説明

燃料電池車両

【課題】低負荷状態におけるエアポンプの出力音について搭乗者に違和感を与えることなく、蓄電装置の蓄電量を適切に保つことが可能な燃料電池車両を提供する。
【解決手段】FC車両10の制御装置24は、FC車両10が所定の低負荷状態である場合に、エアポンプ60の駆動量を一定としつつ、蓄電装置20の蓄電量が所定の範囲内に収まる又は目標値になるように調整装置66を制御して、エアオフガスの還流量を調整するアイドル発電制御を行う。

【発明の詳細な説明】
【技術分野】
【0001】
この発明は、燃料電池からの電力を用いて走行モータを作動させる燃料電池車両に関する。
【背景技術】
【0002】
燃料電池からの電力を用いて走行モータを作動させる燃料電池車両が開発されている。このような燃料電池車両では、燃料電池内における水分の凍結防止や燃料電池の劣化抑制等の観点から、燃料電池のアイドル停止(発電停止)を禁止し、燃料電池の発電を継続する制御が提案されている(特許文献1の要約及び特許文献2の要約)。
【先行技術文献】
【特許文献】
【0003】
【特許文献1】特開2008−123930号公報
【特許文献2】特開2007−305412号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
燃料電池のアイドル停止を禁止する場合、燃料電池が発電した余剰電力は蓄電装置に充電されることとなる。一般に、蓄電装置の残容量(SOC:state of charge)には制御上の上限値が設けられ、SOCが当該上限値を超えないように、燃料電池の発電を停止又は抑制する。従って、例えば、アイドル中に燃料電池からの余剰電力を蓄電装置に充電する場合、SOCが上限値を超えないように燃料電池の発電量を調整する必要がある。そのような調整をするために燃料電池に供給するエアの流量を制御すると、アイドル中であってもエアポンプの回転数が変動することとなり、エアポンプの出力音について搭乗者に違和感を与え、商品性が低下するおそれがある。
【0005】
この発明はこのような課題を考慮してなされたものであり、低負荷状態におけるエアポンプの出力音について搭乗者に違和感を与えることなく、蓄電装置の蓄電量を適切に保つことが可能な燃料電池車両を提供することを目的とする。
【課題を解決するための手段】
【0006】
この発明に係る燃料電池車両は、走行モータと、前記走行モータに電力を供給する燃料電池と、前記燃料電池の出力をアシストする蓄電装置と、前記蓄電装置の出力電圧を変圧して前記燃料電池の出力電圧を制御するコンバータと、エア供給配管を介して前記燃料電池にエアを供給するエアポンプと、エア排出配管から分岐して前記エアポンプの上流側で前記エア供給配管に連通し、前記燃料電池から排出されたエアオフガスを前記エア供給配管に還流させるエア還流配管と、前記エア還流配管における前記エアオフガスの還流量を調整する調整装置と、前記蓄電装置の蓄電量を検出する蓄電量検出手段と、前記エアポンプ及び前記調整装置を制御する制御装置とを備えるものであって、前記制御装置は、前記燃料電池車両が所定の低負荷状態である場合に、前記エアポンプの駆動量を一定としつつ、前記蓄電量が所定の範囲内に収まる又は目標値になるように前記調整装置を制御して、前記エアオフガスの還流量を調整するアイドル発電制御を行うことを特徴とする。
【0007】
この発明によれば、燃料電池車両が所定の低負荷状態である場合に、エアポンプの駆動量を一定とする。このため、低負荷状態において蓄電装置の蓄電量が設定上限値に到達したことに伴ってエアポンプが停止することにより、エアポンプの出力音が不意に変化すること等がない。従って、低負荷状態におけるエアポンプの出力音について搭乗者に違和感を与えることなく、蓄電装置の蓄電量を適切に保つことが可能となる。
【0008】
また、単にエアポンプの駆動量を一定とするだけでなく、蓄電量が所定の範囲内に収まる又は目標値になるように調整装置を制御して、エアオフガスの還流量を調整する。エアオフガスは酸素濃度が低いため、エアオフガスの還流量を多くすると、燃料電池内部で生成される水分が少なくなり、燃料電池内部が乾燥状態になる。燃料電池内部が乾燥状態になると燃料電池の劣化が促進されるおそれがある。その一方、エアオフガスは、水分を生成する燃料電池の内部を通過したものであるため、相対的に水分を多く含んでいる。このため、エアオフガスの還流量を調整することにより、燃料電池の電解質膜を良好に加湿することが可能となり、燃料電池の劣化を抑制することができる。
【0009】
さらに、上記のような効果を得つつ、所定の低負荷状態に応じて燃料電池の発電電流を小さくすることにより、蓄電装置の蓄電量を管理すること(例えば、蓄電量の設定上限値を超えないように制御することや不要な充電を避けること)が可能となる。
【0010】
前記制御装置は、前記アイドル発電制御の際、前記燃料電池の発電電圧を所定電圧に固定してもよい。一般に、燃料電池の特性上、発熱量は発電電圧に依存する。従って、燃料電池の発電電圧を固定しつつ、エアオフガスの還流量を調整することにより、燃料電池の発電量を抑えても、発熱量を確保することが可能となる。従って、外気温が低く燃料電池に含まれる水分が凍結するおそれがある場合でも、良好にアイドル発電制御を実施することが可能となる。
【0011】
前記所定電圧は、酸化還元電圧範囲外の値としてもよい。これにより、燃料電池の劣化が激しい酸化還元電圧範囲を避けることにより、アイドル発電制御時における燃料電池の劣化量を抑えることが可能となる。
【発明の効果】
【0012】
この発明によれば、燃料電池車両が所定の低負荷状態である場合に、エアポンプの駆動量を一定とする。このため、低負荷状態において蓄電装置の蓄電量が設定上限値に到達したことに伴ってエアポンプが停止することにより、エアポンプの出力音が不意に変化すること等がない。従って、低負荷状態におけるエアポンプの出力音について搭乗者に違和感を与えることなく、蓄電装置の蓄電量を適切に保つことが可能となる。
【0013】
また、単にエアポンプの駆動量を一定とするだけでなく、蓄電量が所定の範囲内に収まる又は目標値になるように調整装置を制御して、エアオフガスの還流量を調整する。エアオフガスは酸素濃度が低いため、エアオフガスの還流量を多くすると、燃料電池内部で生成される水分が少なくなり、燃料電池内部が乾燥状態になる。燃料電池内部が乾燥状態になると燃料電池の劣化が促進されるおそれがある。その一方、エアオフガスは、水分を生成する燃料電池の内部を通過したものであるため、相対的に水分を多く含んでいる。このため、エアオフガスの還流量を調整することにより、燃料電池の電解質膜を良好に加湿することが可能となり、燃料電池の劣化を抑制することができる。
【0014】
さらに、上記のような効果を得つつ、所定の低負荷状態に応じて燃料電池の発電電流を小さくすることにより、蓄電装置の蓄電量を管理すること(例えば、蓄電量の設定上限値を超えないように制御することや不要な充電を避けること)が可能となる。
【図面の簡単な説明】
【0015】
【図1】この発明の一実施形態に係る燃料電池車両の概略全体構成図である。
【図2】前記燃料電池車両の電力系のブロック図である。
【図3】前記実施形態における燃料電池ユニットの概略構成図である。
【図4】前記実施形態におけるDC/DCコンバータの詳細を示す図である。
【図5】電子制御装置(ECU)における基本的な制御のフローチャートである。
【図6】システム負荷を計算するフローチャートである。
【図7】現在のモータ回転数とモータ予想消費電力との関係を示す図である。
【図8】燃料電池スタックを構成する燃料電池セルの電位とセルの劣化量との関係の一例を示す図である。
【図9】燃料電池セルの電位の変動速度が異なる場合の酸化の進行と還元の進行の様子の例を示すサイクリックボルタンメトリ図である。
【図10】前記実施形態における複数の電力供給制御及び電力供給モードの説明図である。
【図11】前記ECUが、前記燃料電池車両のエネルギマネジメントを行うフローチャートである。
【図12】カソードストイキ比とセル電流との関係を示す図である。
