説明

生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法

【課題】微量な反応液で、標的核酸の定量を効率よく行うことが可能な、生体試料定量用チップ及び生体試料定量方法を得る。
【解決手段】マイクロリアクターアレイ10は、既知量の標的核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための反応容器群Aと、標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の量含まれる核酸増幅反応液を導入して核酸増幅反応を行うための反応容器群Bと、検体と、既知量の内部標準核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための反応容器群C,Dを備え、反応容器104は、核酸増幅反応によって増幅された核酸の一部に結合する蛍光プローブが塗布されている。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、核酸の定量などを行うための生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法に関するものである。
【背景技術】
【0002】
ガラス基板等に微細流路が設けられたマイクロ流体チップを使用して、化学分析や化学合成、あるいはバイオ関連の分析などを行う方法が注目されている。マイクロ流体チップは、マイクロTotal Analytical System(マイクロTAS)や、Lab-on-a-chip等とも呼ばれ、従来の装置に比較して試料や試薬の必要量が少ない、反応時間が短い、廃棄物が少ないなどのメリットがあり、医療診断、環境や食品のオンサイト分析、医薬品や化学品などの生産等、広い分野での利用が期待されている。試薬の量が少なくてよいことから、検査のコストを下げることが可能となり、また、試料および試薬の量が少ないことにより、反応時間も大幅に短縮されて検査の効率化が図れる。特に、医療診断に使用する場合には、試料となる血液など検体を少なくすることができるため、患者の負担を軽減できるというメリットもある。
【0003】
試料として用いるDNAやRNAなどの遺伝子を増幅する方法として、ポリメラーゼ連鎖反応(PCR)法がよく知られている。PCR法は、ターゲットのDNAと試薬を混合したものをチューブに入れ、サーマルサイクラーという温度制御装置で、例えば55℃、72℃、94℃の3段階の温度変化を数分の周期で繰り返し反応させるもので、ポリメラーゼという酵素の作用により温度サイクル1回あたり、約2倍にターゲットDNAだけを増幅することができる。
【0004】
近年、特殊な蛍光プローブを用いたリアルタイムPCRという方法が実用化され、増幅反応を行いながらDNAの定量ができるようになった。リアルタイムPCRは、測定の感度、信頼性が高いことから、研究用、臨床検査用に広く使われている。
【0005】
特許文献1〜3には、サンプル中に含まれる標的核酸の定量方法に関する技術が記載されている。リアルタイムPCR法でDNAの定量を行う場合、絶対定量法か相対定量法が用いられるが、臨床検査では主に絶対定量法が用いられる。絶対定量法では既知のコピー数の標的核酸を含んだ標準サンプルを用いて検量線を作成し、測定対象サンプルに含まれる標的拡散のコピー数(絶対量)を測定する。検量線を作成するためには、標準サンプルの希釈系列を作製し、少なくとも5点の測定データを取得して検量線をひく必要がある。この検量線の作成が作業を煩雑にし、検査コストが高くなる原因になっている。また、リアルタイムPCR法では、検体中に増幅反応を阻害する物質が存在する場合、測定結果が検量線からずれるため、信頼性が低くなる場合がある。
【0006】
また、PCRに必要な反応液の量は数十μlが標準的であり、さらに1つの反応系では基本的に1つの遺伝子の測定しかできないという問題があった。蛍光プローブを複数入れてその色で区別することにより4種類程度の遺伝子を同時に測定する方法もあるが、それ以上の遺伝子を同時に測定するためには反応系の数を増やすしかなかった。検体から抽出されるDNAの量は一般に少量であり、また試薬も高価なため同時に多数の反応系を測定することは困難であった。反応容器を小型化する方法も提案されているが、検体液の分注精度の低下や、1つの反応容器中に含まれる標的核酸の量が少なくなるといった理由により、定量ばらつきが大きくなるという問題があった。
【特許文献1】特許第2878453号公報
【特許文献2】特許第3331178号公報
【特許文献3】WO2005/059548号公報
【発明の開示】
【発明が解決しようとする課題】
【0007】
そこで、本発明の目的は、微量な反応液で、標的核酸の定量を効率よく行うことが可能な、生体試料定量用チップ、生体試料定量用キット、及び生体試料定量方法を得ることである。
【課題を解決するための手段】
【0008】
本発明に係る生体試料定量用チップは、検体に含まれる標的核酸の定量を行うための生体試料定量用チップであって、既知量の前記標的核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第1の反応容器群と、前記標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の量含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第2の反応容器群と、前記検体と、既知量の前記内部標準核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第3の反応容器群と、を備え、前記第1〜第3の反応容器群は、前記核酸増幅反応によって増幅された核酸の一部に結合する蛍光プローブが塗布された複数の反応容器を備えている。
