説明

異常検知・診断方法、異常検知・診断システム、及び異常検知・診断プログラム

【課題】プラント等の設備において、異常を高感度、早期に検知することが可能な異常検知・診断方法およびシステムを提供する。
【解決手段】作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードベースで相互に関連付けておき、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、異常を検知し、検知した異常と関連付けられた保守履歴情報とを結びつけることにより、発生した異常に対しなすべき診断・処置を明らかにするようにした。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プラントや設備などの異常を早期に検知し、診断する異常検知・診断方法、異常検知・診断システム及び異常検知・診断プログラムに関する。
【背景技術】
【0002】
電力会社では、ガスタービンの廃熱などを利用して地域暖房用温水を供給したり、工場向けに高圧蒸気や低圧蒸気を供給したりしている。石油化学会社では、ガスタービンなどを電源設備として運転している。このようにガスタービンなどを用いた各種プラントや設備において、その異常を早期に発見し、原因を診断し、対策を行うことは、社会へのダメージを最小限に抑えることができ、極めて重用である。
【0003】
ガスタービンや蒸気タービンのみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、MRIなどの医療機器、半導体やフラットパネルディスプレイ向けの製造・検査装置、機器・部品レベルでも、搭載電池の劣化・寿命など、早期に異常を発見し、診断しなければならない設備は枚挙に暇がない。最近では、健康管理のため、脳波測定・診断に見られるように、人体に対する異常(各種症状)検知も重要になりつつある。
【0004】
このため、例えば特許文献1や特許文献2には、おもにエンジンを対象に、異常検知を行うことが記載されている。そこでは、過去のデータをデータベース(DB)としてもっておき、観測データと過去の学習データとの類似度を独自の方法で計算し、類似度の高いデータの線形結合により推定値を算出して、推定値と観測データのはずれ度合いを出力する。General Electric社のように、特許文献3には、異常検知をk−meansクラスタリングにより検出する例が記載されている。
【0005】
また、非特許文献2や特許文献4には、故障履歴や作業履歴をデータベースに蓄え、検索を可能とし、これを通して、保守に関する有益な知見を獲得することについて記載されている。
【先行技術文献】
【特許文献】
【0006】
【特許文献1】米国特許第6,952,662号明細書
【特許文献2】米国特許第6,975,962号明細書
【特許文献3】米国特許第6,216,066号明細書
【特許文献4】特開2009−110066号明細書
【非特許文献】
【0007】
【非特許文献1】Stephan W. Wegerich; Nonparametric modeling of vibration signal features for equipment health monitoring、Aerospace Conference, 2003. Proceedings. 2003 IEEE, Volume 7, Issue, 2003 Page(s):3113-3121
【非特許文献2】永野和俊、佐藤淳;的確で迅速な対応を支える遠隔保守ソリューション「TMSTATION」、東芝ソリューションテクニカルニュース、2008年秋季号、Vol.15
【発明の概要】
【発明が解決しようとする課題】
【0008】
一般には、観測データをモニタし、設定したしきい値と比較して、異常を検知するシステムがよく用いられている。この場合は、各観測データであるところの測定対象の物理量などに着目してしきい値を設定するため、設計ベースの異常検知であると言える。
【0009】
この方法は、設計が意図しない異常は検知が困難であり、見逃しが発生し得る。例えば、設備の稼動環境や、稼動年数による状態変化、運転条件、部品交換の影響などにより、設定したしきい値が妥当とは言えなくなる。
【0010】
一方、特許文献1および2に開示されている事例ベースの異常検知に基づく手法では、学習データを対象に、観測データと類似度の高いデータの線形結合により推定値を算出し、推定値と観測データのはずれ度合いを出力するため、学習データの準備次第で、設備の稼動環境や、稼動年数による状態変化、運転条件、部品交換の影響などを考慮できる。
