説明

熱陰極蛍光ランプ、照明装置および液晶表示装置

【課題】1[本]あたりの投入電力を大きくした場合に、冷陰極蛍光ランプに比べて高い光束および冷陰極蛍光ランプに比べて遜色のない寿命を実現することを目的とする。
【解決手段】ガラスバルブ101と、ガラスバルブ101の内部に封入された水銀および希ガスと、ガラスバルブ101の内部に配置された一対の電極102、103とを備える熱陰極蛍光ランプ100であって、希ガスの平均原子量は、20以上32以下の範囲内であり、ガラスバルブ101の内部のガス圧は、300[Pa]以上700[Pa]以下の範囲内であり、電極102、103は、コイルからなり、コイルは、通電していないときの抵抗と放電させずに通電したときの抵抗との比が1:4.75となる場合、放電させずにコイルに通電した電流値が0.5[A]以上1.5[A]以下の範囲内である。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、熱陰極蛍光ランプ、照明装置および液晶表示装置に関する。
【背景技術】
【0002】
近年、液晶テレビに代表される液晶表示装置の省電力化が進行している。液晶表示装置は他方式の表示装置と比べて消費電力が低く、かつ薄型化が容易なため広く用いられている。現在、液晶表示装置のバックライトユニットと称される照明装置の光源には、冷陰極蛍光ランプが主に使用されている。冷陰極蛍光ランプは、電子放出物質の飛散により寿命が決定される熱陰極蛍光ランプと比べて長寿命であり、細径化に適しているので、薄型化が要求されるバックライト用の照明装置の光源として広く用いられてきた(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2006−019260号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、冷陰極蛍光ランプは、1[本]あたりに投入できる電力が小さいため、バックライトユニットを構成するには複数[本]必要であった。この冷陰極蛍光ランプに給電する点灯装置も含めると、本数が大きくなるほどコスト高になるという課題があった。この課題に対処するため、バックライトに用いる冷陰極蛍光ランプの本数は激減している。例えば32[インチ]の液晶テレビの場合、2005年に発売されたものでは16[本]の冷陰極蛍光ランプが使用されていたが、2009年に発売されたものでは、わずか8[本]の冷陰極蛍光ランプしか使用されていなかった。
【0005】
発明者らが検討したところ、低価格化の流れにある市場動向に対応するため、さらに冷陰極蛍光ランプの本数を減らして、ランプに投入する電力を増すと、ランプの発光効率が極端に低くなり、実用に供さないことが明らかになった。
【0006】
そこで、発明者らは、冷陰極蛍光ランプに替えて熱陰極蛍光ランプを用いることを検討した。熱陰極蛍光ランプは駆動中の電極に通電することにより電極温度を高め、その高温のもとで電子放出物質において生じた熱電子が放出されることにより放電が比較的容易に成立するため、ランプに投入する電力を冷陰極蛍光ランプよりも大きくできるという利点がある。
【0007】
しかしながら、従来の一般照明用の熱陰極蛍光ランプに対して、1[本]あたりの投入電力を大きくして駆動すると、電極及び放電プラズマで発生する熱量が大きくなり、水銀蒸気圧が上昇し過ぎて発光効率が低下してしまう。そして、電極の温度が熱電子放出にとって適切な温度よりも高くなり過ぎるため、電子放出物質の蒸発速度が激しく、電子放出物質の消尽により寿命が短くなってしまう。
【0008】
そこで、本発明に係る熱陰極蛍光ランプは、1[本]あたりの投入電力を大きくした場合に、冷陰極蛍光ランプに比べて高い光束および冷陰極蛍光ランプに比べて遜色のない寿命を実現することを目的とする。
【0009】
また、本発明に係る照明装置および液晶表示装置は、冷陰極蛍光ランプを使用した照明装置および液晶表示装置と比べて光源の数を少なくすることを目的とする。
【課題を解決するための手段】
【0010】
上記の課題を解決するために、本発明に係る熱陰極蛍光ランプは、ガラスバルブと、該ガラスバルブの内部に封入された水銀および希ガスと、前記ガラスバルブの内部に配置された一対の電極とを備える熱陰極蛍光ランプであって、前記希ガスの平均原子量は、20以上32以下であり、前記ガラスバルブの内部のガス圧は、300[Pa]以上700[Pa]以下の範囲内であり、前記電極は、コイルからなり、前記コイルは、通電していないときの抵抗と放電させずにコイルに通電したときの抵抗との比が1:4.75となる場合、放電させずにコイルに通電した電流値が0.5[A]以上1.5[A]以下の範囲内であることを特徴とする。
【0011】
また、本発明に係る熱陰極蛍光ランプは、前記ガラスバルブの内径は、23[mm]以上50[mm]以下の範囲内であることが好ましい。
【0012】
また、本発明に係る熱陰極蛍光ランプは、前記コイルは、前記ガラスバルブの両端部に設けられ、一方の前記コイルが設けられた前記ガラスバルブの一端部において、一方の前記コイルの旋回軸の中心点から前記ガラスバルブの一端までの長さをL1とし、他方の前記コイルが設けられた前記ガラスバルブの他端部において、他方の前記コイルの旋回軸の中心点から前記ガラスバルブの他端までの長さをL2としたとき、L2≦L1となることが好ましい。
【0013】
また、本発明に係る熱陰極蛍光ランプは、L1が40[mm]以上であることが好ましい。
【0014】
また、本発明に係る熱陰極蛍光ランプは、前記コイルは、二重巻き、または三重巻きの構造であることが好ましい。
【0015】
また、本発明に係る熱陰極蛍光ランプは、前記コイルには、少なくとも10[mg]の電子放出物質が搭載されていることが好ましい。
【0016】
本発明に係る照明装置は、熱陰極蛍光ランプを1[本]備え、管壁負荷を500[W/m2]以上1500[W/m2]以下の範囲内で駆動することを特徴とする。
【0017】
また、本発明に係る照明装置は、前記熱陰極蛍光ランプを複数本備えることを特徴とする。
【0018】
本発明に係る液晶表示装置は、前記照明装置を備えることを特徴とする。
【発明の効果】
【0019】
本発明に係る熱陰極蛍光ランプは、1[本]あたりの投入電力を大きくしても、冷陰極蛍光ランプに比べて高い光束および冷陰極蛍光ランプに比べて遜色のない寿命を実現できる。
【0020】