【0009】
本発明に係る生体試料定量用チップを用いれば、第1の反応容器群には標的標準核酸、第2の反応容器群には内部標準核酸、第3の反応容器群には検体と内部標準核酸を導入して核酸増幅反応を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、第1及び第2の反応容器群における蛍光強度の変化から検体中の標的核酸量と蛍光変化量との関係(検量線)を得ることができる。よって、標的核酸の定量を高精度に効率よく行うことが可能である。
【0010】
また、前記第1〜第3の反応容器群は、それぞれ異なる標的核酸を増幅するためのプライマーが塗布された複数の反応容器を備えていることが望ましい。
これにより、同時に多数種類の標的核酸の増幅及び定量を行うことができる。
【0011】
また、前記第1〜第3の反応容器群は、各々の前記反応容器に接続された反応液導入用流路と、前記反応液導入用流路に接続された反応液収容部と、前記反応液導入用流路に接続された廃液収容部と、を備えていることが望ましい。
【0012】
本発明によれば、遠心力を利用して、反応容器内に反応液を供給することにより、ピペットで定量することが難しい非常に少量の反応液での反応処理及び定量が可能となる。
【0013】
また、前記第1の反応容器群は、一定量の前記標的核酸が塗布された複数の反応容器を備え、前記第2及び第3の反応容器群は、一定量の前記内部標準核酸が塗布された複数の反応容器を備えているようにしてもよい。
このように、各々の反応容器に必要な標的核酸及び内部標準核酸を予め塗布しておくことにより、使用時には核酸増幅反応液と検体液をそれぞれ導入するだけでよく作業が簡易になるので、導入する溶液の間違いなどが発生しにくい。
【0014】
本発明に係る生体試料定量用キットは、本発明に係る生体試料定量用チップを備えた生体試料定量用キットであって、前記第1の反応容器群に導入するための、既知量の前記標的核酸が含まれる核酸増幅反応液と、前記第2の反応容器群に導入するための、前記内部標準核酸が既知の量含まれる核酸増幅反応液と、前記第3の反応容器群に前記検体と併せて導入するための、既知量の前記内部標準核酸が含まれる核酸増幅反応液と、を含むものである。
本発明によれば、使用時にはキットに含まれる反応液をそれぞれ対応する反応容器群に導入すればよいので、容易に増幅反応及び定量を行うことができる。
【0015】
本発明に係る生体試料定量方法は、本発明に係る生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行うための生体試料定量方法であって、前記第1の反応容器群に既知量の前記標的核酸が含まれる核酸増幅反応液を、前記第2の反応容器群に前記内部標準核酸が既知の量含まれる核酸増幅反応液を、前記第3の反応容器群に前記検体と既知量の前記内部標準核酸が含まれる核酸増幅反応液を、それぞれ導入する第1の工程と、核酸増幅反応を行う第2の工程と、各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むものである。
【0016】
また、前記第1の反応容器群が、一定量の前記標的核酸が塗布された複数の反応容器を備え、前記第2及び第3の反応容器群が、一定量の前記内部標準核酸が塗布された複数の反応容器を備えている場合には、
前記第1の反応容器群及び前記第2の反応容器群に前記核酸増幅反応液を、前記第3の反応容器群に前記検体と前記核酸増幅反応液を導入する第1の工程と、核酸増幅反応を行う第2の工程と、各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むものである。
【0017】
本発明によれば、第1の反応容器群には標的標準核酸、第2の反応容器群には内部標準核酸、第3の反応容器群には検体と内部標準核酸を導入して核酸増幅反応を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、第1及び第2の反応容器群における蛍光強度の変化から検体中の標的核酸量と蛍光変化量との関係(検量線)を得ることができる。よって、標的核酸の定量を高精度に効率よく行うことが可能である。
【0018】
また、前記第4の工程では、前記核酸増幅反応の前後で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定することが望ましい。
また、前記第4の工程では、前記核酸増幅反応後において前記蛍光プローブが増幅された核酸の一部に結合している第1の状態、及び前記核酸増幅反応後において前記蛍光プローブが増幅された核酸から解離している第2の状態で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定するようにしてもよい。
これにより、検量線の精度を向上させることができる。
【発明を実施するための最良の形態】
【0019】
以下、本発明の実施の形態について図面を参照して説明する。
実施の形態1.
