示したように、光軸AX1および光軸AX2の向きが互いに異なる(交差する)構成となっている。また、微粒子34Bは、例えば、下側電極32および上側電極36間に電圧が印加されている時に、微粒子34Bの光軸AX2が導光板10の光入射面10Aと平行となると共に透明基板31,37の表面と角度θ1よりも大きな角度θ2(第2角度)(例えば90°)で交差する構成となっている。なお、角度θ2については、微粒子34Bを構成する材料を説明する際に詳述する。
【0037】
したがって、下側電極32および上側電極36間に電圧が印加されている時には、光変調層34において、正面方向および斜め方向を含むあらゆる方向において屈折率差が大きくなり、高い散乱性が得られる。これにより、例えば、図5(C)に示したように、正面方向に向かう光L1および斜め方向に向かう光L2は、光変調層34内で散乱される。その結果、例えば、図6(A),(B)に示したように、光源20からの光L(斜め方向からの光)は、散乱領域30Bの界面(透明基板31または導光板10と空気との界面)を透過すると共に、反射板40側に透過した光は反射板40で反射され、光変調素子30を透過する。従って、散乱領域30Bの輝度は、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて極めて高くなり、しかも、透明領域30Aの輝度が低下した分だけ、部分的な白表示の輝度(輝度突き上げ)が大きくなる。
【0038】
なお、バルク34Aおよび微粒子34Bの常光屈折率は、例えば製造誤差などによって多少ずれていてもよく、例えば、0.1以下であることが好ましく、0.05以下であることがより好ましい。また、バルク34Aおよび微粒子34Bの異常光屈折率についても、例えば製造誤差などによって多少ずれていてもよく、例えば、0.1以下であることが好ましく、0.05以下であることがより好ましい。
【0039】
また、バルク34Aの屈折率差(Δn0=異常光屈折率n1−常光屈折率n0)や、微粒子34Bの屈折率差(Δn1=異常光屈折率n3−常光屈折率n2)は、できるだけ大きいことが好ましく、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.15以上であることがさらに好ましい。バルク34Aおよび微粒子34Bの屈折率差が大きい場合には、光変調層34の散乱能が高くなり、導光条件を容易に破壊することができ、導光板10からの光を取り出しやすいからである。
【0040】
また、バルク34Aおよび微粒子34Bは、電場に対する応答速度が互いに異なっている。バルク34Aは、例えば、電場に対して応答しない筋状構造もしくは多孔質構造となっているか、または微粒子34Bの応答速度よりも遅い応答速度を有する棒状構造となっている。バルク34Aは、例えば、低分子モノマーを重合化することにより得られた高分子材料によって形成されている。バルク34Aは、例えば、微粒子34Bの配向方向または配向膜33,35の配向方向に沿って配向した、配向性および重合性を有する材料(例えばモノマー)を熱および光の少なくとも一方によって重合させることにより形成されている。バルク34Aの筋状構造、多孔質構造もしくは棒状構造は、例えば、導光板10の光入射面10Aと平行となると共に明基板31,37の表面と僅かな角度θ1で交差する方向に長軸を有している。バルク34Aが筋状構造となっている場合に、短軸方向の平均的な筋状組織サイズは、導光光の散乱性を高くするという観点からは、0.1μm以上10μm以下となっていることが好ましく、0.2μm以上2.0μm以下の範囲であることがより好ましい。また、散乱の波長依存性を少なくするという観点からは、短軸方向の平均的な筋状組織サイズは、0.5μm以上5μm以下の範囲であることが好ましく、1〜3μmの範囲であることがより好ましい。筋状組織のサイズは、偏光顕微鏡、共焦点顕微鏡、電子顕微鏡などで観察することができる。
【0041】
一方、微粒子34Bは、例えば、液晶材料を主に含んで構成されており、バルク34Aの応答速度よりも十分に早い応答速度を有している。微粒子34B内に含まれる液晶材料(液晶分子)は、例えば棒状分子である。微粒子34B内に含まれる液晶分子として、正の屈折率異方性を有するもの(いわゆるポジ型液晶)を用いることが好ましい。
【0042】
ここで、下側電極32および上側電極36間に電圧が印加されていない時には、微粒子34B内において、液晶分子の長軸方向は、光軸AX2と平行となっている。このとき、微粒子34B内の液晶分子の長軸は、導光板10の光入射面10Aと平行となると共に透明基板31,37の表面と僅かな角度θ1で交差している。つまり、微粒子34B内の液晶分子は、下側電極32および上側電極36間に電圧が印加されていない時には、導光板10の光入射面10Aと平行な面内において角度θ1だけ傾斜した状態で配向している。この角度θ1は、プレチルト角と呼ばれるもので、例えば0.1°以上30°以下の範囲であることが好ましい。この角度θ1は、0.5°以上10°以下の範囲であることがより好ましく、0.7°以上2°以下の範囲であることがさらにより好ましい。角度θ1を大きくすると、後述するような理由から散乱の効率が低下する傾向にある。また、角度θ1を小さくし過ぎると、電圧印加時に液晶の立ち上がる方位角がばらつく。例えば、180°反対側の方位(リバースチルト)に液晶が立ち上がることもある。これにより、微粒子34Bとバルク34Aとの屈折率差を有効に利用できないので、散乱効率が低くなり、輝度が小さくなる傾向にある。
【0043】
また、下側電極32および上側電極36間に電圧が印加されている時には、微粒子34B内において、液晶分子の長軸方向は、光軸AX2と交差(もしくは直交)している。このとき、微粒子34B内の液晶分子の長軸は、導光板10の光入射面10Aと平行となると共に透明基板31,37の表面と角度θ1よりも大きな角度θ2(例えば90°)で交差している。つまり、微粒子34B内の液晶分子は、下側電極32および上側電極36間に電圧が印加されている時には、導光板10の光入射面10Aと平行な面内において角度θ2だけ傾斜した状態もしくは角度θ2(=90°)で真っ直ぐ立った状態で配向している。
【0044】
上記した、配向性および重合性を有するモノマーとしては、光学的に異方性を有しており、かつ液晶と複合する材料であればよいが、本実施の形態では紫外線で硬化する低分子モノマーであることが好ましい。電圧無印加の状態で、液晶と、低分子モノマーを重合化することにより形成されたもの(高分子材料)との光学的異方性の方向が一致していることが好ましいので、紫外線硬化前において、液晶と低分子モノマーが同一方向に配向していることが好ましい。微粒子34Bとして液晶が用いられる場合に、その液晶が棒状分子であるときには、使用するモノマー材料の形状も棒状であることが好ましい。以上のことから、モノマー材料としては重合性と液晶性を併せ持つ材料を用いることが好ましく、例えば、重合性官能基として、アクリレート基、メタクリレート基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルエーテル基およびエポキシ基からなる群から選ばれた少なくとも1つの官能基を有することが好ましい。これらの官能基は、紫外線、赤外線または電子線を照射したり、加熱したりすることによって重合させることができる。紫外線照射時の配向度低下を抑制するために、多官能基をもつ液晶性材料を添加することもできる。バルク34Aを上述した筋状構造とする場合には、バルク34Aの原料として、2官能液晶性モノマーを用いることが好ましい。また、バルク34Aの原料に対して、液晶性を示す温度の調整を目的に単官能モノマーを添加したり、架橋密度向上を目的に3官能以上のモノマーを添加したりすることもできる。
【0045】
駆動回路50は、例えば、一の光変調セル30Aにおいて微粒子34Bの光軸AX2がバルク34Aの光軸AX1と平行もしくはほぼ平行となり、他の光変調セル30Bにおいて微粒子34Bの光軸AX2がバルク34Aの光軸AX1と交差もしくは直交するように各光変調セル30Bの一対の電極(下側電極32、上側電極36)へ印加する電圧の大きさを制御するようになっている。つまり、駆動回路50は、電場制御によって、バルク34Aおよび微粒子34Bの光軸AX1,AX2の向きを互いに一致(もしくはほぼ一致)させたり、互いに異ならせたり(もしくは直交させたり)することができるようになっている。
【0046】
以下に、本実施の形態のバックライト1の製造方法について、図7(A)〜(C)から図9(A)〜(C)を参照しながら説明する。
【0047】
まず、ガラス基板またはプラスチックフィルム基板からなる透明基板31,37上に、ITOなどの透明導電膜32−1,36−1を形成する(図7(A))。次に、表面全体にレジスト層を形成したのち、パターニングによりレジスト層に電極パターン(下側電極32、上側電極36)を形成する(図7(B))。
【0048】
パターニングの方法としては、例えば、フォトリソグラフィ法、レーザー加工法、パターン印刷法、スクリーン印刷法などを用いることが可能である。また、例えば、メルク社の“ハイパーエッチ”材料を用いてスクリーン印刷した後に所定の加熱を行い、その後、水洗することでパターニングを行うこともできる。電極パターンは駆動方法および部分駆動の分割数によって決定される。例えば、42インチサイズのディスプレイを12×6分割する場合には、電極幅がおよそ80mm程度のパターンとし、電極間のスリット部分はできるだけ細くする。だたし、後述のぼかし特性から、スリット部分が細すぎてもあまり意味をなさないので、具体的には、10〜500μm程度のスリットとするのがよい。また、ITOナノ粒子をパターン印刷した後、それを焼成することによって電極パターンを形成してもよい。
