説明

燃料電池システム

【課題】水中の不純物が水素生成装置2の予熱蒸発器7の水蒸気の蒸発位置に析出することを抑制して予熱蒸発器が詰まることを防止し、安定した運転を継続できる燃料電池システムを提供する。
【解決手段】改質水タンク28に供給する水を加熱して蒸留する水蒸留部34と、水蒸留部34及び改質水タンク28を連通する水補給経路31と、を備えた構成とし、改質水タンク28に供給する水を水蒸留部34で加熱し蒸留して水中のシリカ、カリウム、カルシウム及び鉄等の不純物を取り除いた後に、水補給経路31を経て改質水タンク28に水を蓄え、予熱蒸発器7に供給するので予熱蒸発器7内でシリカ、カリウム、カルシウム及び鉄等の不純物の析出が発生することを抑制できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、改質用燃料及び水を反応させて改質ガスを生成する改質反応によって水素生成装置を備えた燃料電池システムに関するものである。
【背景技術】
【0002】
水素生成装置は、都市ガスやLPガスなどの炭素及び水素から構成される炭化水素を少なくとも含む改質用燃料(原料)と水を、内部に改質触媒層を有する改質反応部において水蒸気改質反応により水素含有ガスを生成する。燃料電池システムは、水素生成装置を備え、生成された水素含有ガス(以下、改質ガスと呼ぶ)を燃料電池に供給し発電する。
【0003】
改質触媒層には、水は水蒸気の状態で供給されることが望ましく、発熱源から加熱される予熱蒸発器に水を供給し、水蒸気を発生させることが望ましい。
【0004】
水を効率的に蒸発させる予熱蒸発器を有する装置として、例えば、図3に示す燃料改質装置100が挙げられる。燃料改質装置100は、その中心軸上に配置された燃焼筒112と火炎を形成するバーナ114とを備えている。この同軸に配置された内筒120と上部仕切筒124aとの間の環状空間の下端に改質触媒を充填した改質反応部128を備え、内筒120と上部仕切筒124aとの間の環状空間の上端部に改質用の水と原燃料ガス(原料)とを併せて供給する原燃料ガス供給口125が接続されている。さらに、燃料改質装置100は、上部仕切筒124aに相対する内筒120の外壁には、螺旋状に形成された板または棒状の部材である螺旋状ガイド126が設けられておりており、原燃料ガス供給口125から供給された改質用の水が、螺旋状ガイドの表面を伝って内筒の表面に接して流れる間に加熱され、気化するように構成された予熱蒸発器を有している(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0005】
【特許文献1】特開2007−15911号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかしながら、従来の燃料電池システムの予熱蒸発器では以下のような課題があった。
【0007】
前述した螺旋状の経路を持つ予熱蒸発器において、内筒の外壁に設けられた螺旋状ガイド上を、原燃料である炭化水素と混合された状態の水が通過していくことになる。このとき、水は螺旋状ガイド上を通過していくにつれて、熱を回収し、徐々に蒸発していき水が完全に蒸発し得る熱量を得ることができるだけの螺旋状経路の行程を通過し終える位置に至るまでに、最終的に水が蒸発するように設計されている。
【0008】
一般的に、改質用の水は、燃料電池システム内の改質反応と発電反応の過程で循環しながら使用されている。しかしながら、循環時に大気に放出される水量が多くなった場合や、水の循環経路や供給経路の異常が発生した場合や部品交換のメンテナンス時に水の補給や交換が頻繁に行われた場合、燃料電池システム内に水道水を追加供給する必要がある。そのため、シリカ、カリウム、カルシウム及び鉄等の不純物を含んだ水道水が、予熱蒸発器に供給されることになる。水道水が予熱蒸発器に供給されると、予熱蒸発器の水蒸気の経路に、これらの不純物が析出して経路を閉塞し、原料と水(水蒸気)が流れにくくなる恐れがある。この場合、改質反応部における水蒸気改質反応により所定の改質ガスが生成