図1(A)は、本発明の実施の形態1によるマイクロリアクターアレイ(生体試料定量用チップ)10の概略構成を示す上面図、図1(B)は図1(A)のC−C断面図である。図に示すように、マイクロリアクターアレイ10は、透明基板101,102,103、反応容器104、反応液導入用流路105、廃液収容部106、反応液収容部107、反応液導入用流路105と廃液収容部106を接続する流路108、反応液供給口109を備えている。
【0020】
図1(B)に示すように、マイクロリアクターアレイ10は、透明基板101,102,103を貼り合わせて構成されている。透明基板101には、複数の反応容器104、反応液導入用流路105、反応液収容部107、反応液供給口109が形成されている。透明基板102には、廃液収容部106、流路108が形成されている。透明基板101,102,103は例えば樹脂基板とすることができ、各部は例えば射出成型により形成することができる。
【0021】
マイクロリアクターアレイ10には反応容器群A〜Dが設けられている。反応容器群A〜Dは、各々が複数の反応容器104、各々の反応容器104に接続された反応液導入用流路105、反応液導入用流路105に接続された反応液収容部107、及び反応液導入用流路105に接続された廃液収容部106を備えている。
【0022】
後述するように、反応容器群A(第1の反応容器群)は、標的核酸が既知の濃度で含まれる標的標準核酸溶液を導入して核酸増幅反応を行うための反応容器群である。反応容器群B(第2の反応容器群)は、標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の濃度で含まれる内部標準核酸溶液を導入して核酸増幅反応を行うための反応容器群である。反応容器群C及び反応容器群D(第3の反応容器群)は、検体液と内部標準核酸溶液を導入して核酸増幅反応を行うための反応容器群である。
【0023】
反応容器104は、例えば直径500μmの円形状で、深さ100μmに形成されている。反応液導入用流路105は、反応液の流れる方向に垂直な断面が、幅200μm、深さ100μmに形成されている。隣り合う反応容器104間の距離は、反応容器104間での反応液の混合を防止できるように十分に確保されている。なお、反応容器104、及び反応液導入用流路105は、気泡の吸着を防止するため内壁面が親液性となるように表面処理を施しておくことが望ましい。また、反応容器104、及び反応液導入用流路105の内壁面にはタンパク質などの生体分子の非特異吸着を抑制する表面処理が施されていることが望ましい。
【0024】
また、各々の反応容器104には蛍光プローブが塗布されている。蛍光プローブは、PCR反応によって増幅された標的核酸の一部に結合し、内部標準核酸と標的核酸を識別して蛍光変化を示すものであればよく、Taqman probe(登録商標)、Hyb probe(登録商標)、Molecular Beacon(登録商標)、Q−Probe(登録商標)などを利用することができる。
【0025】
廃液収容部106は、反応液導入用流路105と流路108を介して接続されている。廃液収容部106には、後述するように、反応液導入用流路105に充填された反応液が排出されるため、反応液導入用流路105の容積よりも大きな容積を有していればよい。流路108は透明基板102を垂直に貫通するように設けられている。
【0026】
また、透明基板101,102,103の互いに接触する面が撥液性を有するように表面処理を施したり、接触面にシール性を持たせたりすることにより、反応容器104から反応液が漏れ、基板表面を伝わって別の反応容器104に入ることを防ぐことができる。具体的には接触面をシリコーンゴムやフッ素樹脂でコートするなどの方法が考えられる。
【0027】
次に、マイクロリアクターアレイ10に反応液を充填する方法を説明する。まず、反応容器群A〜Dの各反応液収容部107に、反応液供給口109からピペット等を用いて反応液を供給する。
【0028】
反応容器群Aの反応液収容部107に供給する反応液には、標的核酸が既知の濃度で含まれる標的標準核酸溶液と、核酸増幅反応液が含まれる。核酸増幅反応液には、反応に適した濃度のポリメラーゼ、及びヌクレオチド(dNTP)が含まれる。
【0029】