また、本発明に係る照明装置および液晶表示装置は、冷陰極蛍光ランプを使用した照明装置および液晶表示装置と比べて光源の数を少なくすることができる。
【図面の簡単な説明】
【0021】
【図1】本発明の第1の実施形態に係る熱陰極蛍光ランプの管軸を含む断面図
【図2】希ガスの平均原子量と光束との関係を示す図
【図3】ガス圧とランプ電圧との関係を示す図
【図4】本発明の第2の実施形態に係る照明装置の斜視図
【図5】本発明の第3の実施形態に係る照明装置の斜視図
【図6】本発明の第4の実施形態に係る液晶表示装置の斜視図
【発明を実施するための形態】
【0022】
以下、図面を示しながら、本発明の最良な実施形態について説明する。本発明において、数字範囲を示す「〜」という符号は、その両端の数値を含む。また、各図面において、構成部品および構成部品間の縮尺は実際のものとは異なる。
【0023】
(第1の実施形態)
本発明の第1の実施形態に係る熱陰極蛍光ランプの長手方向の中心軸X100を含む断面図を図1に示す。図1に示すように、本発明の第1の実施形態に係る熱陰極蛍光ランプ(以下、「ランプ100」という。)は、ガラスバルブ101と、ガラスバルブ101の内部に封入された水銀および希ガスと、ガラスバルブ101の内部に配置された一対の電極102、103とを備える。
【0024】
1.ガラスバルブについて
ガラスバルブ101は、例えばソーダガラス製で、直管状であり、その管軸に対して略垂直に切った断面が略円環形状である。ガラスバルブ101の具体的な寸法は、例えば内径が24[mm]、肉厚が0.7[mm]、長さが807[mm]である。
【0025】
ガラスバルブ101の内面には蛍光体層104が形成されている。蛍光体層104に用いる蛍光体粒子は、例えば、赤色蛍光体粒子(Y23:Eu3+)、緑色蛍光体粒子(LaPO4:Ce3+,Tb3+)および青色蛍光体粒子((Sr,Ca,Ba)5(PO4)3Cl:Eu2+またはBaMg2Al1627:Eu2+)である。
【0026】
また、ガラスバルブ101の内面と蛍光体層104との間には例えば酸化イットリウム(Y23)、酸化ケイ素(SiO2)、酸化アルミニウム(Al23)、酸化亜鉛(ZnO)、酸化チタン(TiO2)等の金属酸化物の保護膜(図示せず)が設けられていてもよい。この場合、ガラスバルブ101に含まれるナトリウム成分と水銀との反応を抑制することができる。
【0027】
ガラスバルブ101の内部には、水銀及び希ガスが封入されている。
【0028】
水銀は、ガラスバルブ101の内部に例えば5[mg]〜15[mg]封入されている。水銀は、例えば亜鉛と水銀との合金の状態で、ガラスバルブ101の内部に配置されている。なお、亜鉛と水銀との合金に限らず、例えばチタンと水銀の合金、ガラスや金属製の容器に水銀を格納したものを用いてもよい。なお、金属製の容器は、例えば軟鉄等の導電性材料であることが好ましい。この場合、誘導加熱により内部の水銀を突沸させて肉薄の容器自身を破裂させ、ガラスバルブ101内に水銀を放出させるためである。さらに容器の材料が磁性体であれば、水銀を放出させる際、水銀容器のランプ内における位置決めが容易となる。
【0029】
2.希ガスについて
ガラスバルブ101の内部に封入された希ガスの平均原子量は、20以上32以下の範囲内である。
【0030】
従来の一般照明用の蛍光ランプには、アルゴンが封入されている。希ガスがアルゴンの場合、その平均原子量は、約40となる。アルゴンに対して、ネオンまたはヘリウムを混合し、アルゴン単体よりも希ガスの平均原子量を小さくすることにより、電流だけでは不足する負荷を補うことにより安定した放電となるため、高出力化に対応することができる。
【0031】
希ガスの平均原子量とランプ100の光束との関係を図2に示す。図2は、ガラスバルブ101内のガス圧が400[Pa]の場合に、希ガスの平均原子量が異なる蛍光ランプ100を作製し、投入電力45[W]で点灯させた場合の蛍光ランプ100の光束を測定したものである。図2に示すように、希ガスの平均原子量を40より小さくすることで、従来の蛍光ランプ(希ガスがアルゴン単体の場合)よりも蛍光ランプ100の光束を向上し、高出力化することができる。特に、ネオン40[mol%]以上かつ残部をアルゴンとした混合ガスのように、希ガスの平均原子量を32以下とすることにより、高出力化の効果が顕著である。なお、ガラスバルブ101内のガス圧等の条件を変更しても図2と同様の傾向となる結果が得られた。
【0032】
従来の一般照明用の蛍光ランプのように希ガスがアルゴン単体の場合には、高出力化のために電流値を大きくしても光量の増加が伴わず一定になる。この状態では、励起された水銀原子が別の電子の衝突を受けて紫外線を放出せずに基底状態に戻る脱励起を起こしたり、多重励起などによりさらに上のエネルギー準位に励起されて可視光放射をしたりして、本来、熱陰極蛍光ランプの発光に必要とする紫外線放射に関わる水銀原子数の伸びが無くなる。したがって、光量は電流値に追随できずに飽和してしまうと考えられる。
【0033】
これに対して、希ガスは、緩衝ガスとしての役割を果たす希ガスの平均原子量を小さくすると、その質量が軽いため、電子が弾性衝突する際、電子の運動エネルギーを奪うことができる。最終的に、電子は水銀原子と非弾性衝突して励起や電離を行うが、不必要に高い運動エネルギーを低減できれば、脱励起や多重励起も抑制できて光量の飽和状態を先に延ばすことが可能となる。よって、希ガスの平均原子量を32以下とすることで、ランプ100を高出力化して光束を向上することができる。
【0034】
しかしながら、希ガスの平均原子量が小さい場合、電子放出物質の蒸発を抑制する効果が薄れるため、実用的な希ガスの平均原子量の下限は20(ネオン100[mol%]に相当)である。
【0035】
一方、冷陰極蛍光ランプの場合には、大電流を流して高出力化することはできない。例えば投入電力45[W]を達成すべく大電流を流すと電極が過熱、溶融し、直ちに破損してしまうためである。
【0036】
よって、希ガスの平均原子量を20以上32以下の範囲内とすることにより、冷陰極蛍光ランプに比べて、ランプ100の光束を向上することができる。
【0037】
ランプ100中の封入ガス中における希ガスの平均原子量は、封入ガスを四重極質量分析装置にかけて、各希ガスの質量構成比を求め、その質量構成比に各希ガスの原子量を乗じて加算することにより求めることができる。なお、ガラスバルブ101の内部に封入された希ガスを分析する際、H2、H2O、N2、CO、CO2、H、C、等の不純物が検出されることがあるが、これらは、希ガスの精製や熱陰極蛍光ランプの製造の際に、不可避的に0.1[mol%]程度混入するものであり、熱陰極蛍光ランプの特性に大きな影響を与えるものではない。希ガスの平均原子量は、これらの不純物を除外し、希ガスの構成比率から算出するものとする。
