説明

環式ポリアリーレンスルフィドの製造方法

【課題】工業的に有用な環式ポリアリーレンスルフィドを経済的且つ短時間で効率よく製造する方法を提供することを課題としている。
【解決手段】少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応(A)を行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことを特徴とする環式ポリアリーレンスルフィドの製造方法。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は環式ポリアリーレンスルフィドの製造方法に関する。より詳しくは環式オリゴアリーレンスルフィドを経済的且つ簡易な方法で効率よく製造する方法に関する。
【背景技術】
【0002】
芳香族環式化合物はその環状であることから生じる特性に基づく高機能材料や機能材料への応用展開可能性、たとえば包接能を有する化合物としての特性や、開環重合による高分子量直鎖状高分子の合成のための有効なモノマーとしての活用など、その構造に由来する特異性で近年注目を集めている。環式ポリアリーレンスルフィド(以下、ポリアリーレンスルフィドをPASと略する場合もある)も芳香族環式化合物の範疇に属し、上記同様に注目に値する化合物である。
【0003】
環式ポリアリーレンスルフィドの製造方法としては、たとえばジアリールジスルフィド化合物を超希釈条件下で酸化重合する方法が提案されている(たとえば特許文献1参照。)。この方法では環式ポリアリーレンスルフィドが高選択で生成し、線状ポリアリーレンスルフィドはごく少量しか生成しないと推測され、確かに環式ポリアリーレンスルフィドが高収率で得られると考えられる。しかしながら、この方法では超希釈条件で反応を行うことが必須とされており、反応容器単位容積あたりに得られる環式ポリアリーレンスルフィドはごくわずかであり、効率的に環式ポリアリーレンスルフィドを得るとの観点では課題の多い方法であった。また該方法は酸化重合を用いた方法であり、この方法は室温近傍の穏和な条件が必須であるため、反応に数十時間の長時間が必要であり生産性に劣る方法であった。さらに該方法で副生するポリアリーレンスルフィドは原料のジアリールジスルフィド由来のジスルフィド結合を含む分子量の低いものであり、目的物である環式ポリアリーレンスルフィドと分子量が近いために、環式ポリアリーレンスルフィドと副生するポリアリーレンスルフィドの分離が困難であり高純度な環式ポリアリーレンスルフィドを効率よく得ることは極めて困難であった。加えて、該方法では酸化重合の進行のために例えばジクロロジシアノベンゾキノンなど高価な酸化剤が原料のジアリールジスルフィドと等量必要であり、安価に環式ポリアリーレンスルフィドを得ることはできなかった。酸化重合を金属触媒の存在下、酸化剤として酸素を利用する方法も提案されており、この方法では酸化剤が安価であるが、反応の制御が困難で多種多量の副生オリゴマーが生成し、また他方では反応に極めて長時間が必要など課題が多く、いずれの場合でも純度の高い環式ポリアリーレンスルフィドを安価に効率良く得ることはできなかった。
【0004】
環式ポリアリーレンスルフィドの他の製造方法として、4−ブロモチオフェノールの銅塩をキノリン中の超希釈条件下で加熱する方法が開示されている。この方法も前記特許文献1と同様に超希釈条件が必須であり、また反応に長時間が必要であり生産性の極めて低い方法であった。さらにこの方法では副生する臭化銅を生成物である環式ポリアリーレンスルフィドから分離することが困難であり、得られる環式ポリアリーレンスルフィドは純度の低いものであった(例えば特許文献2参照。)。
【0005】
環式ポリアリーレンスルフィドを高収率で得る方法として、1,4−ビス−(4’−ブロモフェニルチオ)ベンゼンなどのジハロ芳香族化合物と硫化ナトリウムとをN−メチルピロリドン中で還流温度下に接触させる方法が開示されている(例えば非特許文献1参照。)。この方法では反応混合物中のイオウ成分1モルに対する有機極性溶媒量が1.25リットル以上であるため環式ポリアリーレンスルフィドが得られると推測できるが、原料に線状ポリアリーレンスルフィドを用いていないためジハロ芳香族化合物を多量に用いることが必要であり、また用いているジハロ芳香族化合物が極めて特殊な化合物であるため、工業的な実現性に乏しい方法であり改善が望まれていた。
【0006】
汎用的な原料からの環式ポリアリーレンスルフィドの製造方法として、ジハロゲン化芳香族化合物としてp−ジクロロベンゼンと、アルカリ金属硫化物として硫化ナトリウムを有機極性溶媒であるN−メチルピロリドン中で反応させ、ついで加熱減圧下で溶媒を除去後、水で洗浄する事で得られたポリフェニレンスルフィドを、塩化メチレンで抽出して得られた抽出液の飽和溶液部分から回収する方法が開示されている(たとえば特許文献3参照。)。この方法では生成物の大部分が高分子量ポリフェニレンスルフィドであり、環式ポリアリーレンスルフィドが極微量(収率1%未満)しか得られないという問題があった。
【0007】
汎用的な原料から収率良く環式ポリアリーレンスルフィドを製造する方法として、スルフィド化剤とジハロゲン化芳香族化合物を、スルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で反応させる方法が開示されている(例えば特許文献4参照。)。しかしこの方法では原料モノマーに対する環式ポリアリーレンスルフィドの収率が低く、多量の線状ポリアリーレンスルフィドが副生するため、改善が望まれていた。
【0008】
上記課題を解決する方法として、線状ポリアリーレンスルフィドとスルフィド化剤、ジハロゲン化芳香族化合物を反応混合物中のイオウ成分1モルあたり1.25リットル以上の有機極性溶媒中で加熱して反応させる方法が開示されている(例えば特許文献5参照。)。この方法では、線状ポリアリーレンスルフィドを原料に用いているため使用するモノマー量を低減でき、そのためモノマーに対する環式ポリアリーレンスルフィドの収率が向上し、工業的な実現性が期待できるが、線状ポリアリーレンスルフィドとスルフィド化剤およびジハロゲン化芳香族化合物を一度に反応させており、末端にアルカリチオラート基を有するプレポリマーやジハロゲン化芳香族化合物を追加して反応させる方法についてなにも言及されておらず、そのため環式ポリアリーレンスルフィドの収率が十分ではなく改善が望まれていた。
【0009】
線状ポリアリーレンスルフィドを原料に用いる他の発明としては、ポリアリーレンスルフィドにアルカリ金属硫化物を作用させて解重合することにより得られる少なくとも一方の末端にアルカリチオラート基を有するプレポリマーとジハロゲン化芳香族化合物を重合反応させる方法が開示されている(例えば特許文献6参照。)が、この発明はポリアリーレンスルフィドの改質を目的としている。
【0010】
線状ポリアリーレンスルフィドを原料に用いて環式化合物を得る方法としては、ポリフェニレンスルフィドとアルカリ金属硫化物を反応させて得られた末端にチオラート基を有するプレポリマーをテトラメチレンジアミン中塩化銅存在下で酸化カップリングさせる方法(例えば非特許文献2参照。)が開示されているが、この方法で得られる環式化合物はジスルフィド結合を含むものであり、本発明の目的である環式ポリアリーレンスルフィドとは異なるものであった。
【先行技術文献】
【特許文献】
【0011】
【特許文献1】特許第3200027号公報 (特許請求の範囲)
【特許文献2】米国特許第5869599号公報 (第14頁)
【特許文献3】特開平05−163349号公報 (第7頁)
【特許文献4】特開2009−30012(特許請求の範囲)
【特許文献5】国際公開第2008/105438号 (特許請求の範囲)
【特許文献6】特開平04−7334号公報
【非特許文献】
【0012】
【非特許文献1】Bull. Acad. Sci., vol.39, p.763-755, 1990
【非特許文献2】J. Appl. Polym. Sci., vol.110, p.4049-4054, 2008
【発明の概要】
【発明が解決しようとする課題】
【0013】
本発明は上記課題を解決し、環式ポリアリーレンスルフィドを経済的且つ簡易な方法で効率よく製造する方法を提供することを課題とする。
【課題を解決するための手段】
【0014】
本発明は上記課題を解決するため以下のとおりである。
(1)少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応(A)を行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことを特徴とする環式ポリアリーレンスルフィドの製造方法。
(2)反応(A)を実質的にジハロゲン化芳香族化合物の非存在下で行うことを特徴とする(1)に記載の環式ポリアリーレンスルフィドの製造方法。
(3)反応(A)を反応混合物中のイオウ成分1モルに対して1.25リットル未満の有機極性溶媒を用いて行い、次いで反応(A)で得られた反応混合物に有機極性溶媒を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて反応(B)を行う事を特徴とする(1)から(2)のいずれかに記載のポリアリーレンスルフィドの製造方法。
(4)反応(A)を常圧における還流温度を超える温度で行う事を特徴とする(1)から(3)のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
(5)反応(A)で得られた反応混合物に含まれるポリアリーレンスルフィドが、少なくとも一方の末端にアルカリチオラート基を有する重量平均分子量5,000未満のプレポリマーであることを特徴とする(1)から(4)のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
(6)線状ポリアリーレンスルフィド(a)の重量平均分子量が5,000以上であることを特徴とする(1)から(5)のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
(7)反応(B)において反応混合物が含むアリーレン成分が、反応(B)の反応混合物が含むイオウ成分1モル当たり0.9〜2.0モルであることを特徴とする(1)から(6)のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
(8)スルフィド化剤とジハロゲン化芳香族化合物とを有機極性溶媒中で接触させることで得られたポリアリーレンスルフィドを線状ポリアリーレンスルフィド(a)として用いる事を特徴とする(1)から(7)のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
(9)スルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを線状ポリアリーレンスルフィド(a)として用いることを特徴とする(1)から(7)のいずれかに記載の環式ポリアリーレンスルフィド製造方法。
(10)少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応(A)を行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを線状ポリアリーレンスルフィド(a)として用いることを特徴とする(1)から(7)のいずれかに記載の環式ポリアリーレンスルフィド製造方法。
【発明の効果】
【0015】
本発明によれば、環式ポリアリーレンスルフィドの製造方法が提供でき、より詳しくは環式ポリアリーレンスルフィドを経済的且つ簡易な方法で効率よく製造する方法を提供できる。
【発明を実施するための形態】
【0016】
以下に、本発明実施の形態を説明する。
【0017】
(1)スルフィド化剤
本発明で用いられるスルフィド化剤とは、ジハロゲン化芳香族化合物にスルフィド結合を導入できるもの、またアリーレンスルフィド結合に作用してアリーレンチオラートを生成するものであれば良く、例えばアルカリ金属硫化物、アルカリ金属水硫化物、および硫化水素が挙げられる。
【0018】
アルカリ金属硫化物の具体例としては、例えば硫化リチウム、硫化ナトリウム、硫化カリウム、硫化ルビジウム、硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも硫化リチウムおよび/または硫化ナトリウムが好ましく、硫化ナトリウムがより好ましく用いられる。これらのアルカリ金属硫化物は、水和物または水性混合物として、あるいは無水物の形で用いることができる。なお、水性混合物とは水溶液、もしくは水溶液と固体成分の混合物、もしくは水と固体成分の混合物のことをさす。一般的に入手できる安価なアルカリ金属硫化物は水和物または水性混合物であるので、このような形態のアルカリ金属硫化物を用いることが好ましい。
【0019】
アルカリ金属水硫化物の具体例としては、例えば水硫化リチウム、水硫化ナトリウム、水硫化カリウム、水硫化リチウム、水硫化ルビジウム、水硫化セシウムおよびこれら2種以上の混合物を挙げることができ、なかでも水硫化リチウムおよび/または水硫化ナトリウムが好ましく、水硫化ナトリウムがより好ましく用いられる。
【0020】
また、アルカリ金属水硫化物とアルカリ金属水酸化物から、反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、あらかじめアルカリ金属水硫化物とアルカリ金属水酸化物を接触させて調製したアルカリ金属硫化物を用いることもできる。これらのアルカリ金属水硫化物及びアルカリ金属水酸化物は水和物または水性混合物として、あるいは無水物の形で用いることができ、水和物または水性混合物が入手のし易さ、コストの観点から好ましい。
【0021】
さらに、水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素から反応系においてin situで調製されるアルカリ金属硫化物も用いることができる。また、あらかじめ水酸化リチウム、水酸化ナトリウムなどのアルカリ金属水酸化物と硫化水素を接触させて調製したアルカリ金属硫化物を用いることもできる。硫化水素は気体状、液体状、水溶液状のいずれの形態で用いても差し障り無い。
【0022】
本発明においてスルフィド化剤の量は、脱水操作などにより線状ポリアリーレンスルフィドとジハロゲン化芳香族化合物との反応開始前にスルフィド化剤の一部損失が生じる場合には、実際の仕込み量から当該損失分を差し引いた残存量を意味するものとする。
【0023】
なお、スルフィド化剤と共に、アルカリ金属水酸化物および/またはアルカリ土類金属水酸化物を併用することも可能である。アルカリ金属水酸化物の具体例としては、例えば水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化ルビジウム、水酸化セシウムおよびこれら2種以上の混合物を好ましいものとして挙げることができ、アルカリ土類金属水酸化物の具体例としては、例えば水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどが挙げられ、なかでも水酸化ナトリウムが好ましく用いられる。
【0024】
スルフィド化剤として、アルカリ金属水硫化物を用いる場合には、アルカリ金属水酸化物を同時に使用することが特に好ましいが、この使用量はアルカリ金属水硫化物1モルに対し0.95から1.50モル、好ましくは1.00から1.25モルの範囲が例示できる。スルフィド化剤として硫化水素を用いる場合にはアルカリ金属水酸化物を同時に使用することが特に好ましく、この場合のアルカリ金属水酸化物の使用量は硫化水素1モルに対し2.0〜3.0モル、好ましくは2.01〜2.50モルの範囲が例示できる。
【0025】
(2)ジハロゲン化芳香族化合物
本発明の環式PASの製造において使用されるジハロゲン化芳香族化合物としては、p−ジクロロベンゼン、o−ジクロロベンゼン、m−ジクロロベンゼン、p−ジブロモベンゼン、o−ジブロモベンゼン、m−ジブロモベンゼン、1−ブロモ−4−クロロベンゼン、1−ブロモ−3−クロロベンゼンなどのジハロゲン化ベンゼン、及び1−メトキシ−2,5−ジクロロベンゼン、1−メチル−2,5−ジクロロベンゼン、1,4−ジメチル−2,5−ジクロロベンゼン、1,3−ジメチル−2,5−ジクロロベンゼン、3,5−ジクロロ安息香酸などのハロゲン以外の置換基をも含むジハロゲン化芳香族化合物などを挙げることができる。なかでも、p−ジクロロベンゼンに代表されるp−ジハロゲン化ベンゼンを主成分にするジハロゲン化芳香族化合物が好ましい。特に好ましくは、p−ジクロロベンゼンを80〜100モル%含むものであり、さらに好ましくは90〜100モル%含むものである。また、環式PAS共重合体を製造するために異なる2種以上のジハロゲン化芳香族化合物を組み合わせて用いることも可能である。
【0026】
(3)線状ポリアリーレンスルフィド
本発明における線状PASとは、式、−(Ar−S)−の繰り返し単位を主要構成単位とする好ましくは当該繰り返し単位を80モル%以上含有する線状のホモポリマーまたは線状のコポリマーである。Arとしては下記の式(A)〜式(L)などであらわされる単位などがあるが、なかでも式(A)が特に好ましい。
【0027】
【化1】

【0028】
(ただし、式中のR1,R2は水素、炭素数1から6のアルキル基、炭素数1から6のアルコキシ基、ハロゲン基から選ばれた置換基であり、R1とR2は同一でも異なっていてもよい。)
【0029】
この繰り返し単位を主要構成単位とする限り、下記の式(M)〜式(P)などで表される少量の分岐単位または架橋単位を含むことができる。これら分岐単位または架橋単位の共重合量は、−(Ar−S)−の単位1モルに対して0〜1モル%の範囲であることが好ましい。
【0030】
【化2】

【0031】
また、本発明における線状PASは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。
【0032】
これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましいPASとしては、ポリマーの主要構成単位としてp−フェニレンスルフィド単位
【0033】
【化3】

【0034】
を80モル%以上、特に90モル%以上含有するポリフェニレンスルフィド(以下、PPSと略すこともある)の他、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトンが挙げられる。
【0035】