【0049】
次に、表面全体に配向膜33,35を塗布したのち、乾燥させ、焼成する(図7(C))。配向膜33,35としてポリイミド系材料を用いる場合には、溶媒にNMP(N−メチル−2−ピロリドン)を用いることが多いが、そのときには、大気下では200℃程度の温度が必要である。なお、この場合に、透明基板31,37としてプラスチック基板を用いる場合には、配向膜33,35を100℃で真空乾燥させ、焼成することもできる。その後、配向膜33,35に対してラビング処理を行う。これにより、配向膜33,35が水平配向用の配向膜として機能し、さらに配向膜33,35のラビング方向にプレチルトを形成することが可能となる。
【0050】
次に、配向膜33上に、セルギャップを形成するためのスペーサ38を乾式または湿式で散布する(図8(A))。なお、真空貼り合わせ法にて光変調セル30Aを作成する場合には、滴下する混合物中にスペーサ38を混合しておいてもよい。また、スペーサ38の替わりとして、フォトリソ法によって柱スペーサを形成することもできる。
【0051】
続いて、配向膜35上に、貼り合わせおよび液晶の漏れを防止するためのシール剤39を、例えば額縁状に塗布する(図8(B))。このシール剤パターン39はディスペンサー法やスクリーン印刷法にて形成することができる。
【0052】
以下に、真空貼り合わせ法(One Drop Fill法、ODF法)について説明するが、真空注入法やロール貼合方式などで光変調セル30Aを作成することも可能である。
【0053】
まず、セルギャップ、セル面積などから決まる体積分にあたる液晶とモノマーの混合物41を面内に均一に滴下する(図8(C))。混合物41の滴下にはリニアガイド方式の精密ディスペンサーを用いることが好ましいが、シール剤パターン39を土手として利用して、ダイコータなどを用いてもよい。
【0054】
液晶とモノマーは前述の材料を用いることができるが、液晶とモノマーの重量比は98:2〜50:50、好ましくは95:5〜75:25、より好ましくは92:8〜85:15である。液晶の比率を多くすることで駆動電圧を低くすることができるが、あまり液晶を多くしすぎると電圧印加時の白色度が低下したり、電圧オフ後に応答速度が低下するなど透明時に戻りにくくなったりする傾向がある。
【0055】
混合物41には、液晶とモノマーの他には、重合開始剤を添加する。使用する紫外線波長に応じて、添加する重合開始剤のモノマー比を0.1〜10重量%の範囲内で調整する。混合物41には、この他に、重合禁止剤や可塑剤、粘度調整剤なども必要に応じて添加可能である。モノマーが室温で固体やゲル状である場合には、口金やシリンジ、基板を加温することが好ましい。
【0056】
透明基板31および透明基板37を真空貼り合わせ機(図示せず)に配置したのち、真空排気し、貼り合わせを行う(図9(A))。その後、貼り合わせたものを大気に解放し、大気圧での均一加圧によってセルギャップを均一化する。セルギャップは白輝度(白色度)と駆動電圧の関係から適宜選定できるが、5〜40μm、好ましくは6〜20μm、より好ましくは7〜10μmである。
【0057】
貼り合わせ後、必要に応じて配向処理を行うことが好ましい(図示せず)。クロスニコル偏光子の間に、貼り合わせたセルを挿入した際に、光り漏れが生じている場合には、セルをある一定時間加熱処理したり、室温で放置したりして配向させる。その後、紫外線L3を照射してモノマーを重合させてポリマー化する(図9(B))。このようにして、光変調素子30が製造される。
【0058】
紫外線を照射している時には、セルの温度が変化しないようにすることが好ましい。赤外線カットフィルターを用いたり、光源にUV−LEDなどを用いたりすることが好ましい。紫外線照度は複合材料の組織構造に影響を与えるので、使用する液晶材料やモノマー材料、これらの組成から適宜調整することが好ましく、0.1〜500mW/cm2の範囲が好ましく、さらに好ましくは0.5〜30mW/cm2である。紫外線照度が低いほど駆動電圧が低くなる傾向にあり、生産性と特性の両面から好ましい紫外線照度を選定することができる。
【0059】
そして、導光板10に光変調素子30を貼り合わせる。貼り合わせには、粘着、接着のいずれでもよいが、導光板10の屈折率と光変調素子30の基板材料の屈折率とにできるだけ近い屈折率の材料で粘着、接着することが好ましい。最後に、下側電極32および上側電極36に引き出し線(図示せず)を取り付ける。このようにして、本実施の形態のバックライト1が製造される。
【0060】
このように、光変調素子30を作成し、最後に導光板10に光変調素子30を貼り合わせるプロセスを説明したが、導光板10の表面に、配向膜35を形成した透明基板37を予め貼り合わせてから、バックライト1を作成することもできる。また、枚葉方式、ロール・ツー・ロール方式のいずれでもバックライト1を作成することができる。
【0061】
次に、本実施の形態のバックライト1の作用および効果について説明する。
【0062】
本実施の形態のバックライト1では、例えば、光変調セル30Aにおいて微粒子34Bの光軸AX2がバルク34Aの光軸AX1と平行もしくはほぼ平行となり、別の光変調セル30Bにおいて微粒子34Bの光軸AX2がバルク34Aの光軸AX1と交差もしくは直交するように、各光変調セル30Aの一対の電極(下側電極32、上側電極36)に電圧が印加される。これにより、光源20から射出され、導光板10内に入射した光は、光変調素子30のうち、光軸AX1と光軸AX2とが互いに平行もしくはほぼ平行となっている透過領域30Aを透過する。一方、光源20から射出され、導光板10内に入射した光は、光変調素子30のうち、光軸AX1と光軸AX2とが互いに交差もしくは直交している散乱領域30Bにおいて散乱される。この散乱光のうち散乱領域30Bの下面を透過した光は反射板40で反射され、再度、導光板10に戻されたのち、バックライト1の上面から射出される。また、散乱光のうち、散乱領域30Bの上面に向かった光は、導光板10を透過したのち、バックライト1の上面から射出される。このように、本実施の形態では、透明領域30Aの上面からは光はほとんど射出されず、散乱領域30Bの上面から光が射出される。このようにして、正面方向の変調比を大きくしている。
【0063】
一般に、PDLCは、液晶材料と等方性の低分子材料とを混合し、紫外線照射や溶媒の乾燥などにより相分離を起こさせることによって形成され、液晶材料の微小粒子が高分子材料中に分散された複合層となっている。この複合層中の液晶材料は、電圧無印加時にはランダムな方向を向いているので散乱性を示すが、電圧印加時には電場方向に配向するので、液晶材料の常光屈折率と高分子材料の屈折率とが互いに等しい場合には、正面方向(PDLCの法線方向)において高い透明性を示す。しかし、この液晶材料では、斜め方向においては、液晶材料の異常光屈折率と高分子材料の屈折率との差が顕著となり、正面方向が透明性であっても斜め方向において散乱性が発現してしまう。
【0064】
通常、PDLCを使った光変調素子は、表面に透明導電膜の形成された2枚のガラス板の間にPDLCを挟み込んだ構造となっていることが多い。上述したような構造を有する光変調素子に対して空気中から斜めに光が入射した場合には、その斜め方向から入射した光は空気とガラス板の屈折率差によって屈折し、より小さな角度でPDLCに入射することになる。そのため、このような光変調素子においては、大きな散乱は生じない。例えば、空気中から80°の角度で光が入射した場合には、その光のPDLCへの入射角はガラス界面での屈折によって40°程度にまで小さくなる。
【0065】
しかし、導光板を用いたエッジライト方式では、導光板越しに光が入射するので、光が80°程度の大きな角度でPDLC中を横切ることになる。そのため、液晶材料の異常光屈折率と高分子材料の屈折率との差が大きく、さらに、より大きな角度で光がPDLC中を横切るので、散乱を受ける光路も長くなる。例えば、常光屈折率1.5、異常光屈折率1.65の液晶材料の微小粒子が屈折率1.5の高分子材料中に分散されている場合には、正面方向(PDLCの法線方向)においては屈折率差がないが、斜め方向においては屈折率差が大きくなる。このため、斜め方向の散乱性を小さくすることができないので、視野角特性が悪い。さらに、導光板上に拡散フィルムなどの光学フィルムを設けた場合には、斜め漏れ光が拡散フィルムなどによって正面方向にも拡散されるので、正面方向の光漏れが大きくなり、正面方向の変調比が低くなってしまう。
【0066】
一方、本実施の形態では、バルク34Aおよび微粒子34Bが光学異方性材料を主に含んで形成されているので、斜め方向において、散乱性が小さくなり、透明性を向上させることができる。例えば、バルク34Aおよび微粒子34Bが、互いに常光屈折率が等しく、かつ互いに異常光屈折率も等しい光学異方性材料を主に含んで構成され、かつ、下側電極32および上側電極36間に電圧が印加されていない領域では、これらの光軸の向きが一致もしくはほぼ一致する。これにより、正面方向(光変調素子30の法線方向)および斜め方向を含むあらゆる方向において屈折率差が少なくなるか、またはなくなり、高い透明性が得られる。その結果、視野角の大きい範囲における光の漏洩を低減またはほとんどなくすることができ、視野角特性を良くすることができる。
【0067】