【図13】通常第2モードのフローチャートである。
【図14】目標FC電流と目標酸素濃度との関係を示す図である。
【図15】目標酸素濃度及び目標FC電流と目標エアポンプ回転数及び目標ウォータポンプ回転数との関係を示す図である。
【図16】目標酸素濃度及び目標FC電流と目標背圧弁開度との関係を示す図である。
【図17】目標FC電流と空気流量との関係を示す図である。
【図18】循環弁の開度と循環ガス流量との関係を示す図である。
【図19】アイドル発電制御のフローチャートである。
【図20】セル電圧と燃料電池放熱量との関係を示す図である。
【図21】バッテリの残容量(SOC)とEGR比と目標FC電流との関係を示す図である。
【図22】前記SOCと目標循環弁開度との関係を示す図である。
【図23】モータのトルク制御のフローチャートである。
【図24】前記実施形態及び比較例に係る各種制御を用いた場合のタイムチャートの例である。
【図25】前記実施形態に係る燃料電池車両の第1変形例の概略構成を示すブロック図である。
【図26】前記実施形態に係る燃料電池車両の第2変形例の概略構成を示すブロック図である。
【図27】前記実施形態に係る燃料電池車両の第3変形例の概略構成を示すブロック図である。
【発明を実施するための形態】
【0016】
1.全体的な構成の説明
[1−1.全体構成]
図1は、この発明の一実施形態に係る燃料電池車両10(以下「FC車両10」という。)の概略全体構成図である。図2は、FC車両10の電力系のブロック図である。図1及び図2に示すように、FC車両10は、燃料電池システム12(以下「FCシステム12」という。)と、走行用のモータ14と、インバータ16とを有する。
【0017】
FCシステム12は、燃料電池ユニット18(以下「FCユニット18」という。)と、高電圧バッテリ20(以下「バッテリ20」ともいう。)(蓄電装置)と、DC/DCコンバータ22と、電子制御装置24(以下「ECU24」という。)とを有する。
【0018】
[1−2.駆動系]
モータ14は、FCユニット18及びバッテリ20から供給される電力に基づいて駆動力を生成し、当該駆動力によりトランスミッション26を通じて車輪28を回転させる。また、モータ14は、回生を行うことで生成した電力(回生電力Preg)[W]をバッテリ20等に出力する(図2参照)。
【0019】
インバータ16は、3相ブリッジ型の構成とされて、直流/交流変換を行い、直流を3相の交流に変換してモータ14に供給する一方、回生動作に伴う交流/直流変換後の直流をDC/DCコンバータ22を通じてバッテリ20等に供給する。
【0020】
なお、モータ14とインバータ16を併せて負荷30という。負荷30には、後述するエアポンプ60、ウォータポンプ80、エアコンディショナ90等の構成要素を含めることもできる。
【0021】
[1−3.FC系]
(1−3−1.全体構成)
図3は、FCユニット18の概略構成図である。FCユニット18は、燃料電池スタック40(以下「FCスタック40」又は「FC40」という。)と、FCスタック40のアノードに対して水素(燃料ガス)を給排するアノード系と、FCスタック40のカソードに対して酸素を含む空気(酸化剤ガス)を給排するカソード系と、FCスタック40を冷却する冷却系と、セル電圧モニタ42とを備える。
【0022】
(1−3−2.FCスタック40)
FCスタック40は、例えば、固体高分子電解質膜をアノード電極とカソード電極とで両側から挟み込んで形成された燃料電池セル(以下「FCセル」という。)を積層した構造を有する。
【0023】
(1−3−3.アノード系)
アノード系は、水素タンク44、レギュレータ46、エゼクタ48及びパージ弁50を有する。水素タンク44は、燃料ガスとしての水素を収容するものであり、配管44a、レギュレータ46、配管46a、エゼクタ48及び配管48aを介して、アノード流路52の入口に接続されている。これにより、水素タンク44の水素は、配管44a等を介してアノード流路52に供給可能である。なお、配管44aには、遮断弁(図示せず)が設けられており、FCスタック40の発電の際、当該遮断弁は、ECU24により開とされる。
【0024】
レギュレータ46は、導入される水素の圧力を所定値に調整して排出する。すなわち、レギュレータ46は、配管46bを介して入力されるカソード側の空気の圧力(パイロット圧)に応じて、下流側の圧力(アノード側の水素の圧力)を制御する。従って、アノード側の水素の圧力は、カソード側の空気の圧力に連動し、後記するように、酸素濃度を変化させるべくエアポンプ60の回転数等を変化させると、アノード側の水素の圧力も変化する。
【0025】
エゼクタ48は、水素タンク44からの水素をノズルで噴射することで負圧を発生させ、この負圧によって配管48bのアノードオフガスを吸引する。
【0026】
アノード流路52の出口は、配管48bを介して、エゼクタ48の吸気口に接続されている。そして、アノード流路52から排出されたアノードオフガスは、配管48bを通って、エゼクタ48に再度導入されることでアノードオフガス(水素)が循環する。
【0027】
なお、アノードオフガスは、アノードにおける電極反応で消費されなかった水素及び水蒸気を含んでいる。また、配管48bには、アノードオフガスに含まれる水分{凝縮水(液体)、水蒸気(気体)}を分離・回収する気液分離器(図示せず)が設けられている。
【0028】
配管48bの一部は、配管50a、パージ弁50及び配管50bを介して、後記する配管64bに設けられた希釈ボックス54に接続されている。パージ弁50は、FCスタック40の発電が安定していないと判定された場合、ECU24からの指令に基づき所定時間、開となる。希釈ボックス54は、パージ弁50からのアノードオフガス中の水素を、カソードオフガスで希釈する。
【0029】
(1−3−4.カソード系)
カソード系は、エアポンプ60、加湿器62、背圧弁64、循環弁66、流量センサ68、70及び温度センサ72を有する。
【0030】
エアポンプ60は、外気(空気)を圧縮してカソード側に送り込むものであり、その吸気口は、配管60aを介して車外(外部)と連通している。エアポンプ60の吐出口は、配管60b、加湿器62及び配管62aを介して、カソード流路74の入口に接続されている。エアポンプ60がECU24の指令に従って作動すると、エアポンプ60は、配管60aを介して車外の空気を吸気して圧縮し、この圧縮された空気が配管60b等を通ってカソード流路74に圧送される。
【0031】
加湿器62は、水分透過性を有する複数の中空糸膜62eを備えている。そして、加湿器62は、中空糸膜62eを介して、カソード流路74に向かう空気とカソード流路74から排出された多湿のカソードオフガスとの間で水分交換させ、カソード流路74に向かう空気を加湿する。
【0032】
カソード流路74の出口側には、配管62b、加湿器62、配管64a、背圧弁64及び配管64bが配置されている。カソード流路74から排出されたカソードオフガス(酸化剤オフガス)は、配管62b等を通って、車外に排出される。
【0033】
背圧弁64は、例えば、バタフライ弁で構成され、その開度がECU24によって制御されることで、カソード流路74における空気の圧力を制御する。より具体的には、背圧弁64の開度が小さくなると、カソード流路74における空気の圧力が上昇し、体積流量当たりにおける酸素濃度(体積濃度)が高くなる。逆に、背圧弁64の開度が大きくなると、カソード流路74における空気の圧力が下降し、体積流量当たりにおける酸素濃度(体積濃度)が低くなる。
【0034】
配管64bは、配管66a、循環弁66及び配管66bを介して、エアポンプ60の上流側の配管60aに接続されている。これにより、排気ガス(カソードオフガス)の一部が、循環ガスとして、配管66a、循環弁66及び配管66bを通って、配管60aに供給され、車外からの新規空気に合流し、エアポンプ60に吸気される。
【0035】
循環弁66は、例えば、バタフライ弁で構成され、その開度がECU24によって制御されることで循環ガスの流量を制御する。
【0036】