本発明における各種線状PASの溶融粘度に特に制限は無いが、一般的な線状PASの溶融粘度としては0.1〜1000Pa・s(300℃、剪断速度1000/秒)の範囲が例示でき、0.1〜500Pa・sの範囲が入手の容易性の観点で好ましい範囲といえる。また、線状PASの分子量にも特に制限は無く、一般的なPASを用いることが可能でありこの様なPASの重量平均分子量としては5,000〜1,000,000が例示でき、7,500〜500,000が好ましく、10,000〜100,000がより好ましい。一般に重量平均分子量が低いほど有機極性溶媒への溶解性が高くなるため、反応に要する時間が短くできるという利点があるが、前述した範囲であれば本質的な問題なく使用が可能である。
【0036】
このような線状PASの製造方法は特に限定はされず、いかなる製法によるものでも使用することが可能であるが、例えば前述した特許文献3に代表される、少なくとも1個の核置換ハロゲンを含有する芳香族化合物またはチオフェンとアルカリ金属モノスルフィドとを極性有機溶媒中で高められた温度において反応せしめる方法、好ましくはスルフィド化剤とジハロゲン化芳香族化合物とを有機極性溶媒中で接触させることによって得ることができる。またこれら方法により製造されたPASを用いた成形品や成形屑、廃プラスチックやオフスペック品なども幅広く使用することが可能である。
【0037】
また、一般的に環式化合物の製造は本発明も含み、環式化合物の生成と線状化合物の生成の競争反応であるため、環式PASの製造を目的とする方法においては、目的物の環式PAS以外に線状PASが少なからず副生物として生成する。本発明ではこの様な副生線状PASも問題なく原料に用いることが可能であり、例えば前述した特許文献4に代表される、スルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを用いる方法は、特に好ましい方法といえる。また、前述した特許文献5に代表される線状ポリアリーレンスルフィドとスルフィド化剤、ジハロゲン化芳香族化合物を反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを用いる方法も好ましい方法といえる。
【0038】
さらに、本発明の実施により生成する線状ポリアリーレンスルフィド、すなわち、少なくとも線状ポリアリーレンスルフィド、スルフィド化剤、有機極性溶媒、およびスルフィド化剤のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物を含む反応混合物を加熱して反応を(A)行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを用いることは、ことさら好ましい方法である。
【0039】
従来、環式化合物、環式PASの製造において副生する線状化合物、線状PASは利用価値の無いものとして廃棄されていた。従って環式化合物の製造においてはこの副生線状化合物に起因する廃棄物量が多い、また原料モノマーに対する収率が低いという課題があった。本発明ではこの副生線状PASを原料として使用することが可能であり、このことは廃棄物量の著しい低減や原料モノマーに対する収率の飛躍的な向上を可能とするという観点で意義の大きいものである。
【0040】
なお、線状PASの形態に特に制限はなく、乾燥状態の粉末状、粉粒状、粒状、ペレット状でも良いし、反応溶媒である有機極性溶媒を含む状態で用いることも可能であり、また、本質的に反応を阻害しない第三成分を含む状態で用いることも可能である。この様な第三成分としては例えば無機フィラーやアルカリ金属ハロゲン化物が例示できる。ここで、アルカリ金属ハロゲン化物としては、アルカリ金属、すなわちリチウム、ナトリウム、カリウム、ルビジウムおよびセシウムとハロゲン、すなわちフッ素、塩素、臭素、ヨウ素およびアスタチンから構成されるいかなる組み合わせのものをも含み、具体例としては塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化カリウム、フッ化セシウムなどが例示できるが、前述したスルフィド化剤とジハロゲン化芳香族化合物との反応によって生じるアルカリ金属ハロゲン化物が好ましく例示できる。一般的に入手が容易なスルフィド化剤およびジハロゲン化芳香族化合物の組み合わせから生じるアルカリ金属ハロゲン化物としては塩化リチウム、塩化ナトリウム、塩化カリウム、臭化リチウム、臭化ナトリウム、臭化カリウムおよびヨウ化ナトリウムが例示でき、塩化ナトリウム、塩化カリウム、臭化ナトリウム、臭化カリウムが好ましいものとして例示でき、塩化ナトリウムがより好ましいものである。また、無機フィラーやアルカリ金属ハロゲン化物を含む樹脂組成物の形態の線状PASを用いることも可能である。
【0041】
(4)有機極性溶媒
本発明の環式PASの製造においては有機極性溶媒を反応溶媒として用いるが、なかでも有機アミド溶媒を用いるのが好ましい。具体例としては、N−メチル−2−ピロリドン、N−エチル−2−ピロリドン、N−シクロヘキシル−2−ピロリドンなどのN−アルキルピロリドン類、N−メチル−ε−カプロラクタム、ε−カプロラクタムなどのカプロラクタム類、1,3−ジメチル−2−イミダゾリジノン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルリン酸トリアミドなどに代表されるアプロチック有機溶媒、及びこれらの混合物などが、反応の安定性が高いために好ましく使用される。これらのなかでもN−メチル−2−ピロリドンおよび1,3−ジメチル−2−イミダゾリジノンが好ましく用いられる。
【0042】
(5)環式ポリアリーレンスルフィド
本発明における環式ポリアリーレンスルフィドとは式、−(Ar−S)−の繰り返し単位を主要構成単位とする環式化合物であり、好ましくは当該繰り返し単位を80モル%以上含有する下記一般式(Q)のごとき化合物である。
【0043】
【化4】

【0044】
ここでArとしては前記式(A)〜式(L)などであらわされる単位を例示できるが、なかでも式(A)〜式(C)が好ましく、式(A)及び式(B)がより好ましく、式(A)が特に好ましい。
【0045】
なお、環式ポリアリーレンスルフィドにおいては前記式(A)〜式(L)などの繰り返し単位をランダムに含んでも良いし、ブロックで含んでも良く、それらの混合物のいずれかであってもよい。これらの代表的なものとして、環式ポリフェニレンスルフィド、環式ポリフェニレンスルフィドスルホン、環式ポリフェニレンスルフィドケトン、これらが含まれる環式ランダム共重合体、環式ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましい環式ポリアリーレンスルフィドとしては、主要構成単位としてp−フェニレンスルフィド単位
【0046】
【化5】

【0047】
を80モル%以上、特に90モル%以上含有する環式ポリフェニレンスルフィド(以下、環式PPSと略すこともある)が挙げられる。
【0048】
環式ポリアリーレンスルフィドの前記(Q)式中の繰り返し数mに特に制限は無いが、2〜50が好ましく、2〜25がより好ましく、3〜20が更に好ましい範囲として例示できる。後述するように環式PASを含有するポリアリーレンスルフィドプレポリマーを高重合度体への転化する場合には、環式ポリアリーレンスルフィドが溶融解する温度以上に加熱して行うことが好ましいが、mが大きくなると環式ポリアリーレンスルフィドの溶融解温度が高くなる傾向にあるため、ポリアリーレンスルフィドプレポリマーの高重合度体への転化をより低い温度で行うことができるようになるとの観点でmを前記範囲にすることは有利となる。
【0049】
また、環式ポリアリーレンスルフィドは、単一の繰り返し数を有する単独化合物、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物のいずれでも良いが、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物の方が単一の繰り返し数を有する単独化合物よりも溶融解温度が低い傾向があり、異なる繰り返し数を有する環式ポリアリーレンスルフィドの混合物の使用は前記した高重合度体への転化を行う際の温度をより低くできるため好ましい。
【0050】
(6)環式ポリアリーレンスルフィドの製造方法
本発明では少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応(A)を行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことを特徴とする。以下に反応(A)、反応(B)について記述する。
【0051】
<反応(A)>
反応(A)では少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応させる。
【0052】
本発明において反応(A)における線状PASの使用量は、反応開始時点に反応混合物中に線状PASが含まれていれば良いが、線状PASの主要構成単位である式−(Ar−S)−の繰り返し単位を基準として、スルフィド化剤のイオウ成分1モル当たり0.1〜20繰り返し単位モルの範囲であることが好ましく、0.25〜15繰り返し単位モルの範囲がより好ましく、1〜10繰り返し単位モルの範囲が更に好ましい。線状PASの使用量が好ましい範囲では、反応(A)に次いで反応(B)を行った際に、環式PASが高収率で得られる傾向にあり、また、短時間で反応を進行させ得る傾向にある。また、特に効率よく反応(A)を進行させるためには、上記線状PASとスルフィド化剤の比率の値は1〜5がより好ましく、1〜3がよりいっそう好ましい。この値が小さいほど、線状PASに対するスルフィド化剤の使用量が多いことになり、線状PASとスルフィド化剤の反応が進行しやすくなる傾向にあるため、よりいっそう短時間で反応をさせうる。
【0053】
本発明において反応(A)に用いる有機極性溶媒量に制限はないが、反応混合物が含むイオウ成分1モルに対し5リットル未満が例示でき、2.5リットル未満が好ましく、1.25リットル未満がより好ましく、1リットル未満が更に好ましく例示できる。なおここで反応混合物が含むイオウ成分とは、原料に用いる線状ポリアリーレンスルフィドに含まれるイオウ成分及び原料に用いるスルフィド化剤に含まれるイオウ成分の合計である。ここで線状ポリアリーレンスルフィドに含まれるイオウ成分の「モル数」とはイオウ原子1個を含むポリマーの「繰り返し単位の数」である。例えば重合度100の線状ポリフェニレンスルフィド1分子は1モルではなく100モルと計算する。なお、本発明の本質を損なわない限りは、線状ポリアリーレンスルフィド、スルフィド化剤に以外にイオウ成分を含有する化合物を付加的に反応混合物中に存在させることも可能であるが、このような本発明の反応に対して実質的に作用しないイオウ含有化合物に由来するイオウ成分は考慮に入れなくても良い。また、有機極性溶媒の使用量の下限に特に制限はないが、反応を効率よく行うとの観点から、反応混合物が含むイオウ成分1モルに対し0.2リットル以上が好ましく、0.35リットル以上がより好ましく、0.5リットル以上が更に好ましい。なお、ここでの溶媒使用量は常温常圧下における溶媒の体積を基準とする。有機極性溶媒量が多い場合、反応速度が低下して反応に長時間を要するが、有機極性溶媒の使用量を好ましい量とすることで、短時間で原料消費率を向上できる傾向がある。
【0054】
本発明において反応(A)は実質的にジハロゲン化芳香族化合物の非存在下で行うことが好ましいが、スルフィド化剤のイオウ成分1モルに対し0.9モル未満、好ましくは0.5モル未満、より好ましくは0.1モル未満の範囲でジハロゲン化芳香族化合物を共存させることも可能である。反応(A)の目的は、スルフィド化剤を線状PASに作用させて後述するようなプレポリマーを得ることにあり、反応(A)においてジハロゲン化芳香族化合物が共存する場合、スルフィド化剤がジハロゲン化芳香族化合物に作用して実質的に線状PASに作用するスルフィド化剤が低減する傾向にあるが、ジハロゲン化芳香族化合物の共存量を上記好ましい範囲とすることで、後述するプレポリマーが効率よく得られる傾向にある。
【0055】
また反応(A)を行うにあたっては、反応混合物中の水分量を少ない状態として反応を行うことも望ましい方法といえ、これにより反応の際の圧力を低く保つことができる、モノマーの消費を促進でき反応に要する時間を短縮できるなどの利点がある。反応混合物中の水分量は少ないほど好ましいが、反応混合物中に存在するイオウ成分1モル基準の水分量で5モル以下が例示でき、3モル以下が好ましい。また、反応(A)に用いるスルフィド化剤や有機極性溶媒などをあらかじめ脱水処理するなどして、反応(A)における水分量を反応混合物中に存在するイオウ成分1モル基準で0.8モル未満、好ましくは0.7モル未満、さらに好ましくは0.6モル未満、より好ましくは0.5モル未満とすることも可能である。また、反応混合物中の水分量の下限はなく、0に近いほど望ましいが、実質的下限として反応混合物中のイオウ成分1モル当たり0.05モル以上を例示できる。水分量をこの範囲内に制御する他の利点としては、最終的に得られる反応液や反応に用いた反応器への着色物の付着が抑制できる傾向があり、このことは環式ポリアリーレンスルフィドの品質が向上するのみならず、反応器の洗浄作業の軽減されるため好ましい傾向といえる。
【0056】
なお、本発明における反応混合物中の水分量とは、反応系に仕込んだ線状ポリアリーレンスルフィド、スルフィド化剤、有機極性溶媒、およびジハロゲン化芳香族化合物、さらにはその他成分を仕込む場合にはその成分も含め、各成分に含まれて導入された水分量の総和を意味し、あるいは脱水操作など付加的な操作により反応系から水が反応系外に除去される場合には前記水分量の総和から除去された水分量を差し引いた水分量を意味するものであり、上記諸成分の混合及び反応過程で生成する水は考慮しない。
【0057】
反応混合物中の水分量を前記の好ましい範囲にする方法としては、例えば上記諸成分として無水または低含水量のものを用いる方法も好ましい方法として例示できる。また、上記諸成分の水分量の総和が望ましい範囲を超える場合には、反応(A)を開始する前に予め脱水工程を設けて各成分の水分量を所望の範囲に減じた後に用いる方法、あるいは上記諸成分を水分量の多いまま混合して反応しながら脱水する方法を採用することも可能である。一般にジハロゲン化芳香族化合物および有機極性溶媒については十分に低水分量のものが比較的容易に入手可能であるのに対し、スルフィド化剤、例えばアルカリ金属硫化物については水を含む水和物または水性混合物の方が一般的により安価で入手も容易である。したがって、入手性やコストの観点からはスルフィド化剤としてこれら水和物または水性混合物を用いることが好ましく、この場合、反応混合物中の水分量はジハロゲン化芳香族化合物および有機極性溶媒の水分量が少なくても、水を含むスルフィド化剤に由来して反応混合物中の水分量が多くなる傾向にあるため、前記の好ましい範囲に調整するためには脱水を行う工程を設けることが望ましい。
【0058】
この脱水工程における脱水方法としては水分量を調整可能な限りその方法に特に制限はないが、例えば次のような脱液法が好ましく採用される。すなわち望ましくは不活性ガス雰囲気下、常温〜150℃、好ましくは常温〜100℃の温度範囲で、少なくとも含水スルフィド化剤と有機極性溶媒とからなる混合物を調製し、常圧または減圧下で150℃以上、好ましくは170℃以上に昇温して、水を留去させる方法が例示できる。なお、上記有機極性溶媒および水分を留去させる温度の好ましい上限としては250℃である。また、上記脱液法において用いる有機極性溶媒の量はスルフィド化剤のイオウ成分1モル当たり0.1〜1リットルが好ましく、0.15〜0.8リットル以下がより好ましく、0.2〜0.6リットルがさらに好ましい。この範囲内であれば反応に金属製容器を用いた際に容器からの金属溶出が少なくなる傾向にあり、得られる環式ポリアリーレンスルフィド中の金属不純物の低減が期待できる。また、脱水工程では留去を促進するために、撹拌しながら留去を行っても良く、望ましくは不活性ガスの気流を通じて留去を行っても良く、また、トルエンなどの共沸成分を加えて留去を行っても良い。さらに水を選択的に留去させる目的で精留塔を設けても良い。
【0059】
上記のような脱水工程で調製した脱水成分は含水率の低いスルフィド化剤であるため、反応(A)に必要な他の成分、すなわち線状ポリアリーレンスルフィド、有機極性溶媒およびジハロゲン化芳香族化合物と混合することで、含水量の少ない反応混合物を調製して反応させて環式PASを製造することが可能である。
【0060】
本発明の反応(A)における好ましい反応温度は、原料として用いる線状PASが反応混合物中で溶融解する温度である。原料の線状PASは、室温近傍では固体状態であることが一般的であり、固体状態では本発明の目的である環式PASの生成反応が進行しにくいが、線状PASが溶融解する温度で反応を行うことで反応系が均一化し飛躍的に反応速度が向上し、反応に要する時間を短縮できる傾向にある。この温度は反応混合物中の成分の種類、量、原料に用いる線状PASの構造、分子量などによって多様に変化するため一意的に決めることはできないが、通常120〜350℃、好ましくは200〜320℃、より好ましくは230〜300℃、さらに好ましくは240〜280℃の範囲を例示できる。この好ましい温度範囲ではより高い反応速度が得られ、反応が均一で進行しやすい傾向にあるのみならず、PASの分解など副反応も起こりにくい傾向にある。また、反応は一定温度で行う1段反応、段階的に温度を上げていく多段階反応、あるいは連続的に温度を変化させていく形式の反応のいずれでもかまわない。
【0061】
また、反応時間は使用する原料の線状PASの構造、分子量などや、スルフィド化剤、ジハロゲン化芳香族化合物、有機極性溶媒の種類、およびこれら原料の量あるいは反応温度に依存するので一概に規定できないが、0.01時間以上が例示でき、0.05時間以上が好ましく、0.1時間以上がより好ましく、0.3時間以上が更に好ましく例示できる。この好ましい時間以上とすることで、未反応の原料成分を十分に減少できる傾向にある。一方、反応時間に特に上限は無いが、10時間以内でも十分に反応が進行し、好ましくは6時間以内、より好ましくは3時間以内も採用できる。
【0062】
上記のような好ましい容態で反応(A)を行うことにより得られた反応混合物に含まれるアリーレンスルフィドは、少なくとも一方の末端にアルカリチオラート基を有し、その重量平均分子量は5,000以下が好ましく例示でき、2,500以下がより好ましく、1,000以下がさらに好ましく例示できる。この様なプレポリマーを含む反応混合物を反応(B)に用いた場合、特に環式PASが高収率で得られる傾向にある。
【0063】
<反応(B)>