例えば、常光屈折率1.5、異常光屈折率1.65の液晶と、常光屈折率1.5、異常光屈折率1.65の液晶性モノマーとを混合し、配向膜または電界によって液晶と液晶性モノマーを配向させた状態で液晶性モノマーを重合させると、液晶の光軸と、液晶性モノマーが重合することによって形成されたポリマーの光軸とが互いに一致する。これにより、あらゆる方向で屈折率を一致させることができるので、そのようにした場合には、透明性が高い状態を実現でき、より一層、視野角特性を良くすることができる。
【0068】
また、本実施の形態では、例えば、図6(A),(B)に示したように、透明領域30Aの輝度(黒表示の輝度)が、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて下がっている。他方、散乱領域30Bの輝度は、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて極めて高くなり、しかも、透明領域30Aの輝度が低下した分だけ、部分的な白表示の輝度(輝度突き上げ)が大きくなる。
【0069】
ところで、輝度突き上げとは、全面白表示した場合に比べて、部分的に白表示を行った場合の輝度を高くする技術である。CRTやPDPなどでは一般によく使われている技術である。しかし、液晶ディスプレイでは、バックライトは画像にかかわらず全体に均一発光しているので、部分的に輝度を高くすることはできない。もっとも、バックライトを、複数のLEDを2次元配置したLEDバックライトとした場合には、LEDを部分的に消灯することは可能である。しかし、そのようにした場合には、LEDを消灯した暗領域からの拡散光がなくなるので、全てのLEDを点灯した場合と比べて、輝度が低くなってしまう。また、部分的に点灯しているLEDに対して流す電流を大きくすることにより、輝度を増やすことも可能であるが、そのようにした場合には、非常に短時間に大電流が流れるので、回路の負荷や信頼性の点で問題が残る。
【0070】
一方、本実施の形態では、バルク34Aおよび微粒子34Bが光学異方性材料を主に含んで形成されているので、斜め方向の散乱性が抑制され、暗状態での導光板からの漏れ光が少ない。これにより、部分的な暗状態の部分から部分的な明状態の部分に導光するので、バックライト1への投入電力を増やすことなく、輝度突き上げを実現することができる。
【0071】
また、本実施の形態では、下側電極32および上側電極36間に電圧が印加されていない領域において、微粒子34Bの光軸AX2が、導光板10の光入射面10Aと平行となっており、かつ透明基板31,37の表面と僅かな角度θ1で交差している。つまり、微粒子34B内に含まれる液晶分子が、光入射面10Aと平行な面内において角度θ1だけ傾斜した状態(プレチルト角が付与された状態)で配向している。そのため、下側電極32および上側電極36間に電圧が印加された時に、微粒子34B内に含まれる液晶材料は、ランダムな方位に立ち上がることはなく、光入射面10Aと平行な面内で立ち上がる。このとき、バルク34Aおよび微粒子34Bの光軸AX1,AX2が、光入射面10Aと平行な面内において互いに交差もしくは直交する。この場合に、導光板10の光入射面10Aから入射した光において、透明基板31に対して垂直に振動する光は、微粒子34Bの異常光屈折率とバルク34Aの常光屈折率との差を感じる。このとき、微粒子34Bの異常光屈折率とバルク34Aの常光屈折率との差は大きいことから、透明基板31に対して垂直に振動する光の散乱効率が高くなる。一方、透明基板31に対して平行に振動する光は、微粒子34Bの常光屈折率とバルク34Aの異常光屈折率の差を感じる。このとき、微粒子34Bの常光屈折率とバルク34Aの異常光屈折率の差も大きいことから、透明基板31に対して平行に振動する光の散乱効率も高くなる。従って、下側電極32および上側電極36間に電圧が印加された領域を伝播する光は、斜め方向の成分を多く含む。例えば、導光板10としてアクリル導光板を用いた場合には、下側電極32および上側電極36間に電圧が印加された領域内の光は、41.8°以上の角度で伝播する。その結果、斜め方向を含むあらゆる方向において屈折率差が大きくなり、高い散乱性が得られるので、表示輝度を向上させることができる。また、上記の輝度突き上げの効果により、表示輝度をさらに向上させることができる。
【0072】
ところで、例えば、電圧無印加時に導光板10の光入射面10Aに垂直に、バルク34Aおよび微粒子34Bの光軸AX1,AX2を配置し、下側電極32および上側電極36間に電圧が印加された時に、微粒子34B内に含まれる液晶材料が光入射面10Aと垂直な面内で立ち上がるようにした場合には、透明基板31に対して垂直に振動する光は、微粒子34Bの異常光屈折率とバルク34Aの常光屈折率との差を感じるが、透明基板31に対して平行方向に振動する光は、微粒子34Bの常光屈折率とバルク34Aの常光屈折率との差を感じることになる。ここで、微粒子34Bの常光屈折率とバルク34Aの常光屈折率との差は、ほとんどないか、または全くない。そのため、光入射面10Aから入射した光において、透明基板31に対して垂直に振動する光は、前述した場合と同様に大きな屈折率差を感じるが、透明基板31に対して平行方向に振動する光は、屈折率差をほとんど感じないか、または全く感じない。その結果、透明基板31に対して垂直に振動する光の散乱効率は高くなるが、透明基板31に対して平行に振動する光の散乱効率は低いか、または、ゼロとなる。従って、光入射面10Aに対して光軸AX1,AX2を垂直に配置した場合には、光入射面10Aに対して光軸AX1,AX2を平行に配置した場合に比べて、散乱効率が低くなるので、導光板10から取り出せる輝度が、本実施の形態の光変調素子30よりも低くなる。
【0073】
以上のことから、本実施の形態では、視野角の大きい範囲における光の漏洩を低減またはほとんどなくしつつ、表示輝度を向上させることができる。その結果、正面方向の変調比を高くすることができる。
【0074】
<第2の実施の形態>
次に、本発明の第2の実施の形態に係るバックライトについて説明する。本実施の形態のバックライトでは、配向膜33,35として垂直用配向膜が用いられており、さらに上記実施の形態の光変調層34に代わって光変調層64が設けられている点で、上記実施の形態のバックライト1の構成と相違する。そこで、以下では、上記実施の形態の構成との共通点についての説明を適宜、省略し、上記実施の形態の構成との相違点について主に説明する。
【0075】
上述したように、本実施の形態では、配向膜33,35として垂直用配向膜が用いられている。この垂直用配向膜によって、後述のバルク64Aおよび微粒子64Bが透明基板31から傾斜配向したプレチルトが形成されている。垂直用配向膜としては、シランカップリング材料や、ポリビニルアルコール(PVA)、ポリイミド系材料、界面活性剤などを用いることが可能である。例えば、これらの材料を塗布、乾燥した後にラビング処理を行うことにより、ラビング方向にプレチルトが形成される。また、透明基板31,37としてプラスチックフィルムを用いる場合には、製造工程において、透明基板31,37の表面に配向膜33,35を塗布した後の焼成温度ができるだけ低いことが好ましいことから、配向膜33,35としてアルコール系溶媒を使用することの可能なシランカップリング材料を用いることが好ましい。なお、配向膜33,35にラビング処理を施さずに、プレチルトを形成するようにしてもよい。それを実現する方法としては、例えば、配向膜33,35にセルを作成し、そのセルに対して磁場やスリット電極による斜め電場を印加しながら紫外線を照射する方法がある。
【0076】
ただし、配向膜33,35として垂直用配向膜を用いるに際しては、微粒子34B内に含まれる液晶分子として、負の屈折率異方性を有するもの(いわゆるネガ型液晶)を用いることが好ましい。
【0077】
次に、本実施の形態の光変調層64について説明する。光変調層64は、上記実施の形態と同様、バルク64A(第4領域)と、バルク64A内に分散された微粒子状の複数の微粒子64B(第3領域)とを含んだ複合層となっている。バルク64Aおよび微粒子64Bは光学異方性を有している。
【0078】
図10(A)は、下側電極32および上側電極36間に電圧が印加されていない時の、微粒子64B内の配向状態の一例を模式的に表したものである。なお、図10(A)において、バルク64A内の配向状態についての記載を省略した。図10(B)は、下側電極32および上側電極36間に電圧が印加されていない時の、バルク64Aおよび微粒子64Bの屈折率異方性を示す屈折率楕円体の一例を表したものである。図10(C)は、下側電極32および上側電極36間に電圧が印加されていない時の、正面方向に向かう光L1と、斜め方向に向かう光L2とが光変調層64を透過する様子の一例を模式的表したものである。
【0079】
図11(A)は、下側電極32および上側電極36間に電圧が印加されている時の、微粒子64B内の配向状態の一例を模式的に表したものである。なお、図11(A)において、バルク64A内の配向状態についての記載を省略した。図11(B)は、下側電極32および上側電極36間に電圧が印加されている時の、バルク64Aおよび微粒子64Bの屈折率異方性を示す屈折率楕円体の一例を表したものである。図11(C)は、下側電極32および上側電極36間に電圧が印加されている時の、正面方向に向かう光L1と、斜め方向に向かう光L2とが光変調層64において散乱される様子の一例を模式的表したものである。
【0080】