できなくなり、燃料電池システムの運転が継続できなく恐れがある。
【0009】
本発明は、前記従来の課題に鑑みてなされたもので、燃料電池システム内に水道水を追加供給する必要が生じた場合であっても、予熱蒸発器に供給される水中に含まれる不純物が析出して予熱蒸発器を詰まることを抑制し、安定した運転を継続できる燃料電池システムを提供することを目的とする。
【課題を解決するための手段】
【0010】
前記従来の課題を解決するために、本発明の燃料電池システムは、燃焼ガスを生成する燃焼器と燃焼ガスの熱を利用して水から水蒸気を生成すると共に、生成した水蒸気及び供給された原料を混合する予熱蒸発器と、予熱蒸発器の下流側に配置され、燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって水素含有ガスを生成する改質反応部とを有する水素生成装置と、水素含有ガスと酸素とを反応させて発電する燃料電池と水を貯える改質水タンクと改質水タンク及び予熱蒸発器を連通する水供給経路と水供給経路上に設けられ、水を供給するための改質水供給部と改質水タンクに供給する水を加熱して蒸留する水蒸留部と水蒸留部及び改質水タンクを連通する水補給経路とを備えたものである。
【0011】
これによって、改質水タンクに供給する水を水蒸留部で加熱して蒸留して水中のシリカ、カリウム、カルシウム及び鉄等の不純物を取り除いた後に、水補給経路を経て改質水タンクに水を蓄え、この水を改質水供給部により水素生成装置の予熱蒸発器に供給するので予熱蒸発器の水蒸気の蒸発位置には水中のシリカ、カリウム、カルシウム及び鉄等の不純物の析出が発生することを抑制できるようにしたものである。
【発明の効果】
【0012】
本発明の燃料電池システムは、水素生成装置の予熱蒸発器に供給する水を水蒸留部で加熱して蒸留して水中のシリカ、カリウム、カルシウム及び鉄等の不純物を取り除いた後に、水補給経路を経て改質水タンクに蓄え、改質水供給部により水素生成装置の予熱蒸発器に供給する。そのため、水中の不純物が予熱蒸発器内に析出することを抑制して、予熱蒸発器が詰まることを防止できる。また、安定した運転を継続する燃料電池システムを提供することができる。
【図面の簡単な説明】
【0013】
【図1】本発明の実施の形態1における燃料電池システムの構成を示すブロック図
【図2】本発明の実施の形態2における燃料電池システムの構成を示すブロック図
【図3】従来の燃料電池システムの構成を示すブロック図
【発明を実施するための形態】
【0014】
本発明の燃料電池システムは、燃焼ガスを生成する燃焼器、前記燃焼ガスの熱を利用して水から水蒸気を生成すると共に、生成した水蒸気及び供給された原料を混合する予熱蒸発器、及び、前記予熱蒸発器の下流側に配置され、前記燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって水素含有ガスを生成する改質反応部、を有する水素生成装置と、前記水素生成装置で生成した水素含有ガス及び酸素を反応させて発電する燃料電池と、前記予熱蒸発器に供給する水を貯える改質水タンクと、前記改質水タンク及び前記予熱蒸発器を連通する水供給経路と、前記水供給経路上に設けられ、前記予熱蒸発器に水を供給するための改質水供給部と、前記改質水タンクに供給する水を加熱して蒸留する水蒸留部と、前記水蒸留部及び前記改質水タンクを連通する水補給経路と、を備えるものである。
【0015】
これにより、改質水タンクに供給する水を水蒸留部で加熱して蒸留し、水中のシリカ、
カリウム、カルシウム及び鉄等の不純物を取り除いた後に、水補給経路を経て改質水タンクに水を蓄え、この水を改質水供給部により水素生成装置の予熱蒸発器に供給することができる。そのため、予熱蒸発器内で水が蒸発した箇所に、水中の不純物の析出が発生することを抑制でき、予熱蒸発器が詰まることを防止できる。また、安定した運転を継続できる燃料電池システムを提供することができる。
【0016】