反応容器群Bの反応液収容部107に供給する反応液には、標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の濃度で含まれる内部標準核酸溶液と、核酸増幅反応液が含まれる。
【0030】
また、反応容器群C,Dの反応液収容部107に供給する反応液には、検体液と内部標準核酸溶液、核酸増幅反応液が含まれる。検体液は、例えば血液、尿、唾液、髄液のような生体サンプルから抽出したDNA、または抽出したRNAから逆転写したcDNAなどを用いることができる。反応容器群C及び反応容器群Dに供給する反応液には、それぞれ異なる検体が含まれる。
【0031】
また、プライマーは核酸増幅反応液に含まれていてもよいし、各反応容器104内に、予め塗付され乾燥状態で収容されていてもよい。また、反応容器群A〜Dを構成する各々の反応容器104には、それぞれ異なるプライマーを塗付しておいてもよい。これにより、同時に多数種類の標的核酸のPCRが行えるようになっている。ただし、反応容器群A〜D間で対応する反応容器104には同一のプライマーを塗布する。
【0032】
次に、マイクロリアクターアレイ10を図2A,図2Bに示すような遠心装置50を用いて回転させる。図2Aは遠心装置50を横から見た図、図2Bは遠心装置50を上から見た図である。
図2A,図2Bに示すように、遠心装置50は、マイクロリアクターアレイ10を装着可能なホルダ(被回転部)51,51a、回転モータ(回転手段)52を備える。ホルダ51,51aは、回転軸Oからマイクロリアクターアレイ10に向かう方向に対して角度θ傾斜している。このため、ホルダ51,51aに装着されたマイクロリアクターアレイ10も回転軸Oからマイクロリアクターアレイ10に向かう方向に対して角度θ傾斜する。ここではθ=45°である。なお、θは、0°<θ<90°の範囲であればよい。
【0033】
図3は、遠心装置50のホルダ51に装着したマイクロリアクターアレイ10を上から見た図、図4は、ホルダ51に装着したマイクロリアクターアレイ10の横断面図であり、図4(A)〜図4(C)は、それぞれ図3(A)〜図3(C)のD−D断面に相当する。
【0034】
まず、図3(A)及び図4(A)に示すように、回転軸Oから見て透明基板101が外側になるようにマイクロリアクターアレイ10をホルダ51に装着し回転する。これにより、反応液収容部107から反応容器104へ向かう方向に遠心力がかかり、反応液収容部107内の反応液が反応液導入用流路105を充填しながら進んで反応容器104を充填する。反応液よりも比重の軽い空気は反応液導入用流路105内へ押し出され、反応液と入れ替わることにより、反応容器104が反応液で満たされる。
【0035】
この時、反応液は廃液収容部106へは送出されない。これは、図4(A)に示すように、反応液導入用流路105から廃液収容部106へ向かう流路108の方向が遠心力の方向(図中矢印F)に対して135度の角度をなしているため、反応液導入用流路105から廃液収容部106へ向かう方向の遠心力成分が0以下となるからである。
【0036】
なお、反応液導入用流路105から廃液収容部106へ向かう流路108の方向と遠心力の方向のなす角度が90度以上180度以下であれば、反応液は廃液収容部106へ送出されない。
【0037】
以上のように、反応液が廃液収容部106の方へ流れていかないため、すべての反応容器104に効率よく反応液を充填することができ、回転後は図3(B)及び図4(B)に示すように、すべての反応容器104と反応液導入用流路105に反応液が充填された状態となる。
【0038】
次に、遠心装置50の回転を一端停止し、今度は図3(C)及び図4(C)に示すように、回転軸Oから見て透明基板103が外側になるようにマイクロリアクターアレイ10をホルダ51aに装着し回転する。これにより、今度は反応液導入用流路105内の反応液が廃液収容部106に送出される。これは、図4(C)に示すように、反応液導入用流路105から廃液収容部106へ向かう流路108の方向が、遠心力の方向(図中矢印F)に対して45度の角度をなしているため、反応液導入用流路105から廃液収容部106へ向かう方向の遠心力成分が0以上となるからである。なお、反応液導入用流路105から廃液収容部106へ向かう流路108の方向と遠心力の方向のなす角度が0度以上かつ90度より小さければ、反応液は廃液収容部106へ送出される。なお、反応液導入用流路105内の反応液は廃液収容部106へ送出されるが、反応容器104内の反応液は反応容器104内に留まる。