流量センサ68は、配管60bに取り付けられ、カソード流路74に向かう空気の流量[g/s]を検出してECU24に出力する。流量センサ70は、配管66bに取り付けられ、配管60aに向かう循環ガスの流量Qc[g/s]を検出してECU24に出力する。
【0037】
温度センサ72は、配管64aに取り付けられ、カソードオフガスの温度を検出してECU24に出力する。ここで、循環ガスの温度は、カソードオフガスの温度と略等しいため、温度センサ72の検出するカソードオフガスの温度に基づいて、循環ガスの温度を検知することができる。
【0038】
(1−3−5.冷却系)
冷却系は、ウォータポンプ80及び図示しないラジエータ等を有する。ウォータポンプ80は、FC40内に冷却水(冷媒)を循環させることでFC40を冷却する。FC40を冷却して温度が上昇した冷却水は、前記ラジエータで放熱される。
【0039】
(1−3−6.セル電圧モニタ42)
セル電圧モニタ42は、FCスタック40を構成する複数の単セル毎のセル電圧Vcellを検出する機器であり、モニタ本体と、モニタ本体と各単セルとを接続するワイヤハーネスとを備える。モニタ本体は、所定周期で全ての単セルをスキャニングし、各単セルのセル電圧Vcellを検出し、平均セル電圧及び最低セル電圧を算出する。そして、平均セル電圧及び最低セル電圧をECU24に出力する。
【0040】
(1−3−7.電力系)
図2に示すように、FC40からの電力(以下「FC電力Pfc」という。)は、インバータ16及びモータ14(力行時)とDC/DCコンバータ22及び高電圧バッテリ20(充電時)とに加え、前記エアポンプ60、前記ウォータポンプ80、前記エアコンディショナ90、ダウンバータ92、低電圧バッテリ94、アクセサリ96及びECU24に供給される。なお、図1に示すように、FCユニット18(FC40)とインバータ16及びDC/DCコンバータ22との間には、逆流防止ダイオード98が配置されている。また、FC40の発電電圧(以下「FC電圧Vfc」という。)は、電圧センサ100(図4)により検出され、FC40の発電電流(以下「FC電流Ifc」という。)は、電流センサ102により検出され、いずれもECU24に出力される。
【0041】
[1−4.高電圧バッテリ20]
バッテリ20は、複数のバッテリセルを含む蓄電装置(エネルギストレージ)であり、例えば、リチウムイオン2次電池、ニッケル水素二次電池又はキャパシタ等を利用することができる。本実施形態ではリチウムイオン2次電池を利用している。バッテリ20の出力電圧(以下「バッテリ電圧Vbat」という。)[V]は、電圧センサ104(図2)により検出され、バッテリ20の出力電流(以下「バッテリ電流Ibat」という。)[A]は、電流センサ106により検出され、それぞれECU24に出力される。ECU24は、バッテリ電圧Vbatとバッテリ電流Ibatとに基づいて、バッテリ20の残容量(以下「SOC」という。)[%]を算出する。
【0042】
[1−5.DC/DCコンバータ22]
DC/DCコンバータ22は、FCユニット18からのFC電力Pfcと、バッテリ20から供給された電力(以下「バッテリ電力Pbat」という。)[W]と、モータ14からの回生電力Pregとの供給先を制御する。
【0043】
図4には、本実施形態におけるDC/DCコンバータ22の詳細が示されている。図4に示すように、DC/DCコンバータ22は、一方がバッテリ20のある1次側1Sに接続され、他方が負荷30とFC40との接続点である2次側2Sに接続されている。
【0044】
DC/DCコンバータ22は、1次側1Sの電圧(1次電圧V1)[V]を2次側2Sの電圧(2次電圧V2)[V](V1≦V2)に昇圧すると共に、2次電圧V2を1次電圧V1に降圧する昇降圧型且つチョッパ型の電圧変換装置である。
【0045】
図4に示すように、DC/DCコンバータ22は、1次側1Sと2次側2Sとの間に配される相アームUAと、リアクトル110とから構成される。
【0046】
相アームUAは、上アーム素子(上アームスイッチング素子112と逆並列ダイオード114)と下アーム素子(下アームスイッチング素子116と逆並列ダイオード118)とで構成される。上アームスイッチング素子112と下アームスイッチング素子116には、それぞれ例えば、MOSFET又はIGBT等が採用される。
【0047】
リアクトル110は、相アームUAの中点(共通接続点)とバッテリ20の正極との間に挿入され、DC/DCコンバータ22により1次電圧V1と2次電圧V2との間で電圧を変換する際に、エネルギを蓄積及び放出する作用を有する。
【0048】
上アームスイッチング素子112は、ECU24から出力されるゲート駆動信号(駆動電圧)UHのハイレベルによりオンにされ、下アームスイッチング素子116は、ゲートの駆動信号(駆動電圧)ULのハイレベルによりオンにされる。
【0049】
なお、ECU24は、1次側の平滑コンデンサ122に並列に設けられた電圧センサ120により1次電圧V1を検出し、電流センサ124により1次側の電流(1次電流I1)[A]を検出する。また、ECU24は、2次側の平滑コンデンサ128に並列に設けられた電圧センサ126により2次電圧V2を検出し、電流センサ130により2次側の電流(2次電流I2)[A]を検出する。
【0050】
[1−6.ECU24]
ECU24は、通信線140(図1等)を介して、モータ14、インバータ16、FCユニット18、バッテリ20及びDC/DCコンバータ22を制御する。当該制御に際しては、メモリ(ROM)に格納されたプログラムを実行し、また、セル電圧モニタ42、流量センサ68、70、温度センサ72、電圧センサ100、104、120、126、電流センサ102、106、124、130等の各種センサの検出値を用いる。
【0051】
ここでの各種センサには、上記センサに加え、開度センサ150、モータ回転数センサ152及び外気温センサ154(図1)が含まれる。開度センサ150は、アクセルペダル156の開度θp[度]を検出する。回転数センサ152は、モータ14の回転数Nm[rpm]を検出する。ECU24は、回転数Nmを用いてFC車両10の車速V[km/h]を検出する。外気温センサ154は、車両10の外気温(以下「外気温Tex」という。)を検出する。さらに、ECU24には、メインスイッチ158(以下「メインSW158」という。)が接続される。メインSW158は、FCユニット18及びバッテリ20からモータ14への電力供給の可否を切り替えるものであり、ユーザにより操作可能である。
【0052】
ECU24は、マイクロコンピュータを含み、必要に応じて、タイマ、A/D変換器、D/A変換器等の入出力インタフェースを有する。なお、ECU24は、1つのECUのみからなるのではなく、モータ14、FCユニット18、バッテリ20及びDC/DCコンバータ22毎の複数のECUから構成することもできる。
【0053】
ECU24は、FCスタック40の状態、バッテリ20の状態及びモータ14の状態の他、各種スイッチ及び各種センサからの入力(負荷要求)に基づき決定したFC車両10全体としてFCシステム12に要求される負荷から、FCスタック40が負担すべき負荷と、バッテリ20が負担すべき負荷と、回生電源(モータ14)が負担すべき負荷の配分(分担)を調停しながら決定し、モータ14、インバータ16、FCユニット18、バッテリ20及びDC/DCコンバータ22に指令を送出する。
【0054】
2.本実施形態の制御
次に、ECU24における制御について説明する。
【0055】
[2−1.基本制御]
図5には、ECU24における基本的な制御のフローチャートが示されている。ステップS1において、ECU24は、メインSW158がオンであるかどうかを判定する。メインSW158がオンでない場合(S1:NO)、ステップS1を繰り返す。メインSW158がオンである場合(S1:YES)、ステップS2に進む。ステップS2において、ECU24は、FCシステム12に要求される負荷(システム負荷Psys)[W]を計算する。
【0056】