バルク64Aおよび微粒子64Bは、例えば、図10(A),(B)に示したように、下側電極32および上側電極36間に電圧が印加されていない時に、バルク64Aの光軸AX3および微粒子64Bの光軸AX4の向きが互いに一致する(平行となる)構成となっている。なお、光軸AX3,AX4とは、偏光方向によらず屈折率が一つの値になるような光線の進行方向と平行な線を指している。また、光軸AX3および光軸AX4の向きは常に互いに一致している必要はなく、光軸AX3の向きと光軸AX4の向きとが、例えば製造誤差などによって多少ずれていてもよい。
【0081】
また、微粒子64Bは、例えば、下側電極32および上側電極36間に電圧が印加されていない時に、光軸AX4が導光板10の光入射面10Aと平行となる構成となっている。微粒子64Bは、さらに、例えば、下側電極32および上側電極36間に電圧が印加されていない時に、光軸AX4が透明基板31,37の法線と僅かな角度θ3(第3角度)で交差する構成となっている(図10(B)参照)。なお、角度θ3については、微粒子64Bを構成する材料を説明する際に詳述する。
【0082】
一方、バルク64Aは、例えば、下側電極32および上側電極36間への電圧印加の有無に拘らず、バルク64Aの光軸AX4が一定となる構成となっている。具体的には、バルク64Aは、例えば、図10(A),(B),図11(A),(B)に示したように、バルク64Aの光軸AX3が導光板10の光入射面10Aと平行となると共に透明基板31,37の法線と僅かな角度θ3(第3角度)で交差する構成となっている。つまり、バルク64Aの光軸AX3は、下側電極32および上側電極36間に電圧が印加されていない時に、微粒子64Bの光軸AX4と平行となっている。
【0083】
なお、光軸AX4が常に、導光板10の光入射面10Aと平行となると共に透明基板31,37の法線と角度θ3で交差している必要はなく、例えば製造誤差などによって透明基板31,37の法線と、角度θ3とは若干異なる角度で交差していてもよい。また、光軸AX3,AX4が常に導光板10の光入射面10Aと平行となっている必要はなく、例えば製造誤差などによって導光板10の光入射面10Aと、小さな角度で交差していてもよい。
【0084】
ここで、バルク64Aおよび微粒子64Bの常光屈折率が互いに等しく、かつバルク64Aおよび微粒子64Bの異常光屈折率が互いに等しいことが好ましい。この場合に、例えば、下側電極32および上側電極36間に電圧が印加されていない時には、図10(A)に示したように、正面方向および斜め方向を含むあらゆる方向において屈折率差がほとんどなく、高い透明性が得られる。これにより、例えば、図10(C)に示したように、正面方向に向かう光L1および斜め方向に向かう光L2は、光変調層64内で散乱されることなく、光変調層64を透過する。その結果、上記実施の形態と同様、例えば、図6(A),(B)に示したように、光源20からの光L(斜め方向からの光)は、透明領域30Aの界面(透明基板31または導光板10と空気との界面)において全反射され、透明領域30Aの輝度(黒表示の輝度)が、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて下がる。
【0085】
また、バルク64Aおよび微粒子64Bは、例えば、下側電極32および上側電極36間に電圧が印加されている時には、図11(A)に示したように、光軸AX3および光軸AX4の向きが互いに異なる(交差する)構成となっている。また、微粒子64Bは、例えば、下側電極32および上側電極36間に電圧が印加されている時に、微粒子64Bの光軸AX4が導光板10の光入射面10Aと平行となると共に透明基板31,37の法線と角度θ3よりも大きな角度θ4(第4角度)で交差するか、または透明基板31,37の表面と平行となる構成となっている。なお、角度θ4については、微粒子64Bを構成する材料を説明する際に詳述する。
【0086】
したがって、下側電極32および上側電極36間に電圧が印加された領域内を伝播する光は、斜め方向の成分を多く含む。例えば、導光板10としてアクリル導光板を用いた場合には、下側電極32および上側電極36間に電圧が印加された領域内の光は、41.8°以上の角度で伝播する。その結果、下側電極32および上側電極36間に電圧が印加された領域内を伝播する光においては、屈折率差が大きくなり、高い散乱性が得られる。これにより、例えば、図11(C)に示したように、正面方向に向かう光L1および斜め方向に向かう光L2は、光変調層64内で散乱される。その結果、上記実施の形態と同様、例えば、図6(A),(B)に示したように、光源20からの光L(斜め方向からの光)は、散乱領域30Bの界面(透明基板31または導光板10と空気との界面)を透過すると共に、反射板40側に透過した光は反射板40で反射され、光変調素子30を透過する。従って、散乱領域30Bの輝度は、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて極めて高くなり、しかも、透明領域30Aの輝度が低下した分だけ、部分的な白表示の輝度(輝度突き上げ)が大きくなる。
【0087】
なお、バルク64Aおよび微粒子64Bの常光屈折率は、例えば製造誤差などによって多少ずれていてもよく、例えば、0.1以下であることが好ましく、0.05以下であることがより好ましい。また、バルク64Aおよび微粒子64Bの異常光屈折率についても、例えば製造誤差などによって多少ずれていてもよく、例えば、0.1以下であることが好ましく、0.05以下であることがより好ましい。
【0088】
また、バルク64Aの屈折率差(Δn0=異常光屈折率n1−常光屈折率n0)や、微粒子64Bの屈折率差(Δn1=異常光屈折率n3−常光屈折率n2)は、できるだけ大きいことが好ましく、0.05以上であることが好ましく、0.1以上であることがより好ましく、0.15以上であることがさらに好ましい。バルク64Aおよび微粒子64Bの屈折率差が大きい場合には、光変調層64の散乱能が高くなり、導光条件を容易に破壊することができ、導光板10からの光を取り出しやすいからである。
【0089】
また、バルク64Aおよび微粒子64Bは、電場に対する応答速度が互いに異なっている。バルク64Aは、例えば、電場に対して応答しない筋状構造もしくは多孔質構造となっているか、または微粒子64Bの応答速度よりも遅い応答速度を有する棒状構造となっている。バルク64Aは、例えば、低分子モノマーを重合化することにより得られた高分子材料によって形成されている。バルク64Aは、例えば、微粒子64Bの配向方向または配向膜33,35の配向方向に沿って配向した、配向性および重合性を有する材料(例えばモノマー)を熱および光の少なくとも一方によって重合させることにより形成されている。
【0090】
一方、微粒子64Bは、例えば、液晶材料を主に含んで構成されており、バルク64Aの応答速度よりも十分に早い応答速度を有している。微粒子64B内に含まれる液晶材料(液晶分子)は、例えば棒状分子である。微粒子64B内に含まれる液晶分子として、負の屈折率異方性を有するもの(いわゆるネガ型液晶)が用いられている。
【0091】
ここで、下側電極32および上側電極36間に電圧が印加されていない時には、微粒子64B内において、液晶分子の長軸方向は、光軸AX4と平行となっている。このとき、微粒子64B内の液晶分子の長軸は、導光板10の光入射面10Aと平行となると共に透明基板31,37の法線と僅かな角度θ3で交差している。つまり、微粒子64B内の液晶分子は、下側電極32および上側電極36間に電圧が印加されていない時には、導光板10の光入射面10Aと平行な面内において角度θ3だけ傾斜した状態で配向している。この角度θ3は、プレチルト角と呼ばれるもので、例えば0.1°以上30°以下の範囲であることが好ましい。この角度θ3は、0.5°以上10°以下の範囲であることがより好ましく、0.7°以上2°以下の範囲であることがさらにより好ましい。角度θ3を大きくすると、後述するような理由から散乱の効率が低下する傾向にある。また、角度θ3を小さくし過ぎると(例えば、ほぼ0°にすると)、電圧印加時に液晶の立ち下がる方位角がばらつく。例えば、180°反対側の方位(リバースチルト)に液晶が立ち下がることもある。これにより、微粒子64Bとバルク64Aとの屈折率差を有効に利用できないので、散乱効率が低くなり、輝度が小さくなる傾向にある。
【0092】
また、下側電極32および上側電極36間に電圧が印加されている時には、微粒子64B内において、液晶分子の長軸方向は、光軸AX4と交差(もしくは直交)している。このとき、微粒子64B内の液晶分子の長軸は、導光板10の光入射面10Aと平行となると共に透明基板31,37の法線と角度θ3よりも大きな角度θ4で交差している。つまり、微粒子64B内の液晶分子は、下側電極32および上側電極36間に電圧が印加されている時には、導光板10の光入射面10Aと平行な面内において角度θ4だけ傾斜した状態もしくは角度θ4(=90°)で横に寝た状態で配向している。
【0093】