また、本発明は、燃焼器から排出される燃焼排ガス、燃料電池の燃料極側の出口から排出される発電後のアノードオフガス、及び、燃料電池の空気極側から排出された発電後のカソードオフガスのうちの少なくともいずれかのガス中の水分を凝縮するための凝縮器と、凝縮器から回収された凝縮水を改質水タンクに供給する凝縮水回収経路とを備えていてもよい。
【0017】
これにより、発電反応の過程で生成した水を回収し、改質反応に用いることができ、燃料電池システム内で循環しながら使用することができる。そのため、燃料電池システム外に放出される水量を減らすことができ、水の補給回数を少なくすることできる。
【0018】
そのため、水の給水源としての水道管から、シリカ、カリウム、カルシウム及び鉄等の不純物を含んだ水の供給が少なくなるので水蒸留部で水を加熱して蒸留するエネルギーを少なくすることができる。また、不純物の少ない水を循環して、予熱蒸発器内で水が蒸発した箇所に、水中の不純物の析出が発生することを抑制できる。
【0019】
また、本発明は、改質水タンク内、又は、改質水タンクと水素生成装置の予熱蒸発器との供給経路上に水浄化部を備えていてもよい。
【0020】
これにより、水素生成装置に供給する水に溶解している触媒に影響を及ぼす塩素等のイオン類を除去して供給できる。そのため、触媒の耐久性を高めると共に予熱蒸発器内で水が蒸発した箇所に、水中の不純物の析出が発生することを抑制できる。
【0021】
さらに、改質水タンクに供給する水を水蒸留部で加熱して蒸留してから改質水タンクに蓄えるため、水浄化部の寿命を長くし、交換頻度を低減することができる。
【0022】
また、本発明は、予熱蒸発器が、燃焼器と同心状に配置された径の異なる内筒及び外筒と内筒の内面に沿って燃焼ガスが流れるように形成された燃焼ガス経路と内筒及び前記外筒の間の環状空間の一部に内筒の外面に沿って前記水を流通する水経路規定部とを有し、改質反応部が、予熱蒸発器の下流側の環状空間に改質触媒を充填するように構成されていてもよい。
【0023】
これにより、加熱用の燃焼器と燃焼ガス経路と予熱蒸発器と改質反応部とを一体化した構成において、予熱蒸発器が詰まることを防止できるので、予熱蒸発器を小型化でき、水素生成装置全体をコンパクトにすることができる。
【0024】
以下、本発明の実施の形態について、図面を参照しながら詳細を説明する。以下では全ての図を通じて、同一又は相当する要素には同一の参照符号を付してその重複する説明を省略する。
【0025】
(実施の形態1)
図1は、本発明の実施の形態1に係る燃料電池システムの概要を示すブロック図である。
【0026】
以下、本発明による燃料電池システムの一実施形態について説明する。図1において、
燃料電池システムは、燃料電池1と、この燃料電池1に必要な水素ガスを含む改質ガスを生成する水素生成装置2を備えている。
【0027】
燃料電池1は、典型的には固体高分子型燃料電池であり、アノードと、カソードと、アノード及びカソードの間に配置された高分子電解質膜と、を含むセル5を複数積層して構成される。燃料電池1は、アノードに供給される水素を含む改質ガス及びカソードに供給される酸素を含む酸化剤ガス(例えば、空気)を用いて発電するものである。燃料電池1は、アノードに改質ガスを供給するためのアノード流路3、カソードに酸化剤ガスを供給するためのカソード流路4、及び、水素及び酸素の電気化学的反応により発生した熱を奪うための冷却媒体(例えば、水)を供給する冷却経路(図示せず)を備える。
【0028】
水素生成装置2は、改質反応部19、変成反応部20、選択酸化反応部21、予熱蒸発器7、燃焼器8及び燃焼用の空気供給部15を備える。予熱蒸発器7は、炭化水素を含む改質用燃料(原料)及び改質水が供給される。予熱蒸発器7は、供給された改質水から水蒸気を生成すると共に、生成した水蒸気及び改質用燃料を混合して改質反応部19に供給する。改質反応部19は、改質用燃料及び水を用いて水蒸気改質反応により水素を含む改質ガスを生成する。ここでは、改質反応部19及び予熱蒸発器7を一体化した構成を備えている。
【0029】