【0038】
希ガスの平均原子量を32とするには、ネオン40[mol%]かつ残部をアルゴンとしてもよいし、ヘリウム15[mol%]かつネオン12[mol%]かつ残部をネオンとしてもよい。なお、希ガスの一部に、アルゴンよりも原子量の大きいクリプトンを用いてもよい。例えば、希ガスをクリプトン5[mol%]、ネオン15[mol%]、ヘリウム20[mol%]、及び残部をアルゴンとすることにより、平均原子量を32にすることができる。
【0039】
希ガスの平均原子量を20とするには、前述のようにネオン100[mol%]であってもよいし、ヘリウム55[mol%]及び残部をアルゴンであってもよい。また、クリプトン2[mol%]、ヘリウム58[mol%]及び残部をアルゴンとすることにより、平均原子量を20にすることができる。
【0040】
上記のように、希ガスの平均原子量がアルゴン単体の場合(平均原子量40)よりも小さくすると、電子放出物質が蒸発しやすくなり、熱陰極蛍光ランプの寿命が短くなってしまう。発明者らの検討により、この熱陰極蛍光ランプの寿命を冷陰極蛍光ランプと比べて遜色がない程度まで長寿命とするためには、ガラスバルブ101内のガス圧と、電極102、103の構成を規定することが必要であることがわかった。
【0041】
3.ガス圧について
ガラスバルブ101の内部のガス圧は、300[Pa]以上700[Pa]以下の範囲内である。ガラスバルブ101内のガス圧を高めることにより、電子放出物質の蒸発を抑え、ランプ100の寿命を伸張することができる。
【0042】
ガラスバルブ101内のガス圧とランプ電圧との関係を図3に示す。図3は、ガラスバルブ内のガス圧を横軸に、ガラスバルブのガス圧が300[Pa]の場合のランプ電圧を1.0としたときのランプ電圧の相対比を縦軸に示すものである。図3に示すように、ガラスバルブ内のガス圧が700[Pa]を超えるとランプ電圧が急増するため、駆動回路における昇圧トランスのコスト高を招き、本来の目的である低価格化の照明装置は実現できない。したがって、希ガスの低分子量化による短寿命化を補償するとともに、駆動回路のコストも考慮したうえでの、ガラスバルブ101内の圧力の実用的な上限は700[Pa]である。
【0043】
4.電極について
電極102、103は、コイルからなり、コイルは、通電していないときの抵抗と放電させずに通電したときの抵抗との比が1:4.75となる場合、放電させずにコイルに通電した電流値が0.5[A]以上1.5[A]以下の範囲内である。
【0044】
熱陰極蛍光ランプの寿命は、電極であるコイルに搭載されている電子放出物質が始動時または駆動時に消耗することで決定される。駆動時のコイルの温度が高すぎると、電子放出物質が蒸発により消耗する速度が大きくなり、また駆動時のコイルの温度が低すぎると、スパッタにより電子放出物質が消耗するため、熱陰極蛍光ランプの駆動時のコイルの温度を800[℃]〜1100[℃]の範囲内とすれば電子放出物質の損耗する速度を最小限に抑制できることが知られている。コイルの温度を直接測定することはできないが、コイルに通電していないときの抵抗(以下、「冷間抵抗」または「Rc」という。)と、放電させずにコイルに通電したときの抵抗(以下、「熱間抵抗」または「Rh」という。)との比と対応するものである。コイルの冷間抵抗値と熱間抵抗値との比が1:4.75となるとき、コイルに通電したときの温度は800[℃]に相当し、この場合において、放電させずにコイルに通電した電流値が0.5[A]以上かつ1.5[A]以下の範囲内となるコイルとすることにより、1[本]あたりの投入電力を大きくしても、電子放出物質の蒸発が促進される温度に到達するのを抑制することができる。
【0045】
なお、「放電させずに通電した電流値」は、ランプ100の一方の端部において、一対の口金ピン113の間、または一対のリード線105の間で通電させたときの電流値である。この場合、一方の電極(コイル)102のみが通電しており、他方の電極(コイル)103は通電していないため、電極102、103間での放電は起きない。なお、口金ピン113やリード線105の抵抗値が懸念されるが、これらの抵抗値は、電極(コイル)102の抵抗値と比べて格段に小さいため、考慮しないものとする。
【0046】
電極102、103を構成するコイルは、例えば線径0.1[mm]のタングステン線で一次外径0.25[mm]、二次外径1[mm]、三次外径3[mm]、全長15[mm]の三重コイルである。このように構成したコイルにおいて、Rc:Rhが1:4.75となる場合に、放電させずにコイルに通電した電流値は1[A]であった。なお、実験用に試作したコイルはあくまでも三重コイルで構成した一例であり、三重コイルの他の仕様であっても、二重コイルであっても、線径やコイル径を変更することにより、コイルに通電していないときの冷間抵抗により放電させずにコイルに通電したときの熱間抵抗を除した比が4.75となる放電させずにコイルに通電した電流値が0.5[A]以上かつ1.5[A]以下となるようにコイルが構成でき、希ガスの平均原子量を小さくすることで、ランプ100を高出力化しても、電子放出物質の消耗が少ないため、従来の冷陰極蛍光ランプに遜色のない寿命とすることができる。
【0047】
コイルに搭載される電子放出物質は、例えばバリウム・ストロンチウム・カルシウムの炭酸塩を主成分とするものであって、少なくとも10[mg]搭載されている。
【0048】
5.その他の構成について
電極102、103は、その両端部を一対のリード線105、106に担持されている。リード線105、106は、例えば、鉄(Fe)とニッケル(Ni)との合金製である。リード線105、106は、それぞれステム107、108により封着されている。ステムは、例えばガラスバルブ101と実質的に同じ材料からなるフレアステムである。なお、ステム107、108における電極102、103の反対側には、排気管残部109、110が設けられている。排気管残部109、110は、ステム107、108がガラスバルブ101に封着された後に、ガラスバルブ101の内部空間の排気や希ガスの封入等を行った後に、ガラスバルブ101の内部を気密にするため、その端部が封止されたものである。排気管残部109、110は、ステム107、108と実質的に同じ材料からなり、その内部がステム107、108の電極102、103側と通気可能なように、ステム107、108に接続されている。