ステップS3において、ECU24は、FCシステム12のエネルギマネジメントを行う。ここにいうエネルギマネジメントは、主として、FC40の発電量(FC電力Pfc)及びバッテリ20の出力(バッテリ出力Pbat)を算出する処理であり、FCスタック40の劣化を抑制しつつ、FCシステム12全体の出力を効率化することを企図している。
【0057】
ステップS4において、ECU24は、FCスタック40の周辺機器、すなわち、エアポンプ60、背圧弁64、循環弁66及びウォータポンプ80の制御(FC発電制御)を行う。ステップS5において、ECU24は、モータ14のトルク制御を行う。
【0058】
ステップS6において、ECU24は、メインSW158がオフであるかどうかを判定する。メインSW158がオフでない場合(S6:NO)、ステップS2に戻る。メインSW158がオフである場合(S6:YES)、今回の処理を終了する。
【0059】
[2−2.システム負荷Psysの計算]
図6には、システム負荷Psysを計算するフローチャートが示されている。ステップS11において、ECU24は、開度センサ150からアクセルペダル156の開度θpを読み込む。ステップS12において、ECU24は、回転数センサ152からモータ14の回転数Nm[rpm]を読み込む。
【0060】
ステップS13において、ECU24は、開度θpと回転数Nmに基づいてモータ14の予想消費電力Pm[W]を算出する。具体的には、図7に示すマップにおいて、開度θp毎に回転数Nmと予想消費電力Pmの関係を記憶しておく。例えば、開度θpがθp1であるとき、特性160を用いる。同様に、開度θpがθp2、θp3、θp4、θp5、θp6であるとき、それぞれ特性162、164、166、168、170を用いる。そして、開度θpに基づいて回転数Nmと予想消費電力Pmとの関係を示す特性を特定した上で、回転数Nmに応じた予想消費電力Pmを特定する。
【0061】
ステップS14において、ECU24は、各補機から現在の動作状況を読み込む。ここでの補機には、例えば、エアポンプ60、ウォータポンプ80及びエアコンディショナ90を含む高電圧系の補機や、低電圧バッテリ94、アクセサリ96及びECU24を含む低電圧系の補機が含まれる。例えば、エアポンプ60及びウォータポンプ80であれば、回転数Nap、Nwp[rpm]を読み込む。エアコンディショナ90であれば、その出力設定を読み込む。
【0062】
ステップS15において、ECU24は、各補機の現在の動作状況に応じて補機の消費電力Pa[W]を算出する。ステップS16において、ECU24は、モータ14の予想消費電力Pmと補機の消費電力Paの和をFC車両10全体での予想消費電力(すなわち、システム負荷Psys)として算出する。
【0063】
[2−3.エネルギマネジメント]
上記のように、本実施形態におけるエネルギマネジメントでは、FCスタック40の劣化を抑制しつつ、FCシステム12全体の出力を効率化することを企図している。
【0064】
(2−3−1.前提事項)
図8は、FCスタック40を構成するFCセルの電位(セル電圧Vcell)[V]とセルの劣化量Dとの関係の一例を示している。すなわち、図8中の曲線180は、セル電圧Vcellと劣化量Dとの関係を示す。
【0065】
図8において、電位v1(例えば、0.5V)を下回る領域(以下「白金凝集増加領域R1」又は「凝集増加領域R1」という。)では、FCセルに含まれる白金(酸化白金)について還元反応が激しく進行し、白金が過度に凝集する。電位v1から電位v2(例えば、0.8V)までは、還元反応が安定的に進行する領域(以下「白金還元領域R2」又は「還元領域R2」という。)である。
【0066】
電位v2から電位v3(例えば、0.9V)までは、白金について酸化還元反応が進行する領域(以下「白金酸化還元進行領域R3」又は「酸化還元領域R3」という。)である。電位v3から電位v4(例えば、0.95V)までは、白金について酸化反応が安定的に進行する領域(以下「白金酸化安定領域R4」又は「酸化領域R4」という。)である。電位v4からOCV(開回路電圧)までは、セルに含まれるカーボンの酸化が進行する領域(以下「カーボン酸化領域R5」という。)である。
【0067】
上記のように、図8では、セル電圧Vcellが白金還元領域R2又は白金酸化安定領域R4にあれば、FCセルの劣化の進行度合が小さい。一方、セル電圧Vcellが白金凝集増加領域R1、白金酸化還元進行領域R3、又はカーボン酸化領域R5にあれば、FCセルの劣化の進行度合が大きい。
【0068】
なお、図8では、曲線180を一義的に定まるような表記としているが、実際は、単位時間当たりにおけるセル電圧Vcellの変動量(変動速度Acell)[V/sec]に応じて曲線180は変化する。
【0069】
図9は、変動速度Acellが異なる場合の酸化の進行と還元の進行の様子の例を示すサイクリックボルタンメトリ図である。図9において、曲線190は、変動速度Acellが高い場合を示し、曲線192は、変動速度Acellが低い場合を示す。図9からわかるように、変動速度Acellに応じて酸化又は還元の進行度合が異なるため、必ずしも各電位v1〜v4は一義的に特定されない。また、FCセルの個体差によっても各電位v1〜v4は変化し得る。このため、電位v1〜v4は、理論値、シミュレーション値又は実測値に誤差分を反映させたものとして設定することが好ましい。
【0070】
また、FCセルの電流−電圧(IV)特性は、一般的な燃料電池セルと同様、セル電圧Vcellが下がるほど、セル電流Icell[A]が増加する(図10参照)。加えて、FCスタック40の発電電圧(FC電圧Vfc)は、セル電圧VcellにFCスタック40内の直列接続数Nfcを乗算したものである。直列接続数Nfcは、FCスタック40内で直列に接続されるFCセルの数であり、以下、単に「セル数」ともいう。
【0071】
以上を踏まえ、本実施形態では、DC/DCコンバータ22が、電圧変換動作を行っている際、FCスタック40の目標電圧(目標FC電圧Vfctgt)[V]を、主として、白金還元領域R2内に設定しつつ、必要に応じて白金酸化安定領域R4内に設定する(具体例は、図10等を用いて説明する。)。このような目標FC電圧Vfctgtの切替えを行うことにより、FC電圧Vfcが、領域R1、R3、R5(特に、白金酸化還元進行領域R3)内にある時間を極力短縮し、FCスタック40の劣化を防止することができる。
【0072】
なお、上記の処理では、FCスタック40の供給電力(FC電力Pfc)と、システム負荷Psysが等しくならない場合が存在する。この点、FC電力Pfcがシステム負荷Psysを下回っている場合、その不足分は、バッテリ20から供給する。また、FC電力Pfcがシステム負荷Psysを上回っている場合、その余剰分は、バッテリ20に充電する。
【0073】
なお、図8では、電位v1〜v4を具体的な数値として特定したが、これは、後述する制御を行うためであり、当該数値は、あくまで制御の便宜を考慮して決定するものである。換言すると、曲線180からもわかるように、劣化量Dは連続的に変化するため、制御の仕様に応じて、電位v1〜v4は、適宜設定することができる。
【0074】
但し、白金還元領域R2は、曲線180の極小値(第1極小値Vlmi1)を含む。白金酸化還元進行領域R3では、曲線180の極大値(極大値Vlmx)を含む。白金酸化安定領域R4は、曲線180の別の極小値(第2極小値Vlmi2)を含む。
【0075】
(2−3−2.エネルギマネジメントで用いる電力供給制御及び電力供給モード)
図10は、本実施形態における複数の電力供給制御及び電力供給モードの説明図である。本実施形態では、エネルギマネジメントで用いる電力供給の制御方法(電力供給制御)として、3つの制御方法(電力供給制御)を用いる。すなわち、本実施形態では、通常発電制御と、アイドル停止制御と、アイドル発電制御とを切り替えて用いる。
【0076】
通常発電制御は、FC40の通常発電時に用いる電力供給制御である。通常発電制御では、エネルギマネジメントで用いる電力供給モード(動作モード)として、通常第1モードと通常第2モードとを切り替えて用いる。通常第1モードは、目標FC電圧Vfctgt及びFC電流Ifcがいずれも可変である電圧可変・電流可変制御であり、通常第2モードは、目標FC電圧Vfctgtが一定でありFC電流Ifcが可変である電圧固定・電流可変制御である。