上記した、配向性および重合性を有するモノマーとしては、光学的に異方性を有しており、かつ液晶と複合する材料であればよいが、本実施の形態では紫外線で硬化する低分子モノマーであることが好ましい。電圧無印加の状態で、液晶と、低分子モノマーを重合化することにより形成されたもの(高分子材料)との光学的異方性の方向が一致していることが好ましいので、紫外線硬化前において、液晶と低分子モノマーが同一方向に配向していることが好ましい。微粒子64Bとして液晶が用いられる場合に、その液晶が棒状分子であるときには、使用するモノマー材料の形状も棒状であることが好ましい。以上のことから、モノマー材料としては重合性と液晶性を併せ持つ材料を用いることが好ましく、例えば、重合性官能基として、アクリレート基、メタクリレート基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルエーテル基およびエポキシ基からなる群から選ばれた少なくとも1つの官能基を有することが好ましい。これらの官能基は、紫外線、赤外線または電子線を照射したり、加熱したりすることによって重合させることができる。紫外線照射時の配向度低下を抑制するために、多官能基をもつ液晶性材料を添加することもできる。バルク64Aを上述した筋状構造とする場合には、バルク64Aの原料として、2官能液晶性モノマーを用いることが好ましい。また、バルク64Aの原料に対して、液晶性を示す温度の調整を目的に単官能モノマーを添加したり、架橋密度向上を目的に3官能以上のモノマーを添加したりすることもできる。
【0094】
次に、本実施の形態のバックライトの作用および効果について説明する。
【0095】
本実施の形態のバックライトでは、例えば、光変調セル30Aにおいて微粒子64Bの光軸AX4がバルク34Aの光軸AX3と平行もしくはほぼ平行となり、別の光変調セル30Bにおいて微粒子64Bの光軸AX4がバルク64Aの光軸AX3と交差もしくは直交するように、各光変調セル30Bの一対の電極(下側電極32、上側電極36)に電圧が印加される。これにより、光源20から射出され、導光板10内に入射した光は、光変調素子30のうち、光軸AX3と光軸AX4とが互いに平行もしくはほぼ平行となっている透過領域30Aを透過する。一方、光源20から射出され、導光板10内に入射した光は、光変調素子30のうち、光軸AX3と光軸AX4とが互いに交差もしくは直交している散乱領域30Bにおいて散乱される。この散乱光のうち散乱領域30Bの下面を透過した光は反射板40で反射され、再度、導光板10に戻されたのち、バックライトの上面から射出される。また、散乱光のうち、散乱領域30Bの上面に向かった光は、導光板10を透過したのち、バックライトの上面から射出される。このように、本実施の形態では、透明領域30Aの上面からは光はほとんど射出されず、散乱領域30Bの上面から光が射出される。このようにして、正面方向の変調比を大きくしている。
【0096】
ところで、本実施の形態では、バルク64Aおよび微粒子64Bが光学異方性材料を主に含んで形成されているので、斜め方向において、散乱性が小さくなり、透明性を向上させることができる。例えば、バルク64Aおよび微粒子64Bが、互いに常光屈折率が等しく、かつ互いに異常光屈折率も等しい光学異方性材料を主に含んで構成され、かつ、下側電極32および上側電極36間に電圧が印加されていない領域では、これらの光軸の向きが一致もしくはほぼ一致する。これにより、正面方向(光変調素子30の法線方向)および斜め方向を含むあらゆる方向において屈折率差が少なくなるか、またはなくなり、高い透明性が得られる。その結果、視野角の大きい範囲における光の漏洩を低減またはほとんどなくすることができ、視野角特性を良くすることができる。
【0097】
例えば、常光屈折率1.5、異常光屈折率1.65の液晶と、常光屈折率1.5、異常光屈折率1.65の液晶性モノマーとを混合し、配向膜または電界によって液晶と液晶性モノマーを配向させた状態で液晶性モノマーを重合させると、液晶の光軸と、液晶性モノマーが重合することによって形成されたポリマーの光軸とが互いに一致する。これにより、あらゆる方向で屈折率を一致させることができるので、そのようにした場合には、透明性が高い状態を実現でき、より一層、視野角特性を良くすることができる。
【0098】
また、本実施の形態では、例えば、図6(A),(B)に示したように、透明領域30Aの輝度(黒表示の輝度)が、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて下がっている。他方、散乱領域30Bの輝度は、光変調素子30を設けていない場合(図6(B)中の一点鎖線)と比べて極めて高くなり、しかも、透明領域30Aの輝度が低下した分だけ、部分的な白表示の輝度(輝度突き上げ)が大きくなる。これは、バルク64Aおよび微粒子64Bが光学異方性材料を主に含んで形成されており、斜め方向の散乱性が抑制され、暗状態での導光板からの漏れ光が少ないからである。従って、部分的な暗状態の部分から部分的な明状態の部分に導光するので、バックライトへの投入電力を増やすことなく、輝度突き上げを実現することができる。
【0099】
また、本実施の形態では、下側電極32および上側電極36間に電圧が印加されていない領域において、微粒子64Bの光軸AX4が、導光板10の光入射面10Aと平行となっており、かつ透明基板31,37の法線と僅かな角度θ3で交差している。つまり、微粒子64B内に含まれる液晶分子が、光入射面10Aと平行な面内において角度θ3だけ傾斜した状態(プレチルト角が付与された状態)で配向している。そのため、下側電極32および上側電極36間に電圧が印加された時に、微粒子64B内に含まれる液晶材料は、ランダムな方位に倒れることはなく、光入射面10Aと平行な面内で倒れる。このとき、バルク64Aおよび微粒子64Bの光軸AX3,AX4が、光入射面10Aと平行な面内において互いに交差もしくは直交する。この場合に、導光板10の光入射面10Aから入射した光において、透明基板31に対して垂直に振動する光は、微粒子64Bの常光屈折率とバルク64Aの異常光屈折率との差を感じる。このとき、微粒子64Bの常光屈折率とバルク64Aの異常光屈折率との差は大きいことから、透明基板31に対して垂直に振動する光の散乱効率が高くなる。一方、透明基板31に対して平行に振動する光は、微粒子64Bの異常光屈折率とバルク64Aの常光屈折率の差を感じる。このとき、微粒子64Bの異常光屈折率とバルク64Aの常光屈折率の差も大きいことから、透明基板31に対して平行に振動する光の散乱効率も高くなる。従って、下側電極32および上側電極36間に電圧が印加された領域を伝播する光は、斜め方向の成分を多く含む。例えば、導光板10としてアクリル導光板を用いた場合には、下側電極32および上側電極36間に電圧が印加された領域内の光は、41.8°以上の角度で伝播する。その結果、屈折率差が大きくなり、高い散乱性が得られるので、表示輝度を向上させることができる。また、上記の輝度突き上げの効果により、表示輝度をさらに向上させることができる。
【0100】
ところで、例えば、電圧無印加時に導光板10の光入射面10Aと平行となっており、かつ透明基板31,37の法線と略平行となるようにバルク64Aおよび微粒子64Bの光軸AX3,AX4を配置し、下側電極32および上側電極36間に電圧を印加した時に、微粒子64B内に含まれる液晶材料が、光入射面10Aと垂直な面内で倒れるようにした場合には、透明基板31に対して垂直に振動する光は、微粒子64Bの常光屈折率とバルク64Aの異常光屈折率との差を感じるが、透明基板31に対して平行方向に振動する光は、微粒子64Bの常光屈折率とバルク64Aの常光屈折率との差を感じることになる。ここで、微粒子64Bの常光屈折率とバルク64Aの常光屈折率との差は、ほとんどないか、または全くない。そのため、光入射面10Aから入射した光において、透明基板31に対して垂直に振動する光は、前述した場合と同様に大きな屈折率差を感じるが、透明基板31に対して平行方向に振動する光は、屈折率差をほとんど感じないか、または全く感じない。その結果、透明基板31に対して垂直に振動する光の散乱効率は高くなるが、透明基板31に対して平行に振動する光の散乱効率は低いか、または、ゼロとなる。従って、光入射面10Aに対して光軸AX3,AX4を垂直に配置した場合には、光入射面10Aに対して光軸AX3,AX4を平行に配置した場合に比べて、散乱効率が低くなるので、導光板10から取り出せる輝度が、本実施の形態の光変調素子30よりも低くなる。
【0101】
また、プレチルトを形成しない場合、または、実質的にプレチルト角がほぼ90°となっている場合には、液晶が倒れる方位はランダムになるので、屈折率差は、バルク64Aおよび微粒子64Bの光軸AX3,AX4を導光板10の光入射面10Aと平行にした場合の屈折率差と垂直にした場合の屈折率差との平均になる。従って、これらの場合においても、バルク64Aおよび微粒子64Bの光軸AX3,AX4を導光板10の光入射面10Aと平行にした場合に比べて、取り出せる輝度が低くなる。
【0102】
以上のことから、本実施の形態では、視野角の大きい範囲における光の漏洩を低減またはほとんどなくしつつ、表示輝度を向上させることができる。その結果、正面方向の変調比を高くすることができる。
【0103】
<変形例>
上記各実施の形態では、光変調素子30は、導光板10の背後(下面)に空気層を介さずに密着して接合されていたが、例えば、図12に示したように、導光板10の上面に空気層を介さずに密着して接合されていてもよい。また、光変調素子30は、例えば、図13に示したように、導光板10の内部に設けられていてもよい。ただし、この場合でも、光変調素子30は、導光板10と空気層を介さずに密着して接合されていることが必要である。
【0104】
また、上記各実施の形態では、導光板10の上に特に何も設けられていなかったが、例えば、図14に示したように、光学シート70(例えば、拡散板、拡散シート、レンズフィルム、偏光分離シートなど)を設けてもよい。このようにした場合には、導光板10から斜め方向に射出した光の一部が正面方向に立ち上がるので、変調比を効果的に向上させることができる。
【0105】
<異方性拡散>