また、改質反応部19及び予熱蒸発器7の中心軸上には、燃焼器8が配置される。燃焼器8は、火炎を形成するバーナ9、点火電極47及び燃焼状態検出器48を備える。燃焼器8には、空気供給部15及び空気流量検知器(図示せず)が接続されている。空気供給部15は、燃焼器8に燃焼用の空気(燃焼空気)を供給する。空気供給部15としては、例えば、空気ポンプやファンを用いることができる。空気流量検知器は、燃焼空気の流量を測定する。なお、燃焼器8は、水素生成装置2に組み込まれて構成されていてもよいし、水素生成装置2と別の構成要素として構成されていてもよい。
【0030】
燃焼器8には、燃焼用の燃料として、水素生成装置2が所定の温度に上昇するまでに通過した原料、一酸化炭素の濃度が燃料電池に供給可能な濃度にまで低減されていない改質ガス、又は、燃料電池1のアノードから排出された未反応の改質ガス(アノードオフガス)が供給される。燃焼器8は、これらのガスを燃焼させて、例えば、改質反応部19に供給する熱を生成する。
【0031】
また、水素生成装置2は、複数の同心円状の2重管形状を有し、内側から順に、燃焼筒10、内内筒11、内筒12、外筒13から構成されている。
【0032】
燃焼筒10内には、燃焼ガスがバーナ9から放出されるように構成されている。燃焼筒10と内内筒11との環状空間により燃焼ガス経路14が形成されており、この燃焼ガス経路14を通り、燃焼ガス排出経路25から水素生成装置2外に導出される。
【0033】
内内筒11と内筒12との環状空間の一部に、内筒の外面に沿って周方向に周回しながら螺旋状に構成された予熱蒸発器7が設けられている。予熱蒸発器7の上流側の内筒12の外周面には、改質用燃料を供給する改質用燃料供給部17、及び、改質水を供給する改質水供給部18が接続されている。改質用燃料供給部17としては、例えば、ブースターポンプやガス制御弁、を用いることができる。改質用燃料供給部17は図示しない改質用燃料供給元に接続されている。改質水供給部18としては、例えば、水ポンプを用いることができる。
【0034】
内筒12と外筒13との環状空間には、変成反応部20と選択酸化反応部21が設けられている。予熱蒸発器7の上流側の内筒12の外周面には改質用燃料を供給する改質用燃
料供給部17が設けられ改質用燃料を供給する改質用燃料供給部17が接続されている。
【0035】
外筒13の外周面には、改質ガスの一酸化炭素選択酸化反応に必要な空気を選択酸化反応部21に供給する選択酸化空気供給部22が接続されている。また、外筒13の外周面には、水素生成装置2から改質ガスを導出し、燃料電池1に供給する改質ガス経路23が接続されている。
【0036】
外筒13の外周面には、改質温度検知器19a、変成温度検知器20a及び選択酸化温度検知器21aが配置されている。改質温度検知器19a、変成温度検知器20a及び選択酸化温度検知器21aは、それぞれ改質反応部19、変成反応部20及び選択酸化反応部21の温度を検出する。改質温度検知器19a、変成温度検知器20a及び選択酸化温度検知器21aとしては、例えば、熱電対やサーミスタを用いることができる。
【0037】
改質ガス経路23には、改質ガス開閉弁38が設けられ、改質ガス開閉弁38の開閉で燃料電池1のアノード流路3への改質ガスの供給を制御することができる。アノード流路3及び燃焼器8は、アノードオフガス経路39を介して接続される。アノードオフガス経路39には、アノードオフガス開閉弁40が配設されている。また、改質ガス開閉弁38の上流側の改質ガス経路23と、アノードオフガス開閉弁40よりも下流のアノードオフガス経路39とが、改質ガスバイパス経路41で接続されている。改質ガスバイパス経路41にはバイパス開閉弁42が設けられており、ガスの流通を制御できる。
【0038】
これらの開閉弁を開閉制御することにより、改質反応部19から導出された改質ガスを燃料電池1へ導入して、発電した後に燃料電池1での電気化学的反応に利用されなかった水素を含むアノードオフガスを燃焼器8に導入することができる。また、これらの開閉弁を開閉制御することにより、改質反応部19を流通した改質用燃料及び改質ガスを燃料電池1に導入することなく燃焼器8に導入することができる。