【0077】
通常第1モード(電圧可変・電流可変制御)は、主として、システム負荷Psysが相対的に高いときに用いられるものであり、目標酸素濃度Cotgtを固定(或いは、酸素を豊潤な状態に維持)した状態で、目標FC電圧Vfctgtを調整することによりFC電流Ifcを制御する。これにより、基本的に、FC電力Pfcによりシステム負荷Psysをまかなうことが可能となる。
【0078】
通常第2モード(電圧固定・電流可変制御)は、主として、システム負荷Psysが相対的に低負荷のときに用いられるものであり、目標セル電圧Vcelltgt(=目標FC電圧Vfctgt/セル数)を、酸化還元領域R3よりも低い電位以下で設定された基準電位{本実施形態では、電位v2(=0.8V)}に固定すると共に、目標酸素濃度Cotgtを可変とすることにより、FC電流Ifcを可変とする。これにより、基本的に、FC電力Pfcによりシステム負荷Psysをまかなうことが可能となる(詳細は後述する。)。FC電力Pfcの不足分は、バッテリ20からアシストする。
【0079】
アイドル停止制御は、メインSW158(図1)がオンの状態においてFC40による積極的な発電を停止する(換言すると、FC40の発電を抑制する)制御である。ここにいう積極的な発電(又は発電の抑制)とは、ECU24からの指令に基づき行うFC40の発電を指し、残留ガスによる発電を含まない。このため、反応ガス供給手段としてのFCユニット18(エアポンプ60、パージ弁50及び背圧弁64を含む。)の作動量はゼロとなる。
【0080】
アイドル発電制御は、メインSW158(図1)がオンの状態においてFC40に最低限の発電を行わせる制御である。ここにいう最低限の発電とは、例えば、FC40に含まれる水分が凍結することを避けることを主目的としてFC40が行う発電を意味する。或いは、最低限の発電は、それ以上の低出力(高電圧)ではFC40の劣化が過度に進行してしまうため(図8参照)、一時的なFC電圧Vfcの値を所定値(例えば、図8の電位v1〜v2の間のいずれかの値×セル数、又は電位v3〜v4の間のいずれかの値×セル数)に固定する発電を意味してもよい。本実施形態では、FC電圧Vfcの値を電位v3×セル数に固定し且つエアポンプ回転数Napを一定にしつつ、循環弁66の開度を調整することにより最低限の発電を行う。
【0081】
(2−3−3.エネルギマネジメントの全体フロー)
図11には、ECU24が、FC車両10のエネルギマネジメント(図5のS3)を行うフローチャートが示されている。ステップS21において、ECU24は、車両10が低負荷状態(アイドル状態)であるか否かを判定する。具体的には、ECU24は、ステップS2で計算したシステム負荷Psysが、低負荷を判定するための閾値THPsys以下であるか否かを判定する。ここにいう低負荷とは、例えば、エアポンプ60の出力を考慮した際、それ以下のFC出力PfcではFC40の発電効率が悪く、むしろバッテリ20からの出力により発電した方が効率が良いような場合を意味する。或いは、低負荷は、モータ14の要求電力がゼロである場合を意味してもよい。
【0082】
システム負荷Psysが閾値THPsys以下である場合、車両10が低負荷状態であり、システム負荷Psysが閾値THPsys以下でない場合、車両10は低負荷状態ではない。なお、低負荷状態の判定は、その他の方法によって行ってもよい。例えば、車速Vが、低負荷を判定するための閾値THV以下であるか否かにより低負荷状態を判定することもできる。或いは、車両10の加速度(車速Vの変化量)が、低負荷を判定するための閾値以下であるか否かにより低負荷状態を判定してもよい。
【0083】
車両10が低負荷状態でない場合(S21:NO)、ステップS22において、ECU24は、通常発電制御を行う(詳細は後述する)。車両10が低負荷状態である場合(S21:YES)、ステップS23に進む。
【0084】
ステップS23において、ECU24は、FCユニット18をアイドル停止すべきか否かを判定する。アイドル停止は、メインSW158(図1)がオンの状態においてFC40による積極的な発電が停止すること(換言すると、FC40の発電を抑制すること)を意味する。また、本実施形態において、アイドル停止すべきか否かは、外気温センサ154からの外気温Texが閾値THTex以下であるか否かにより行う。閾値THTexは、例えば、FC40に含まれる水分が凍結する温度(0℃)又はその近傍値である。従って、外気温Texが閾値THTex以下でない場合、アイドル停止を行い、外気温Texが閾値THTex以下である場合、アイドル停止を行わない。
【0085】
ステップS23においてアイドル停止を行うと判定した場合(S23:YES)、ステップS24において、ECU24は、アイドル停止(アイドル停止制御)を実行する。アイドル停止を行わないと判定した場合(S23:NO)、ステップS25において、ECU24は、アイドル発電制御を実行する(詳細は後述する)。
【0086】
(2−3−4.通常第1モード)
上記のように、通常第1モードは、主として、システム負荷Psysが相対的に高いときに用いられるものであり、目標酸素濃度Cotgtを固定(或いは、酸素を豊潤な状態に維持)した状態で、目標FC電圧Vfctgtを調整することによりFC電流Ifcを制御する。
【0087】
すなわち、図10に示すように、通常第1モードでは、FC40の電流−電圧特性(IV特性)が通常のもの(図10中、実線で表されるもの)を用いる。通常の燃料電池と同様、FC40のIV特性は、セル電圧Vcell(FC電圧Vfc)が低くなるほど、セル電流Icell(FC電流Ifc)が大きくなる。このため、通常第1モードでは、システム負荷Psysに応じて目標FC電流Ifctgtを算出し、さらに目標FC電流Ifctgtに対応する目標FC電圧Vfctgtを算出する。そして、FC電圧Vfcが目標FC電圧Vfctgtとなるように、ECU24は、DC/DCコンバータ22を制御する。すなわち、2次電圧V2が目標FC電圧Vfctgtとなるように1次電圧V1をDC/DCコンバータ22により昇圧することで、FC電圧Vfcを制御してFC電流Ifcを制御する。
【0088】
なお、酸素が豊潤な状態にあるとは、例えば、図12に示すように、カソードストイキ比を上昇させても、セル電流Icellが略一定となり、実質的に飽和した状態となる通常ストイキ比以上の領域における酸素を意味する。水素が豊潤であるという場合も、同様である。なお、カソードストイキ比とは、カソード流路74に供給するエアの流量/FC40の発電により消費されたエアの流量であり、カソード流路74における酸素濃度に近似する。また、カソードストイキ比の調整は、例えば、酸素濃度の制御により行う。
【0089】
以上のような通常第1モードによれば、システム負荷Psysが高負荷であっても、基本的にシステム負荷Psysの全てをFC電力Pfcによりまかなうことが可能となる。
【0090】
(2−3−5.通常第2モード)
上記のように、通常第2モードは、主として、システム負荷Psysが低負荷のときに用いられるものであり、目標セル電圧Vcelltgt(=目標FC電圧Vfctgt/セル数)を、酸化還元領域R3よりも低い電位以下で設定された基準電位{本実施形態では、電位v2(=0.8V)}に固定すると共に、目標酸素濃度Cotgtを可変とすることにより、FC電流Ifcを可変とする。
【0091】
すなわち、図10に示すように、通常第2モードでは、セル電圧Vcellを一定に保った状態で目標酸素濃度Cotgtを下げていくことで酸素濃度Coを下げる。図12に示すように、カソードストイキ比(酸素濃度Co)が低下するとセル電流Icell(FC電流Ifc)も低下する。このため、セル電圧Vcellを一定に保った状態で目標酸素濃度Cotgtを増減させることで、セル電流Icell(FC電流Ifc)及びFC電力Pfcを制御することが可能となる。なお、FC電力Pfcの不足分は、バッテリ20からアシストする。