【0049】
リード線105、106は、ガラスバルブの端部に装着された口金111、112の口金ピン113、114にそれぞれ接続されている。口金ピン113、114は、例えば内部に貫通穴を有する黄銅製であり、貫通穴にリード線を通してピンの外側からかしめることにより、口金ピンとリード線とが接続されている。なお、口金ピン113、114は、黄銅製に限らず、銅合金等を用いることができる。
【0050】
なお、ランプ100は、口金111、112および口金ピン113、114を備えているが、これらは必須の部材ではなく、任意の部材である。例えば、ランプ100が口金111、112および口金ピン113、114を備えない場合には、リード線105、106を照明装置の給電部材に半田付けする等してランプ100を照明装置と電気的に接続することができる。なお、あらかじめリード線105、106のガラスバルブ101の外側に露出している部分が半田により覆われていてもよい。この場合、リード線105、106の表面が酸化するのを防止することができる。
【0051】
(実験)
発明者らは、ガラスバルブ101内のガス圧および電極の構成によって、1[本]あたりの投入電力を大きくしても、冷陰極蛍光ランプに比べて遜色のない寿命を得ることができることを確認するために、実験を行った。実験では、各実験試料の蛍光ランプを点灯し、不点灯となるまでの時間を測定した。実験試料は、ガラスバルブ内101のガス圧およびRc:Rhが1:4.75となるときのランプ電流値を除いては、実質的に同じ構成のものを各種作製した。実験試料の種類および実験結果を表1に示す。
【0052】
【表1】

【0053】
表1に示すように、ガラスバルブ101内のガス圧が300[Pa]以上700[Pa]以下の範囲内で、かつRc:Rhが1:4.75となるときの放電させずにコイルに通電した電流値が0.5[A]以上1.5[A]以下の範囲内の場合に、冷陰極蛍光ランプと遜色のない22500[h]以上の寿命を実現することができた。
【0054】
一方、Rc:Rhが1:4.75となるときの放電させずにコイルに通電した電流値が0.5[A]より小さい場合には、電流値が小さ過ぎて、コイルに搭載された電子放出物質がスパッタされる。本発明における「スパッタリング」とは、電子放出物質が外部から強烈な粒子の衝突を受けて、コイルから剥ぎ取られていく現象のことである。ランプ電流値が小さすぎると電極温度が低下して電子放出性物質からの電子放出が極度に低下する。スパッタを起こす粒子は、放電により生じたイオンであるため、数量的に電子とのバランスが崩れて増加する。
【0055】
それまで中和されていたイオンが電極の作りだす電界に導かれてかなりの勢いで衝突することになるため、電極に搭載された電子放出物質もスパッタによりかなりダメージを受けることになる。
【0056】
なお、この場合、表1に示すように、ガラスバルブ101内のガス圧を高くしても電子放出物質のスパッタを抑制することができない。スパッタは電極の極近傍で起こり、ガス圧に対する依存性が低いためである。
【0057】
また、Rc:Rhが1:4.75となるときの放電させずにコイルに通電した電流値が1.5[A]より大きい場合には、電子放出物質の消耗が激しくなり、点灯状態を維持することができなかった。本発明における「蒸発」とは、外部から与えられた熱エネルギーにより、電子放出物質を構成する個々の原子が束縛を断ち切って外に飛び出していく現象のことである。
【0058】
なお、この場合においても、表1に示すように、ガス圧を高くしても電子放出物質の蒸発を抑制することができない。Rc:Rhが1:4.75となるときの放電させずにコイルに通電した電流値が大きいと、電極温度が極度に上がってしまい、たちまち電子放出物質が蒸発し、枯渇する。この場合、陰極降下電圧が急上昇するので、放電が持続できなくなるためである。
【0059】
また、ガラスバルブ101内のガス圧は、400[Pa]以上700[Pa]以下の範囲内であることが好ましい。この場合、ランプ100の寿命を30000[h]以上とすることができる。
【0060】
さらに、ガラスバルブ101内のガス圧は、500[Pa]以上700[Pa]以下の範囲内であることがより好ましい。この場合、ランプ100の寿命を37500[h]以上とすることができる。
【0061】
さらにまた、ガラスバルブ101内のガス圧は、600[Pa]以上700[Pa]以下の範囲内であることがさらにより好ましい。この場合、ランプ100の寿命を45000[h]以上とすることができる。
【0062】
なお、実験は、希ガスの平均原子量を20以上32以下の範囲内で変更しても同様の結果となった。
【0063】
上記のとおり、本発明の第1の実施形態に係る熱陰極蛍光ランプ100は、熱陰極蛍光ランプにおいて、ガラスバルブに封入される希ガス、ガラスバルブの内部のガス圧、および電極であるコイルの構成を規定することにより、1[本]あたりの投入電力を大きくしても、冷陰極蛍光ランプに比べて高い光束および冷陰極蛍光ランプに比べて遜色のない寿命を実現することができる。
【0064】
なお、ガラスバルブ101の内径は、23[mm]以上50[mm]以下の範囲内であることが好ましい。この場合、熱陰極蛍光ランプの発光効率をさらに高くすることができる。すなわち、ガラスバルブ101の内径が50[mm]よりも大きい場合、ガラスバルブ101内で放電によって発生させる電子で励起された水銀から放射される紫外線が、ガラスバルブ101内面の蛍光体層104に到達する前に、水銀原子で吸収される確率が高くなることによる発光効率の低下が生じ、いっぽうガラスバルブ101の内径が23[mm]よりも小さい場合もまた、水銀蒸気圧が高くなることにより電子が弾性衝突によってエネルギーを失いやすく発光効率の低下が生じるためである。
【0065】
一方のコイル102が設けられたガラスバルブ101の一端部において、コイル102、の旋回軸の中心点から、ガラスバルブ101の一端までの長さをL1とし、他方のコイル103が設けられたガラスバルブ101の他端部において、他方のコイル103の旋回軸の中心点からガラスバルブ101の他端までの長さをL2とする。なお、ガラスバルブ101の一端とは、排気管残部109を含むガラスバルブ101のうち、コイルから最も遠く離れている箇所のことであり、ガラスバルブ101の他端とは、排気管残部110を含むガラスバルブ101のうち、コイル103から最も遠く離れている箇所のことである。