【0039】
燃焼器8のバーナ9は、複数の燃料噴出孔を有する燃料セパレータと、複数の空気噴出孔を有する空気噴出部材を備える。バーナ9の外側には、点火電極47とバーナ9の火炎の着火または消火を検出するための燃焼状態検出器48とが配置されている。燃焼状態検出器48としては、例えば、火炎内のイオン電流を検知して火炎の有無を判定するフレームロッドまたは火炎温度を検知して火炎の有無を判定する熱電対を用いることができる。
【0040】
水素生成装置2は、改質用燃料、改質ガスバイパス経路41から供給される改質反応部19を流通した改質ガス、及び、アノードオフガス経路39から供給される燃料電池1から排出されるアノードオフガスのうちの少なくともいずれかと、空気供給部15から供給される燃焼用空気と、をバーナ9で燃焼させることができる。水素生成装置2は、燃焼反応により生成した高温の燃焼ガスを燃焼筒10に排出して燃焼ガス経路14を流通させて、改質反応部19および予熱蒸発器7を加熱することができる。
【0041】
水供給経路26は、水を供給する改質水供給部18と予熱蒸発器7とを連通している。改質水供給部18としては、例えば、水ポンプを用いることができる。
【0042】
改質水供給部18の上流側には、水を蓄える改質水タンク28が接続されている。改質水タンク28の内部には、タンクに蓄えられた水の水量を検知する水位検知装置29、及び、タンクに蓄えられた水に溶解した塩素等のイオン類を除去する水浄化部30が設けられている。
【0043】
水補給経路31は、改質水タンク28と、加熱予熱蒸発器32及び凝縮部33からなる水蒸留部34とを連通している。水蒸留部34と水の給水源としての水道管35との間に
は、水量調整器36及び給水弁37が配置されている。 制御器46は、燃料電池1及び水素生成装置2を制御するもので、少なくとも空気供給部15、改質用燃料供給部17、改質水供給部18、水蒸留部34、水量調整器36、給水弁37、改質ガス開閉弁38、アノードオフガス開閉弁40、バイパス開閉弁42及び点火電極47を制御する。
【0044】
続いて、本発明による燃料電池システムの運転動作について説明する。
【0045】
燃料電池システムの運転は、制御器46により制御され、例えば、燃料電池システムが設置されて初期運転を開始すると、まず、給水弁37を開にして、水道管35から水量調整器36を介して水蒸留部34に水が供給される。このとき、水量調整器36は、水蒸留部34の水蒸留能力の範囲を超えないように水量を調整する。さらに、水蒸留部34の運転を開始する。
【0046】
水蒸留部34の運転を開始すると、加熱予熱蒸発器32が昇温され、加熱予熱蒸発器32により供給された水が蒸発して水蒸気になって凝縮部33に流入する。凝縮部33に流入した水は、凝縮部33で凝縮して凝縮水が生成され、水補給経路31を経て水として改質水タンク28に蓄えられる。
【0047】
改質水タンク28内に蓄えられた水の水量を水位検知装置29で検知し、燃料電池システムで循環使用する規定の水量に達すると、給水弁37を閉じると共に水蒸留部34の加熱予熱蒸発器32の運転を停止する。
【0048】
この水蒸留工程の結果、水道管35から供給された水に含まれていたシリカ、カリウム、カルシウム及び鉄等の不純物を除去した水が、改質水タンク28内に蓄えられる。
【0049】
なお、ここでは、料電池発電システムが設置されて初期運転を開始する際に、給水弁37を開にして、水量調整器36で水蒸留部34の水蒸留能力の範囲を超えないように水量を調整し、水道管35から水を供給する構成としたが、これに限定されない。例えば、改質水タンク28に水を蓄えるのに時間がかかるため、制御器46で初期運転やメンテ運転時において水を加熱蒸発させないで改質水タンク28に水を供給する運転を選択できるようにしてもよい。
【0050】
改質水タンク28内に蓄えられた水は、水浄化部30の作用により水に溶解した塩素等のイオン類を除去されて高純度の純水になる。ここで、水浄化部30としては、例えば、イオン交換樹脂を用いることができる。
【0051】