反応(B)では、反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱する。
【0064】
反応(A)で得られた反応混合物は、反応液のままで安定性が良いため、そのまま反応(B)に用いることが可能である。また、必要ならば反応(A)で得られた反応混合物から、反応物が変性・変質しない条件下で分離したプレポリマーを反応(B)に用いることも可能である。
【0065】
反応(B)におけるジハロゲン化芳香族化合物の追加量は、反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルの範囲、好ましくは0.9〜1.5モルの範囲となるように追加することが好ましい。また、反応(A)におけるジハロゲン化芳香族化合物の使用量や反応(A)で得られた反応液からのプレポリマーの分離の有無によらないジハロゲン化芳香族化合物の追加量の決定方法として、反応(B)の反応混合物が含むイオウ成分1モル当たり反応混合物に含まれるアリーレン成分が0.9〜2.0モルの範囲、好ましくは0.95〜1.5モルの範囲、更に好ましくは0.98〜1.2モルの範囲となるように追加するジハロゲン化芳香族化合物の量を決定する方法も好ましく採用できる。ここで、反応混合物が含むアリーレン成分とは、反応混合物中の線状PAS及びジハロゲン化芳香族化合物に含まれるアリーレン成分の合計である。例えば、反応混合物中に線状ポリフェニレンスルフィド100モルとp−ジクロロベンゼンを50モル含む場合、反応混合物中に含まれるアリーレン成分は150モルと計算する。なお、線状PASに含まれるアリーレン成分の「モル数」とはアリーレン部位1個を含むポリマーの「繰り返し単位の数」であり、例えば重合度100の線状ポリフェニレンスルフィドは100モルと計算する。
【0066】
反応(B)で用いる有機極性溶媒の使用量は、反応混合物が含むイオウ成分1モルに対し1.25リットル以上が好ましく、1.5リットル以上がより好ましく、2リットル以上が特に好ましい。また、有機極性溶媒の使用量の上限に特に制限はないが、より効率よく環式PASを製造するとの観点から、反応混合物が含むイオウ成分1モルに対し50リットル以下とすることが好ましく、20リットル以下がより好ましく、15リットル以下が更に好ましい。有機極性溶媒の使用量を多くすると、環式PAS生成の選択率が向上するが、多すぎる場合、反応容器の単位体積当たりの環式PASの生成量が低下する傾向に有り、更に、反応に要する時間が長時間化する傾向がある。なお、有機極性溶媒の使用量を所望のものとするために、反応(A)で得られた反応混合物に有機極性溶媒を追加する方法が好ましく採用できる。
【0067】
本発明の反応(B)における好ましい反応温度は、反応混合物中の成分の種類、量、反応(A)で得られた反応混合物に含まれるプレポリマーの分子量などによって多様に変化するため一意的に決めることはできないが、通常120〜350℃、好ましくは170〜300℃、より好ましくは200〜300℃、さらに好ましくは200〜270℃の範囲を例示できる。この好ましい温度範囲ではより高い反応速度が得られ、反応が均一で進行しやすい傾向にあるのみならず、生成した環式PASの分解なども起こりにくい傾向にあるため、効率よく環式PASが得られる傾向にある。また、反応は一定温度で行う1段反応、段階的に温度を上げていく多段階反応、あるいは連続的に温度を変化させていく形式の反応のいずれでもかまわない。
【0068】
また、反応時間は反応(A)で得られた反応混合物に含まれるプレポリマーの分子量や、ジハロゲン化芳香族化合物、有機極性溶媒の種類、およびこれら原料の量あるいは反応温度に依存するので一概に規定できないが、0.05時間以上が例示でき、0.1時間以上が好ましく、0.5時間以上がより好ましく、1時間以上が更に好ましく例示できる。この好ましい時間以上とすることで、未反応の原料成分を十分に減少できる傾向にある。一方、反応時間に特に上限は無いが、10時間以内でも十分に反応が進行し、好ましくは6時間以内、より好ましくは3時間以内も採用できる。
【0069】
(7)環式ポリアリーレンスルフィドの回収方法
本発明の環式PASの製造においては前記した反応により得られた反応混合物から環式PASを分離回収することも可能である。反応により得られた反応混合物には環式PAS、線状PAS及び有機極性溶媒が含まれ、その他成分として未反応のスルフィド化剤、ジハロゲン化芳香族化合物や水、副生塩などが含まれる場合もある。
【0070】
(7−1)環式ポリアリーレンスルフィドの回収方法1
この様な反応混合物からPAS成分を回収する方法に特に制限は無く、例えば必要に応じて有機極性溶媒の一部もしくは大部分を蒸留等の操作により除去した後に、PAS成分に対する溶解性が低く且つ有機極性溶媒と混和し、好ましくは副生塩に対して溶解性を有する溶剤と必要に応じて加熱下で接触させて、環式PASを線状PASとの混合固体としてPAS成分を回収する方法、反応混合物において環式PASおよび線状PASが溶解するに足る温度、好ましくは200℃を越える温度、より好ましくは230℃以上の温度において反応混合物中に存在する固形成分と可溶成分を固液分離により分離して少なくとも環式PAS、線状PASおよび有機極性溶媒を含む溶液成分を回収し、この溶液成分から必要に応じて有機極性溶媒の一部もしくは大部分を蒸留等の操作により除去した後に、PAS成分に対する溶解性が低く且つ有機極性溶媒と混和し、好ましくは副生塩に対して溶解性を有する溶剤と必要に応じて加熱下で接触させて、環式PASを線状PASとの混合固体としてPAS成分を回収する方法、が例示できる。この様な特性を有する溶剤は一般に比較的極性の高い溶剤であり、用いた有機極性溶媒や副生塩の種類により好ましい溶剤は異なるので限定はできないが、例えば水や、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、ヘキサノールに代表されるアルコール類、アセトンに代表されるケトン類、酢酸エチル、酢酸ブチルなどに代表される酢酸エステル類が例示でき、入手性、経済性の観点から水、メタノール及びアセトンが好ましく、水が特に好ましい。
【0071】
このような溶剤による処理を行うことで、環式PASと線状PASとの混合固体に含有される有機極性溶媒や副生塩の量を低減することが可能である。この処理により環式PAS及び線状PASは共に固形成分として析出するので、公知の固液分離法を用いて環式PAS及び線状PASの混合物としてPAS成分を回収することが可能である。固液分離方法としては、たとえば濾過による分離、遠心分離、デカンテーション等を例示できる。なお、これら一連の処理は必要に応じて数回繰り返すことも可能であり、これにより環式PASと線状PASとの混合固体に含有される有機極性溶媒や副生塩の量がさらに低減される傾向にある。
【0072】
また、上記の溶剤による処理の方法としては、溶剤と反応混合物を混合する方法があり、必要により適宜撹拌または加熱することも可能である。溶剤による処理を行う際の温度に特に制限は無いが、20℃〜220℃が好ましく、50℃〜200℃が更に好ましい。この様な範囲では例えば副生塩の除去が容易となり、また比較的低圧の状態で処理を行うことが可能であるため好ましい。ここで、溶剤として水を用いる場合、水は蒸留水あるいは脱イオン水であることが好ましいが、必要に応じてギ酸、酢酸、プロピオン酸、酪酸、クロロ酢酸、ジクロロ酢酸、アクリル酸、クロトン酸、安息香酸、サリチル酸、シュウ酸、マロン酸、コハク酸、フタル酸、フマル酸などの有機酸性化合物及びそのアルカリ金属塩、アルカリ土類金属塩、硫酸、リン酸、塩酸、炭酸、珪酸などの無機酸性化合物およびアンモニウムイオンなどを含む水溶液を用いることも可能である。この処理後に得られた環式PASと線状PASとの混合固体が処理に用いた溶剤を含有する場合には必要に応じて乾燥などを行い、溶剤を除去することも可能である。
【0073】
上で例示した回収方法では、環式PASは線状PASとの混合物(以下PAS混合物と称する場合もある)として回収される。環式PASと線状PASの分離を行う方法としては例えば、環式PASと線状PASの溶解性の差を利用した分離方法、より具体的には環式PASに対する溶解性が高く、一方で環式PASの溶解を行う条件下では線状PASに対する溶解性に乏しい溶剤を必要に応じて加熱下でPAS混合物と接触させて、溶剤可溶成分として環式PASを得る方法が例示できる。ここで、上記の溶解性を利用した分離方法により効率良く環式PASを得るために、線状PASの分子量は後述する環式PASを溶解可能な溶剤に溶解しにくい、好ましくは溶解しない特性を有する分子量であることが好ましく、重量平均分子量で2,500以上が例示でき、5,000以上が好ましく、10,000以上がより好ましく例示できる。
【0074】
環式PASと線状PASの分離に用いる溶剤としては環式PASを溶解可能な溶剤であれば特に制限はないが、溶解を行う環境において環式PASは溶解するが線状PASは溶解しにくい溶剤が好ましく、線状PASは溶解しない溶剤がより好ましい。PAS混合物を前記溶剤と接触させる際の反応系圧力は常圧もしくは微加圧が好ましく、特に常圧が好ましく、このような圧力の反応系はそれを構築する反応器の部材が安価であるという利点がある。この観点から反応系圧力は、高価な耐圧容器を必要とする加圧条件は避けることが望ましい。用いる溶剤としてはPAS成分の分解や架橋など好ましくない副反応を実質的に引き起こさないものが好ましく、PAS混合物を溶剤と接触させる操作をたとえば常圧環流条件下で行う場合に好ましい溶剤としては、例えばペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタン、ベンゼン、トルエン、キシレン等の炭化水素系溶媒、クロロホルム、ブロモホルム、塩化メチレン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、クロロベンゼン、2,6−ジクロロトルエン等のハロゲン系溶媒、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル等のエーテル系溶媒、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、トリメチルリン酸、N,N−ジメチルイミダゾリジノン、メチルエチルケトンなどの極性溶媒を例示できるが、中でもベンゼン、トルエン、キシレン、クロロホルム、ブロモホルム、塩化メチレン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、クロロベンゼン、2,6−ジクロロトルエン、ジエチルエーテル、テトラヒドロフラン、ジイソプロピルエーテル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジメチルスルホキシド、トリメチルリン酸、N,N−ジメチルイミダゾリジノン、メチルエチルケトンが好ましく、トルエン、キシレン、クロロホルム、塩化メチレン、テトラヒドロフラン、メチルエチルケトンがより好ましく例示できる。
【0075】
PAS混合物を溶剤と接触させる際の雰囲気に特に制限はないが、接触させる際の温度や時間などの条件によってPAS成分や溶剤が酸化劣化するような場合には、非酸化性雰囲気下で行うことが望ましい。なお、非酸化性雰囲気とは気相の酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指し、この中でも特に経済性及び取扱いの容易さの面からは窒素雰囲気が好ましい。
【0076】
PAS混合物を溶剤と接触させる温度に特に制限はないが、一般に温度が高いほど環式PASの溶剤への溶解は促進される傾向にあるが、線状PASの分子量が低い場合、線状PASの溶解も促進される傾向にある。線状PASの分子量が前述した好ましい分子量である場合は、環式PASとの溶解性の差が大きくなるため、高い温度でPAS混合物の溶剤との接触を行っても環式PASと線状PASが好適に分離できる傾向にある。また、前記したように、PAS混合物の溶剤との接触は大気圧下でおこなうことが好適であるので、上限温度は使用する溶剤の大気圧下での環流条件温度にすることが望ましく、前述した好ましい溶剤を用いる場合はたとえば20〜150℃、好ましくは30〜100℃を具体的な温度範囲として例示できる。
【0077】
PAS混合物を溶剤と接触させる時間は、用いる溶剤種や温度等によって異なるため一意的には限定できないが、たとえば1分〜50時間が例示でき、この様な範囲では環式PASの溶剤への溶解が十分になる傾向にある。
【0078】
PAS混合物を溶剤と接触させる方法は、公知の一般的な手法を用いれば良く特に限定はないが、たとえばPAS混合物と溶剤を混合し、必要に応じて攪拌した後に溶液部分を回収する方法、各種フィルター上のPAS混合物に溶剤をシャワーすると同時に環式PASを溶剤に溶解させる方法、ソックスレー抽出法原理による方法などいかなる方法も用いることができる。PAS混合物と溶剤を接触させる際の溶剤の使用量に特に制限はないが、たとえばPAS混合物重量に対する浴比で0.5〜100の範囲が例示できる。浴比がこの様な範囲の場合、PAS混合物と溶剤を均一に混合し易く、また、環式PASが溶剤へ十分に溶解し易くなる傾向にある。一般に、浴比が大きい方が環式PASの溶剤への溶解には有利であるが、大きすぎてもそれ以上の効果は望めず、逆に溶剤使用量増大による経済的不利益が生じることがある。なお、PAS混合物と溶剤の接触を繰り返し行う場合は、小さい浴比でも十分な効果を得られる場合が多い。またソックスレー抽出法は、その原理上、PAS混合物と溶剤の接触を繰り返し行う場合と類似の効果が得られるので、この場合も小さな浴比で十分な効果を得られる場合が多い。
【0079】
PAS混合物を溶剤と接触させた後に、環式PASを溶解した溶液が固形状の線状PASを含む固液スラリー状で得られた場合、公知の固液分離法を用いて溶液部を回収することが好ましい。固液分離方法としては、たとえば濾過による分離、遠心分離、デカンテーション等を例示できる。このようにして分離した溶液から溶剤の除去を行うことで環式PASの回収が可能となる。一方、固体成分については、環式PASがまだ残存している場合、再度溶剤との接触及び溶液の回収を繰り返し行うことでより収率よく環式PASを得ることも可能である。この操作により環式PAS溶液を分離した後に得られる固形分は線状PASを主要成分とする高純度な線状PASとして使用価値のあるものであり、またその全量もしくは一部を、必要に応じて残存溶剤を除去するなどの処理を施して再度本発明の環式PASの原料として好適に用いることができる。
【0080】
前述のようにして得られた環式PASを含む溶液から溶剤の除去を行い、環式PASを固形成分として得ることも可能である。ここで溶剤の除去は、たとえば加熱し、常圧以下で処理する方法や、膜を利用した溶剤の除去を例示できるが、より収率よく、また効率よく環式ポリアリーレンスルフィドを得るとの観点では常圧以下で加熱して溶剤を除去する方法が好ましい。なお、前述の様にして得られた環式PASを含む溶液は温度によっては固形物を含む場合もあるが、この場合の固形物も環式ポリアリーレンスルフィド混合物に属するものであるので、溶剤の除去時に溶剤に可溶の成分とともに回収する事が望ましく、これにより収率よく環式PASを得られるようになる。ここで溶剤の除去は、少なくとも50重量%以上、好ましくは70重量%以上、更に好ましくは90重量%以上、よりいっそう好ましくは95重量%以上の溶剤を除去することが望ましい。加熱による溶剤の除去を行う際の温度は用いる溶剤の特性に依存するため一意的には限定できないが、通常、20〜150℃、好ましくは40〜120℃の範囲が選択できる。また、溶剤の除去を行う圧力は常圧以下が好ましく、これにより溶剤の除去をより低温で行うことが可能になる。
【0081】
(7−2)環式ポリアリーレンスルフィドの回収方法2
上記には環式PASの回収方法として、まず環式PASと線状PASを含むPAS混合物を得た後にこの混合物から環式PASを回収する方法について例示したが回収方法はこれに限定されるものではない。環式PAS回収方法として別の具体例を以下に示す。
【0082】
本発明で得られる反応混合物には環式PAS、線状PAS及び有機極性溶媒が含まれ、その他成分として未反応のスルフィド化剤、ジハロゲン化芳香族化合物や水、副生塩などが含まれる場合もあることは前述した通りであるが、この反応混合物において環式PASは幅広い温度領域で有機極性溶媒に溶解状態となる傾向がある。一方で線状PASは環式PASと溶解挙動が大きく異なり、具体的には200℃以下の温度領域ではその大部分が反応混合物中で固体として存在する傾向にある。
【0083】
従ってこの様な環式PASと線状PASの反応混合物中での溶解挙動差を用いることで、簡易な固液分離により環式PASと線状PASの分離が可能になる。このような固液分離による環式PASと線状PASの分離が可能となるより具体的な温度領域の上限としては200℃以下、より好ましくは150℃以下、更に好ましくは120℃以下が例示でき、一方で下限温度としては10℃以上が例示でき、20℃以上が好ましく、50℃以上がより好ましく、80℃以上が更に好ましい。この好ましい温度上限以下では反応混合物に含まれる線状PASは固形分として存在する傾向が強く、特に前述した好ましい重量平均分子量の線状PASはこの条件下で固形分となりやすい傾向がある。一方でこの好ましい温度領域において反応混合物中の環式PASは有機極性溶媒に可溶である傾向が強く、特に環式PASの繰り返し単位数mが前述した好ましい範囲の環式PASはこの条件下で有機極性溶媒に溶解する傾向が強い。また例示した下限温度以上では反応混合物の粘度が低くなる傾向になり固液分離操作がし易く、また固形成分と溶液成分の分離性にすぐれる傾向にある。
【0084】
上記した反応混合物の固液分離では固形分として線状PASを得ることが可能であるが、一般的な固液分離と同様に完全に固形分と液体分を分離することは困難であり、ある程度の液体成分、例えば反応混合物中の有機極性溶媒等を含む状態として固形分が分離される。従って所望に応じて、フレッシュな溶剤(必ずしも反応に用いた有機極性溶媒である必要はない)を用いて溶剤置換することで反応混合物由来の有機極性溶媒が低減された湿潤状態の線状PASを得ることや、含まれる液体成分を除去する操作を付加的に行うことで乾燥状態の線状PASを得ることも可能である。この様にして得た乾燥状態の線状PASを本発明の反応原料である線状PAS(a)として用いることも可能である。また、反応混合物由来の有機極性溶媒等を含む湿潤状態の線状PASや、付加的にフレッシュな溶剤を用いた溶剤置換を行った湿潤状態の線状PASを、湿潤状態のままで本発明の反応原料である線状PAS(a)として用いる事も可能であり、この場合、液体成分の除去工程を省略できるとの観点でより好ましい方法といえる。