【0066】
ランプ100では、L1およびL2は略等しいが、L1がL2より大きくてもよい。この場合、ガラスバルブ101の一端のほうがガラスバルブ101の他端に比べてコイル102,103から離れているため、一端部の温度が最冷点温度となりやすく、水銀蒸気圧を安定させることで、ランプ100の発光効率を向上させることができる。
【0067】
さらに、L1≦L2の場合に、L1が40[mm]以上であることが好ましい。L1またはL2が40[mm]よりも小さい場合、コイル102,103で発生した熱のためガラスバルブの端部の温度が上昇しやすいことから、ガラスバルブ101内の水銀蒸気圧を決定する最冷点温度は、ガラスバルブ101の中央部における温度となることがある。よって、L1およびL2が40[mm]以上の場合、いずれか一方の端部の温度がさらに最冷点温度となりやすく、水銀蒸気圧を安定させることで、さらに発光効率を向上させることができる。
【0068】
(第2の実施形態)
本発明の第2の実施形態に係る照明装置の斜視図を図4に示す。本発明の第2の実施形態に係る照明装置(以下、「照明装置200」という。)は、熱陰極蛍光ランプ100を2本備えたことを特徴とする。具体的には、直下方式のバックライトユニットであって、開口部201を有する筐体202と、筐体202の内部に配置されたランプ100とを備える。
【0069】
筐体202は、例えばポリエチレンテレフタレート(PET)樹脂製であって、その内面に銀などの金属が蒸着されて反射面が形成されている。なお、筐体202の材料としては、樹脂以外の材料、例えば、アルミニウムや冷間圧延材(例えばSPCC)等の金属材料により構成してもよい。また、内面の反射面として金属蒸着膜以外、例えば、ポリエチレンテレフタレート(PET)樹脂に炭酸カルシウム、二酸化チタン等を添加することにより反射率を高めた反射シートを筐体202に貼付したものを用いてもよい。
【0070】
ランプ100は、筐体202の内部において、筐体202の長手方向とランプ100の長手方向とが略一致する位置であって、かつ筐体202の短手方向の略中央部に配置されている。
【0071】
ランプ100は、筐体の内部において、例えばランプホルダ(図示せず)により固定されている。ランプホルダは、例えば、ポリエチレンテレフタレート(PET)樹脂であり、ランプ100のガラスバルブ101の外面形状に沿うような形状を有している。
【0072】
筐体202内部のランプ100が配置されている空間の奥行き方向の長さDを100[mm]超とすることが好ましい。この場合、高反射率かつ複雑な反射鏡やドットパターンを形成した拡散板等の格別な光学的工夫なしに実用的な均斉度を得やすくすることができる。
【0073】
さらに、筐体202の開口部201の長手方向の長さを、ランプ100の管軸方向の長さよりも短くすることが好ましい。熱陰極蛍光ランプにおいて陽光柱のない管端から電極近傍までの輝度は陽光柱のある中央部の輝度よりも低く、かつ中央部の輝度がほぼ一定であるのに比して管端から電極近傍までの輝度は急変する。よって、ランプ100の端部を筐体202の内側に隠れるように配置でき、開口部201から発せられる光の輝度均斉度を高めることができる。
【0074】
また、L1>L2の場合に、ランプ100の長手方向を揃えて配置することが好ましい。この場合、2[本]のランプ100の最冷点温度をより近いものとできるため、開口部201の輝度むらは軽減することができる。さらに、2[本]のランプ100のL1側で、それぞれ最冷点を形成すると想定できる部位を熱伝導性の高い材料で橋渡してもよい。この場合、2[本]のランプ100の最冷点温度の差を実用上ほとんどなくすことができ、同じ電力を投入した場合の輝度差はより軽減し、開口部201の上下方向の輝度むらを一層軽減することができる。
【0075】
筐体202の開口部201は、透光性の光学シート類203で覆われている。光学シート類203は、例えば拡散板、拡散シートおよびレンズシート等を積層してなる。
【0076】
なお、照明装置200は、ランプ100が2[本]の場合について説明したが、3[本]以上の複数本であってもよい。好ましくは、ランプ100は、2[本]以上4[本]以下の範囲内であることが好ましい。この場合、従来の冷陰極蛍光ランプと比べて光源にかかるコストを低減することができる。
【0077】
上記のとおり、本発明の第2の実施形態に係る照明装置200の構成によれば、冷陰極蛍光ランプを使用した照明装置および液晶表示装置と比べて光源の数を少なくすることができる。
【0078】
(第3の実施形態)
本発明の第3の実施形態に係る照明装置の斜視図を図5に示す。本発明の第3の実施形態に係る照明装置(以下、「照明装置300」という。)は、ランプ100を1[本]備える点およびそれに付随する点を除いては、照明装置200と実質的に同じ構成を有する。よって、ランプを1[本]備える点およびそれに付随する点について詳細に説明し、それ以外の点については説明を省略する。
【0079】
ランプ100は、管壁負荷が400[W/m2]以上1500[W/m2]以下の範囲内で駆動される。投入電力あたりの管壁負荷が500[W/m2]未満では、開口部201に全てのセルをON状態とした液晶パネルを装着した場合、照明装置300から放射する全光束が少なすぎるため、液晶画面の平均輝度が400[cd/m2]を下回り、バックライトとして実用的でなくなる。また、管壁負荷が1500[W/m2]を超えると、ランプ内の水銀蒸気圧が高くなりすぎて発光効率が低下するため、照明装置に水銀蒸気圧を決定する最冷点温度を適切な温度範囲に保つようにさせる付加的冷却手段が新たに必要であり、かえってコストが上昇する。
【0080】
よって、ランプ100が、管壁負荷が400[W/m2]以上1500[W/m2]以下の範囲内で駆動されることで、ランプ100が1[本]であっても、液晶表示装置のバックライトとして十分に使用することができる。
【0081】
上記のとおり、本発明の第3の実施形態に係る照明装置300の構成によれば、冷陰極蛍光ランプを使用した照明装置と比べて光源の数を少なくすることができる。
【0082】
(第4の実施形態)