改質水タンク28に所定の水が供給された状態になると、次に、改質ガス開閉弁38、アノードオフガス開閉弁40、を閉にして、バイパス開閉弁42を開にする。改質ガス開閉弁38、アノードオフガス開閉弁40、バイパス開閉弁42の状態が整ったら、改質用燃料供給部17から改質用燃料供給部17に改質用燃料を供給すると共に、点火電極47を作動させる。
【0052】
供給された改質用燃料は、予熱蒸発器7、改質反応部19を流通した後、改質ガス経路23を通り、改質ガスバイパス経路41とバイパス開閉弁42とアノードオフガス経路39を経由して燃焼器8に導出する。改質用燃料は、燃焼器8の燃料セパレータの燃料噴出孔から噴出して、空気噴出部材の空気噴出孔から噴出した空気と混合して、バーナ9で点火されて燃焼を開始する。燃焼器8は、高温の燃焼ガスを燃焼筒10内に排出して燃焼ガス経路14を流通させることで、少なくとも改質反応部19および予熱蒸発器7を加熱する。
【0053】
燃焼器8の火炎の着火を燃焼状態検出器48で検出すると、点火電極47の動作を停止して、以降、改質温度検知器19a、変成温度検知器20a、選択酸化温度検知器21aを用いて、それぞれ改質触媒層、変成触媒層、選択酸化触媒層又はその近傍の温度を検知しながら燃焼を継続する。
【0054】
その後、燃焼ガスによって、温度検知手段24a、温度検知手段24b、温度検知手段24cのそれぞれの温度が、水が蒸発する温度以上で所定量の水を供給したときに結露が発生しない温度以上の所定の温度に加熱されると、改質水供給部18から水供給経路26を介して改質水タンク28内の水を予熱蒸発器7に供給を開始する。
【0055】
予熱蒸発器7に供給された水は、内内筒11と内筒12との環状空間の一部に、内内筒11の外面に沿って内内筒11の周方向に周回しながら形成された螺旋状の水経路規定部に沿って、鉛直下方向に流れる。この際に、水経路規定部に沿って、鉛直下方向に流れながら、燃焼排ガスからの熱を吸収して気化蒸発して水蒸気になり、改質用燃料ともにさらに加熱されて改質反応部19に供給される。
【0056】
改質反応部19では、燃焼ガス経路14を流通した高温の燃焼ガスから吸熱して、触媒による水蒸気と改質用燃料との水蒸気改質反応により改質ガス(水素含有ガス)を生成する。その後、生成した改質ガスを、さらに変成触媒層と選択酸化触媒層を通過させることにより、水性変成反応と選択酸化反応により、改質反応で発生した一酸化炭素を二酸化炭素に変化させる。これにより、一酸化炭素を10ppm程度まで低減させた高濃度の水素を含有した改質ガス生成される。
【0057】
そして、改質ガス開閉弁38、アノードオフガス開閉弁40、を開にして、バイパス開閉弁42を閉にして、改質ガス経路23から改質ガスを燃料電池1のアノード流路3に生成ガスを供給し、カソード流路4に供給される酸化剤ガスである空気(カソードエア)と反応させて発電を行う。
【0058】
さらに、燃料電池1での電気化学的反応に利用されなかった水素を含むアノードオフガスを、アノードオフガス経路39を介して燃焼器8に導出し、バーナ9で燃焼させる。これにより、水素生成装置2の温度を適正値に維持して燃料電池システムの発電運転を継続する。
【0059】
運転中もしくは運転停止時に、改質水タンク28内に蓄えられた水の水量を水位検知装置29で検知する。改質水タンク28内に蓄えられた水の水量が、燃料電池システムで循環使用する規定の水量以下になると、給水弁37を開にして水道管35から水蒸留部34に水が供給される。このとき、水量調整器36は、水蒸留部34の水蒸留能力の範囲を超えないように水量を調整する。さらに、水蒸留部34の加熱予熱蒸発器32の運転を開始し、凝縮水を生成して水補給経路31を経て水として改質水タンク28に蓄える。
【0060】
改質水タンク28内に蓄えられた水の水量を水位検知装置29で検知して燃料電池システムで循環使用する規定の水量に達すると、給水弁37を閉じると共に水蒸留部34の加熱予熱蒸発器32の運転を停止する。
【0061】