【0085】
また、先述した反応混合物の固液分離で得られる溶液成分、すなわち濾液成分(温度によっては固形成分を含む場合もある)には環式PASが含まれる。所望に応じて濾液成分から有機極性溶媒を除去することで環式PASを含む固体として回収することも可能である。この有機極性溶媒の除去方法としては例えば蒸留により除去する方法や、有機極性溶媒と混和する第二の溶剤と接触させる方法などが例示できる。蒸留により除去する具体的な方法としては、濾液成分を好ましくは20〜250℃、より好ましくは40〜200℃、さらに好ましくは100〜200℃、よりいっそう好ましくは120〜200℃に加熱する方法が例示できる。この加熱を減圧条件下や気流下で行うこと、さらには攪拌条件下で行うことで効率よく有機極性溶媒の除去を行うことが可能である。なお、加熱する際の雰囲気は非酸化性雰囲気で行うことが好ましく、これにより環式PASの分解、着色、架橋などを抑制できる傾向にある。なおここで、非酸化性雰囲気とは気相の酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指し、この中でも特に経済性及び取扱いの容易さの面からは窒素雰囲気が好ましい。濾液成分を第二の溶剤で溶剤置換する方法で環式PASを得る具体的な方法としては、環式PASが溶解しない、もしくは環式PASが溶解しにくい第二の溶剤と接触させることで、環式PASを含む固形成分を回収する方法を例示できる。この第二の溶剤と接触させるより具体的な方法としては後述の (8)で示す方法を採用することが例示できる。
【0086】
(8)その他後処理
かくして得られた環式ポリアリーレンスルフィドは十分に高純度であり、各種用途に好適に用いることができるが、さらに以下に述べる後処理を付加的に施すことによってよりいっそう純度の高い環式PASを得ることが可能である。
【0087】
前記(7)までの操作によって得られた環式PASは、用いた溶剤の特性によってはPAS混合物中に含まれる不純物成分を含む場合がある。このような少量の不純物を含む環式PASを不純物は溶解するが、環式PASは溶解しない、もしくは環式PASの溶解しにくい第二の溶剤と接触させることで、不純物成分を選択的に除去することが可能な場合が多い。また前記(7−2)の方法で得られた濾液成分(環式PASを含む溶液)から環式PASを固形成分として分離するためにこの第二の溶剤と濾液成分を接触させることも可能である。
【0088】
環式PAS混合物もしくは前記(7−2)で得られた濾液成分を前記第二の溶剤と接触させる際の反応系圧力は常圧もしくは微加圧が好ましく、特に常圧が好ましく、このような圧力の反応系はそれを構築する部材が安価であるという利点がある。この観点から反応系圧力は、高価な耐圧容器を必要とする加圧条件は避けることが望ましい。第二の溶剤として好ましい溶剤としては、環式PASの分解や架橋など好ましくない副反応を実質的に引き起こさないものが好ましく、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール・フェノール系溶媒、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタン等の炭化水素系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン、メチルブチルケトン、アセトフェノン等のケトン系溶媒、酢酸メチル、酢酸エチル、酢酸ペンチル、酢酸オクチル、酪酸メチル、酪酸エチル、酪酸ペンチル、サリチル酸メチル、蟻酸エチル、等のカルボン酸エステル系溶媒、及び水が例示でき、なかでもメタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、シクロペンタン、アセトン、酢酸メチル、酢酸エチル、水が好ましく、メタノール、エタノール、プロパノール、エチレングリコール、ペンタン、ヘキサン、ヘプタン、オクタン、シクロヘキサン、アセトン、酢酸エチル、水が特に好ましい。これらの溶媒は1種類または2種類以上の混合物として使用することができる。
【0089】
環式PASを第二の溶剤と接触させる温度に特に制限はないが、上限温度は使用する第二の溶剤の常圧下での環流条件温度にすることが望ましく、前述した好ましい第二の溶剤を用いる場合はたとえば20〜100℃が好ましい温度範囲として例示でき、より好ましくは25〜80℃が例示できる。
【0090】
環式PASを第二の溶剤と接触させる時間は、用いる溶剤種や温度等によって異なるため一意的には限定できないが、たとえば1分〜50時間が例示でき、この様な時間範囲内ででは環式PAS中の不純物の第二の溶剤への溶解が十分となる傾向にある。
【0091】
環式PASを第二の溶剤と接触させる方法としては固体状の環式PASと第二の溶剤を必要に応じて攪拌して混合する方法、各種フィルター上の環式PAS固体に第二の溶剤をシャワーすると同時に不純物を第二の溶剤に溶解させる方法、固体状の環式PASを第二の溶剤を用いたソックスレー抽出を用いる方法や、溶液状の環式PASもしくは溶剤を含む環式PASスラリーを第二の溶剤と接触させて、第二の溶剤の存在下で環式PASを析出させる方法などを用いることができる。なかでも溶剤を含む環式PASスラリーを第二の溶剤と接触させる方法は、操作後に得られる環式PASの純度が高く、有効な方法である。
【0092】
環式PASを第二の溶剤と接触させた後に公知の固液分離法を用いて固体状の環式PASを回収することが可能である。固液分離方法としては、たとえば濾過による分離、遠心分離、デカンテーション等を例示できる。固液分離後に得られた環式PAS中に不純物がまだ残存している場合は、再度環式PASと第二の溶剤とを接触させて、さらに不純物を除去することも可能である。
【0093】
(9)本発明の環式PASの特性
かくして得られた環式PASは、通常、環式PASを50重量%以上、好ましくは70重量%以上、より好ましくは80重量%以上含む純度の高いものであり、一般的に得られる線状のPASとは異なる特性を有する工業的にも利用価値の高いものである。また、本発明の製造方法により得られる環式PASは前記式(Q)におけるmが単一ではなく、m=4〜50の異なるmを有する前記式(Q)が得られやすいという特徴を有する。ここで好ましいmの範囲は4〜25,より好ましくは4〜20である。mがこの範囲の場合、後述するように環式PASを開環重合に用いる場合に重合反応が進行しやすく、高分子量体が得られやすくなる傾向にある。この理由は現時点判然とはしないが、この範囲の環式PASは分子が環式であるがために生じる結合のゆがみが大きく、重合時に開環反応が起こりやすいためと推測している。
【0094】
なお、mが単一の環式PASは単結晶として得られるため、極めて高い融解温度を有するが、本発明では環式PASは異なるmを有する混合物が得られやすく、これにより環式PASの融解温度が低いという特徴があり、このことはたとえば環式PASを溶融して用いる際の加熱温度を低くできるという優れた特徴を発現することになる。
【0095】
(10)本発明の環式PASを配合した樹脂組成物
本発明で得られた環式PASを各種樹脂に配合して用いることも可能であり、このような環式PASを配合した樹脂組成物は、溶融加工時のすぐれた流動性を発現する傾向が強く、また滞留安定性にも優れる傾向にある。この様な特性、特に流動性の向上は、樹脂組成物を溶融加工する際の加熱温度が低くても溶融加工性に優れるという特徴を発現するため、射出成形品や繊維、フィルム等の押出成形品に加工する際の溶融加工性の向上をもたらす点で大きなメリットとなる。環式PASを配合した際にこの様な特性の向上が発現する理由は定かではないが、環式PASの構造の特異性、すなわち環状構造であるために通常の線状化合物と比較してコンパクトな構造をとりやすいため、マトリックスである各種樹脂との絡み合いが少なくなりやすいこと、各種樹脂に対して可塑剤として作用すること、またマトリックス樹脂どうしの絡み合い抑制にも奏効するためと推測している。
【0096】
環式PASを各種樹脂に配合する際の配合量に特に制限は無いが、各種樹脂100重量部に対して本発明の環式PASを0.1〜50重量部、好ましくは0.5〜20重量部、より好ましくは0.5〜10重量部配合することで顕著な特性の向上を得ることが可能である。
【0097】
また、上記樹脂組成物には必要に応じて更に繊維状および/または非繊維状の充填材を配合することも可能であり、その配合量は前記各種樹脂100重量部に対して0.5〜400重量部、好ましくは0.5〜300重量部、より好ましくは1〜200重量部、更に好ましくは1〜100重量部の範囲が例示でき、これにより優れた流動性を維持しつつ機械的強度が向上できる傾向にある。充填剤の種類としては、繊維状、板状、粉末状、粒状などのいずれの充填剤も使用することができる。これら充填剤の好ましい具体例としてはガラス繊維、タルク、ワラステナイト、およびモンモリロナイト、合成雲母などの層状珪酸塩が例示でき、特に好ましくはガラス繊維である。ガラス繊維の種類は、一般に樹脂の強化用に用いるものなら特に限定はなく、例えば長繊維タイプや短繊維タイプのチョップドストランド、ミルドファイバーなどから選択して用いることができる。また、上記の充填剤は2種以上を併用して使用することもできる。なお、本発明に使用する上記の充填剤はその表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理して用いることもできる。また、ガラス繊維はエチレン/酢酸ビニル共重合体などの熱可塑性樹脂、エポキシ樹脂などの熱硬化性樹脂で被覆あるいは集束されていてもよい。
【0098】
また、樹脂組成物の熱安定性を保持するために、フェノール系、リン系化合物の中から選ばれた1種以上の耐熱剤を含有せしめることも可能である。かかる耐熱剤の配合量は、耐熱改良効果の点から前記各種樹脂100重量部に対して、0.01重量部以上、特に0.02重量部以上であることが好ましく、成形時に発生するガス成分の観点からは、5重量部以下、特に1重量部以下であることが好ましい。また、フェノール系及びリン系化合物を併用して使用することは、特に耐熱性、熱安定性、流動性保持効果が大きく好ましい。
【0099】
さらに、前記樹脂組成物には以下のような化合物、すなわち、有機チタネート系化合物、有機ボラン系化合物などのカップリング剤、ポリアルキレンオキサイドオリゴマ系化合物、チオエーテル系化合物、エステル系化合物、有機リン系化合物などの可塑剤、タルク、カオリン、有機リン化合物、ポリエーテルエーテルケトンなどの結晶核剤、モンタン酸ワックス類、ステアリン酸リチウム、ステアリン酸アルミ等の金属石鹸、エチレンジアミン・ステアリン酸・セバシン酸重宿合物、シリコーン系化合物などの離型剤、次亜リン酸塩などの着色防止剤、その他、滑剤、紫外線防止剤、着色剤、難燃剤、発泡剤などの通常の添加剤を配合することができる。上記化合物はいずれも前記各種樹脂100重量部に対して20重量部未満、好ましくは10重量部以下、更に好ましくは1重量部以下の添加でその効果が有効に発現する傾向にある。
【0100】
上記のごとき環式PASを配合してなる樹脂組成物を製造する方法は特に限定されるものではないが、例えば環式PAS、各種樹脂および必要に応じてその他の充填材や各種添加剤を予めブレンドした後、各種樹脂および環式PASの融点以上において一軸または二軸押出機、バンバリーミキサー、ニーダー、ミキシングロールなどの通常公知の溶融混合機で溶融混練する方法、溶液中で混合した後に溶媒を除く方法などが用いられる。ここで環式PASとして環式PASの単体、すなわち前記式(Q)のmが単一のものを用いる場合や、異なるmの混合物であっても結晶性が高く融点が高いものを用いる場合は、環式PASを環式PASが溶解する溶媒に予め溶解して供給し溶融混練の際に溶媒を除去する方法、環式PASをその融点以上で一旦溶解した後に急冷することで結晶化を抑え、非晶状としたものを供給する方法、あるいはプリメルターを環式PASの融点以上に設定し、プリメルター内で環式PASのみを溶融させ、融液として供給する方法などを採用することができる。
【0101】
ここで環式PASを配合する各種樹脂に特に制限は無く、結晶性樹脂および非晶性樹脂の熱可塑性樹脂、また熱硬化性樹脂にも適用が可能である。
【0102】
ここで結晶性樹脂の具体例としては例えば、ポリエチレン樹脂、ポリプロピレン樹脂、シンジオタクチックポリスチレンなどのポリオレフィン系樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリケトン樹脂、ポリイミド樹脂およびこれらの共重合体などが挙げられ、1種または2種以上併用してもよい。中でも、耐熱性、成形性、流動性および機械特性の点で、ポリフェニレンスルフィド樹脂、ポリアミド樹脂、ポリエステル樹脂が好ましい。また、得られる成形品の透明性の面からはポリエステル樹脂が好ましい。各種樹脂として結晶性樹脂を用いる場合は、上述した流動性の向上の他に結晶化特性も向上する傾向がある。また、各種樹脂としてポリフェニレンスルフィド樹脂を用いることも特に好ましく、この場合、流動性の向上と共に、結晶性の向上、さらにはこれらが奏効した効果として射出成形時のバリ発生が顕著に抑制されるという特徴が発現しやすい傾向にある。
【0103】
非晶性樹脂としては非晶性を有する溶融成形可能な樹脂であれば、特に限定されないが、耐熱性の点で、ガラス転移温度が50℃以上であることが好ましく、60℃以上であることがより好ましく、70℃以上であることがさらに好ましく、80℃以上であることが特に好ましい。上限は、特に限定されないが、成形性などの点から300℃以下であることが好ましく、280℃以下であることがより好ましい。なお、本発明において、非晶性樹脂のガラス転移温度は、示差熱量測定において非晶性樹脂を30℃〜予測されるガラス転移温度以上まで、20℃/分の昇温条件で昇温し1分間保持した後、20℃/分の降温条件で0℃まで一旦冷却し、1分間保持した後、再度20℃/分の昇温条件で測定した際に観察されるガラス転移温度(Tg)を指す。この具体例としては、非晶性ナイロン樹脂、ポリカーボネート(PC)樹脂、ポリアリレート樹脂、ABS樹脂、ポリ(メタ)アクリレート樹脂、およびポリ(メタ)アクリレート共重合、ポリスルホン樹脂、ポリエーテルスルホン樹脂から選ばれる少なくとも1種が例示でき、1種または2種以上併用してもよい。これら非晶性樹脂の中でも、特に高い透明性を有するポリカーボネート(PC)樹脂、ABS樹脂の中でも透明ABS樹脂、ポリアリレート樹脂、ポリ(メタ)アクリレート樹脂、およびポリ(メタ)アクリレート共重合、ポリエーテルスルホン樹脂を好ましく使用することができる。各種樹脂として非晶性樹脂を用いる場合には、前述の溶融加工時の流動性向上に加えて、透明性に優れる非晶性樹脂を使用した場合においては、高い透明性を維持させることができるという特徴を発現できる。ここで、非晶性樹脂組成物に高い透明性を発現させたい場合には、環式PASとして前記式(Q)のmが異なる環式PASを用いることが好ましい。なお、環式PASとして環式PASの単体、すなわち前記式(Q)のmが単一のものを用いる場合、この様な環式PASは融点が高い傾向にあるため、非晶性樹脂と溶融混練する際に十分に溶融分散せずに樹脂中に凝集物となったり透明性が低下する傾向にあるが、前述したように前記式(Q)のmが異なる環式PASはその融解温度が低い傾向にあり、このことは溶融混練時の均一性の向上に効果的である。ここで、本発明の製造方法により得られる環式PASは前記式(Q)におけるmが単一ではなく、m=4〜50の異なるmを有する前記式(Q)が得られやすいという特徴を有するため、高い透明性を有する非晶性樹脂組成物を得たい場合に特に有利である。
【0104】
上記で得られる、各種樹脂に環式PASを配合した樹脂組成物は通常公知の射出成形、押出成形、ブロー成形、プレス成形、紡糸などの任意の方法で成形することができ、各種成形品に加工し利用することができる。成形品としては、射出成形品、押出成形品、ブロー成形品、フィルム、シート、繊維などとして利用できる。またこれにより得られた各種成形品は、自動車部品、電気・電子部品、建築部材、各種容器、日用品、生活雑貨および衛生用品など各種用途に利用することができる。また、上記樹脂組成物およびそれからなる成形品は、リサイクルすることが可能である。例えば、樹脂組成物およびそれからなる成形品を粉砕し、好ましくは粉末状とした後、必要に応じて添加剤を配合して得られる樹脂組成物は、上記樹脂組成物と同じように使用でき、成形品とすることも可能である。
【0105】
(11)環式PASの高重合度体への転化
本発明によって製造される環式PASは(9)に述べたごとき優れた特性を有するので、開環重合によりポリマーを得る際のプレポリマーとして好適に用いることが可能である。なおここでプレポリマーとしては本発明の環式PAS製造方法で得られる環式PAS単独でも良いし、所定量の他の成分を含むものでも差し障り無いが、環式PAS以外の成分を含む場合は線状PASや分岐構造を有するPASなど、PAS成分であることが特に好ましい。少なくとも本発明の環式PASを含み、以下に例示する方法により高重合度体へ変換可能なものがポリアリーレンスルフィドプレポリマーであり、以下PASプレポリマーと称する場合もある。
【0106】
環式PASの開環重合は環式PASの開環が起こり、高分子量体が生成する条件下で行えばよく、例えば本発明の環式PAS製造方法による環式PASを含む、PASプレポリマーを加熱して高重合度体に転化させる方法が好ましい方法として例示できる。この加熱の温度は前記PASプレポリマーが溶融解する温度であることが好ましく、このような温度条件であれば特に制限は無い。加熱温度がPASプレポリマーの溶融解温度未満では分子量の高いPASを得るのに長時間が必要となる傾向がある。なお、PASプレポリマーが溶融解する温度は、PASプレポリマーの組成や分子量、また、加熱時の環境により変化するため、一意的に示すことはできないが、例えばPASプレポリマーを示差走査型熱量計で分析することで溶融解温度を把握することが可能である。なお、加熱温度が高すぎるとPASプレポリマー間、加熱により生成したPAS間、及びPASとポリアリーレンスルフィドプレポリマー間などでの架橋反応や分解反応に代表される好ましくない副反応が生じやすくなる傾向にあり、得られるPASの特性が低下する場合があるため、このような好ましくない副反応が顕著に生じる温度は避けることが望ましい。このような好ましくない副反応の顕在化を抑制しやすい加熱温度としては180〜400℃が例示でき、好ましくは200〜380℃、より好ましくは250〜360℃である。一方、ある程度の副反応が起こっても差し障り無い場合には、250〜450℃、好ましくは280〜420℃の温度範囲も選択可能であり、この場合には極短時間で高分子量体への転化を行えるという利点がある。