【0011】
しかし、特許文献1および2に開示されている手法では、データをスナップショットとして扱っており、時間的な振舞いを考慮していない。さらに、観測データになぜ異常が含まれるのかは、別途説明が必要である。特許文献3に記載されているk−meansクラスタリングのような、物理的意味が希薄な特徴空間内での異常検知では、さらに異常の説明は困難である。説明が困難な場合は、誤検出として扱われることになる。
【0012】
また、特許文献4に記載されている方法では、故障履歴や作業履歴をデータベースに蓄え、検索を可能とし、これを通して、保守に関する有益な知見を獲得するシステム(特許文献4によれば、保守カルテを表示するシステム)を構築している。ここでは、故障履歴や作業履歴に関する情報が、検索を通して、互いに紐付けでき、情報が見える形で提供されている。
【0013】
しかし、異常検知と上記情報の紐付けは不明瞭であり、システムに格納されている保守情報が有効に活用できるとは言いがたい。単純な検索機能では、故障履歴や作業履歴自体の紐付けさえも成功するとは限らない。このような保守情報は一般に、多様な情報が分散され、また、あいまいな言葉の羅列であることが多く、検索のかなめであるキーワードをかなり工夫しないと、うまく付き合わない。すなわち、検索のみに依存した方法では、異常の予兆も含め、検知された異常から、過去情報のどこを調査して原因を付き止め、どのような対策したのか、今回は何をすべきかなどを明確にすることはできず、異常検知の段階で、即座に診断したくても、現象や原因、交換すべき部品などが不明瞭なままであり、なすべき処置が分からない。従って、熟練保守員の現場での調査に依存しているのが実態である。
【0014】
そこで、本発明の目的は、センシングデータを対象にした異常検知情報と、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を用いて、新たに発生した異常(予兆を含む)を的確に診断することが可能な異常検知・診断方法およびシステムを提供することである。
【0015】
また、初心者にも、提示可能な診断プロセスを提示することを目的とする。
【課題を解決するための手段】
【0016】
上記目的を達成するために、本発明は、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードベースで相互に関連付けておき、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、異常を検知し、検知した異常と関連付けられた保守履歴情報とを結びつけることにより、発生した異常に対しなすべき診断・処置を明らかにする。
【0017】
特に、保守履歴情報が使われた状況(以下、文脈とも言う)を表現するため、キーワードの出現頻度を、文脈パターンと見なして取り扱う。すなわち、異常検知を含め、保守にまつわる作業などを表した主要なキーワードから、実際に使われた状況を考慮した文脈を、後述の頻度パターンとして獲得し、その文脈を活用する文脈志向の異常診断を実現する。
【0018】
具体的には、異常検知では、(1)(ほぼ)正常な学習データ生成、(2)部分空間法などによる観測データの異常測度の算出、(3)異常判定、(4)異常の種類の特定、(5)異常の発生時期の推定を行い、保守履歴情報を相互に関連付けでは、(6)保守履歴などのドキュメント群のキーワード抽出、(7)画像の分類などを通して、(8)キーワードの関連付けを行い、(9)異常とキーワードの関連付けを頻度パターンとして表現する診断モデルを生成し、(10)診断モデルを用いて、発生した異常に対しなすべき診断・処置を明らかにする。
【0019】
また、上記目的を達成するために、本発明では、プラント又は設備の異常或いはその予兆を早期に検知し、プラント又は設備を診断する異常検知・診断方法において、複数のセンサから取得したデータを対象にプラント又は設備の異常を検知し、プラント又は設備の保守履歴情報からキーワードを抽出し、抽出したキーワードを用いてプラント又は設備の診断モデルを生成し、生成した診断モデルを用いてプラント又は設備の診断を行うようにした。
【0020】
そして、保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報の内の何れかを含み、保守履歴情報から定めたキーワードの出現頻度を算出して出現頻度のパターンを得、得た出現頻度のパターンを診断モデルとし診断モデルの出現頻度のパターンと新たに検知したプラント又は設備の異常に関するキーワードとの類似度を用いてプラント又は設備の診断を行うようにした。