【0039】
このように、反応液導入用流路105内の反応液を廃液収容部106に送出することにより、各反応容器104を分離することができる。
【0040】
なお、図3(C)及び図4(C)に示す状態で回転する際、予め反応液供給口109から、ピペット等を用いて反応液収容部107にミネラルオイルを供給しておくようにしてもよい。この状態でマイクロリアクターアレイ10を回転させると、反応液導入用流路105にミネラルオイルが充填される。この時、反応液の比重がミネラルオイルよりも重いので、反応容器104内の反応液はミネラルオイルと入れ替わらない。これにより、個々の反応容器104を分離して、反応容器104間でのコンタミネーションを防止することができる。また、反応処理中に、反応容器104内が乾燥することを防止することもできる。なお、ミネラルオイルの代わりに反応液よりも比重が軽く、反応液と混和せず反応液よりも蒸発しにくい液体を用いても良い。また、一旦、図3(C)及び図4(C)に示す状態で回転を行って反応液導入用流路105内の反応液を廃液収容部106に送出した後で、反応液収容部107にミネラルオイルを供給し、再度遠心装置50を回転させてもよい。
【0041】
以上のような手順でマイクロリアクターアレイ10に反応液を供給したら、次にPCR処理(生体試料反応処理)を行う。具体的には、マイクロリアクターアレイ10の開口部をシールした後、マイクロリアクターアレイ10をサーマルサイクラーに設置してPCR処理を行う。一般的には、まず、94℃で2本鎖DNAを解離させる工程を実行し、次に、プライマーを約55℃でアニーリングする工程を実行し、次に耐熱性のDNAポリメラーゼを使用して約72℃で相補鎖の複製を行う工程を含むサイクルを繰り返す。
【0042】
PCR処理の後、蛍光顕微鏡を用いて個々の反応容器104内の蛍光強度を測定し、検体中に含まれる標的核酸の量を定量する。
【0043】
以下に、蛍光プローブとしてQ−Probeを用いた場合を例にとり、検体中の標的核酸の定量方法について説明する。Q-Probeは、結合した核酸に含まれるグアニンと相互作用して著しく蛍光が消光するのが特徴である。標的核酸と内部標準核酸の両方にQ-Probeが結合できるようにし、さらに、Q-Probeがどちらか一方と結合した際に蛍光の消光が発生するようにしておくことにより、既知の内部標準核酸の量に対する標的核酸の相対量を推定することができる。
【0044】
図5に、標的核酸と内部標準核酸の配列例を示す。下線を引いた部分にQ-Probeが結合する。図に示すように、蛍光プローブの結合部分の直後が、標的核酸は「TTTT」、内部標準核酸は「GGGT」となっている。従って、Q-Probeは内部標準核酸と結合した際に、結合部分のグアニン(G)と反応するため、蛍光が消光する。
【0045】
次に、測定した蛍光強度から標的核酸の定量を行う方法について説明する。
反応容器群Aのように標的標準核酸のみを含む場合、PCRによる増幅産物は標的標準核酸の増幅産物のみである。この場合の蛍光変化量をFtとする。反応容器群Bのように内部標準核酸のみを含む場合、増幅産物は内部標準核酸の増幅産物のみである。この場合の蛍光変化量をFcとする。反応容器群C,Dのように内部標準核酸と標的核酸の両方を含む場合、両方の増幅産物ができるため、この場合の蛍光変化量Fは、以下の式1で表せる。
F=FtX/(X+C)+FcC/(X+C)
=〔C(Fc−Ft)/(X+C)〕+Ft …(1)
ここで、Cは反応容器群C,Dにおける、内部標準核酸の量(反応容器内のコピー数)、Xは反応容器群C,Dにおける、標的核酸の量(反応容器内のコピー数)である。
【0046】
蛍光変化量Fには、個々の反応容器が発する蛍光輝度そのものを用いてもよいが、増幅前の蛍光輝度と増幅後の蛍光輝度の比、あるいは、増幅後に、増幅産物および蛍光プローブが解離する温度まで加熱した状態の蛍光輝度と、増幅産物と蛍光プローブが結合している温度での蛍光輝度との比を用いても良い。これにより、検量線の精度を向上させることができる。
【0047】