【0107】
前記加熱を行う時間は使用するPASプレポリマーにおける環式PASの含有率やm数、及び分子量などの各種特性、また、加熱の温度等の条件によって異なるため一様には規定できないが、前記した好ましくない副反応がなるべく起こらないように設定することが好ましい。加熱時間としては0.05〜100時間が例示でき、0.1〜20時間が好ましく、0.1〜10時間がより好ましい。0.05時間未満ではPASプレポリマーのPASへの転化が不十分になりやすく、100時間を超えると好ましくない副反応による得られるPASの特性への悪影響が顕在化する可能性が高くなる傾向にあるのみならず、経済的にも不利益を生じる場合がある。
【0108】
また、PASプレポリマーには加熱による高重合度体への転化に際しては、転化を促進する各種触媒成分を使用することも可能である。このような触媒成分としてはイオン性化合物やラジカル発生能を有する化合物が例示できる。イオン性化合物としてはたとえばチオフェノールのナトリウム塩やリチウム塩等、硫黄のアルカリ金属塩が例示でき、また、ラジカル発生能を有する化合物としてはたとえば加熱により硫黄ラジカルを発生する化合物を例示でき、より具体的にはジスルフィド結合を含有する化合物が例示できる。なお、各種触媒成分を使用する場合、触媒成分は通常はPASに取り込まれ、得られるPASは触媒成分を含有するものになることが多い。特に触媒成分としてアルカリ金属及び/または他の金属成分を含有するイオン性の化合物を用いた場合、これに含まれる金属成分の大部分は得られるPAS中に残存する傾向が強い。また、各種触媒成分を使用して得られたPASは、PASを加熱した際の重量減少が増大する傾向にある。従って、より純度の高いPASを所望する場合および/または加熱した際の重量減少の少ないPASを所望する場合には、触媒成分の使用をできるだけ少なくすることが好ましく、使用しないことがより好ましい。従って、各種触媒成分を使用してPASプレポリマーを高重合度体へ転化する際には、PASプレポリマーと触媒成分を含む反応系内のアルカリ金属量が100ppm以下、好ましくは50ppm以下、より好ましくは30ppm以下更に好ましくは10ppm以下であって、なお且つ、反応系内の全イオウ重量に対するジスルフィド重量が1重量%未満、好ましくは0.5重量%未満、より好ましくは0.3重量%未満、更に好ましくは0.1重量%未満になるように触媒成分の添加量を調整して行うことが好ましい。
【0109】
PASプレポリマーの加熱による高重合度体への転化は、通常溶媒の非存在下で行うが、溶媒の存在下で行うことも可能である。溶媒としては、PASプレポリマーの加熱による高重合度体への転化の阻害や生成したPASの分解や架橋など好ましくない副反応を実質的に引き起こさないものであれば特に制限はなく、例えばN−メチル−2−ピロリドン、ジメチルホルムアミド、ジメチルアセトアミドなどの含窒素極性溶媒、ジメチルスルホキシド、ジメチルスルホンなどのスルホキシド・スルホン系溶媒、アセトン、メチルエチルケトン、ジエチルケトン、アセトフェノンなどのケトン系溶媒、ジメチルエーテル、ジプロピルエーテル、テトラヒドロフランなどのエーテル系溶媒、クロロホルム、塩化メチレン、トリクロロエチレン、2塩化エチレン、ジクロルエタン、テトラクロルエタン、クロルベンゼンなどのハロゲン系溶媒、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、エチレングリコール、プロピレングリコール、フェノール、クレゾール、ポリエチレングリコールなどのアルコール・フェノール系溶媒、ベンゼン、トルエン、キシレンなどの芳香族炭化水素系溶媒などがあげられる。また、二酸化炭素、窒素、水等の無機化合物を超臨界流体状態として溶媒に用いることも可能である。これらの溶媒は1種類または2種類以上の混合物として使用することができる。
【0110】
前記、PASプレポリマーの加熱による高重合度体への転化は、通常の重合反応装置を用いる方法で行うのはもちろんのこと、成形品を製造する型内で行っても良いし、押出機や溶融混練機を用いて行うなど、加熱機構を具備した装置であれば特に制限無く行うことが可能であり、バッチ方式、連続方式など公知の方法が採用できる。
【0111】
PASプレポリマーの加熱による高重合度体への転化の際の雰囲気は非酸化性雰囲気で行うことが好ましく、減圧条件下で行うことも好ましい。また、減圧条件下で行う場合、反応系内の雰囲気を一度非酸化性雰囲気としてから減圧条件にすることが好ましい。これによりPASプレポリマー間、加熱により生成したPAS間、及びPASとPASプレポリマー間などで架橋反応や分解反応等の好ましくない副反応の発生を抑制できる傾向にある。なお、非酸化性雰囲気とはPAS成分が接する気相における酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指し、この中でも特に経済性及び取扱いの容易さの面からは窒素雰囲気が好ましい。また、減圧条件下とは反応を行う系内が大気圧よりも低いことを指し、上限として50kPa以下が好ましく、20kPa以下がより好ましく、10kPa以下が更に好ましい。下限としては0.1kPa以上が例示でき、0.2kPa以上がより好ましい。減圧条件が好ましい上限を越える場合は、架橋反応など好ましくない副反応が起こりやすくなる傾向にあり、一方好ましい下限未満では、反応温度によってはPASプレポリマーに含まれる分子量の低い環式ポリアリーレンスルフィドが揮散しやすくなる傾向にある。
【0112】
前記したPASプレポリマーの高重合度体への転化は繊維状物質の共存下で行うことも可能である。ここで繊維状物質とは細い糸状の物質のことであって、天然繊維のごとく細長く引き延ばされた構造である任意の物質が好ましい。繊維状物質存在下でPASプレポリマーの高重合度体への転化を行うことで、PASと繊維状物質からなる複合材料構造体を容易に作成する事ができる。このような構造体は、繊維状物質によって補強されるため、PAS単独の場合に比べて、たとえば機械物性に優れる傾向にある。
【0113】
ここで、各種繊維状物質の中でも長繊維からなる強化繊維を用いることが好ましく、これによりPASを高度に強化する事が可能になる。一般に樹脂と繊維状物質からなる複合材料構造体を作成する際には、樹脂が溶融した際の粘度が高いことに起因して、樹脂と繊維状物質のぬれが悪くなる傾向にあり、均一な複合材料ができなかったり、期待通りの機械物性が発現しないことが多い。ここでぬれとは、溶融樹脂のごとき流体物質と、繊維状化合物のごとき固体基質との間に実質的に空気または他のガスが捕捉されないようにこの流体物質と固体基質との物理的状態の良好且つ維持された接触があることを意味する。ここで流体物質の粘度が低い方が繊維状物質とのぬれは良好になる傾向にある。本発明のPASプレポリマーは融解した際の粘度が、一般的な熱可塑性樹脂、たとえばPASと比べて著しく低いため、繊維状物質とのぬれが良好になりやすい。PASプレポリマーと繊維状物質が良好なぬれを形成した後、本発明のPASの製造方法によればPASプレポリマーが高重合度体に転化するので、繊維状物質と高重合度体(ポリアリーレンスルフィド)が良好なぬれを形成した複合材料構造体を容易に得ることができる。
【0114】
繊維状物質としては長繊維からなる強化繊維が好ましいことは前述したとおりであり、本発明に用いられる強化繊維に特に制限はないが、好適に用いられる強化繊維としては、一般に、高性能強化繊維として用いられる耐熱性及び引張強度の良好な繊維があげられる。例えば、その強化繊維には、ガラス繊維、炭素繊維、黒鉛繊維、アラミド繊維、炭化ケイ素繊維、アルミナ繊維、ボロン繊維が挙げられる。この内、比強度、比弾性率が良好で、軽量化に大きな寄与が認められる炭素繊維や黒鉛繊維が最も良好なものとして例示できる。炭素繊維や黒鉛繊維は用途に応じて、あらゆる種類の炭素繊維や黒鉛繊維を用いることが可能であるが、引張強度450Kgf/mm、引張伸度1.6%以上の高強度高伸度炭素繊維が最も適している。長繊維状の強化繊維を用いる場合、その長さは、5cm以上であることが好ましい。この長さの範囲では、強化繊維の強度を複合材料として十分に発現させることが容易となる。また、炭素繊維や黒鉛繊維は、他の強化繊維を混合して用いてもかまわない。また、強化繊維は、その形状や配列を限定されず、例えば、単一方向、ランダム方向、シート状、マット状、織物状、組み紐状であっても使用可能である。また、特に、比強度、比弾性率が高いことを要求される用途には、強化繊維が単一方向に引き揃えられた配列が最も適しているが、取り扱いの容易なクロス(織物)状の配列も本発明には適している。
【0115】
また、前記したPASプレポリマーの高重合度体への転化は充填剤の存在下で行うことも可能である。充填剤としては、たとえば非繊維状ガラス、非繊維状炭素や、無機充填剤、たとえば炭酸カルシウム、酸化チタン、アルミナなどを例示できる。
【0116】
(12)PAS
前記(11)によれば、工業上極めて有用なPASを得ることが可能である。ここでPASとは、式、−(Ar−S)−の繰り返し単位を主要構成単位とする、好ましくは当該繰り返し単位を80モル%以上含有するホモポリマーまたはコポリマーである。Arとしては前記式(A)〜式(L)などであらわされる単位などを例示できるが、なかでも式(A)が特に好ましい。
【0117】
この繰り返し単位を主要構成単位とする限り、前記式(M)〜式(O)などで表される少量の分岐単位または架橋単位を含むことも可能であるが、これら分岐単位または架橋単位の共重合量は、−(Ar−S)−の単位1モルに対して0〜1モル%の範囲であることが好ましい。
【0118】
また、本発明の好ましい態様によって得られるPASは上記繰り返し単位を含むランダム共重合体、ブロック共重合体及びそれらの混合物のいずれかであってもよい。これらの代表的なものとして、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリフェニレンスルフィドケトン、これらのランダム共重合体、ブロック共重合体及びそれらの混合物などが挙げられる。特に好ましいPASとしては、ポリマーの主要構成単位としてp−フェニレンスルフィド単位を80モル%以上、特に90モル%以上含有するポリフェニレンスルフィド(以下、PPSと略すこともある)が挙げられる。
【0119】
本発明の好ましい態様によって得られるPASの分子量に特に制限は無いが、好ましい範囲として重量平均分子量で10,000以上、より好ましくは15,000以上、さらに好ましくは18,000以上である。重量平均分子量が10,000以上のPASでは加工時の成形性が高く、また成形品の機械強度や耐薬品性等の特性も高くなる傾向にある。重量平均分子量の上限に特に制限は無いが、1,000,000未満を好ましい範囲として例示でき、より好ましくは500,000未満、更に好ましくは200,000未満であり、この範囲内では高い成形加工性を得ることができる。
【0120】
本発明の好ましい態様によって得られるPASの分子量分布の広がり、即ち重量平均分子量と数平均分子量の比(重量平均分子量/数平均分子量)で表される分散度は4.0以下が例示でき、2.5以下が好ましく、2.3以下がより好ましく、2.1以下が更に好ましく、2.0以下がよりいっそう好ましい。分散度が4.0以下のPASではPASに含まれる低分子成分の量が少ない傾向にあり、この範囲ではPASを成形加工用途に用いた場合の機械特性が高く、また、加熱した際のガス発生量や溶剤と接した際の溶出成分量が低減できる傾向にある。なお、前記重量平均分子量及び数平均分子量は例えば示差屈折率検出器を具備したSEC(サイズ排除クロマトグラフィー)を使用して求めることができる。
【0121】
また、本発明の好ましい態様によって得られるPASの溶融粘度に特に制限はないが、通常、溶融粘度が5〜10,000Pa・s(300℃、剪断速度1000/秒)の範囲が好ましい範囲として例示できる。
【0122】
本発明の好ましい態様によれば、得られるPASは従来のものに比べ高純度であり、不純物であるアルカリ金属含量は100ppm以下のものが得られやすい特徴がある。好ましいアルカリ金属含量としては50ppm未満、より好ましくは30ppm以下、更に好ましくは10ppm以下である。アルカリ金属含有量が100ppm以下であると、例えば高度な電気絶縁特性が要求される用途において高い信頼性を発現し易くなる。ここで本発明におけるPASのアルカリ金属含有量とは、例えばPASを電気炉等を用いて焼成した残渣である灰分中のアルカリ金属量から算出される値であり、前記灰分を例えばイオンクロマト法や原子吸光法により分析することで定量することができる。
【0123】
本発明の好ましい態様により得られるPASの別の特徴は、加熱した際の重量減少が従来のPASと比較して著しく少なく、具体的には下記式(1)を満たす傾向にある。
△Wr=(W1−W2)/W1×100≦0.18(%) ・・・(1)
ここで△Wrは重量減少率(%)であり、常圧の非酸化性雰囲気下で50℃から330℃以上の任意の温度まで昇温速度20℃/分で熱重量分析を行った際に、100℃到達時点の試料重量(W1)を基準とした330℃到達時の試料重量(W2)から求められる値である。
【0124】
本発明の好ましい態様により得られるPASは△Wrが0.18%以下と極めて小さな値となる傾向が強く、好ましくは0.15%以下、より好ましくは0.12%以下となる優れた特性を有する傾向にある。△Wrが前記範囲であることは、たとえばPASを成形加工する際の発生ガス量を低減する傾向にあり、また、押出成形時の口金やダイス、また射出成型時の金型への付着物が低減され生産性が向上する傾向がある。本発明者らの知る限りでは公知のPASの△Wrは0.18%を越えるが、本発明の好ましい態様によって得られるPASは分子量分布や不純物含有量が公知のPASと異なりきわめて高純度となりやすいがために△Wrの値が著しく低下するものと推測している。
【0125】
なお、△Wrは一般的な熱重量分析によって求めることが可能であるが、この分析における雰囲気は常圧の非酸化性雰囲気を用いる。非酸化性雰囲気とは試料が接する気相における酸素濃度が5体積%以下、好ましくは2体積%以下、更に好ましくは酸素を実質的に含有しない雰囲気、即ち窒素、ヘリウム、アルゴン等の不活性ガス雰囲気であることを指し、この中でも特に経済性及び取扱いの容易さの面からは窒素雰囲気が特に好ましい。また、常圧とは大気の標準状態近傍における圧力のことであり、約25℃近傍の温度、絶対圧で101.3kPa近傍の大気圧条件のことである。測定の雰囲気が前記以外では、測定中にPASの酸化等が起こったり、実際にPASの成形加工で用いられる雰囲気と大きく異なるなど、PASの実使用に即した測定になり得ない可能性が生じる。また、△Wrの測定においては50℃から330℃以上の任意の温度まで昇温速度20℃/分で昇温して熱重量分析を行う。好ましくは50℃で1分間ホールドした後に昇温速度20℃/分で昇温して熱重量分析を行う。この温度範囲はポリフェニレンスルフィドに代表されるPASを実使用する際に頻用される温度領域であり、また、固体状態のPASを溶融させ、その後任意の形状に成形する際に頻用される温度領域でもある。このような実使用温度領域における重量減少率は、実使用時のPASからのガス発生量や成形加工の際の口金や金型などへの付着成分量などに関連する。従って、このような温度範囲における重量減少率が少ないPASの方が品質の高い優れたPASであるといえる。△Wrの測定は約10mg程度の試料量で行うことが望ましく、またサンプルの形状は約2mm以下の細粒状であることが望ましい。
【0126】
(13)PASの特性
本発明の好ましい態様によって得られるPASは、耐熱性、耐薬品性、難燃性、電気的性質並びに機械的性質に優れ、特に従来のPASと比べて分子量分布が狭く、且つ、金属含有量が著しく少ない傾向があるため、成形加工性や機械特性及び電気的特性が極めて優れており、射出成形、射出圧縮成形、ブロー成形用途のみならず、押出成形により、シート、フィルム、繊維及びパイプなどの押出成形品に成形,使用することができる。
【0127】
本発明の好ましい態様によって得られるPASを用いたPASフィルムの製造方法としては、公知の溶融製膜方法を採用することができ、例えば、単軸または2軸の押出機中でPASを溶融後、フィルムダイより押出し、冷却ドラム上で冷却してフィルムを作成する方法、あるいは、このようにして作成したフィルムをローラー式の縦延伸装置とテンターと呼ばれる横延伸装置にて縦横に延伸する二軸延伸法などが例示できるが、特にこれに限定されるものではない。
【0128】
本発明の好ましい態様によって得られるPASを用いたPAS繊維の製造方法としては、公知の溶融紡糸方法を適用することができ、例えば、原料であるPASチップを単軸または2軸の押出機に供給しながら混練し、ついで押出機の先端部に設置したポリマー流線入替器、濾過層などを経て紡糸口金より押出し、冷却、延伸、熱セットを行う方法などを採用することができるが、特にこれに限定されるものではない。
【0129】
また、本発明の好ましい態様によって得られるPASは、単独で用いてもよいし、所望に応じて、ガラス繊維、炭素繊維、酸化チタン、炭酸カルシウムなどの無機充填剤、酸化防止剤、熱安定剤、紫外線吸収剤、着色剤などを添加することもでき、ポリアミド、ポリスルホン、ポリフェニレンエーテル、ポリカーボネート、ポリエーテルスルホン、ポリエチレンテレフタレートやポリブチレンテレフタレートに代表されるポリエステル、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン、エポキシ基、カルボキシル基、カルボン酸エステル基、酸無水物基などの官能基を有するオレフィン系コポリマー、ポリオレフィン系エラストマー、ポリエーテルエステルエラストマー、ポリエーテルアミドエラストマー、ポリアミドイミド、ポリアセタール、ポリイミドなどの樹脂を配合することもできる。
【0130】
(14)PASの用途