【0021】
また、上記目的を達成するために、本発明では、プラントまたは設備の異常或いはその予兆を早期に検知し、プラント又は設備を診断する異常検知・診断システムを、複数のセンサから取得したデータを対象にプラント又は設備の異常を検知する異常検知部と、プラント又は設備の保守履歴情報を蓄積したデータベース部と、データベース部に蓄積されたプラント又は設備の保守履歴情報から抽出したキーワードを用いてプラント又は設備の診断モデルを生成する診断モデル生成部と、新規に検知した異常に対して診断モデルと照合してプラント又は設備の診断を行う診断部とを備えて構成した。
【0022】
そして、データベース部に蓄積する保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報の内の何れかを含み、診断モデル生成部は保守履歴情報から定めたキーワードの出現頻度を算出して出現頻度のパターンを得てこれを診断モデルとし、診断部は新規に検知した異常に対して出現頻度のパターンの類似度を用いて設備の診断を行うようにした。
【0023】
更にまた、上記目的を達成するために、本発明では、プラント又は設備の異常或いはその予兆を早期に検知し、診断する異常検知・診断プログラムを、複数のセンサから取得したデータを対象に異常を検知する処理ステップと、保守履歴情報から取得したキーワードの出現頻度を用いて診断モデルを生成する処理ステップと、診断モデルを生成する処理ステップで生成した診断モデルを用いてプラント又は設備の診断を行う診断処理ステップとを含んで構成した。
【0024】
そして、異常を検知する処理ステップにおいて複数のセンサから取得したデータを対象に異常を検知し、診断モデルを生成する処理ステップにおいて保守履歴情報から取得したキーワードの出現頻度を用いて断モデルを生成し、診断処理ステップにおいて生成した診断モデルを用いて設備の診断を行う際に異常検知や現象診断を通してパターン或いはキーワードを抽出し、抽出したパターン或いはキーワードを診断に用いるようにした。
【0025】
また、上記目的を達成するために、本発明では、企業資産管理・設備資産管理システムにおいて、作業報告書、交換部品情報などからなる保守履歴情報を格納したデータベースと、設備に付加した多次元センサから得られる信号情報を用いて部分空間法などの識別器によって異常或いはその予兆を検知する検知手段と、交換部品や調整などに着目したキーワードの頻度パターンに基づいて診断を行う診断手段とを備え、異常予兆検知とそれをトリガーにした診断を実施するように構成した。
【発明の効果】
【0026】
本発明によれば、現場に存在する膨大な保守履歴情報を、異常との関係で整理でき、発生した異常や予兆に対して、迅速に対応を決定できる。保守履歴情報が使われた状況を文脈パターンとして的確に表現でき、またこれを照合することができるため、蓄積された保守履歴情報の再利用が可能となる。
【0027】
これらによって、ガスタービンや蒸気タービンなどの設備のみならず、水力発電所での水車、原子力発電所の原子炉、風力発電所の風車、航空機や重機のエンジン、鉄道車両や軌道、エスカレータ、エレベータ、そして機器・部品レベルでは、搭載電池の劣化・寿命など、種々の設備・部品において異常の早期・高精度な発見、実行すべき診断・処置が明らかとなる。勿論、人体を対象に計測し、診断する場合にも適用できる。
【図面の簡単な説明】
【0028】
【図1】図1は本発明の異常検知システムが対象とする設備、多次元時系列信号、及びイベント信号の一例を示すブロック図である。
【図2】図2は多次元時系列信号の一例を示す信号波形のグラフである。
【図3】図3は保守履歴の詳細情報の一例と、現象と原因と処置の関連付けの一例を示すブロック図である。
【図4】図4は本発明の実施例を示し、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードベースで相互に関連付けておき、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、異常を検知し、検知した異常と関連付けられた保守履歴情報とを結びつける例である。保守履歴情報が使われ、記録された状況(文脈)を表現するため、キーワードの出現頻度を、文脈パターンと見なして取り扱う例を示すブロック図である。
【図5】図5はアラーム発生、現地調査の有無、処置の内容である、リセット、調整、部品交換、持ち帰り調査などの一例を示す表である。