上述したように、本実施の形態によれば、以上のような構成と運転方法により、改質水タンク28に供給する水を水蒸留部34で加熱して水中のシリカ、カリウム、カルシウム及び鉄等の不純物を取り除いた後に凝縮させてから水補給経路31を経て改質水タンク28に蓄えてから、この水を改質水供給部18により水素生成装置2の予熱蒸発器7に供給するので予熱蒸発器7の水蒸気の蒸発位置に水中のシリカ、カリウム、カルシウム及び鉄等の不純物の析出が発生することが抑制できる。そのため、予熱蒸発器7が詰まることを
防止し、燃料電池システム運転を安定して継続できる。
【0062】
さらに、改質水タンク28に供給する水を水蒸留部34で加熱しているので、溶解している塩素イオン等のイオン類を除去してから改質水タンク28に蓄えることができる。そのため、水浄化部30の寿命を長くし、水浄化部30の交換頻度を低減できる。
【0063】
また、予熱蒸発器7が詰まることを防止できるため、予熱蒸発器7を小型化でき、改質反応部19と予熱蒸発器7とを一体化した構成の水素生成装置2全体をコンパクトにすることができる。
【0064】
(実施の形態2)
図2は、本発明の実施の形態2に係る燃料電池システムの概要を示すブロック図である。
【0065】
図2において、図1と同じ番号は、実施の形態1に係る燃料電池システムと同一部位を表す。
【0066】
図2において、燃料電池システムは、実施の形態1の構成に加え、燃料電池1のアノード流路3と燃焼器8とを接続するアノードオフガス経路39上にアノードオフガス凝縮器50が設けられ、アノードオフガス凝縮器50と改質水タンク28がアノード凝縮水回収経路51で接続されている。
【0067】
さらに、燃料電池1のカソード流路4の出口にカソードオフガス凝縮器52が設けられ、カソードオフガス凝縮器52と改質水タンク28がカソード凝縮水回収経路53で接続されている。
【0068】
さらに、燃焼ガス排出経路25の出口に燃焼排ガス凝縮器54が設けられ、燃焼排ガス凝縮器54と改質水タンク28が燃焼排ガス凝縮水回収経路55で接続されている。
【0069】
続いて、本発明による燃料電池システムの運転動作について説明する。
【0070】
アノードオフガス凝縮器50では、燃料電池1をバイパスして導出した改質ガス、及び、燃料電池1のアノード流路3の出口から排出される発電後のアノードオフガス中の水分が凝縮されて凝縮水が生成される。
【0071】
アノードオフガス凝縮器50で生成された凝縮水は、アノード凝縮水回収経路51を経て改質水タンク28に戻され、改質反応用の水として再利用される。
【0072】
カソードオフガス凝縮器52では、燃料電池1のカソード流路4の出口から排出される発電後のカソードオフガス中の水分が凝縮されて凝縮水が生成される。また、カソードオフガス中には、発電によって生成する生成水に加えて、電解質膜を加湿するために供給された水分が含まれている場合もある。
【0073】
カソードオフガス凝縮器52で生成された凝縮水は、カソード凝縮水回収経路53を経て改質水タンク28に戻され、改質反応用の水として再利用される。
【0074】
燃焼排ガス凝縮器54では、改質用燃料、燃焼ガス排出経路25の出口から排出される燃料電池1をバイパスして導出した改質ガス、及び、燃料電池1のアノード流路3の出口から排出される発電後のアノードオフガスのうちの少なくとも1つを、バーナ9で燃焼させた燃焼排ガス中の水分が凝縮されて、凝縮水が生成される。
【0075】
燃焼排ガス凝縮器54で生成された凝縮水は、燃焼排ガス凝縮水回収経路55を経て改質水タンク28に戻され、改質反応用の水として再利用される。
【0076】
この構成により、燃料電池システム内の改質反応と発電反応の過程で循環しながら使用されている水の燃料電池システム外に放出される水量を減らすことができる。そのため、水の補給回数を少なくすることできる。そのため、水の給水源としての水道管35からシリカ、カリウム、カルシウム及び鉄等の不純物を含んだ水の供給を少なくすることができ、水蒸留部34で水を加熱して蒸留するエネルギーを少なくすることができる。
【0077】