本発明の第4の実施形態に係る液晶表示装置の一部切欠き斜視図を図6に示す。本発明の第4の実施形態に係る液晶表示装置(以下、「液晶表示装置400」という。)は、照明装置300を備える。具体的には、液晶パネル401の背部に照明装置300が配置されている。
【0083】
上記のとおり、本発明の第4の実施形態に係る液晶表示装置400の構成によれば、冷陰極蛍光ランプを使用した照明装置および液晶表示装置と比べて光源の数を少なくすることができる。
【0084】
なお、図6に示す液晶表示装置400は、照明装置300を備えるが、照明装置200を備えていてもよい。
【0085】
(変形例)
以上、本発明を上記した各実施形態に示した具体例に基づいて説明したが、本発明の内容が各実施形態に示した具体例に限定されないことは勿論であり、例えば、以下のような変形例を用いることができる。
【0086】
1.ガラス部材およびガラスバルブについて
(1)紫外線吸収について
ガラスバルブ101の材料であるガラスに遷移金属の酸化物をその種類によって所定量をドープすることにより254[nm]や313[nm]の紫外線を吸収することができる。具体的には、例えば酸化チタン(TiO2)の場合は、酸化物換算で0.05[wt%]以上含まれていることにより254[nm]の紫外線を吸収し、酸化物換算で2[wt%]以上含まれていることにより313[nm]の紫外線を吸収することができる。ただし、酸化チタンが酸化物換算で5.0[wt%]より多く含まれている場合には、ガラスが失透してしまうため、酸化物換算で0.05[wt%]以上5.0[wt%]以下の範囲内で含まれていることが好ましい。
【0087】
また、酸化セリウム(CeO2)の場合は、酸化物換算で0.05[wt%]以上含まれていることにより254[nm]の紫外線を吸収することができる。ただし、酸化セリウムが酸化物換算で0.5[wt%]より多く含まれている場合には、ガラスが着色してしまうため、酸化セリウムが酸化物換算で0.05[wt%]以上0.5[wt%]以下の範囲内で含まれていることが好ましい。なお、酸化セリウムに加えて酸化スズ(SnO)が含まれていることにより、酸化セリウムによるガラスの着色を抑えることができるため、酸化セリウムが酸化物換算で5.0[wt%]以下まで含まれることができる。この場合、酸化セリウムが酸化物換算で0.5[wt%]以上含まれれば313[nm]の紫外線を吸収することができる。ただし、この場合においても酸化セリウムが酸化物換算で5.0[wt%]より多く含まれる場合には、ガラスが失透してしまう。
【0088】
また、酸化亜鉛(ZnO)の場合は、酸化物換算で2.0[wt%]以上含まれることにより254[nm]の紫外線を吸収することができる。ただし、酸化亜鉛が酸化物換算で20[wt%]より多くドープした場合、ガラスが失透してしまうおそれがあるため、酸化亜鉛が酸化物換算で2.0[wt%]以上20[wt%]以下の範囲内で含まれることが好ましい。
【0089】
また、酸化鉄(Fe23)の場合は、酸化物換算で0.01[wt%]以上含まれることにより254[nm]の紫外線を吸収することができる。ただし、酸化鉄が酸化物換算で2.0[wt%]より多くドープした場合には、ガラスが着色してしまうため、酸化鉄が酸化物換算で0.01[wt%]以上2.0[wt%]以下の範囲内で含まれることが好ましい。
【0090】
(2)赤外線透過係数について
ガラスバルブ101に用いるガラス中の水分含有量を示す赤外線透過率係数は、0.3以上1.2以下の範囲、特に0.4以上0.8以下の範囲となるように調整することが好ましい。赤外線透過率係数が1.2以下であれば、長尺の冷陰極放電ランプ等の高電圧印加ランプに適用可能な低い誘電正接を得やすくなり、0.8以下であれば誘電正接が十分に小さくなって、さらに高電圧印加ランプに適用可能となる。
【0091】
なお、赤外線透過率係数(X)は下式で表すことができる。
【0092】
[数1]X=(log(a/b))/t
a:3840[cm-1]付近の極小点の透過率[%]
b:3560[cm-1]付近の極小点の透過率[%]
t:ガラスの厚み
(3)鉛フリーガラスについて
ガラスバルブ101に用いるガラスは、酸化物換算で、SiO2が60[wt%]〜75[wt%]、Al23が1[wt%]〜5[wt%]、Li2Oが0[wt%]〜5[wt%]、K2Oが3[wt%]〜11[wt%]、Na2Oが3[wt%]〜12[wt%]、CaOが0[wt%]〜9[wt%]、MgOが0[wt%]〜9[wt%]、SrOが0[wt%]〜12[wt%]、BaOが0[wt%]〜12[wt%]の組成を有していてもよい。この場合、酸化物換算で、アルカリ金属酸化物は、0[wt%]〜28[wt%]含まれていることとなる。この場合、鉛成分を含有せず、環境に優しい冷陰極放電ランプを提供することができる。さらには、ガラスバルブ101に用いるガラスは、酸化物換算で、SiO2が60[wt%]〜75[wt%]、Al23が1[wt%]〜5[wt%]、B23が0[wt%]〜3[wt%]、Li2Oが0[wt%]〜5[wt%]、K2Oが3[wt%]〜11[wt%]、Na2Oが3[wt%]〜12[wt%]、CaOが0[wt%]〜9[wt%]、MgOが0[wt%]〜9[wt%]、SrOが0[wt%]〜12[wt%]、BaOが0[wt%]〜12[wt%]の組成を有していることがより好ましい。この場合、酸化物換算で、アルカリ金属酸化物は、0[wt%]〜28[wt%]含まれていることとなる。
【0093】
また、ガラスバルブ101に用いるガラスは、酸化物換算で、SiO2が60[wt%]〜75[wt%]、Al23が1[wt%]〜5[wt%]、Li2Oが0.5[wt%]〜5[wt%]、K2Oが3[wt%]〜7[wt%]、Na2Oが5[wt%]〜12[wt%]、CaOが1[wt%]〜7[wt%]、MgOが1[wt%]〜7[wt%]、SrOが0[wt%]〜5[wt%]、BaOが7[wt%]〜12[wt%]の組成を有していてもよい。この場合、酸化物換算で、アルカリ金属酸化物は、8.5[wt%]〜24[wt%]含まれていることとなる。この場合、ランプへの加工を行いやすく、かつ鉛成分を含有せず、環境に優しい冷陰極蛍光ランプを提供することができる。
【0094】