【図6】図6は部品表であり、ユニット、パーツ番号、パーツ名称の一例を示す表である。
【図7】図7は現象と、調整・交換部品の対象間の対応表であり、紐付けに基づいて頻度を表す(a)表と(b)グラフである。
【図8】図8は本発明の異常検知システムの構成を示すブロック図である。
【図9】図9は複数の識別器を用いた、事例ベースの異常検知手法を説明するブロック図である。
【図10】図10は識別器の一例である部分空間法ののうち(a)投影距離法と(b)局所部分空間方を説明する図である。
【図11】図11(a)は部分空間法にて学習データの選択を説明する図,(b)は観測データから見た学習データの距離の頻度分布を示すグラフである。
【図12】図12は各種の特徴変換を一覧にして説明した表である。
【図13】図13は部分空間法にて算出した残差ベクトルの軌跡を説明する3次元空間の図である。
【図14】図14は本発明を実行するプロセッサ周辺の構成を示すブロック図である。
【図15】図15は本発明の全体構成を示すブロック図である。
【図16】図16は各センサ信号のネットワーク関係を示す図である。
【図17】図17は本発明の保守履歴情報の詳細および保守履歴情報の関連付けを示すフロー図である。
【発明を実施するための形態】
【0029】
本発明は、プラントや設備の異常或いはその予兆を早期に検知して診断する異常検知・診断システムに関するものであって、異常検知を行う際には、ほぼ正常な学習データを生成し、部分空間法などによる観測データの異常測度を算出し、異常を判定し、異常の種類を特定し、異常の発生時期の推定を行う。
【0030】
また、保守履歴情報を相互に関連付ける際には、保守履歴などのドキュメント群のキーワードを抽出し、画像の分類などを通してキーワードの関連付けを行う。
【0031】
そして、異常とキーワードの関連付けを頻度パターンとして表現する診断モデルを生成し、診断モデルを用いて、発生した異常に対しなすべき診断・処置を明らかにするものである。
【0032】
以下に、本発明の実施の形態について、図面を参照して説明する。
【実施例】
【0033】
図1は本発明の異常検知・診断システム100を含む全体の構成を示す。101,102は本発明の異常検知・診断システム100が対象とする設備であり、各設備101,102には各種のセンサで構成される多次元時系列信号取得部103が付設されている。この多次元時系列信号取得部103で取得されたセンサ信号104や、アラームや電源のオンオフを示すイベント信号105は本発明による異常検知・診断システム100に入力されて処理される。本発明による異常検知・診断システム100では、多次元時系列信号取得部103で取得されたセンサ信号104から多次元時系列センシングデータ106やイベント信号107を得、これらのデータを処理して設備101や102の異常検知・診断を行う。多次元時系列信号取得部103で取得するセンサ信号104の種類は、数十から数万個存在する。設備101や102の規模、設備が故障したときの社会的ダメージなどにより、種々のコストを勘案して多次元時系列信号取得部103で取得するセンサ信号104の種類が決まる。
【0034】
異常検知・診断システム100で取り扱う対象は,多次元時系列信号取得部103で取得された多次元・時系列のセンサ信号104であり,発電電圧,排ガス温度,冷却水温度、冷却水圧力、運転時間などである。設置環境のたぐいもモニタされる。センサのサンプリングタイミングも、数十msから数十秒程度まで、いろいろなものがある。イベント信号104及びイベントデータ105は、設備101や102の運転状態、故障情報、保守情報などからなる。図2は、センサ信号104−1〜104−4を、時刻を横軸に並べたものである。
【0035】
図3(a)は、異常検知・診断システム100の保守履歴情報の詳細301を示すもので、センサデータ310を受けて、アラーム発報302、オンコールデータ303、保守作業履歴データ304、部品手配データ305を保守履歴情報と関連付けて示したものである。図3(a)において、オンコールデータ303は、電話連絡のデータを意味している。これらの情報は、データベース(DB)(図14の121)に格納されている。
図3(a)の矢印は、上流から下流に情報がリンクしていることを表している。この矢印は、下流からもたどることができる。この場合、キーワードに基づく検索という手段が使われる。検索は有効な手法であるが、検索可能なデータベース(DB)の構造にしておくことが必要である。また、キーワードの決め方には工夫が必要であり、部位の上下関係や現象の上下関係などを吸収する柔軟性も求められる。しかし、検索事態は、簡単な照合であるため、容易に使うことができる。