【0092】
図13には、通常第2モードのフローチャートが示されている。ステップS31において、ECU24は、DC/DCコンバータ22の昇圧率を調整することにより、酸化還元領域R3よりも低い電位以下で設定された基準電位{本実施形態では、電位v2(=0.8V)}に目標FC電圧Vfctgtを固定する。ステップS32において、ECU24は、システム負荷Psysに対応する目標FC電流Ifctgtを算出する。
【0093】
ステップS33において、ECU24は、目標FC電圧Vfctgtが基準電位であることを前提として、目標FC電流Ifctgtに対応する目標酸素濃度Cotgtを算出する(図10及び図14参照)。なお、図14は、FC電圧Vfcが基準電位であるときの目標FC電流Ifctgtと目標酸素濃度Cotgtとの関係を示す。
【0094】
ステップS34において、ECU24は、目標酸素濃度Cotgtに応じて各部への指令値を算出及び送信する。ここで算出される指令値には、エアポンプ60の回転数(以下「エアポンプ回転数Nap」又は「回転数Nap」という。)、ウォータポンプ80の回転数(以下「ウォータポンプ回転数Nwp」又は「回転数Nwp」という。)、背圧弁64の開度(以下「背圧弁開度θbp」又は「開度θbp」という。)及び循環弁66の開度(以下「循環弁開度θc」又は「開度θc」という。)が含まれる。
【0095】
すなわち、図15及び図16に示すように、目標酸素濃度Cotgtに応じて目標エアポンプ回転数Naptgt、目標ウォータポンプ回転数Nwptgt及び目標背圧弁開度θbptgtが設定される。また、循環弁66の目標開度θctgtは、初期値(例えば、循環ガスがゼロとなる開度)に設定される。
【0096】
ステップS35において、ECU24は、FC40による発電が安定しているか否かを判定する。当該判定として、ECU24は、セル電圧モニタ42から入力される最低セル電圧が、平均セル電圧から所定電圧を減算した電圧よりも低い場合{最低セル電圧<(平均セル電圧−所定電圧)}、FC40の発電が不安定であると判定する。なお、前記所定電圧は、例えば、実験値、シミュレーション値等を用いることができる。
【0097】
発電が安定している場合(S35:YES)、今回の処理を終える。発電が安定していない場合(S35:NO)、ステップS36において、ECU24は、流量センサ70を介して循環ガスの流量Qc[g/s]を監視しながら、循環弁66の開度θcを大きくし、流量Qcを一段階増加する(図17参照)。なお、図17では、循環弁66を全開とした場合、流量Qcが4段階目の増加となり、最大流量となる場合を例示している。
【0098】
但し、循環弁66の開度θcが増加すると、エアポンプ60に吸気される吸気ガスにおいて、循環ガスの割合が増加する。すなわち、吸気ガスについて、新規空気(車外から吸気される空気)と、循環ガスとの割合において、循環ガスの割合が増加するように変化する。従って、全単セルへの酸素の分配能力が向上する。ここで、循環ガス(カソードオフガス)の酸素濃度は、新規空気の酸素濃度に対して低い。このため、循環弁66の開度θcの制御前後において、エアポンプ60の回転数Nap及び背圧弁64の開度θbpが同一である場合、カソード流路74を通流するガスの酸素濃度が低下することになる。
【0099】
そこで、ステップS36では、ステップS33で算出した目標酸素濃度Cotgtが維持されるように、循環ガスの流量Qcの増加に連動して、エアポンプ60の回転数Napの増加及び背圧弁64の開度θbpの減少の少なくとも一方を実行することが好ましい。
【0100】
例えば、循環ガスの流量Qcを増加した場合、エアポンプ60の回転数Napを増加させ、新規空気の流量を増加することが好ましい。そして、このようにすれば、カソード流路74に向かうガス(新規空気と循環ガスとの混合ガス)全体の流量が増加するので、全単セルへの酸素の分配能力がさらに向上し、FC40の発電性能が回復し易くなる。
【0101】
このようにして、目標酸素濃度Cotgtを維持しつつ、循環ガスを新規空気に合流させるので、カソード流路74を通流するガスの体積流量[L/s]が増加する。これにより、目標酸素濃度Cotgtが維持されつつ体積流量の増加したガスが、FC40内で複雑に形成されたカソード流路74全体に行き渡り易くなる。従って、各単セルに前記ガスが同様に供給され易くなり、FC40の発電の不安定が解消され易くなる。また、MEA(膜電極接合体)の表面やカソード流路74を囲む壁面に付着する水滴(凝縮水等)も除去され易くなる。
【0102】
ステップS37において、ECU24は、流量センサ70を介して検出される循環ガスの流量Qcが上限値以上であるか否か判定する。判定基準となる上限値は、循環弁66の開度θcが全開となる値に設定される。
【0103】
この場合において、循環弁開度θcが同一であっても、エアポンプ60の回転数Napが増加すると、流量センサ70で検出される循環ガスの流量Qcが増加するので、前記上限値は、エアポンプ回転数Napに関連付けて、つまり、エアポンプ60の回転数Napが大きくなると、前記上限値が大きくなるように設定されることが好ましい。
【0104】
循環ガスの流量Qcが上限値以上でないと判定した場合(S37:NO)、ステップS35に戻る。循環ガスの流量Qcが上限値以上であると判定した場合(S37:YES)、ステップS38に進む。
【0105】
ここで、ステップS36、S37では、流量センサ70が直接検出する循環ガスの流量Qcに基づいて処理を実行したが、循環弁開度θcに基づいて処理を実行してもよい。すなわち、ステップS36において、循環弁開度θcを開方向に一段階(例えば30°)にて増加する構成とし、ステップS37において、循環弁66が全開である場合(S37:YES)、ステップS38に進む構成としてもよい。
【0106】
また、この場合において、循環弁66の開度θcと、循環ガスの温度と、図18のマップとに基づいて、循環ガスの流量Qc[g/s]を算出することもできる。図18に示すように、循環ガスの温度が高くなるにつれて、その密度が小さくなるので、流量Qc[g/s]が小さくなる関係となっている。
【0107】
ステップS38において、ECU24は、ステップS35と同様に、発電が安定しているか否かを判定する。発電が安定している場合(S38:YES)、今回の処理を終える。発電が安定していない場合(S38:NO)、ステップS39において、ECU24は、目標酸素濃度Cotgtを1段増加させる(通常の濃度に近づける)。具体的には、エアポンプ60の回転数Napの増加及び背圧弁64の開度θbpの減少の少なくとも一方を1段階行う。
【0108】
ステップS40において、ECU24は、目標酸素濃度Cotgtが通常のIV特性における目標酸素濃度(通常酸素濃度Conml)以下であるか否かを判定する。目標酸素濃度Cotgtが通常酸素濃度Conml以下である場合(S40:YES)、ステップS38に戻る。目標酸素濃度Cotgtが通常酸素濃度Conml以下でない場合(S40:NO)、ステップS41において、ECU24は、FCユニット18を停止する。すなわち、ECU24は、FC40への水素及び空気の供給を停止し、FC40の発電を停止する。そして、ECU24は、図示しない警告ランプを点灯させ、運転者にFC40が異常であることを通知する。なお、ECU24は、バッテリ20からモータ14に電力を供給し、FC車両10の走行は継続させる。
【0109】
以上のような通常第2モードによれば、システム負荷Psysが低負荷である場合に、セル電圧Vcellを一定にした状態で、酸素濃度Co(エアストイキ比)を調整することにより、基本的にシステム負荷Psysの全てをFC電力Pfcによりまかなうことが可能となる。
【0110】
(2−3−6.アイドル停止モード)
アイドル停止制御で用いるアイドル停止モードは、メインSW158(図1)がオンの状態においてFC40による積極的な発電を停止する(換言すると、FC40の発電を抑制する)動作モードである。アイドル停止モードでは、反応ガス供給手段としてのFCユニット18(エアポンプ60、パージ弁50及び背圧弁64を含む。)の作動量をゼロとする。