図15、図16は、上記第1の実施の形態の光変調層34におけるバルク34Aおよび微粒子34Bの屈折率楕円体の一例を表したものである。図15は、下側電極32および上側電極36間に電圧が印加されていない時の、バルク34Aおよび微粒子34Bの屈折率楕円体の一例を表したものであり、図16は、下側電極32および上側電極36間に電圧が印加されている時の、バルク34Aおよび微粒子34Bの屈折率楕円体の一例を表したものである。
【0106】
繰り返しになるが、図15に示したように、下側電極32および上側電極36間に電圧が印加されていない時に、バルク34Aの光軸および微粒子34Bの光軸は、導光板10の光入射面10Aと平行な方向であって、かつ透明基板31,37の表面と角度θ1で交差する方向を向いている。また、繰り返しになるが、図16に示したように、下側電極32および上側電極36間に電圧が印加されている時に、バルク34Aの光軸は、下側電極32および上側電極36間に電圧が印加されていないときと同じ方向を向いている。さらに、微粒子34Bの光軸は、導光板10の光入射面10Aと平行となると共に透明基板31,37の表面と角度θ1よりも大きな角度θ2(例えば90°)で交差する方向を向いている。
【0107】
このように、微粒子34B内の液晶分子は電圧の印加、無印加に応じて上述したような変化を示すが、この変化の過程で、バルク34Aは電圧変化に対して応答せず、バルク34Aの筋状構造の長軸方向は、ラビング方向(光入射面10Aと平行な方向(図15、図16のY軸方向))を向いている。そのため、下側電極32および上側電極36間に電圧が印加されている時には、光源20から出力され、光変調層34内を伝播する光は、バルク34Aの筋状構造の短軸方向の平均的な筋状組織サイズの周期で、微粒子34Bの異常光屈折率とバルク34Aの常光屈折率との差を感じながら伝播する。その結果、光変調層34内を伝播する光は、光変調層34の厚さ方向に大きく散乱し、光入射面10Aと平行な方向にはあまり散乱しない。つまり、光変調層34は、光源20から出力され、光変調層34内を伝播する光に対して異方性散乱を示す。以下で、光変調層34が実際に、どの程度の異方性散乱を示すか、その程度を検証する。
【0108】
図17は、導光板からの光の射出角特性を計測した結果を示したものである。図17(A)には、面内で光学的等方性を示す光変調層を用いた場合の結果が示されており、図17(B)には、変調層34を用いた場合の結果が示されている。通常、光変調層の下面には白色反射板を用いるが、光変調層と導光板からの射出特性を正確に知るために、白色反射板の代わりに、黒色吸収層を光変調層の下面に配置した。
【0109】
面内で光学的等方な光変調層を用いた場合には、導光板から取り出される光において、導光板すれすれの成分が多く、正面方向の成分は少ない。これに対して、面内に光学的異方性のある光変調層34を用いた場合には、導光板から取り出される時点で正面方向の光りが相対的に多くなっており、このようなプロファイルは照明装置に適している。さらに、黒状態では、光学的に等方的な変調層の場合でも斜めに漏れている光が、異方的な光変調層に比べて多くなっており、光変調比性能でも有利である。また、導光板上に空気界面を介して光学シートを用いた場合においても、光学シートと空気界面の反射などによってロスする光が多いと考えられるので、やはり導光板からの射出特性は正面方向の成分が多い方が好適である。検証に用いた2つの光変調層では、用いたモノマー材料、液晶材料が異なるので、これら2つの光取り出し強度自身を比較することは難しいが、光変調層として同じ光学物性を持った材料を用いた場合には、面内に光学的異方性のある光変調層34を用いた方が、光の利用効率を高くすることができる。
【0110】
上記の結果から、2つの光変調層を用いた場合に、それぞれの射出角特性が異なっていることがわかったので、次に、光変調層34自身の散乱特性を計測してみた。導光板を用いた状態では、導光板での全反射が生じてしまい、散乱の角度特性を計測することができないので、散乱の角度特性は図18に示した装置で計測した。具体的には、円柱ガラス容器100にマッチングオイル110と光変調層34を入れて、導光板中を導光するような大きな入射角θ(例えば80度)でレーザ光Lを変調層34に照射して散乱の角度特性を評価した。光変調層34に対して大きな入射角θ(例えば80度)でレーザ光Lを入射させたときに、被測定面130に映し出された輝度分布の様子を図19(A)に示した。さらに、このときに、ラビング方向に対して垂直な面内(図15、図16のZX平面内に相当)で、光変調層34内のバルク34Aの光軸AX1(図示せず)と平行な軸を中心軸としてディテクタ120を走査させたときに得られた光強度分布を図19(B)に示した。このときの光強度分布は、図19の(1)の方向の分布に対応している。また、ラビング方向に対して平行な面内であって、かつ光変調層34の光入射面と平行な面内(図15、図16のZY平面内に相当)で、光変調層34内のバルク34Aの光軸AX1(図示せず)と直交する軸を中心軸としてディテクタ120を走査させたときに得られた輝度分布を図19(C)に示した。このときの光強度分布は、図19の(2)の方向の分布に対応している。
【0111】
図19(A)〜(C)から、ラビング方向に対して垂直な面内(図15、図16のZX平面内に相当)の方が、ラビング方向に対して平行な面内(図15、図16のZY平面内)よりも、散乱特性が高く、正面方向(射出角0°)では、50倍程度強度が異なっていた(電圧印加時)。すなわち、光変調層34は、例えば、図21(A)〜(C)に示したように、光変調層34の厚さ方向(Z軸方向)の散乱の方がラビング方向(光入射面10Aと平行な方向(Y軸方向))の散乱よりも大きい異方性散乱特性を有していることがわかった。このことから、バルク34Aの筋状構造の長軸方向がラビング方向(光入射面10Aと平行な方向(図15、図16のY軸方向))を向いている状態で、微粒子34B内の液晶分子を光変調層34の厚さ方向に配向させることにより、光変調層34が、光源20から射出された光に対して上述の異方性散乱を示すことがわかった。
【0112】
図20(A)は、光変調層34の散乱特性である。図20(B)は、液晶が電圧によって傾斜する方位が定まっていない(プレチルト90度)の光変調層の散乱特性である。図20(C)は、等方性のポリマーを用いて面内の光学異方性がないノーマル光変調層の散乱特性である。図20から、光変調層34は、他の光変調層に比べて、入射した光が正面方向にまで大きく散乱しており、光変調層34だけが異方性散乱を示していることがわかった。
【0113】
次に、このような異方性散乱を示す場合、導光板からの光り取り出しに優れる理由を説明する。光変調層と導光板、光源を配置した場合、白色パターンが印刷された導光板や前述のノーマル光変調層は、例えば、図22(A)〜(C)に示したように、等方的な散乱特性を示すため、導光板面内と平行方向にも散乱する光が多く、導光条件を破壊するまでに角度を変える確率が小さくなる。一方、光変調層34のような異方性散乱を示す場合、入射した光は、例えば、図21(A)〜(C)に示したように、導光板の面内方向に垂直な方向によく散乱をするので、導光条件を破壊する方向に優先的に散乱をする。このようなことから、異方性散乱を示すことで導光板からの光り取り出し効率が高くなると考えられる。
【0114】
導光光の散乱性を高くするという観点からは、バルク34Aの、短軸方向の平均的な筋状組織サイズは、0.1μm以上10μm以下となっていることが好ましく、0.2μm以上2.0μm以下の範囲であることがより好ましい。
【0115】
<適用例>
次に、上記各実施の形態のバックライトの一適用例について説明する。
【0116】
図21は、本適用例にかかる表示装置2の概略構成の一例を表したものである。この表示装置2は、液晶表示パネル80(表示パネル)と、液晶表示パネル80の背後に配置されたバックライト1とを備えている。なお、表示装置2に搭載されるバックライトとして、第1の実施の形態のバックライト、第2の実施の形態のバックライトのいずれも用いることが可能である。
【0117】
液晶表示パネル80は、映像を表示するためのものである。この液晶表示パネル80は、例えば、映像信号に応じて各画素が駆動される透過型の表示パネルであり、液晶層を一対の透明基板で挟み込んだ構造となっている。具体的には、液晶表示パネル80は、バックライト1側から順に、偏光子、透明基板、画素電極、配向膜、液晶層、配向膜、共通電極、カラーフィルタ、透明基板および偏光子を有している。
【0118】
透明基板は、可視光に対して透明な基板、例えば板ガラスからなる。なお、バックライト1側の透明基板には、図示しないが、画素電極に電気的に接続されたTFT(Thin Film Transistor;薄膜トランジスタ)および配線などを含むアクティブ型の駆動回路が形成されている。画素電極および共通電極は、例えばITOからなる。画素電極は、透明基板上に格子配列またはデルタ配列されたものであり、画素ごとの電極として機能する。他方、共通電極は、カラーフィルタ上に一面に形成されたものであり、各画素電極に対して対向する共通電極として機能する。配向膜は、例えばポリイミドなどの高分子材料からなり、液晶に対して配向処理を行う。液晶層は、例えば、VA(Vertical Alignment)モード、TN(Twisted Nematic)モードまたはSTN(Super Twisted Nematic)モードの液晶からなり、駆動回路(図示せず)からの印加電圧により、バックライト1からの射出光の偏光軸の向きを画素ごとに変える機能を有する。なお、液晶の配列を多段階で変えることにより画素ごとの透過軸の向きが多段階で調整される。カラーフィルタは、液晶層を透過してきた光を、例えば、赤(R)、緑(G)および青(B)の三原色にそれぞれ色分離したり、または、R、G、Bおよび白(W)などの四色にそれぞれ色分離したりするカラーフィルタを、画素電極の配列と対応させて配列したものである。フィルタ配列(画素配列)としては、一般的に、ストライプ配列や、ダイアゴナル配列、デルタ配列、レクタングル配列のようなものがある。