図3(b)は、保守履歴情報の関連付けを示す図で、データベース(DB)(図14の121)に記憶されている事例データ320から検索する現象321、原因322、処置323といった作業のキーワードを示す。現象321は、アラーム3211、機能不良(画質など)3212、動作不良3213などであり、より詳細な分類をもつ。原因322は、故障部位の特定3221にあたる。処置323には、再起動でなおるもの(完全に直ったわけではない)3231、調整を要したもの3232、部品交換に至ったもの3233がある。この図の場合も、矢印を用いて、対応関係が表現できる。
【0036】
図4(a)に、本発明による異常検知・診断システム100の実施例を示す。
図4は、作業履歴や交換部品情報などの過去の事例からなる保守履歴情報を、キーワードベースで相互に関連付けておき、設備に付加した多次元センサの出力信号を対象とした異常検知に基づき、異常を検知し、検知した異常と関連付けられた保守履歴情報とを結びつける例である。保守履歴情報が使われ、記録された状況(文脈)を表現するため、キーワードの出現頻度を、文脈パターンと見なして取り扱う例を示している。
【0037】
本実施例では、バグオブワーズ法(bag of words)の概念を用いる。バグオブワーズ法は、特徴の袋詰めとでも言うべき手法であり、情報(特徴)の発生順序、位置関係などを無視して扱うものである。ここでは、アラーム発報、作業報告書、交換部品のコードなどから、キーワードやコードや言葉の発生頻度、ヒストグラムを作成し、このヒストグラムの分布形状を特徴とみなして、カテゴリに分類する。この方法の特徴は、非特許文献2に記載されているような一対一の検索とは異なり、複数の情報を同時に扱うことができる点にある。また、フリー記述にも対応でき、情報の追加や削除と言った変更にも対応しやすく、作業報告書などのフォーマット変更にも強い。複数の処置をしても、あるいは間違った処置が含まれていても、ヒストグラムの分布形状に着目するため、ロバスト性が高い。同様に、センサ信号も、複数のカテゴリに分類する。このカテゴリが、キーワードとなる。
【0038】
こういった表現は、保守を行った状況を表しており、「文脈」とでも言うものである。文脈とは、
その情報は、どういった状況で有効だったのか?
何を解決するために使ったのか?
それを使用した理由はなにか?
何に着目しているのか?
ほかの情報との関係は?
などを指している。
こういった文脈を表すのが、上述したキーワードの出現頻度のパターンである。
【0039】
図4(a)を用いて具体的に説明する。部品交換の事例について説明する。同図(a)において、保守履歴情報401(図3(b)の事例データ320の相当)のなかから、交換部品の記録405(図3(b)の部品交換3233に相当)を自動アクセスする。例えば、バルブ交換をした例について考える。この交換バルブの名称(パーツ名称)、部品コード(パーツ番号)、日時などがキーワードにされる。保守履歴情報の周辺情報として、部品表などが通常準備されているため、この部品表にアクセスされ、交換部品が属しているユニットの名称などもキーワードが追加される。次に、この交換にいたる作業報告書404にアクセスされる。上記部品を交換するに至った経緯が記載されており、アラーム名称、現象名称、処置内容(再起動、調整、部品交換)に記載の確認箇所、調整箇所などがキーワードとして追加される。
【0040】
アラーム名称は、設備の遠隔監視によって発報されたものである。図4では、左側に示すセンサ信号410に属す情報である。アラーム名称は、水圧低下、圧力上昇、回転数超過、異音、画質不良など、異常を表す名称をさす。番号などのコードでも表現されている。現象診断が遠隔監視側でなされていれば、411にて実施される現象診断結果もキーワードに追加される。ここで、現象診断結果とは、監視しているセンサ信号の間の相関の有無や、位相関係を表している。これらをキーワード化したり、数量化して、診断結果とする。対象は、異常でなく、その予兆の段階の場合もある。
【0041】
上記複数のキーワード、すなわちコードブックは、図4(a)のに示すように、テーブル形式420で、ヒストグラムが集計される。バルブ交換をした例においては、テーブル中、交換に至ったバルブ421の欄のところで出現頻度が高くなる。テーブル形式420では、下側の合計欄425がバルブで21%になっている。バルブ421以外のヒータ422やポンプ423も、同時に交換した場合は、その出現頻度も高くなる。また、現象診断411として、圧力低下が報告されているため、テーブル420中、バルブ421と圧力低下424の交差する箇所(テーブル420でハッチングした部分)の頻度が高くなる。