上記の式1に、反応容器群Aと反応容器群Bの蛍光輝度から求めたFtとFcを代入することにより、検体中に含まれる標的核酸の量Xを求めることができる。
【0048】
(実施例)
マイクロリアクターアレイ10の反応容器104には、予め図6に示す配列を有するプライマー及びQ-probeが塗布され、真空乾燥されている。Q-probeは図7に示す配列を有し、BODIPY FL( Molecular probes社製)にて蛍光標識されている。
【0049】
反応容器群Aの反応容器104には標的標準核酸溶液が、反応容器群Bの反応容器104には内部標準核酸溶液が、反応容器群C〜G(E〜Gは別のマイクロリアクターアレイ10に設けられている。)の反応容器104には、それぞれ異なる希釈率の検体液と一定量の内部標準核酸溶液が供給される。表1に、反応容器群A〜Gの各反応容器104内における標的核酸及び内部標準核酸の量を示す。
【0050】
【表1】

上記の核酸溶液と共に、ライトサイクラー480ジェノタイピングマスター、ウラシルDNAグルコシラーゼ(以上、ロシュ ダイアグノスティクス社)を含むPCR反応液(核酸増幅反応液)を反応容器104に充填し、サーマルサイクラーでPCRを行った。蛍光測定は、室温にて増幅の前後に測定し、さらに、増幅後は60℃と95℃で測定を行った。なお、60℃では増幅産物と蛍光プローブが結合しており、95℃では増幅産物および蛍光プローブが解離する。
【0051】
(実験結果)
増幅後の60℃及び95℃における蛍光強度値の比を蛍光変化量としたとき、式1のパラメータは以下にようになった。
Ft=1.28
Fc=0.82
ここで、Cは反応容器群C〜Gにおける内部標準核酸の量(1000コピー)である。これらの値を式1に代入すると、
F=1.28−460/(X+1000) …(2)
となる。
図8に、式2に基づいて作成した、検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値(図中■)を示す。
【0052】
また、室温における増幅前後の蛍光強度値の比を蛍光変化量としたとき、式1のパラメータは以下にようになった。
Ft=1.25
Fc=0.94
ここで、Cは反応容器群C〜Gにおける内部標準核酸の量(1000コピー)である。これらの値を式1に代入すると、
F=1.25−310/(X+1000) …(3)
となる。
図9に、式3に基づいて作成した、検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値(図中◆)を示す。
【0053】
図8、9から明らかなように、標的核酸/内部標準核酸の構成比と、Q-Probeの蛍光変化量との間には高い相関がある。したがって、式2,3により求めた検量線を用いて検体中の標的核酸の定量を行うことが可能であることが示唆された。
【0054】
なお、ここでは、1種類の標的核酸についての定量結果を示したが、上述したように各反応容器群の反応容器には、それぞれ異なる標的核酸を増幅・定量するための試薬(プライマー、蛍光プローブ)を導入することができるので、上記のような検量線を同時に多数作成し、それぞれの標的核酸の定量を行うことができる。
【0055】
また、本実施例では、内部標準核酸の量を反応容器あたり1000コピーとしたが、定量する標的核酸の量に応じて変更することができる。すなわち、検体中の標的核酸の量が内部標準核酸の量と著しく異なる場合は、希釈により検体の濃度を適切に調整するか、あるいは、内部標準核酸の量を適切に設定することにより定量精度を上げることができる。また、内部標準核酸の量を段階的に変えた反応容器群を追加してもよい。
【0056】
以上のように本実施形態によれば、反応容器群Aの反応容器104には標的標準核酸溶液、反応容器群Bの反応容器104には内部標準核酸溶液、反応容器群C、Dの反応容器104には、それぞれ異なる希釈率の検体液と一定量の内部標準核酸溶液を充填してPCR反応を行い、増幅された核酸の一部に結合した蛍光プローブが発する蛍光強度を測定することにより、反応容器群A、Bにおける蛍光強度の変化から検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)を得ることができる。よって、標的核酸の定量を高精度に効率よく行うことが可能である。