【0111】
(2−3−7.アイドル発電モード)
アイドル発電制御で用いるアイドル発電モードは、メインSW158(図1)がオンの状態においてFC40に最低限の発電を行わせる動作モードである。
【0112】
図19は、アイドル発電制御のフローチャートである。ステップS51において、ECU24は、目標FC電圧Vfctgtを一定にする。上記のように、ここでの目標FC電圧Vfctgtは、例えば、FC40に含まれる水分が凍結することを避けるため、FC40が十分に発熱することができる値に設定される。或いは、目標FC電圧Vfctgtは、FC40の劣化を抑制する値に設定される。具体的には、目標FC電圧Vfctgtは、電位v3(=0.9v)×セル数に設定される。或いは、電位v2(=0.8v)×セル数に設定してもよい。或いは、電位v1〜v2の間又は電位v3〜v4の間のいずれかの値×セル数であってもよい。
【0113】
図20は、セル電圧VcellとFC40の放熱量Hfc[kW]との関係を示す図である。図20に示すように、FC40の放熱量Hfcは、セル電圧Vcellに依存し、セル電流Icellには依存しない。従って、アイドル発電制御において、目標FC電圧Vfctgtを一定にすると、放熱量Hfcも一定に維持することが可能となる。これにより、FC40に含まれる水分の凍結を避けることができる。或いは、上記のように、目標FC電圧Vfctgtの値を、FC40の劣化抑制の観点から設定することも可能である(図8)。
【0114】
ステップS52において、ECU24は、目標エアポンプ回転数Naptgtを一定にする。これにより、エアポンプ回転数Napは一定となり、エアポンプ60の出力音も一定となる。
【0115】
ステップS53において、ECU24は、バッテリ20のSOCに応じて循環弁66の目標開度(目標循環弁開度θctgt)を設定する。図21には、バッテリ20のSOCと、EGR比Regr[%]及び目標FC電流Ifctgtとの関係が示されている。EGR比Regrは、配管60aに向かう循環ガスの流量Qc/カソード流路74に向かう空気の流量で定義され、カソードストイキ比の逆数(1/カソードストイキ比)に近似する。
【0116】
図21に示すように、SOCが高くなると、EGR比Regrは高くなる一方、目標FC電流Ifctgtは低くなる。これにより、SOCを所定範囲内(例えば、下限SOCから上限SOCの範囲内)又は目標値(例えば、上限SOC又はその近傍値)にすることが可能となる。なお、図21の上限SOCは、バッテリ20のSOCの制御で用いる上限値であり、図21の下限SOCは、バッテリ20のSOCの制御で用いる下限値である。
【0117】
SOCとEGR比Regr及び目標FC電流Ifctgtとが図21のような関係となるようにするため、本実施形態では、SOCと目標循環弁開度θctgtとの関係を規定したマップ(図22)を予め記憶しておく。なお、図22では、アイドル発電制御における目標FC電圧Vfctgtを0.8V(図8の電位v2)に固定した場合と、0.9V(図8の電位v3)に固定した場合の両方が示されている。
【0118】
以上のような方法により、アイドル発電制御では、FC電圧Vfc及びエアポンプ回転数Napを一定にしつつ、FC電流Ifcを可変とする。
【0119】
[2−4.FC発電制御]
上記のように、FC発電制御(図5のS4)として、ECU24は、FCスタック40の周辺機器、すなわち、エアポンプ60、背圧弁64、循環弁66及びウォータポンプ80を制御する。具体的には、ECU24は、エネルギマネジメント(図5のS3)で算出したこれらの機器の指令値(例えば、図13のS34)を用いてこれらの機器を制御する。
【0120】
[2−5.モータ14のトルク制御]
図23には、モータ14のトルク制御のフローチャートが示されている。ステップS61において、ECU24は、回転数センサ152からモータ回転数Nmを読み込む。ステップS62において、ECU24は、開度センサ150からアクセルペダル156の開度θpを読み込む。
【0121】
ステップS63において、ECU24は、モータ回転数Nmと開度θに基づいてモータ14の仮目標トルクTtgt_p[N・m]を算出する。具体的には、図示しない記憶手段に回転数Nmと開度θと仮目標トルクTtgt_pを関連付けたマップを記憶しておき、当該マップと、回転数Nm及び開度θとに基づいて仮目標トルクTtgt_pを算出する。
【0122】
ステップS64において、ECU24は、FCシステム12からモータ14に供給可能な電力の限界値(限界供給電力Ps_lim)[W]に等しいモータ14の限界出力(モータ限界出力Pm_lim)[W]を算出する。具体的には、限界供給電力Ps_lim及びモータ限界出力Pm_limは、FCスタック40からのFC電力Pfcとバッテリ20から供給可能な電力の限界値(限界出力Pbat_lim)[W]との和から補機の消費電力Paを引いたものである(Pm_lim=Ps_lim←Pfc+Pbat_lim−Pa)。
【0123】
ステップS65において、ECU24は、モータ14のトルク制限値Tlim[N・m]を算出する。具体的には、モータ限界出力Pm_limを車速Vで除したものをトルク制限値Tlimとする(Tlim←Pm_lim/V)。
【0124】
ステップS66において、ECU24は、目標トルクTtgt[N・m]を算出する。具体的には、ECU24は、仮目標トルクTtgt_pに対してトルク制限値Tlimによる制限を加えたものを目標トルクTtgtとする。例えば、仮目標トルクTtgt_pがトルク制限値Tlim以下である場合(Ttgt_p≦Tlim)、仮目標トルクTtgt_pをそのまま目標トルクTtgtとする(Ttgt←Ttgt_p)。一方、仮目標トルクTtgt_pがトルク制限値Tlimを超える場合(Ttgt_p>Tlim)、トルク制限値Tlimを目標トルクTtgtとする(Ttgt←Tlim)。
【0125】
そして、算出した目標トルクTtgtを用いてモータ14を制御する。
【0126】
3.各種制御の例
図24には、本実施形態に係る各種制御と比較例に係る各種制御を用いた場合のタイムチャートの例が示されている。図24において実線で示されるものが本実施形態に係るものであり、破線(及び一点鎖線)で示されるものが比較例に係るものである。但し、バッテリSOCについては実施形態及び比較例のいずれも実線で示している。破線のみで示される比較例は、通常第1モードと同様の制御(すなわち、FC電圧VfcとFC電流Ifcの両方を可変とする制御)を用いてアイドル発電制御を行っている。当該比較例では、時点t2以降は、目標FC電圧Vfctgt(実質的に、FC電圧Vfcと等しくなる)が過電圧となるため、FC40の劣化が促進されてしまう。時点t3において、FC電流Ifcが目標値(補機駆動分の電流値)まで到達した後も発電を続けている。また、時点t3以降において一点鎖線で示される比較例では、時点t3以降は、バッテリ20が上限SOCに到達したため(且つ補機駆動分の電流値に相当する微小電力の発電がFC40の劣化の観点からできないため)、FC40による発電を停止している。
【0127】
一方、本実施形態に係る制御では、過電圧とならない値で目標FC電圧Vfctgtを一定に維持しつつ、EGR比Regr(又は目標循環弁開度θctgt)を調整することにより目標FC電流Ifctgtを低下させる。従って、FC電圧Vfcが高くなることに伴うFC40の劣化を避けつつ、微小発電を継続することが可能である。
【0128】
さらに、本実施形態では、EGR比Regrを徐々に増加させていくため、循環ガスの流量Qc(エアオフガスの還流量)が徐々に増加する。循環ガスは、発電により水分を生成するFC40内部を通過しているため、外部からのエアと比べて湿度が高い。このため、循環ガスの流量Qcが増加すると、FC40に導入されるエアの湿度が相対的に高くなる。このため、相対的に酸素濃度が低い循環ガスの流量Qcが増加し、FC40内部で生成される水分が減少しても、FC40の過度の乾燥を防止することが可能となる。