本発明の好ましい態様によって得られるPASの優れた特性として成形加工性や機械特性及び電気的特性があげられ、その用途としては、例えばセンサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント基板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、半導体、液晶、FDDキャリッジ、FDDシャーシ、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品等に代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク(登録商標)、コンパクトディスク、デジタルビデオディスク等の音声・映像機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品等に代表される家庭、事務電気製品部品;オフィスコンピューター関連部品、電話器関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、モーター部品、ライター、タイプライターなどに代表される機械関連部品:顕微鏡、双眼鏡、カメラ、時計等に代表される光学機器、精密機械関連部品;水道蛇口コマ、混合水栓、ポンプ部品、パイプジョイント、水量調節弁、逃がし弁、湯温センサー、水量センサー、水道メーターハウジングなどの水廻り部品;バルブオルタネーターターミナル、オルタネーターコネクター,ICレギュレーター、ライトディマー用ポテンシオメーターベース、排気ガスバルブ等の各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキパッド摩耗センサー、エアコン用サーモスタットベース、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンベイン、ワイパーモーター関係部品、デュストリビューター、スタータースイッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウォッシャーノズル、エアコンパネルスイッチ基板、燃料関係電磁気弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、燃料タンク、点火装置ケース、車速センサー、ケーブルライナー等の自動車・車両関連部品、その他各種用途が例示できる。
【0131】
PASフィルムの場合、優れた機械特性、電気特性、耐熱性を有しており、フィルムコンデンサーやチップコンデンサーの誘電体フィルム用途、回路基板、絶縁基板用途、モーター絶縁フィルム用途、トランス絶縁フィルム用途、離型用フィルム用途など各種用途に好適に使用することができる。
【0132】
PASのモノフィランメントあるいは短繊維の場合、抄紙ドライヤーキャンバス、ネットコンベヤー、バグフィルター、絶縁ペーパーなどの各種用途に好適に使用することができる。
【実施例】
【0133】
以下に実施例を挙げて本発明を具体的に説明する。これら例は例示的なものであって限定的なものではない。
【0134】
<分子量測定>
ポリアリーレンスルフィド及びポリアリーレンスルフィドプレポリマーの分子量はサイズ排除クロマトグラフィー(SEC)の一種であるゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレン換算で算出した。GPCの測定条件を以下に示す。
装置:センシュー科学 SSC−7100
カラム名:センシュー科学 GPC3506
溶離液:1−クロロナフタレン
検出器:示差屈折率検出器
カラム温度:210℃
プレ恒温槽温度:250℃
ポンプ恒温槽温度:50℃
検出器温度:210℃
流量:1.0mL/min
試料注入量:300μL (スラリー状:約0.2重量%)
【0135】
<環式ポリフェニレンスルフィド生成率測定>
環式ポリフェニレンスルフィド化合物の生成率は、HPLCを用いて定性定量分析を行なった。HPLCの測定条件を以下に示す。
装置:島津株式会社製 LC−10Avpシリーズ
カラム:Mightysil RP−18 GP150−4.6(5μm)
検出器:フォトダイオードアレイ検出器(UV=270nm)
【0136】
[参考例1]
ここでは従来技術による線状PASの製造、すなわちスルフィド化剤とジハロゲン化芳香族化合物とを有機極性溶媒中で接触させて線状PASの製造を行った例を示す。
【0137】
攪拌機を具備したステンレス製オートクレーブに、水硫化ナトリウムの48重量%水溶液を116.9g(1.00モル)、96%水酸化ナトリウム43.8g(1.05モル)、N−メチル−2−ピロリドン(NMP)198.3g(2.00モル)、酢酸ナトリウム8.2g(0.10モル)、及びイオン交換水150gを仕込んだ。オートクレーブに精留塔を取り付けた後、240rpmで攪拌を開始し、常圧で窒素を通じながら内温235℃まで約3時間かけて徐々に加熱した。この間に精留塔から212gが系外に留出した。また、硫化水素の飛散量は0.012モルであった。なお、留出液をガスクロマトグラフィーにより分析した結果、水209gおよびNMP3.5gの混合液であり、反応系内の水及びNMPの量はそれぞれ2.3g、194.8gであることがわかった。
【0138】
留出終了後、反応容器を約160℃に冷却し、p−ジクロロベンゼン(p−DCB)148.5g(1.01モル)およびNMP99.1g(1.00モル)を追添加し、反応容器を窒素ガス下に密封した。400rpmで撹拌しながら、約30分かけて200℃まで昇温した後、200℃から270℃まで0.6℃/分の速度で昇温して、270℃で反応を140分間継続した。その後、250℃まで15分かけて冷却しながら、水36g(2.00モル)を系内に注入し、次いで250℃から220℃まで 0.4℃/分の速度で冷却した。その後室温近傍まで急冷した。
【0139】
内容物を取り出し、500gのNMPで希釈してスラリー状とし、85℃で約30分間攪拌した後、スラリーをステンレス製80meshふるいで濾別して固形分を回収した。得られた固形分にNMP400gを加え85℃で約30分間攪拌したのち同様に濾別し固形分を回収した。その後800gの温水で攪拌、洗浄、濾別する操作を5回繰り返し粒状の固形分を得た。これを60℃で熱風乾燥した後、120℃で減圧乾燥し、乾燥固体約90gを得た。
【0140】
この様にして得られた固体を分析した結果、赤外分光分析(装置;島津社製FTIR−8100A)における吸収スペクトルより線状のポリフェニレンスルフィドであることがわかった。また重量平均分子量は38,600であった。ここで得られたポリフェニレンスルフィドを以下、線状PPS−1と称する。
【0141】
[参考例2]
ここではスルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られる環式PASと線状PASを含むPAS混合物から環式PASを分離する方法により、参考例1よりも分子量の低い線状PASを製造した例を示す。
【0142】
攪拌機を具備したステンレス製オートクレーブに、水硫化ナトリウムの48重量%水溶液を46.7g(0.400モル)、96%水酸化ナトリウムを用いて調製した48重量%水溶液35.0g(0.420モル)、NMP1025g(10.3モル)、及びp−DCB60.0g(0.408モル)を仕込んだ。反応容器内を十分に窒素置換した後、窒素ガス下に密封した。
【0143】
400rpmで撹拌しながら、室温から200℃まで約1時間かけて昇温した。この段階で、反応容器内の圧力はゲージ圧で0.35MPaであった。次いで200℃から270℃まで約30分かけて昇温した。この段階の反応容器内の圧力はゲージ圧で1.05MPaであった。270℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0144】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、モノマーのp−DCBの消費率は93.6%、反応混合物中のイオウ成分がすべて環式PPSに転化すると仮定した場合の環式PPS生成率は16.5%であることがわかった。
【0145】
得られた内容物900gを約2700gのイオン交換水で希釈したのちに平均目開き10〜16マイクロメートルのガラスフィルターで濾過した。フィルターオン成分を約300gのイオン交換水に分散させ、70℃で30分攪拌し、再度前記同様の濾過を行う操作を計3回行い、白色固体を得た。これを80℃で一晩真空乾燥し、乾燥固体を得た。
【0146】
得られた固形物を円筒濾紙に仕込み、溶剤としてクロロホルムを用いて約5時間ソックスレー抽出を行うことで固形分に含まれる低分子量成分を除去した。
【0147】
抽出操作後に円筒濾紙内に残留した固形成分を70℃で一晩減圧乾燥しオフホワイト色の固体を約26g得た。分析の結果、赤外分光分析における吸収スペクトルよりこれは線状のポリフェニレンスルフィドであり、また、重量平均分子量は12,000であった。ここで得られたポリフェニレンスルフィドを以下、線状PPS−2と称する。
【0148】
[参考例3]
参考例2のクロロホルム抽出操作にて得られた抽出液から溶媒を除去した後、約10gのクロロホルムを加えてスラリーを調製し、これを約600gのメタノールに攪拌しながら滴下した。これにより得られた沈殿物を濾過回収し、70℃で5時間真空乾燥を行い、5.85gの白色粉末を得た。この白色粉末は赤外分光分析における吸収スペクトルよりフェニレンスルフィド単位からなる化合物であることを確認した。また、高速液体クロマトグラフィーにより成分分割した成分のマススペクトル分析(装置;日立製M−1200H)、更にMALDI−TOF−MSによる分子量情報より、この白色粉末は繰り返し単位数4〜12の環式ポリフェニレンスルフィドを主要成分とする混合物であり、環式ポリフェニレンスルフィドの重量分率は約94%であることがわかった。
【0149】
反応時に反応系内に存在するイオウ成分がすべてPPS成分に転化すると仮定した場合の白色粉末の収率は17.6%であった。
【0150】
[実施例1]
ここでは参考例1で得られた反応混合物を原料に反応(A)次いで反応(B)を行い、環式ポリフェニレンスルフィドの製造を行った結果を示す。
【0151】
<反応(A)>
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を5.18g(イオウ成分量0.0480mol)、水硫化ナトリウムの48重量%水溶液を1.40g(水硫化ナトリウム0.673g(0.0120mol),水0.729g(0.0405mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液1.25g(水酸化ナトリウム0.600g(0.0150mol),水0.650g(0.0361mol))、NMP61.5g(0.620mol)を仕込んだ。仕込んだスルフィド化剤のイオウ成分1モル当たりの線状PPS−1の使用量は4モルであった。また、線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.0600molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0152】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で0.6MPaであった。その後室温近傍まで急冷した。
【0153】
<反応(B)>
反応(A)で得られた反応液全量を、反応(A)とは異なるステンレス製オートクレーブに移し、NMP500g(5.04mol)で希釈した。反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、NMP54g(0.545mol)およびp−DCB2.21g(0.0150mol)をオートクレーブ内に圧入し、250℃で3時間保持して反応を行った。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.25モルであり、反応混合物中のイオウ成分1モルあたり0.25モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり10.0リットルであった。この段階での反応系内の圧力はゲージ圧で0.9MPaであった。室温近傍まで急冷してから内容物を回収した。
【0154】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は34.8%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は31.3%であることがわかった。
【0155】
得られた内容物200gを約600gのイオン交換水で希釈したのちに平均目開き10〜16マイクロメートルのガラスフィルターで濾過した。フィルターオン成分を約150gのイオン交換水に分散させた後、70℃で30分攪拌し、前記同様の濾過を行う操作を計3回行い、白色固体を得た。これを80℃で一晩真空乾燥し、乾燥固体を得た。
【0156】
得られた乾燥固体を円筒濾紙に仕込み、溶剤としてクロロホルム150gを用いて約5時間ソックスレー抽出を行った。抽出液から溶媒を除去した後、約5gのクロロホルムを加えてスラリーを調製し、これを約500gのメタノールに攪拌しながら滴下した。これにより得られた沈殿物を濾過回収し、70℃で5時間真空乾燥を行い、0.71gの白色粉末を得た。この白色粉末は赤外分光分析における吸収スペクトルよりフェニレンスルフィド単位からなる化合物であることを確認した。また、高速液体クロマトグラフィーにより成分分割した成分のマススペクトル分析、更にMALDI−TOF−MSによる分子量情報より、この各色粉末は繰り返し単位数4〜12の環式ポリフェニレンスルフィドを主要成分とする混合物であり、環式ポリフェニレンスルフィドの重量分率は約92%であることがわかった。
【0157】
また、この環状PPSの回収における、抽出操作後に円筒濾紙に残留した固形成分を70℃で一晩真空乾燥しオフホワイト色の固形分約1.19gを得た。分析の結果、赤外分光分析における吸収スペクトルよりこれは線状PPSであることを確認した。
【0158】
本発明の環式PAS製造法によれば、短時間且つ高効率で環式PASが得られることがわかった。
【0159】
[実施例2]
ここでは反応(B)における溶媒の使用量を実施例1よりも低減して環式ポリフェニレンスルフィドの製造を行った結果を示す。
【0160】
<反応(A)>
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を20.7g(イオウ成分量0.192mol)、水硫化ナトリウムの48重量%水溶液を5.61g(水硫化ナトリウム2.69g(0.048mol),水2.92g(0.162mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液5.00g(水酸化ナトリウム2.40g(0.060mol),水2.60g(0.144mol))、NMP246g(2.48mol)を仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS使用量は4モルであった。また、線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0161】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で0.9MPaであった。
【0162】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB8.82g(0.0600mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.25モルであり、反応混合物中のイオウ成分1モルあたり0.25モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で1.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0163】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は46.0%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は16.8%であることがわかった。
【0164】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度96%で環式PPSを含む白色粉末1.32gを得た。
【0165】
本発明の環式PAS製造法によれば、反応(B)における溶媒の使用量が少ない条件でも高収率で環式PASを得ることができ、さらに反応物単位量あたりに得られる環式PPSの収量も多いことがわかった。
【0166】
[参考例4]
ここでは、実施例2と同様に反応(A)を行い、反応(B)を行わずにプレポリマーを回収、分析した結果を示す。
【0167】
<プレポリマーの分子量測定>
実施例2と同様に反応(A)を行った。特許文献特開平4−7334に従ってプレポリマーの末端アルカリチオラート基をメチル化させて安定化し、分子量測定を行った結果、その重量平均分子量は1,500であることがわかった。
【0168】
<アルカリチオラート末端含有量の測定>
特許文献特開昭62−187731に従ってプレポリマーの末端アルカリチオラート基をチオール基に変換後、チオール末端量を定量したところ、プレポリマーのポリフェニレンスルフィド1モル当たり0.11モルであった。また、プレポリマーの重量平均分子量よりプレポリマーの末端1モル当たりチオール末端量は0.76モルと見積もられたことから、得られたプレポリマーには少なくとも一方の末端にチオラート基が導入されていることがわかった。
【0169】
[比較例1]
ここでは線状ポリアリーレンスルフィドとスルフィド化剤及びジハロゲン化芳香族化合物を一度に反応させる方法で環式PASの製造を行った結果を示す。
【0170】
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を20.7g(イオウ成分量0.192mol)、水硫化ナトリウムの48重量%水溶液を5.61g(水硫化ナトリウム2.69g(0.0480mol),水2.92g(0.162mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液5.00g(水酸化ナトリウム2.40g(0.0600mol),水2.600g(0.144mol))、N−メチル−2−ピロリドン(NMP)615g(6.20mol)、p−ジクロロベンゼン(p−DCB)8.82g(0.0600mol)を仕込んだ。仕込んだスルフィド化剤のイオウ成分1モル当たりの線状PPSの使用量は4モルであった。また、線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約2.50Lであった。
【0171】
反応容器を室温・常圧下にて窒素ガス下に密封した後、400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで250℃まで約35分かけて昇温した。この段階での反応系内の圧力はゲージ圧で0.7MPaであった。250℃で1時間保持した後、室温近傍まで急冷した。