また、不純物の少ない凝縮水を水として使用するため、予熱蒸発器7内で水が蒸発する箇所に、水中の不純物の析出が発生することをより抑制できる。そのため、予熱蒸発器7が詰まることを防止でき、安定した運転を継続できる燃料電池システムを提供することができる。
【産業上の利用可能性】
【0078】
本発明に係る燃料電池システムは、例えば、家庭用燃料電池コージェネレーションシステム及び非常用電源などの定置用燃料電池システムとして有用である。
【符号の説明】
【0079】
1 燃料電池
2 水素生成装置
3 アノード流路
4 カソード流路
5 セル
7 予熱蒸発器
8 燃焼器
9 バーナ
10 燃焼筒
11 内内筒
12 内筒
13 外筒
14 燃焼ガス経路
15 空気供給部
17 改質用燃料供給部
18 改質水供給部
19 改質反応部
19a 改質温度検知器
20 変成反応部
20a 変成温度検知器
21 選択酸化反応部
21a 選択酸化温度検知器
22 選択酸化空気供給部
23 改質ガス経路
25 燃焼ガス排出経路
26 水供給経路
28 改質水タンク
29 水位検知装置
30 水浄化部
31 水補給経路
32 加熱予熱蒸発器
33 凝縮部
34 水蒸留部
35 水道管
36 水量調整器
37 給水弁
38 改質ガス開閉弁
39 アノードオフガス経路
40 アノードオフガス開閉弁
41 改質ガスバイパス経路
42 バイパス開閉弁
46 制御器
47 点火電極
48 燃焼状態検出器
50 アノードオフガス凝縮器
51 アノード凝縮水回収経路
52 カソードオフガス凝縮器
53 カソード凝縮水回収経路
54 燃焼排ガス凝縮器
55 燃焼排ガス凝縮水回収経路

【特許請求の範囲】
【請求項1】
燃焼ガスを生成する燃焼器、前記燃焼ガスの熱を利用して水から水蒸気を生成すると共に、生成した水蒸気及び供給された原料を混合する予熱蒸発器、及び、前記予熱蒸発器の下流側に配置され、前記燃焼ガスの熱を利用して加熱され、原料及び水蒸気から水蒸気改質反応によって水素含有ガスを生成する改質反応部、を有する水素生成装置と、
前記水素生成装置で生成した水素含有ガス及び酸素を反応させて発電する燃料電池と、
前記予熱蒸発器に供給する水を貯える改質水タンクと、
前記改質水タンク及び前記予熱蒸発器を連通する水供給経路と、
前記水供給経路上に設けられ、前記予熱蒸発器に水を供給するための改質水供給部と、
前記改質水タンクに供給する水を加熱して蒸留する水蒸留部と、
前記水蒸留部及び前記改質水タンクを連通する水補給経路と、
を備えた、燃料電池システム。
【請求項2】
前記燃焼器から排出される燃焼排ガス、前記燃料電池の燃料極側の出口から排出される発電後のアノードオフガス、及び、前記燃料電池の空気極側から排出された発電後のカソードオフガスのうちの少なくともいずれかのガス中の水分を凝縮するための凝縮器と、
前記凝縮器から回収された凝縮水を前記改質水タンクに供給する凝縮水回収経路と、
をさらに備えた、請求項1に記載の燃料電池システム。
【請求項3】
前記改質水タンク内、又は、前記改質水タンクと水素生成装置の前記予熱蒸発器とを連通する水供給経路上に設けられた水浄化部、をさらに備えた、請求項2に記載の燃料電池システム。
【請求項4】
前記予熱蒸発器は、前記燃焼器と同心状に配置された径の異なる内筒及び外筒と、前記内筒の内面に沿って燃焼ガスが流れるように形成された燃焼ガス経路と、前記内筒及び前記外筒の間の環状空間の一部に、前記内筒の外面に沿って前記水を流通する水経路規定部と、を有し、
前記改質反応部は、前記予熱蒸発器の下流側の前記環状空間に改質触媒を充填するように構成されている、請求項1〜3に記載の燃料電池システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate


【公開番号】特開2013−20865(P2013−20865A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−154533(P2011−154533)
【出願日】平成23年7月13日(2011.7.13)
【出願人】(000005821)パナソニック株式会社 (73,050)
【Fターム(参考)】