さらに、ガラスバルブ101に用いるガラスは、酸化物換算で、SiO2が65[wt%]〜75[wt%]、Al23が1[wt%]〜5[wt%]、B23が0[wt%]〜3[wt%]、Li2Oが0.5[wt%]〜5[wt%]、K2Oが3[wt%]〜7[wt%]、Na2Oが5[wt%]〜12[wt%]、CaOが2[wt%]〜7[wt%]、MgOが2.1[wt%]〜7[wt%]、SrOが0[wt%]〜0.9[wt%]、BaOが7.1[wt%]〜12[wt%]の組成を有していてもよい。この場合、酸化物換算で、アルカリ金属酸化物は、8.5[wt%]〜24[wt%]含まれていることとなる。この場合、鉛成分を含有せず、照明用途に適した電気絶縁性を有し、かつ、失透を起こりにくくすることができる。さらには、ガラスバルブ101に用いるガラスは、酸化物換算で、SiO2が65[wt%]〜75[wt%]、Al23が1[wt%]〜3[wt%]、B23が0[wt%]〜3[wt%]、Li2Oが1[wt%]〜3[wt%]、K2Oが3[wt%]〜6[wt%]、Na2Oが7[wt%]〜10[wt%]、CaOが3[wt%]〜6[wt%]、MgOが3[wt%]〜6[wt%]、SrOが0[wt%]〜0.9[wt%]、BaOが7.1[wt%]〜10[wt%]の組成を有していることがより好ましい。この場合、酸化物換算で、アルカリ金属酸化物は、11[wt%]〜19[wt%]含まれていることとなる。
【0095】
(4)ガラスバルブ101の形状について
ガラスバルブ101の形状は、直管形状のものに限られず、例えばL字形状、U字形状、コの字形状、渦巻き形状等であってもよい。また、その管軸に対して略垂直に切った断面は、略円形状のものに限られず、例えばトラック形状や角丸形状のような扁平形状や楕円形状等であってもよい。
【0096】
2.蛍光体層の蛍光体について
(1)紫外線吸収について
例えば、近年、液晶カラーテレビの大型化に伴って、バックライトユニットの開口を塞ぐ拡散板に寸法安定性の良いポリカーボネートが使用されるようになっている。このポリカーボネートは、水銀が発する313[nm]の波長の紫外線により劣化しやすい。このような場合には、波長313[nm]の紫外線を吸収する蛍光体を利用すると良い。なお、313[nm]の紫外線を吸収する蛍光体としては、以下のものがある。
【0097】
(a)青色
ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[Ba1-x-ySrxEuyMg1-zMnzAl1017]又は[Ba1-x-ySrxEuyMg2-zMnzAl1627
ここで、x,y,zはそれぞれ0≦x≦0.4、0.07≦y≦0.25、0≦z<0.1なる条件を満たす数であることが好ましい。
【0098】
このような蛍光体としては、例えば、ユーロピウム付活アルミン酸バリウム・マグネシウム[BaMg2Al1627:Eu2+]、[BaMgAl1017:Eu2+](略号:BAM−B)や、ユーロピウム付活アルミン酸バリウム・ストロンチウム・マグネシウム[(Ba,Sr)Mg2Al1627:Eu2+]、[(Ba,Sr)MgAl1017:Eu2+](略号:SBAM−B)等がある。
【0099】
(b)緑色
・マンガン付活マグネシウムガレート[MgGa24:Mn2+](略号:MGM)
・マンガン付活アルミン酸セリウム・マグネシウム・亜鉛[Ce(Mg,Zn)Al1119:Mn2+](略号:CMZ)
・テルビウム付活アルミン酸セリウム・マグネシウム[CeMgAl1119:Tb3+](略号:CAT)
・ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[Ba1-x-ySrxEuyMg1-zMnzAl1017]又は[Ba1-x-ySrxEuyMg2-zMnzAl1627
ここで、x,y,zはそれぞれ0≦x≦0.4、0.07≦y≦0.25、0.1≦z≦0.6なる条件を満たす数であり、zは0.4≦x≦0.5であることが好ましい。
【0100】
このような蛍光体としては、例えば、ユーロピウム・マンガン共付活アルミン酸バリウム・マグネシウム[BaMg2Al1627:Eu2+,Mn2+]、[BaMgAl1017:Eu2+,Mn2+](略号:BAM−G)や、ユーロピウム・マンガン共付活アルミン酸バリウム・ストロンチウム・マグネシウム[(Ba,Sr)Mg2Al1627:Eu2+,Mn2+]、[(Ba,Sr)MgAl1017:Eu2+,Mn2+](略号:SBAM−G)等がある。
【0101】
(c)赤色
・ユーロピウム付活リン・バナジン酸イットリウム[Y(P,V)O4:Eu3+](略号:YPV)
・ユーロピウム付活バナジン酸イットリウム[YVO4:Eu3+](略号:YVO)
・ユーロピウム付活イットリウムオキシサルファイド[Y22S:Eu3+](略号:YOS)
・マンガン付活フッ化ゲルマン酸マグネシウム[3.5MgO・0.5MgF2・GeO2:Mn4+](略号:MFG)
・ジスプロシウム付活バナジン酸イットリウム[YVO4:Dy3+](赤と緑の2成分発光蛍光体であり、略号:YDS)
なお、一種類の発光色に対して、異なる化合物の蛍光体を混合して用いても良い。例えば、青色にBAM−B(313[nm]を吸収する。)のみ、緑色にLAP(313[nm]を吸収しない。)とBAM−G(313[nm]を吸収する。)、赤色にYOX(313[nm]を吸収しない。)とYVO(313[nm]を吸収する。)の蛍光体を用いても良い。このような場合は、前述のように波長313[nm]を吸収する蛍光体が、総重量組成比率で50%より大きくなるように調整することで、紫外線がガラスバルブ外に漏れ出ることをほとんど防止できる。したがって、313[nm]の紫外線を吸収する蛍光体を蛍光体層104に含む場合には、上記のバックライトユニットの開口を塞ぐポリカーボネート(PC)からなる拡散板等の紫外線による劣化が抑制され、バックライトユニットとしての特性を長時間維持することができる。
【0102】
ここで、「313[nm]の紫外線を吸収する」とは、254[nm]付近の励起波長スペクトル(励起波長スペクトルとは、蛍光体を波長変化させながら励起発光させ、励起波長と発光強度をプロットしたものである。)の強度を100[%]としたときに、313[nm]の励起波長スペクトルの強度が80[%]以上のものと定義する。すなわち、313[nm]の紫外線を吸収する蛍光体とは、313[nm]の紫外線を吸収して可視光に変換できる蛍光体である。
【0103】
(2)高色再現について
液晶カラーテレビで代表される液晶表示装置では、近年における高画質化の一環としてなされる高色再現化に伴い、当該液晶表示装置のバックライトユニットの光源として用いられる冷陰極放電ランプや外部電極放電ランプにおいて、再現可能な色度範囲の拡大化の要請がある。