【0057】
また、遠心力を利用して、反応容器104内に反応液を供給することにより、ピペットで定量することが難しい非常に少量の反応液での反応処理及び定量が可能となる。
【0058】
また、本実施形態では、検量線作成のために、標的標準核酸溶液を用いるグループ(反応容器群A)と内部標準核酸溶液を用いるグループ(反応容器群B)をそれぞれ1つずつ設けたが、検量線の精度を高めるために、これらのグループを希釈率の異なる複数の反応容器群から構成してもよい。
【0059】
また、本実施形態では、反応容器104に反応液を充填するのに遠心力を利用しているが、遠心力の代わりに、毛管力やポンプによる圧力等を用いて充填するようにしてもよい。
【0060】
(生体試料定量用キット)
本発明に係る生体試料定量用キットは、実施の形態1によるマイクロリアクターアレイ10と、反応容器群Aに供給するための標的標準核酸溶液と核酸増幅反応液を含む溶液と、反応容器群Bに供給するための内部標準核酸溶液と核酸増幅反応液を含む溶液と、反応容器群C,Dに供給するための内部標準核酸溶液と核酸増幅反応液を含む溶液を有する。使用時には、反応容器群A,Bにはそれぞれキットに備えられた溶液を供給し、反応容器群C,Dにはキットに備えられた溶液に、必要に応じて希釈した検体液を加えて供給する。
【0061】
このように、使用時にはキットに含まれる反応液をそれぞれ対応する反応容器群に導入すればよいので、容易に増幅反応及び定量を行うことができる。
【0062】
実施の形態2.
実施の形態2では、反応容器群Aの反応容器104に、予め一定量の標的核酸が塗布されている。同様に、反応容器群Bの反応容器104には、予め一定量の内部標準核酸が塗布されており、反応容器群C,Dの反応容器104には、予め一定量の内部標準核酸が塗布されている。
【0063】
実施の形態2では、反応容器群A及び反応容器群Bには、核酸増幅反応液のみを供給すればよい。また、反応容器群C,Dには、検体液と核酸増幅反応液を供給すればよい。
【0064】
このように、実施の形態2によれば、各々の反応容器104に必要な標的核酸及び内部標準核酸を予め塗布しておくことにより、使用時には核酸増幅反応液と検体をそれぞれ導入するだけでよく作業が簡易になるので、導入する溶液の間違いなどが発生しにくい。
【図面の簡単な説明】
【0065】
【図1】図1(A)は、本発明の実施の形態1によるマイクロリアクターアレイの概略構成を示す上面図、図1(B)は図1(A)のC−C断面図。
【図2A】図2Aは、遠心装置を横から見た図である。
【図2B】図2Bは、遠心装置を上から見た図である。
【図3】遠心装置のホルダに装着したマイクロリアクターアレイを上から見た図。
【図4】遠心装置のホルダに装着したマイクロリアクターアレイの横断面図。
【図5】標的核酸と内部標準核酸の配列例を示す図。
【図6】プライマーの配列例を示す図。
【図7】Q-probeの配列を示す図。
【図8】検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値を示す図。
【図9】検体中の標的核酸量Xと蛍光変化量Fとの関係(検量線)及び、実測値を示す図。
【符号の説明】
【0066】
10 マイクロリアクターアレイ、101,102,103 透明基板、104 反応容器、105 反応液導入用流路、106 廃液収容部、107 反応液収容部、108 流路、109 反応液供給口、50 遠心装置、51,51a ホルダ、52 回転モータ

【特許請求の範囲】
【請求項1】
検体に含まれる標的核酸の定量を行うための生体試料定量用チップであって、
既知量の前記標的核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第1の反応容器群と、
前記標的核酸と共通のプライマーで増幅可能な内部標準核酸が既知の量含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第2の反応容器群と、
前記検体と、既知量の前記内部標準核酸が含まれる核酸増幅反応液を導入して核酸増幅反応を行うための第3の反応容器群と、を備え、
前記第1〜第3の反応容器群は、前記核酸増幅反応によって増幅された核酸の一部に結合する蛍光プローブが塗布された複数の反応容器を備えていることを特徴とする生体試料定量用チップ。