図4(a)では、頻度でなく、正規化してパーセンテージ(%)で表現しているが、頻度そのものでも良い。同種のバルブ交換に至った事例を、集計すれば、より確かなテーブルが生成できる。このようにして、過去事例を反映した診断モデルができあがる。バグオブワーズ法(bag of words)では、この頻度パターンを特徴量としてとらえる。バルブの欄の頻度パターンが、バルブ交換に至ったときの、複数の現象に対する頻度を表している。
【0042】
なお、キーワード、コードブックは設計者、保守作業者らから与えられ、保守履歴情報401に格納されているが、それらの重要性に鑑み、重みを付与してもよい。時間が早い、遅いといったキーワード相互の時間関係を用いて、重みを付与してもよいし、選択基準としてもよい。
【0043】
次に、新たに異常が発生した場合を考える。異常名称は圧力低下であった。この場合、上記診断モデルに従えば、バルブ交換の確率が10%であり、ほかと比べると高い率であることが分かるため、このバルブ交換をするかどうかを、まずこの診断モデルにて現場にて確認することになる。勿論、センサ信号をさらにくわしく分析し、故障部位を特定することもあり得る。
【0044】
本実施例では、さらに上記テーブル420を活用する。通常は、現象は複雑であり、異常名称が圧力低下であるとしても、バルブ以外の部品を交換するケースの方も多いと考えられる。そこで、故障現象427を表した頻度パターン(図4(a)のモデル420において、水温低下426や圧力低下424の頻度430)に着目し(現象ごとに、図4(b)に示したように、バルブ交換に至った故障現象の頻度パターン430を生成。縦軸は頻度、横軸は故障現象の種類や、故障現象への寄与度を表す)、この頻度パターン430を特徴量とみなして、この特徴に合うものとして、バルブの頻度パターン、すなわちバルブ421を選択する。なお、故障現象への寄与度は、各センサ信号(図2の104)の正常状態からの乖離度である。従って、診断開始時は、観測され診断されるデータに関しては、頻度でなく、ある種のパターンとなっていることに注意が必要である。勿論、診断開始時に、寄与度のみならず、その時間的集計である寄与度の頻度として情報を利用できることもある。
【0045】
後述の図13に示す残差ベクトルの時系列変化に着目し、それを一定の時間ウィンドウ内の発生頻度として扱えば、頻度情報・頻度パターンとして扱うこともできる。いずれにせよ、上述した頻度パターンに基づく方法は、ある・なしと言った単純な処理でなく、分布の形態に着目するため、単なる検索に基づく手法に比べ、柔軟性、ロバスト性が極めて高い。
【0046】
このように、診断モデルを使えば、現場での診断作業が円滑に実施でき、大幅に作業時間を短縮できる。また、交換部品候補を事前に準備できるため、設備復旧時間も大幅に短縮できる。
【0047】
上記例では、頻度パターンを故障現象の種類としたが、確認部位、調整箇所、オンコールにて取得した情報、交換部品、持ち帰って判明した原因など、利用できる情報ならば何でもよい。頻度に着目したバグオブワーズ法(bag of words)が活用できる所以でもある。また、横軸の項目が多いときは、次元が高いとも言えるため、次元削減をしておくことも有効である。主成分分析や独立成分分析、特徴量の選択など、通常のパターン認識手法が有効に使えるとも言える。白色化などの正規化手法も使うことができる。
【0048】
図4(a)の異常検知・診断システムにおいては、分類視点としては、交換部品の例が示されているが、これ以外の分類視点もあり得、ほかの定義のカテゴリ、例えば、数値や状態の確認箇所や抵抗値や設定時間などの設定ダイヤルなどの調整箇所を横軸にテーブル(診断モデル)420を作成してもよい。すなわち、目的、状況、使用者に応じて、複数のシートに分かれた、複数の診断モデルを使う。なお、バグオブワーズ法(bag of words)以外のパターン統計手法も使うことができる。
この診断モデルは、初学者向けの教育用の情報としても活用できる。さらに、診断モデルをもとに、保守の作業手順書に反映することもできる。
【0049】