【0129】
4.本実施形態の効果
以上説明したように、本実施形態によれば、FC車両10が所定の低負荷状態である場合に、エアポンプ回転数Napを一定とする(図19のS52)。このため、低負荷状態においてバッテリ20のSOCが上限SOCに到達したことに伴ってエアポンプ60が停止することにより、エアポンプ60の出力音が不意に変化すること等がない。従って、低負荷状態におけるエアポンプ60の出力音について搭乗者に違和感を与えることなく、バッテリ20のSOCを適切に保つことが可能となる。
【0130】
また、単にエアポンプ回転数Napを一定とするだけでなく、SOCに応じて目標循環弁開度θctgtを設定して、循環ガスの流量Qc(エアオフガスの還流量)を調整する。エアオフガスは酸素濃度が低いため、エアオフガスの還流量を多くすると、FC40内部で生成される水分が少なくなり、FC40内部が乾燥状態になる。FC40内部が乾燥状態になるとFC40の劣化が促進されるおそれがある。その一方、エアオフガスは、水分を生成するFC40の内部を通過したものであるため、相対的に水分を多く含んでいる。このため、エアオフガスの還流量を調整することにより、FC40の電解質膜を良好に加湿すること(加湿状態を保つこと)が可能となり、FC40の劣化を抑制することができる。
【0131】
さらに、上記のような効果を得つつ、所定の低負荷状態に応じてFC電流Ifcを小さくすることにより、バッテリ20のSOCを管理すること(例えば、SOCが上限SOCを超えないように制御することや不要な充電を避けること)が可能となる。
【0132】
本実施形態において、ECU24は、アイドル発電制御の際、FC電圧Vfcを所定電圧{例えば、電位v3(=0.9v)×セル数}に固定する(図19のS51)。一般に、燃料電池の特性上、発熱量は発電電圧に依存する(図20)。本実施形態によれば、FC電圧Vfcを維持しつつ、循環ガスの流量Qc(エアオフガスの還流量)を調整する。このため、FC40の発電量を抑えていても、発熱量を確保することが可能となる。従って、外気温Texが低くFC40に含まれる水分が凍結するおそれがある場合でも、良好にアイドル発電制御を実施することが可能となる。
【0133】
本実施形態において、アイドル発電制御の際のFC電圧Vfcは、酸化還元領域R3外の値とされる。これにより、FC40の劣化が激しい酸化還元領域R3を避けることにより、アイドル発電制御時におけるFC40の劣化量Dを抑えることが可能となる。
【0134】
5.変形例
なお、この発明は、上記実施形態に限らず、この明細書の記載内容に基づき、種々の構成を採り得ることはもちろんである。例えば、以下の構成を採用することができる。
【0135】
[5−1.搭載対象]
上記実施形態では、FCシステム12をFC車両10に搭載したが、これに限らず、アイドル発電制御を適用可能な別の対象に搭載してもよい。例えば、FCシステム12を船舶や航空機等の移動体に用いることもできる。或いは、FCシステム12を家庭用電力システムに適用してもよい。
【0136】
[5−2.FCシステム12の構成]
上記実施形態では、FC40と高電圧バッテリ20を並列に配置し、バッテリ20の手前にDC/DCコンバータ22を配置する構成としたが、これに限らない。例えば、図25に示すように、FC40とバッテリ20を並列に配置し、昇圧式、降圧式又は昇降圧式のDC/DCコンバータ22をFC40の手前に配置する構成であってもよい。或いは、図26に示すように、FC40とバッテリ20を並列に配置し、FC40の手前に昇圧式、降圧式又は昇降圧式のDC/DCコンバータ160を、バッテリ20の手前にDC/DCコンバータ22を配置する構成であってもよい。或いは、図27に示すように、FC40とバッテリ20を直列に配置し、バッテリ20とモータ14の間にDC/DCコンバータ22を配置する構成であってもよい。
【0137】
[5−3.ストイキ比]
上記実施形態では、ストイキ比を調整する手段又は方法として、目標酸素濃度Cotgtを調整するものを用いたが、これに限らず、目標水素濃度を調整することも可能である。また、目標濃度の代わりに、目標流量又は目標濃度と目標流量の両方を用いることもできる。
【0138】
上記実施形態では、酸素を含む空気を供給するエアポンプ60を備える構成を例示したが、これに代えて又は加えて、水素を供給する水素ポンプを備える構成としてもよい。
【0139】
上記実施形態では、カソードオフガスを新規空気に合流させる合流流路(配管66a、66b)と、循環弁66とを備える構成を例示したが、これに代えて又は加えて、アノード側も同様に構成してもよい。例えば、配管48bに循環弁を設け、この循環弁により、新規水素に合流するアノードオフガスの流量を制御してもよい。
【0140】
[5−4.電力供給モード]
上記実施形態では、通常発電制御の動作モードとして、通常第1モードと通常第2モードを用いたが、いずれか一方のみでもよい。
【0141】
上記実施形態では、通常第2モードにおける目標FC電圧Vfctgtを電位v2(=0.8V)×セル数に設定したが、これに限らない。通常第2モードにおける目標FC電圧Vfctgtを、例えば、還元領域R2のその他の電位に設定してもよい。また、アイドル発電モードにおける目標FC電圧Vfctgtを電位v3×セル数に設定したが、これに限らない。例えば、還元領域R2又は酸化領域R4のその他の電位に設定することもできる。或いは、アイドル発電モードでは、目標FC電圧Vfctgtを一定値とせず、所定の範囲(例えば、還元領域R2内又は酸化領域R4内)において変動させることもできる。
【符号の説明】
【0142】
10…燃料電池車両 12…燃料電池システム
14…走行モータ 16…インバータ
18…燃料電池ユニット(反応ガス供給部)
20…高電圧バッテリ(蓄電装置) 22…DC/DCコンバータ
24…ECU(蓄電量検出手段、制御装置)
40…燃料電池スタック 60…エアポンプ
60a、60b、62a…配管(エア供給配管)
62b、64a、64b…配管(エア排出配管)
66…循環弁(調整装置)
66a、66b…配管(エア還流配管)

【特許請求の範囲】
【請求項1】
走行モータと、
前記走行モータに電力を供給する燃料電池と、
前記燃料電池の出力をアシストする蓄電装置と、
前記蓄電装置の出力電圧を変圧して前記燃料電池の出力電圧を制御するコンバータと、
エア供給配管を介して前記燃料電池にエアを供給するエアポンプと、
エア排出配管から分岐して前記エアポンプの上流側で前記エア供給配管に連通し、前記燃料電池から排出されたエアオフガスを前記エア供給配管に還流させるエア還流配管と、
前記エア還流配管における前記エアオフガスの還流量を調整する調整装置と、
前記蓄電装置の蓄電量を検出する蓄電量検出手段と、
前記エアポンプ及び前記調整装置を制御する制御装置と
を備える燃料電池車両であって、
前記制御装置は、前記燃料電池車両が所定の低負荷状態である場合に、前記エアポンプの駆動量を一定としつつ、前記蓄電量が所定の範囲内に収まる又は目標値になるように前記調整装置を制御して、前記エアオフガスの還流量を調整するアイドル発電制御を行う
ことを特徴とする燃料電池車両。
【請求項2】
請求項1記載の燃料電池車両において、
前記制御装置は、前記アイドル発電制御の際、前記燃料電池の発電電圧を所定電圧に固定する
ことを特徴とする燃料電池車両。
【請求項3】
請求項2記載の燃料電池車両において、
前記所定電圧は、酸化還元電圧範囲外の値である
ことを特徴とする燃料電池車両。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate


【公開番号】特開2013−21854(P2013−21854A)
【公開日】平成25年1月31日(2013.1.31)
【国際特許分類】
【出願番号】特願2011−154653(P2011−154653)
【出願日】平成23年7月13日(2011.7.13)
【出願人】(000005326)本田技研工業株式会社 (23,863)
【Fターム(参考)】