【請求項2】
前記第1〜第3の反応容器群は、それぞれ異なる標的核酸を増幅するためのプライマーが塗布された複数の反応容器を備えていることを特徴とする請求項1に記載の生体試料定量用チップ。
【請求項3】
前記第1〜第3の反応容器群は、
各々の前記反応容器に接続された反応液導入用流路と、
前記反応液導入用流路に接続された反応液収容部と、
前記反応液導入用流路に接続された廃液収容部と、を備えていることを特徴とする請求項1または請求項2に記載の生体試料定量用チップ。
【請求項4】
前記第1の反応容器群は、一定量の前記標的核酸が塗布された複数の反応容器を備え、
前記第2及び第3の反応容器群は、一定量の前記内部標準核酸が塗布された複数の反応容器を備えていることを特徴とする請求項1から請求項3のいずれかに記載の生体試料定量用チップ。
【請求項5】
請求項1から請求項3のいずれかに記載の生体試料定量用チップを備えた生体試料定量用キットであって、
前記第1の反応容器群に導入するための、既知量の前記標的核酸が含まれる核酸増幅反応液と、
前記第2の反応容器群に導入するための、前記内部標準核酸が既知の量含まれる核酸増幅反応液と、
前記第3の反応容器群に前記検体と併せて導入するための、既知量の前記内部標準核酸が含まれる核酸増幅反応液と、を含むことを特徴とする生体試料定量用キット。
【請求項6】
請求項1から請求項3のいずれかに記載の生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行うための生体試料定量方法であって、
前記第1の反応容器群に既知量の前記標的核酸が含まれる核酸増幅反応液を、前記第2の反応容器群に前記内部標準核酸が既知の量含まれる核酸増幅反応液を、前記第3の反応容器群に前記検体と既知量の前記内部標準核酸が含まれる核酸増幅反応液を、それぞれ導入する第1の工程と、
核酸増幅反応を行う第2の工程と、
各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、
前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むことを特徴とする生体試料定量方法。
【請求項7】
請求項4に記載の生体試料定量用チップを用いて、検体に含まれる標的核酸の定量を行うための生体試料定量方法であって、
前記第1の反応容器群及び前記第2の反応容器群に前記核酸増幅反応液を、前記第3の反応容器群に前記検体と前記核酸増幅反応液を導入する第1の工程と、
核酸増幅反応を行う第2の工程と、
各々の前記反応容器内において、増幅された核酸の一部に結合した前記蛍光プローブが発する蛍光強度を測定する第3の工程と、
前記第1の反応容器群と前記第2の反応容器群において測定された前記蛍光強度に基づいて、前記検体に含まれる前記標的核酸の量を推定する第4の工程と、を含むことを特徴とする生体試料定量方法。
【請求項8】
前記第4の工程では、
前記核酸増幅反応の前後で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定することを特徴とする請求項6または請求項7に記載の生体試料定量方法。
【請求項9】
前記第4の工程では、
前記核酸増幅反応後において前記蛍光プローブが増幅された核酸の一部に結合している第1の状態、及び前記核酸増幅反応後において前記蛍光プローブが増幅された核酸から解離している第2の状態で測定された2つの蛍光強度の値を用いて、前記検体に含まれる前記標的核酸の量を推定することを特徴とする請求項6または請求項7に記載の生体試料定量方法。

【図1】
image rotate

【図2A】
image rotate

【図2B】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate


【公開番号】特開2010−88317(P2010−88317A)
【公開日】平成22年4月22日(2010.4.22)
【国際特許分類】
【出願番号】特願2008−259519(P2008−259519)
【出願日】平成20年10月6日(2008.10.6)
【出願人】(000002369)セイコーエプソン株式会社 (51,324)
【Fターム(参考)】