【0104】
このような要請に対して、例えば、以下の蛍光体を用いることで、実施の形態での蛍光体を用いる場合よりも、色度範囲の拡大を図ることができる。具体的には、CIE1931色度図において、高色再現用の当該蛍光体の色度座標値が、実施の形態で使用した3つの蛍光体の色度座標値を結んでできる三角形を含んで色再現範囲を広げる座標に位置する。
【0105】
(a)青色
・ユーロピウム付活ストロンチウム・クロロアパタイト[Sr10(PO46Cl2:Eu2+](略号:SCA)、色度座標:x=0.151、y=0.065
上記以外に、ユーロピウム付活ストロンチウム・カルシウム・バリウム・クロロアパタイト[(Sr,Ca,Ba)10(PO46Cl2:Eu2+](略号:SBCA)も使用でき、上記波長313[nm]の紫外線も吸収できるSBAM−Bも高色再現用に使用できる。
【0106】
(b)緑色
・BAM−G、色度座標:x=0.139、y=0.574
・CMZ、色度座標:x=0.164、y=0.722
・CAT、色度座標:x=0.267、y=0.663
なお、これらは上述したように、波長313[nm]の紫外線も吸収でき、また、ここで説明した3つの蛍光体粒子以外にも、MGMも高色再現用に使用することができる。
【0107】
(c)赤色
・YOS、色度座標:x=0.651、y=0.344
・YPV、色度座標:x=0.658、y=0.333
・MFG、色度座標:x=0.711、y=0.287
なお、これらは上述したように、波長313[nm]の紫外線も吸収でき、また、ここで説明した3つの蛍光体粒子以外にも、YVO、YDSも高色再現用に使用することができる。
【0108】
また、上記で示した色度座標値は各々の蛍光体の粉体のみで測定した代表値であり、測定方法(測定原理)等に起因して、各蛍光体の粉体が示す色度座標値は、上掲した値と若干異なる場合があり得る。参考として上記実施の形態1の各蛍光体の粉体の色度座標値は、YOX(x=0.644、y=0.353)、LAP(x=0.351、y=0.585)、BAM−B(x=0.148、y=0.056)で構成されている。
【0109】
さらに、赤、緑、青の各色を発光させるために用いる蛍光体は各波長につき1種類に限らず、複数種類を組み合わせて用いることとしても良い。
【0110】
ここで、上記の高色再現用の蛍光体粒子を用いて蛍光体層104を形成した場合について説明する。ここでの評価は、CIE1931色度図内においてNTSC規格の3原色の色度座標値を結ぶNTSC三角形(NTSCtriangle)の面積を基準とした、高色再現用の蛍光体を用いた場合の3つの色度座標値を結んでできる三角形の面積の比(以下、NTSC比という。)で行なう。
【0111】
例えば、青色としてBAM−B、緑色としてBAM−G、赤色としてYVOを用いると(例1)NTSC比が92[%]となり、また、青色としてSCA、緑色としてBAM−G、赤色としてYVOを用いると(例2)NTSC比が100[%]となり、また、青色としてSCA、緑色としてBAM−G、赤色としてYOXを用いると(例3)、NTSC比が95[%]となり、例1及び2に比べて輝度を10[%]向上させることができる。
【0112】
なお、ここでの評価に用いた色度座標値は、ランプ等が組み込まれた液晶表示装置とした状態で測定したものである為、カラーフィルターとの組み合わせにより色再現範囲が上記値より前後する可能性がある。
【産業上の利用可能性】
【0113】
本発明は、熱陰極蛍光ランプ、照明装置および画像表示装置に広く適用することができる。
【符号の説明】
【0114】
100、200 熱陰極蛍光ランプ
101 ガラスバルブ
102、103 電極(コイル)
200、300 照明装置
400 液晶表示装置

【特許請求の範囲】
【請求項1】
ガラスバルブと、該ガラスバルブの内部に封入された水銀および希ガスと、前記ガラスバルブの内部に配置された一対の電極とを備える熱陰極蛍光ランプであって、
前記希ガスの平均原子量は、20以上32以下の範囲内であり、
前記ガラスバルブの内部のガス圧は、300[Pa]以上700[Pa]以下の範囲内であり、
前記電極は、コイルからなり、前記コイルは、通電していないときの抵抗と放電させずに通電したときの抵抗との比が1:4.75となる場合、放電させずにコイルに通電した電流値が0.5[A]以上1.5[A]以下の範囲内であることを特徴とする熱陰極蛍光ランプ。
【請求項2】
前記ガラスバルブの内径が、23[mm]以上50[mm]以下の範囲内であることを特徴とする請求項1に記載の熱陰極蛍光ランプ。
【請求項3】
前記コイルは、前記ガラスバルブの両端部に設けられ、
一方の前記コイルが設けられた前記ガラスバルブの一端部において、一方の前記コイルの旋回軸の中心点から前記ガラスバルブの一端までの長さをL1とし、
他方の前記コイルが設けられた前記ガラスバルブの他端部において、他方の前記コイルの旋回軸の中心点から前記ガラスバルブの他端までの長さをL2としたとき、
L1≧L2となることを特徴とする請求項1もしくは請求項2に記載の熱陰極蛍光ランプ。
【請求項4】
L1が40[mm]以上であることを特徴とする請求項3に記載の熱陰極蛍光ランプ。
【請求項5】
前記コイルは、二重巻き、または三重巻きの構造であることを特徴とする請求項1〜4のいずれか1項に記載の熱陰極蛍光ランプ。
【請求項6】
前記コイルには、少なくとも10[mg]の電子放出物質が搭載されていることを特徴とする請求項1〜5のいずれか1項に記載の熱陰極蛍光ランプ。
【請求項7】
請求項1〜6のいずれか1項に記載の熱陰極蛍光ランプを1[本]備え、管壁負荷を500[W/m2]以上1500[W/m2]以下の範囲内で駆動することを特徴とする照明装置。
【請求項8】
請求項1〜6のいずれか1項に記載の熱陰極蛍光ランプを複数本備えることを特徴とする照明装置。
【請求項9】
請求項7または8に記載の照明装置を備えることを特徴とする液晶表示装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate


【公開番号】特開2012−9144(P2012−9144A)
【公開日】平成24年1月12日(2012.1.12)
【国際特許分類】
【出願番号】特願2010−141187(P2010−141187)
【出願日】平成22年6月22日(2010.6.22)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】