【0172】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は69.0%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は12.4%であることがわかった。
【0173】
比較例1と実施例2の対比から明らかなように、線状PASとスルフィド化剤及びジハロゲン化芳香族化合物を一度に反応させた場合、高収率で環式PASが得られないことがわかった。
【0174】
[比較例2]
ここでは、反応(B)を行わなかった場合について例示する。
【0175】
反応(B)を行わなかったこと以外は実施例2と同様に環式PASの製造を行った。
【0176】
反応得(A)で得られた内容物を高速液体クロマトグラフィーにより分析した結果、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は2.89%であることがわかった。
【0177】
比較例2と実施例1〜2の対比から明らかなように、反応(B)を行わない場合は、ほとんど環式PASが得られないことがわかった。
【0178】
[実施例3]
ここでは原料の線状PASとモノマー原料の仕込み比率を変えて環式PASの製造を行った。スルフィド化剤のイオウ成分1モル当たり1.67モルのポリアリーレンスルフィドを使用して反応した結果について示す。
【0179】
<反応(A)>
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を16.2g(イオウ成分量0.150mol)、水硫化ナトリウムの48重量%水溶液を10.5g(水硫化ナトリウム5.05g(0.0900mol),水5.47g(0.304mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液8.50g(水酸化ナトリウム4.08g(0.102mol),水4.42g(0.246mol))、NMP246g(2.48mol)を仕込んだ。仕込んだスルフィド化剤のイオウ成分1モル当たりの線状PPS−1の使用量は1.67モルであった。線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0180】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で1.1MPaであった。
【0181】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB15.0g(0.102mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.13モルであり、反応混合物中のイオウ成分1モルあたり0.425モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で1.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0182】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は70.1%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は17.29%であることがわかった。
【0183】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度95%で環式PPSを含む白色粉末1.34gを得た。
【0184】
本発明の環式PAS製造方法によれば、反応(A)で仕込むスルフィド化剤1モル当たりに使用する線状PAS量を低減させても短時間且つ高効率で環式PASが得られることがわかった。
【0185】
[参考例5]
ここでは、実施例3と同様に反応(A)を行い、反応(B)を行わずにプレポリマーを回収、分析した結果を示す。
【0186】
実施例4と同様にして反応(A)を行い、得られた反応混合物を用いて参考例4と同様にして得られたプレポリマーの分子量測定を行った結果、重量平均分子量は1,000であった。また、参考例4と同様にして末端アルカリチオラート基をチオール基に変換したプレポリマーのチオール末端量を定量した結果、プレポリマーのポリフェニレンスルフィド1モル当たり0.19モルであり、プレポリマーの重量平均分子量よりプレポリマーの末端1モル当たりチオール末端量は0.86モルと見積もられたことから、得られたプレポリマーには少なくとも一方の末端にチオラート基が導入されていることがわかった。反応(A)においてスルフィド化剤のイオウ成分1モルに対して使用する線状PPS量を低減させることにより、より多くの末端にチオラート基が導入されたプレポリマーが得られることがわかった。
【0187】
[実施例4]
ここでは原料の線状PASとモノマー原料の仕込み比率を変えて環式PASの製造を行った。スルフィド化剤のイオウ成分1モル当たり10モルのポリアリーレンスルフィドを使用して反応した結果について示す。
【0188】
<反応(A)>
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を23.6g(イオウ成分量0.218mol)、水硫化ナトリウムの48重量%水溶液を2.55g(水硫化ナトリウム1.22g(0.0218mol),水1.33g(0.0736mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液2.82g(水酸化ナトリウム1.35g(0.0338mol),水1.47g(0.0814mol))、NMP246g(2.48mol)を仕込んだ。仕込んだスルフィド化剤のイオウ成分1モル当たりの線状PPS−1の使用量は10モルであった。また、線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0189】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で0.7MPaであった。
【0190】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB4.97g(0.034mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.55モルであり、反応混合物中のイオウ成分1モルあたり0.142モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で1.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0191】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は27.4%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は15.5%であることがわかった。
【0192】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度92%で環式PPSを含む白色粉末1.34gを得た。
本発明の環式PAS製造方法によれば、反応(A)で仕込むスルフィド化剤1モル当たりに使用する線状PAS量を増大させても短時間且つ高効率で環式PASが得られることがわかった。
【0193】
[実施例5]
ここでは実施例2よりも反応(B)で使用する溶媒量を低減させた条件で環式PASの製造を行った結果を示す。
【0194】
<反応(A)>
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を20.7g(イオウ成分量0.192mol)、水硫化ナトリウムの48重量%水溶液を5.61g(水硫化ナトリウム2.69g(0.0480mol),水2.92g(0.162mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液5.00g(水酸化ナトリウム2.40g(0.0600mol),水2.600g(0.144mol))、NMP246g(2.48mol)を仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS−1の使用量は4モルであった。また、線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0195】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で0.9MPaであった。
【0196】
<反応(B)>
反応(A)に次いで、NMP105g(1.06mol)およびp−DCB8.82g(0.0600mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.25モルであり、反応混合物中のイオウ成分1モルあたり0.25モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり1.43リットルであった。この段階での反応系内の圧力はゲージ圧で1.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0197】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は56.8%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は7.67%であることがわかった。
【0198】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度97%で環式PPSを含む白色粉末1.05gを得た。
【0199】
本発明のより好ましい反応条件と比較すると反応物単位量あたりに得られる環式PPS収率は若干低下したが、本実施例5と同一濃度条件で従来の線状PASとスルフィド化剤及びジハロゲン化芳香族化合物を一度に反応させた場合と比較すると、大幅に高収率で環式PASが得られることがわかった。
【0200】
[比較例3]
ここでは線状ポリアリーレンスルフィドとスルフィド化剤およびジハロゲン化化合物を一度に反応させる方法で環式PASの製造を行った結果を示す。なお、ここでの有機極性溶媒使用量は、スルフィド化剤のイオウ成分1モルあたり1.43リットルとした。
【0201】
撹拌機を具備したステンレス製オートクレーブに参考例1で得られた線状PPS−1を36.3g(イオウ成分量0.336mol)、水硫化ナトリウムの48重量%水溶液を9.82g(水硫化ナトリウム4.71g(0.0840mol),水5.11g(0.284mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液8.02g(水酸化ナトリウム3.70g(0.0924mol),水4.17g(0.232mol))、NMPを615g(6.21mol)、およびp−DCB12.3g(0.0840mol)を仕込んだ。線状PPS−1および水硫化ナトリウムに由来するイオウ成分の合計は0.42molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.43Lであった。
【0202】
反応容器を室温・常圧下にて窒素ガス下に密封した後、400rpmで撹拌しながら、室温から200℃まで約1時間かけて昇温した。次いで270℃まで約0.5時間かけて昇温した。270℃で1時間保持した後、室温近傍まで急冷した。
【0203】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は82.3%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は5.23%であることがわかった。
【0204】
次に得られた反応物を200g分取し、実施例3と同様に環式PPSの回収を行い、純度83%で環式PPSを含む白色粉末0.91gを得た。
【0205】
比較例3と実施例5の対比から明らかなように、線状PASとスルフィド化剤及びジハロゲン化芳香族化合物を一度に反応させた場合、高収率で環式PASが得られないことがわかった。
【0206】
[実施例6]
ここでは原料の線状PASを変えて環式PASの製造を行った結果を示す。
【0207】
線状PASとして参考例2で得られた線状PPS−2を参考例1で得られたPPS−1の代わりに20.7g(0.192mol)仕込んだ以外は実施例2と同様に環式PASの製造を行った。
【0208】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は53.2%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は17.1%であることがわかった。
【0209】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度94%で環式PPSを含む白色粉末1.44gを得た。
【0210】
本発明の環式PASの製造方法によれば、スルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られる環式PASと線状PASを含むPAS混合物から環式PASを分離する方法により得られる線状PASを用いても短時間且つ高効率で環式PASが得られることがわかった。
【0211】
[参考例6]
ここでは、実施例2の方法をスケールアップして実施し、得られた反応混合物から環式PASを分離することにより線状PASを製造した例を示す。
実施例2と同様に反応(A)、次いで反応(B)を行った。得られた内容物800gを約2400gのイオン交換水で希釈したのちに平均目開き10〜16マイクロメートルのガラスフィルターで濾過した。フィルターオン成分を約480gのイオン交換水に分散させた後、70℃で30分攪拌し、前記同様の濾過を行う操作を計3回行い、白色固体を得た。これを80℃で一晩真空乾燥し、乾燥固体を得た。
【0212】
得られた乾燥固体を円筒濾紙に仕込み、溶剤としてクロロホルムを用いて約5時間ソックスレー抽出を行うことで環状PPA及び低分子量成分を除去した。
【0213】
抽出操作後に円筒濾紙に残留した固形成分を70℃で一晩真空乾燥しオフホワイト色の固形分約24gを得た。分析の結果、赤外分光分析における吸収スペクトルよりこれは線状PPSであり、また重量平均分子量は10,000であった。ここで得られたポリフェニレンスルフィドを以下、線状PPS−3と称する。
【0214】
[実施例7]
ここでは、参考例6で得られた線状PPS−3を原料に用いて環式PASの製造を行った例を示す。
【0215】
参考例6で得られた線状PAS−3を参考例1で得られた線状PPS−1の代わりに20.7g(0.192mol)仕込んだ以外は実施例2と同様に行った。
【0216】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は48.4%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は17.4%であることがわかった。
【0217】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度95%で環式PPSを含む白色粉末1.45gを得た。
【0218】
実施例7より反応(A)を行い、次いで反応(B)を行うことにより得られた反応混合物から環式PASを分離することによって得られる線状PASを原料として用いても同様に短時間且つ高効率で環式PASが得られることがわかった。
【0219】
[参考例7]
ここではスルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られる反応混合物を固液分離に処することで環式PASと線状PASの分離を行い、溶媒を含む固形分として線状PASを製造した例を示す。
【0220】
参考例2と同様にして反応を行い、得られた内容物、すなわち少なくとも環式PAS、線状PAS、NMP及び副生塩としてNaClを含む反応混合物をナスフラスコに仕込み、フラスコ内を十分に窒素置換した後、攪拌しながら約100℃に加熱した。平均目開き10マイクロメートルのガラスフィルターをセットした加圧ろ過器のフィルター部分を100℃に調温し、加圧窒素を用いた熱時加圧濾過にて前記反応混合物の固液分離を行った。この操作により湿潤状態の固形分を得た。
【0221】
得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体の分析の結果、赤外分光分析における吸収スペクトルよりこれは線状のポリフェニレンスルフィドであり、また、重量平均分子量は11,000であることがわかった。また、得られた乾燥固体の重量から、湿潤状態の固形分の線状PPS含有率は約22%であることがわかった。以下、ここで得られた線状PPSを含む湿潤状態の固形分を線状PPS−4と称する。なお、前記湿潤状態の固形分の分析を行った結果、NMP及びNaCl含有率はそれぞれ約47%、約31%であった。
【0222】
[実施例8]
ここでは参考例7で得られた湿潤状態の線状PPS(線状PPS−4)を原料に用いて環式PASの製造を行った例を示す。
【0223】
撹拌機を具備したステンレス製オートクレーブに参考例7に示した方法で得られた湿潤状態の線状PPS(線状PPS−4)を94.26g(線状PPSを20.7g、NMPを44.3g含む。イオウ成分量基準で0.192mol)、水硫化ナトリウムの48重量%水溶液を5.61g(水硫化ナトリウム2.69g(0.0480mol),水2.92g(0.162mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液5.00g(水酸化ナトリウム2.40g(0.060mol),水2.60g(0.144mol))、NMP202g(2.03mol)を仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS−4の使用量は4モルであった。また、線状PPS−4および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0224】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で0.9MPaであった。