【0119】
偏光子は、光学シャッタの一種であり、ある一定の振動方向の光(偏光)のみを通過させる。なお、偏光子は、透過軸以外の振動方向の光(偏光)を吸収する吸収型の偏光素子であってもよいが、バックライト1側に反射する反射型の偏光素子であることが輝度向上の観点から好ましい。偏光子はそれぞれ、偏光軸が互いに90度異なるように配置されており、これによりバックライト1からの射出光が液晶層を介して透過し、あるいは遮断されるようになっている。
【0120】
駆動回路50は、例えば、複数の光変調セル30Aのうち黒表示の画素位置に対応するセルにおいて微粒子34Bの光軸AX2がバルク34Aの光軸AX1と平行となり、複数の光変調セル30Aのうち白表示の画素位置に対応するセルにおいて微粒子34Bの光軸AX2がバルク34Aの光軸AX1と交差するように各光変調セル30Aの一対の電極(下側電極32、上側電極36)へ印加する電圧の大きさを制御するようになっている。
【0121】
本適用例では、液晶表示パネル80を照明する光源として、上記実施の形態のバックライト1が用いられている。これにより、視野角の大きい範囲における光の漏洩を低減またはほとんどなくしつつ、表示輝度を向上させることができる。その結果、正面方向の変調比を高くすることができる。また、バックライト1への投入電力を増やすことなく、輝度突き上げを実現することができる。
【0122】
また、本適用例では、バックライト1は、表示画像に合わせて部分的に液晶表示パネル80に入射する光強度を変調する。しかし、光変調素子30に含まれる電極(下側電極32、上側電極36)のパターンエッジ部分で急激な明るさ変化があると、表示画像上でもその境界部分が見えてしまう。そこで、できるだけ電極境界部分において、明るさが単調に変化する特性が求められ、そのような特性のことをぼかし特性と呼ぶ。ぼかし特性を大きくするためには、拡散性の強い拡散板を用いるのが効果的であるが、拡散性が強いと、全光線透過率も低くなるので明るさが低くなる傾向にある。従って、本適用例において、光学シート70に拡散板を用いる場合には、その拡散板の全光線透過率は、50%〜85%であることが好ましく、60%〜80%であることがより好ましい。また、導光板10と、バックライト1内の拡散板との空間距離を大きくすればするほど、ぼかし特性は良くなる。また、この他に、光変調素子30に含まれる電極(下側電極32、上側電極36)のパターンの数を増やし、明と暗ができるだけ単調に変化するように各電極の電圧を調整することもできる。
【0123】
<実施例>
以下、本発明の実施例について説明する。なお、下記の実施例は例示であり、本発明はこれらの実施例に何ら限定されるものではない。
【0124】
(セル作成方法)
ITOを塗布したガラス基板(30×40mm角)を、アルカリ洗浄液で超音波印加洗浄をした後、超純水でリンスし、ブロー乾燥した後に、電極基板を得た。電極基板にポリイミド系の水平配向膜をスピンコータにて塗布し、200℃で焼成したのち、ラビング布でラビングを行い、水平配向膜を形成した。配向膜を形成した電極基板上に平均粒子径7μmのプラスチックビーズを散布した後、熱硬化シール剤を周辺に塗布した。さらに、同様にして作製した、対向となる電極基板を重ねて硬化処理を行い、空セルを作成した。予め、液晶と、紫外線硬化性の液晶性モノマーと、重合開始剤とを所定組成になるように混合した溶液(以下、モノマー混合液晶と称する。)を空セルに注入した。必要に応じて加熱しながらモノマー混合液晶を注入した。クロスニコル偏光子の間に、モノマー混合液晶を注入したセルを挿入して、透過光にて配向状態を目視にて確認した。しかる後、紫外線を照射して液晶中の重合性モノマーを硬化させた。
【0125】
(評価方法)
(1)屈折率
液晶およびモノマーの屈折率を、アッベ屈折計を用いて測定した。ガラスステージ下面および上部ガラスブロックに水平配向膜を塗布し液晶またはモノマーを配向させ、接眼鏡筒部に偏光子を貼り付け、射出した偏光成分を変えて、常光屈折率(no)、異常光屈折率(ne)を求めた。入射する白色光にバンドパスフィルターを付け、入射波長を589nmとして、25℃にて評価した。
(2)輝度、変調比
作成したガラスセルの上層に5mm厚みのアクリル製導光板を屈折率1.51のマッチングオイルで貼り付けて液晶セルを作成したのち、アクリル製導光板の端面に白色LEDの光を照射した。白色LEDの光を照射するアクリル製導光板の光入射面とラビング方向とが互いに平行(または垂直)になるようにアクリル製導光板を配置した。作成した液晶セルの下面には空気層を介して白色反射板を置き、オートロニック社製のコノスコープを用いて、アクリル製導光板の法線方向の正面輝度を測定した。さらにアクリル製導光板上に拡散シート、レンズシートを載せて、アクリル製導光板の法線方向の正面輝度を測定した。液晶セルに電圧を印加しない場合を黒輝度とし、液晶セルに電圧を印加した場合を白輝度として、白輝度/黒輝度の値を変調比とした。印加する電圧は70V(100Hzパルス)とした。さらに、アクリル導光板があらかじめ貼付されたフィルム液晶セルも用いた。このときには、フィルム液晶セルのラビング方向と、アクリル製導光板の光入射面とが互いに平行(または垂直)となるように、アクリル製導光板の端面に白色LEDの光を照射した。
(3)プレチルト、光軸
液晶セルのプレチルト角は、ウーラム社製の高速分光エリプソメータ(M−2000)を用いて、波長589nmのリタデーションの入射角依存性を測定し、その測定値から、クリスタルローテーション法を用いて算出した。無電圧時の液晶セルの光軸は、上記のエリプソメータを用いて求めた。さらに、電圧印加時の光軸の向きは、電圧を印加しながら、プレチルト方位を含む面内で、液晶セルへの入射角を変えながらリタデーションを測定し、さらに電圧の増加に伴い、リタデーションが極大値(または極小値)を示す入射角が大きくなることで確認した。
(4)微細構造
作成した液晶セルの微細構造は、クロスニコル偏光子間に液晶セルを配置し、70V(100Hz、Duty50%)の正負パルス電圧を印加しながら観察した。液晶セルは片側偏光子の吸収軸とプレチルト方向が45°になるように液胞セルを配置した。
【0126】
表1は、実施例および比較例における液晶とモノマーの組み合わせと、その評価結果を示したものである。
【表1】

【0127】
(材料の屈折率)
表2は、液晶およびモノマーの屈折率評価結果を示したものである。
【表2】

【0128】
(実施例1〜4)
実施例1〜4では、表2に記載した屈折率を持った材料を、表1に記載した重量比になるように予め作成したモノマー混合液晶を用いてセルを作成した。いずれのセルにおいても、プレチルト角は1.0°〜1.5°の範囲であり、電圧無印加時の光軸が、セル表面(導光板表面)から1.0°〜1.5°の範囲にあった。この光軸と白色LEDを入射させる端面が平行になるようにセルを配置して、輝度評価を行った。また、いずれのセルも電圧印加しながら入射角を変えてリタデーションを測定したが、LED入射端面に平行となったまま液晶が傾斜していることを確認した。実施例1のセルに電圧を印加しながら観察した偏光顕微鏡像を図22に示した。図22から、バルクがラビング方向に沿った筋状組織となっていることがわかった。
【0129】
(比較例1)
比較例1では、DIC社製ノーマルPDLC材料“PNM−170”を用い、ラビングしない配向膜を用いた以外は実施例1と同様にしてセルを作成した。エリプソメータ評価をした結果、プレチルトはなく、電圧無印加時に、偏光顕微鏡観察においても液晶は配向していなかった。電圧印加時はセル表面(導光板表面)の法線方向では透明であるが、いずれの斜め方向も白濁しており、かついずれの方位においても同様に白濁していた。すなわち、電圧無印加時にはLED入射端面に対して光軸はランダムに存在していた。比較例1のセルに電圧を印加しながら観察した偏光顕微鏡像を図23に示した。図23から、バルクが球状の組織となっていることがわかった。
【0130】
(比較例2)
比較例2では、配向膜にラビングしない垂直配向膜を用いた以外は、実施例1と同様にしてセルを作成した。プレチルトは測定限界以下であり、ほぼ基板法線に垂直に配向していた。また、電圧印加しながらの液晶の傾斜方位はランダムであることを確認した。
【0131】
(比較例3)
比較例3では、実施例1で作成したセルを、LED入射端面と光軸が垂直になるように配置して輝度評価を行った。
【0132】
表1から、実施例1〜4において、いずれの比較例と比べても白輝度が高く、かつ変調比が高いことがわかる。また、実施例1と比較例3を比較した場合、同じセルを用いても、液晶が電圧によって立ち上がる方向と入射光線方向とが互いに平行であることにより、白輝度が高くなっていることがわかる。また、比較例1、2は、液晶が傾斜する方位がランダムであるので、白輝度、変調比が低いと考えられる。
【符号の説明】
【0133】
1…バックライト、2…表示装置、10…導光板、20…光源、30…光変調素子、30A…光変調セル、31,37…透明基板、32…下側電極、33,35…配向膜、34…光変調層、34A…バルク、34B…微粒子、36…上側電極、40…反射板、50…駆動回路。

【特許請求の範囲】
【請求項1】
導光板と、