【0225】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB8.82g(0.0600mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.25モルであり、反応混合物中のイオウ成分1モルあたり0.25モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で1.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0226】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は51.2%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は16.9%であることがわかった。
【0227】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度93%で環式PPSを含む白色粉末1.44gを得た。
【0228】
原料PASとして湿潤状態の線状PPSを用いても環式PASが高収率で得られることがわかった。
【0229】
[実施例9]
ここでは実施例8の方法で反応を行った後、得られた反応混合物を参考例7と同様の方法で固液分離し、この固液分離で得られた湿潤状態の線状PASを原料として環式PASの製造を実施した例を示す。
【0230】
原料として参考例7に示した方法で得られた湿潤状態の線状PPS(線状PPS−4)を用いて実施例8と同様に反応(A)、次いで反応(B)を行った。得られた反応混合物を参考例7と同様に、加圧ろ過器を用いた固液分離に処して湿潤状態の固形分を得た。以下、ここで得られた線状PPSを含む湿潤状態の固形分を線状PPS−5と称する。得られた湿潤状態の固形分の一部を分取して、温水を用いた洗浄を十分に行った後に乾燥し乾燥固体を得た。この乾燥固体の分析の結果、赤外分光分析における吸収スペクトルよりこれは線状のポリフェニレンスルフィドであり、また、重量平均分子量は10,500であることがわかった。また、得られた乾燥固体の重量から、湿潤状態の固形分の線状PPS含有率は約22%であることがわかった。なお、前記湿潤状態の固形分の分析を行った結果、NMP及びNaCl含有率はそれぞれ約43%、約35%であった。
【0231】
撹拌機を具備したステンレス製オートクレーブに上記で得られた湿潤状態の線状PPS(線状PPS−5)を59.0g(線状PPSを13.0g、NMPを25.4g含む。イオウ成分量基準で0.120mol)、水硫化ナトリウムの48重量%水溶液を3.52g(水硫化ナトリウム1.69g(0.0301mol),水1.83g(0.102mol))、純度96%の水酸化ナトリウムを用いて調製した48重量%水溶液3.14g(水酸化ナトリウム1.51g(0.0376mol),水1.63g(0.091mol))、NMP154g(1.56mol)を仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS−5の使用量は4モルであった。また、線状PPS−5および水硫化ナトリウムに由来するイオウ成分の合計は0.150molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0232】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で0.7MPaであった。
【0233】
<反応(B)>
反応(A)に次いで、NMP231g(2.33mol)およびp−DCB5.53g(0.0376mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.25モルであり、反応混合物中のイオウ成分1モルあたり0.25モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で1.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0234】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は49.6%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は16.4%であることがわかった。
【0235】
次に得られた反応物を200g分取し、実施例1と同様に環状PPSの回収を行い、純度91%で環式PPSを含む白色粉末1.42gを得た。
実施例8,9より、湿潤状態の線状PASを原料に反応(A)を行い、ついで反応(B)を行うことにより得られた反応物を分離することで得られる湿潤状態の線状PASを線状PAS(a)として用いた場合でも環式PASが高収率で得られることができることがわかった。
【0236】
[参考例8]
ここでは水を含むスルフィド化剤を原料に用いて有機極性溶媒中で脱水処理を行い、水分量の低減されたスルフィド化剤を調製する方法を例示する。
【0237】
攪拌機付き1リットルオートクレーブに48重量%の水硫化ナトリウム水溶液28.1g(水硫化ナトリウムとして0.241モル)、48重量%の水酸化ナトリウム水溶液19.8g(水酸化ナトリウムとして0.238モル)、N−メチル−2−ピロリドン(NMP)238.0g(2.40モル)を仕込んだ。原料に含まれる水分量は24.9g(1.38モル)であり、スルフィド化剤のイオウ成分1モル当たりの水の量は5.75モルであった。また、スルフィド化剤のイオウ成分1モル当たりの溶媒量は約0.97Lであった。
【0238】
オートクレーブ上部にバルブを介して充填剤入りの精留塔を取り付け、常圧で窒素を通じて240rpmで撹拌しながら230℃まで約3時間かけて徐々に加熱して脱液を行い、留出液27.1gを得た。
【0239】
この留出液をガスクロマトグラフ法で分析したところ留出液の組成は水23.4g、NMPが3.7gであり、この段階では反応系内に水が1.5g(0.083モル)、NMPが234.3g(2.36モル)残存していることが判った。なお、脱水工程を通して反応系から飛散した硫化水素は0.004モルであり、硫化水素の飛散により反応系から水硫化ナトリウムが0.004モル減少し、水酸化ナトリウムが0.004モル増加したことになる。
【0240】
次いで反応器を室温近傍まで冷却して半固体状の内容物を回収した。上記分析の結果、この内容物は、水硫化ナトリウムを0.237mol、水酸化ナトリウムを0.242mol、水を0.083mol、NMPを234.3g(2.36mol)含む、含水量の少ないスルフィド化剤であることがわかった。
【0241】
[実施例10]
ここでは参考例8で得られた含水量の少ないスルフィド化剤を用いることで、反応(A)における水分率を低く保った状態で環式PASの製造を実施した例を示す。
【0242】
<反応(A)>
攪拌機を具備したステンレス製オートクレーブに参考例7で得られた湿潤状態の線状PPS(線状PPS−4)を94.26g(線状PPSを20.7g、NMPを44.3g含む。イオウ成分量基準で0.192mol)、参考例8で得られた含水量の少ないスルフィド化剤を52.33g(水硫化ナトリウムを2.69g(0.0480mol)、水酸化ナトリウムを1.96g(0.0490mol)、NMPを47.4g(0.478mol)、水を0.30g(0.017mol)含む)、NMPを154.6g(1.56mol)仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS−4の使用量は4モルであった。また、線状PPS−4および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0243】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で約0.5MPaであった。
【0244】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB8.82g(0.0600mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.25モルであり、反応混合物中のイオウ成分1モルあたり0.25モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で約0.4MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0245】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は51.6%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は14.9%であることがわかった。
【0246】
スルフィド化剤として含水率の低いものを用いて、反応混合物の含水量を低減して環状PASの製造を行っても環式PASが高収率で得られることがわかり、なおかつ反応時の圧力を低く保つことが可能となることがわかった。また、本実施例10と比べて水分量が多い条件で実施した実施例2との比較より、水分量を少なくすることで原料のp−DCBの消費も促進されることがわかった。
【0247】
[実施例11]
ここでは、含水量の少ないスルフィド化剤を用いて、反応(A)における線状PASとスルフィド化剤の比率を、実施例10の場合よりも低い条件として環状PASの製造を行った例を示す。
【0248】
反応(A)において、参考例7で得られた湿潤状態の線状PPS(線状PPS−4)を70.8g(線状PPSを15.6g、NMPを33.3g含む。イオウ成分量基準で0.144mol)、参考例8で得られた含水量の少ないスルフィド化剤を104.7g(水硫化ナトリウムを5.38g(0.0960mol)、水酸化ナトリウムを3.92g(0.0980mol)、NMPを94.8g(0.956mol)、水を0.60g(0.033mol)含む)、NMPを118.2g(1.19mol)仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS−4の使用量は1.5モルであった。また、線状PPS−4および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0249】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で約0.5MPaであった。
【0250】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB15.9g(0.108mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.125モルであり、反応混合物中のイオウ成分1モルあたり0.45モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で約0.4MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0251】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は75.0%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は14.9%であることがわかった。
【0252】
スルフィド化剤として含水率の低いものを用いて、反応混合物の含水量を低減して環状PASの製造を行っても環式PASが高収率で得られることがわかり、なおかつ反応時の圧力を低く保つことが可能となることがわかった。また、実施例10との比較により、スルフィド化剤のイオウ成分1モルあたりの線状PPSの使用量を本発明の望ましい範囲にすることで、環式PASの収率と原料であるDCBの転化率を向上させうることがわかった。
【0253】
[実施例12]
ここでは、含水量の少ないスルフィド化剤を用いて、反応(A)における線状PASとスルフィド化剤の比率を、実施例11の場合よりもさらに低い条件として環状PASの製造を行った例を示す。
【0254】
反応(A)において、参考例7で得られた湿潤状態の線状PPS(線状PPS−4)を47.1g(線状PPSを10.4g、NMPを22.2g含む。イオウ成分量基準で0.0.096mol)、参考例8で得られた含水量の少ないスルフィド化剤を157.0g(水硫化ナトリウムを8.07g(0.144mol)、水酸化ナトリウムを5.88g(0.147mol)、NMPを142.2g(1.43mol)、水を0.90g(0.050mol)含む)、NMPを82.0g(0.827mol)仕込んだ。スルフィド化剤のイオウ成分1モル当たりの線状PPS−4の使用量は0.67モルであった。また、線状PPS−4および水硫化ナトリウムに由来するイオウ成分の合計は0.240molであり、反応混合物中のイオウ成分1モルあたりの溶媒量は約1.00Lであった。
【0255】
反応容器内を十分に窒素置換した後、反応系内を窒素にて0.3MPa(ゲージ圧)まで加圧した。400rpmで撹拌しながら、室温から200℃まで約25分かけて昇温した。次いで200℃から250℃まで約35分かけて昇温した後、250℃で30分保持した。この段階での反応系内の圧力はゲージ圧で約0.5MPaであった。
【0256】
<反応(B)>
反応(A)に次いで、NMP369g(3.72mol)およびp−DCB22.9g(0.156mol)をオートクレーブ内に圧入した。p−DCB追加量は、反応(A)で用いた水硫化ナトリウム1モルあたり1.125モルであり、反応混合物中のイオウ成分1モルあたり0.65モルであった。また、溶媒量は反応混合物中のイオウ成分1モルあたり2.50リットルであった。この段階での反応系内の圧力はゲージ圧で約0.5MPaであった。250℃で1時間保持した後、室温近傍まで急冷してから内容物を回収した。
【0257】
得られた内容物をガスクロマトグラフィー及び高速液体クロマトグラフィーにより分析した結果、p−DCBの消費率は75.0%、反応混合物中のイオウ成分がすべて環式PASに転化すると仮定した場合の環式PASの生成率は14.9%であることがわかった。
【0258】
スルフィド化剤として含水率の低いものを用いて、反応混合物の含水量を低減して環状PASの製造を行っても環式PASが高収率で得られることがわかり、なおかつ反応時の圧力を低く保つことが可能となることがわかった。また、実施例10及び実施例12との比較より、スルフィド化剤のイオウ成分1モルあたりの線状PPSの使用量を本発明の最も望ましい範囲よりも低く設定すると、原料であるDCBの転化率は向上するものの、環式PASの収率は若干低下することがわかった。

【特許請求の範囲】
【請求項1】
少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応(A)を行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことを特徴とする環式ポリアリーレンスルフィドの製造方法。
【請求項2】
反応(A)を実質的にジハロゲン化芳香族化合物の非存在下で行うことを特徴とする請求項1に記載の環式ポリアリーレンスルフィドの製造方法。
【請求項3】
反応(A)を反応混合物中のイオウ成分1モルに対して1.25リットル未満の有機極性溶媒を用いて行い、次いで反応(A)で得られた反応混合物に有機極性溶媒を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて反応(B)を行う事を特徴とする請求項1から2のいずれかに記載のポリアリーレンスルフィドの製造方法。
【請求項4】
反応(A)を常圧における還流温度を超える温度で行う事を特徴とする請求項1から3のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
【請求項5】
反応(A)で得られた反応混合物に含まれるポリアリーレンスルフィドが、少なくとも一方の末端にアルカリチオラート基を有する重量平均分子量5,000未満のプレポリマーであることを特徴とする請求項1から4のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
【請求項6】
線状ポリアリーレンスルフィド(a)の重量平均分子量が5,000以上であることを特徴とする請求項1から5のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
【請求項7】
反応(B)において反応混合物が含むアリーレン成分が、反応(B)の反応混合物が含むイオウ成分1モル当たり0.9〜2.0モルであることを特徴とする請求項1から6のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
【請求項8】
スルフィド化剤とジハロゲン化芳香族化合物とを有機極性溶媒中で接触させることで得られたポリアリーレンスルフィドを線状ポリアリーレンスルフィド(a)として用いる事を特徴とする請求項1から7のいずれかに記載の環式ポリアリーレンスルフィドの製造方法。
【請求項9】
スルフィド化剤とジハロゲン化芳香族化合物とをスルフィド化剤のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒を用いて、加熱して反応させて得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを線状ポリアリーレンスルフィド(a)として用いることを特徴とする請求項1から7のいずれかに記載の環式ポリアリーレンスルフィド製造方法。
【請求項10】
少なくとも線状ポリアリーレンスルフィド(a)、スルフィド化剤(b)、有機極性溶媒(c)、およびスルフィド化剤(b)のイオウ成分1モル当たり0.9モル未満のジハロゲン化芳香族化合物(d)を含む反応混合物を加熱して反応(A)を行い、次いで得られた反応混合物に反応(A)で用いたジハロゲン化芳香族化合物を含めた総量が反応(A)で用いたスルフィド化剤(b)のイオウ成分1モル当たり0.9〜2.0モルになるようにジハロゲン化芳香族化合物(d)を追加して、反応混合物中のイオウ成分1モルに対して1.25リットル以上の有機極性溶媒中で加熱して反応(B)を行うことにより得られた環式ポリアリーレンスルフィドと線状ポリアリーレンスルフィドを含むポリアリーレンスルフィド混合物から、環式ポリアリーレンスルフィドを分離することによって得られた線状ポリアリーレンスルフィドを線状ポリアリーレンスルフィド(a)として用いることを特徴とする請求項1から7のいずれかに記載の環式ポリアリーレンスルフィド製造方法。

【公開番号】特開2011−68885(P2011−68885A)
【公開日】平成23年4月7日(2011.4.7)
【国際特許分類】
【出願番号】特願2010−191970(P2010−191970)
【出願日】平成22年8月30日(2010.8.30)
【出願人】(000003159)東レ株式会社 (7,677)
【Fターム(参考)】