前記導光板の側面に配置された光源と、
前記導光板の表面または内部に配置されると共に前記導光板と接着された光変調素子と
を備え、
前記光変調素子は、離間して互いに対向配置された一対の透明基板と、前記一対の透明基板のそれぞれの表面に設けられた一対の電極と、前記一対の透明基板の間隙に設けられた光変調層とを有し、
前記光変調層は、光学異方性を有すると共に電場に対する応答速度が互いに異なる第1領域および第2領域を含み、
前記第1領域は、前記一対の電極の間に電圧が印加されていない時に当該第1領域の光軸が前記導光板の側面のうち前記光源の光が入射する光入射面と平行となると共に前記透明基板の表面と第1角度で交差する構成となっており、かつ、前記一対の電極の間に電圧が印加されている時に当該第1領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第1角度よりも大きな第2角度で交差する構成となっており、
前記第2領域は、前記一対の電極の間への電圧印加の有無に拘らず、当該第2領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第1角度で交差する構成となっている
照明装置。
【請求項2】
前記第1領域は、液晶材料を主に含んで構成され、
前記第2領域は、高分子材料を主に含んで構成されている
請求項1に記載の照明装置。
【請求項3】
前記光変調素子は、前記電極と前記光変調層との間に水平配向膜を有する
請求項2に記載の照明装置。
【請求項4】
前記水平配向膜は、当該水平配向膜の表面に液晶分子が接すると共にその液晶分子に外部から電界が印加されていないときに、その液晶分子に、その液晶分子の光学軸が前記透明基板の表面と前記第1角度で交差すると共に前記光入射面と平行となるプレチルト角を付与する性質を有している
請求項3に記載の照明装置。
【請求項5】
前記光変調層は、当該光変調層の厚さ方向の散乱の方が前記光入射面と平行な方向の散乱よりも大きい異方性散乱特性を有する
請求項1ないし請求項4のいずれか一項に記載の照明装置。
【請求項6】
前記第2領域は、前記光入射面と平行となると共に前記透明基板の表面と前記第1角度で交差する方向に長軸を有する筋状構造となっている
請求項5に記載の照明装置。
【請求項7】
前記第2領域は、電場に対して応答しない筋状構造もしくは多孔質構造となっているか、または前記第1領域の応答速度よりも遅い応答速度を有する棒状構造となっている
請求項2に記載の照明装置。
【請求項8】
前記第2領域は、前記水平配向膜の作用により配向した重合性材料を熱および光の少なくとも一方によって重合させることにより形成されたものである
請求項4に記載の照明装置。
【請求項9】
前記第1領域および前記第2領域の常光屈折率が互いに等しくなっており、かつ前記第1領域および前記第2領域の異常光屈折率が互いに等しくなっている
請求項1ないし請求項8のいずれか一項に記載の照明装置。
【請求項10】
前記光変調素子は、前記一対の電極を複数有し、
前記光変調素子のうち、一方の透明基板側に設けられた電極と他方の透明基板側に設けられた電極との対向部分が光変調セルを構成し、
一の光変調セルにおいて前記第1領域の光軸が前記第2領域の光軸と平行となり、他の光変調セルにおいて前記第1領域の光軸が前記第2領域の光軸と交差するように各光変調セルの一対の電極へ印加する電圧の大きさを制御する駆動部を備えた
請求項1ないし請求項9のいずれか一項に記載の照明装置。
【請求項11】
前記一対の電極のうち少なくとも当該照明装置の上面側の電極は透明な導電性材料からなる
請求項1ないし請求項10のいずれか一項に記載の照明装置。
【請求項12】
前記一対の電極のうち当該照明装置の底面側の電極は金属からなる
請求項1ないし請求項11のいずれか一項に記載の照明装置。
【請求項13】
当該照明装置の底面側に反射板を備えた
請求項1ないし請求項12のいずれか一項に記載の照明装置。
【請求項14】
導光板と、
前記導光板の側面に配置された光源と、
前記導光板の表面または内部に配置されると共に前記導光板と接着された光変調素子と
を備え、
前記光変調素子は、離間して互いに対向配置された一対の透明基板と、前記一対の透明基板のそれぞれの表面に設けられた一対の電極と、前記一対の透明基板の間隙に設けられた光変調層とを有し、
前記光変調層は、光学異方性を有すると共に電場に対する応答速度が互いに異なる第3領域および第4領域を含み、
前記第3領域は、前記一対の電極の間に電圧が印加されていない時に当該第3領域の光軸が前記導光板の側面のうち前記光源の光が入射する光入射面と平行となると共に前記透明基板の表面と第3角度で交差する構成となっており、かつ、前記一対の電極の間に電圧が印加されている時に当該第3領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第3角度よりも小さな第4角度で交差するか、または前記透明基板の表面と平行となる構成となっており、
前記第4領域は、前記一対の電極の間への電圧印加の有無に拘らず、当該第4領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第3角度で交差する構成となっている
照明装置。
【請求項15】
前記第3領域は、液晶材料を主に含んで構成され、
前記第4領域は、高分子材料を主に含んで構成されている
請求項14に記載の照明装置。
【請求項16】
前記光変調素子は、前記電極と前記光変調層との間に垂直配向膜を有する
請求項15に記載の照明装置。
【請求項17】
前記垂直配向膜は、当該垂直配向膜の表面に液晶分子が接すると共にその液晶分子に外部から電界が印加されていないときに、その液晶分子に、その液晶分子の光学軸が前記透明基板の表面と前記第3角度で交差すると共に前記光入射面と平行となるプレチルト角を付与する性質を有している
請求項16に記載の照明装置。
【請求項18】
前記第4領域は、前記垂直配向膜の作用により配向した重合性材料を熱および光の少なくとも一方によって重合させることにより形成されたものである
請求項17に記載の照明装置。
【請求項19】
マトリクス状に配置された複数の画素を有すると共に、前記複数の画素が画像信号に基づいて駆動される表示パネルと、
前記表示パネルを照明する照明装置と
を備え、
前記照明装置は、導光板と、前記導光板の側面に配置された光源と、前記導光板の表面または内部に配置されると共に前記導光板と接着された光変調素子とを前記表示パネル側から順に有し、
前記光変調素子は、離間して互いに対向配置された一対の透明基板と、前記一対の透明基板のそれぞれの表面に設けられた一対の電極と、前記一対の透明基板の間隙に設けられた光変調層とを有し、
前記光変調層は、光学異方性を有すると共に電場に対する応答速度が互いに異なる第1領域および第2領域を含み、
前記第1領域は、前記一対の電極の間に電圧が印加されていない時に当該第1領域の光軸が前記導光板の側面のうち前記光源の光が入射する光入射面と平行となると共に前記透明基板の表面と第1角度で交差する構成となっており、かつ、前記一対の電極の間に電圧が印加されている時に当該第1領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第1角度よりも大きな第2角度で交差する構成となっており、
前記第2領域は、前記一対の電極の間への電圧印加の有無に拘らず、当該第2領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第1角度で交差する構成となっている
表示装置。
【請求項20】
マトリクス状に配置された複数の画素を有すると共に、前記複数の画素が画像信号に基づいて駆動される表示パネルと、
前記表示パネルを照明する照明装置と
を備え、
前記照明装置は、導光板と、前記導光板の側面に配置された光源と、前記導光板の表面または内部に配置されると共に前記導光板と接着された光変調素子とを前記表示パネル側から順に有し、
前記光変調素子は、離間して互いに対向配置された一対の透明基板と、前記一対の透明基板のそれぞれの表面に設けられた一対の電極と、前記一対の透明基板の間隙に設けられた光変調層とを有し、
前記光変調層は、光学異方性を有すると共に電場に対する応答速度が互いに異なる第3領域および第4領域を含み、
前記第3領域は、前記一対の電極の間に電圧が印加されていない時に当該第3領域の光軸が前記導光板の側面のうち前記光源の光が入射する光入射面と平行となると共に前記透明基板の表面と第3角度で交差する構成となっており、かつ、前記一対の電極の間に電圧が印加されている時に当該第3領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第3角度よりも小さな第4角度で交差するか、または前記透明基板の表面と平行となる構成となっており、
前記第4領域は、前記一対の電極の間への電圧印加の有無に拘らず、当該第4領域の光軸が前記光入射面と平行となると共に前記透明基板の表面と前記第3角度で交差する構成となっている
表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate


【公開番号】特開2011−119210(P2011−119210A)
【公開日】平成23年6月16日(2011.6.16)
【国際特許分類】
【出願番号】特願2010−88174(P2010−88174)
【出願日】平成22年4月6日(2010.4.6)
【出願人】(000002185)ソニー株式会社 (34,172)
【出願人】(504157024)国立大学法人東北大学 (2,297)
【Fターム(参考)】