図4(a)において、現象分類412も重要である。ここで言う現象分類は、調整や交換といった処置の視点で、センサ信号410を対象に得られた異常に対してキーワードを定義しておくことである。定義されたキーワードは追加され、或いは修正され、診断モデル413に使われる。具体的には、異常やその予兆に、現象分類の結果に従い、キーワードを付加する。水圧上昇があったなら、水圧上昇というキーワードをつけるのが最も簡単なケースである。また、C4.5などの決定木にもとづく分類に従えば、自動的にキーワードを付加できる。現象に応じて、キーワードを付加するが、調整や交換の種類が判明した段階で、キーワードをグルーピングしたり、細分化して、新たなキーワードを付加する。このように現象分類は編集できることが必要である。
【0050】
図4(a)に示した保守履歴情報401は、保守に関するEAMとでも言うべきものである。一般に、EAMは、enterprise asset managementの頭文字であり、企業資産管理・設備資産管理とも呼ばれる。企業が保有する設備資産に関するさまざまな情報を、そのライフサイクルを通じて一元管理することで、資産自体とそれにかかわる業務を可視化・標準化・効率化する業務改善ソリューションをさすが、図4(a)は、保守に特化したEAMである。このような保守EAMでは、保守履歴情報401などの文書管理以外に、異常予兆検知、診断、保守パーツ計画からなる。なお、保守パーツ計画は、診断結果に基づき、保守を実施する場合の保守部品の在庫管理を適正化するものである。
【0051】
図5に、アラーム番号501ごとのアラーム発生502、現地調査の有無503、処置の内容504を示す。処置内容504は、リセット5041、調整5042、部品交換5043、持ち帰り調査5044などを示している。図6は部品表600であり、ユニット601、パーツ番号602、パーツ名称603の一例である。図7(a)は現象710と、調整・交換部品720の対象間の対応表700であり、紐付けに基づいて頻度を表すものである。これらに記載のキーワード721〜725を抽出しそれらの頻度の合計726を集計して、診断モデル作成に使用する。なお、現象710には、水圧低下711、圧力上昇712、回転数超過713、異音714、画質不良715などがある。これらは、設備の部位ごとに、分けてもよい。また、画質不良715には、設備ごとに、機能不良などにより、さらに細かい分類がなされているのが普通である。
【0052】
図7(b)に、現象に対応する、部品毎の頻度パターン730を示す。ポンプA731や電源732に対し、調整や交換を行った場合に発生していた現象の発生頻度(実際には、作業報告書に記載されたキーワードの頻度でもよいし、作業者に付加されたカメラ等により記録された画像を分析した結果に基づき、抽出されたキーワードでもよい)を集計したものである。この頻度のパターンが、バグオブワーズ法(bag of words)の特徴量となる。調整や交換を分けて、それぞれ集計してもよいし、独立に集計してもよい。頻度パターンの各項目は、追加、編集可能な形態とする。
【0053】
なお、図7(a)は調整や交換の結果を集計した結果であるが、共起性の考えを用いて、現象が同時に起きるものをペア、あるいは2組以上のグループとみなして、このグループをひとつの現象と見なすこともできる。これは、図4(a)に記載している現象分類412に属する。なお、同時とは、定めた時間内に起きる現象を指しており、発生順序を考慮する場合と発生順序を考慮しない場合がある。発生順序を考慮する場合は、因果律を念頭に置いたものとなる。
【0054】
さらに、図7(b)では、頻度パターン730の各項目は、保守員から保守センターへの問合せの回数やその内容(キーワードにて記述)を含むものとする。
【0055】
こういった各種キーワード類の頻度パターン730は、設備のおかれた状況、異常発生の状況、保守の状況、部品交換にいたる状況、過去の事例などを表す「文脈」とも言えるものである。いままで、キーワード単独での検索に、前後関係、おかれた状況などを加えたものを、ある意味、検索できるようになると考えられる。言い方を変えると、今までは、if thenと言った形式で書かれており、使用状況が検索では的を得ず、結果として、then部の診断や対策が無駄に終わることが多かったが、このような無効なキーワード表現・使用状況が、頻度パターンにより、より柔軟に表現され、的を得た形式になったと考えられる。これにより、if thenに基づく診断・対策に比べ、はるかに信頼性の高い診断が実施できるようになった。
図8は、事例ベースに基づいて異常を検知する方法で、多次元センサ信号を対象にした事例ベース異常検知:多変量解析の例を示したものである。図1に示した多次元時系列センサ信号取得部103で取得したセンサデータ1〜N:104を本発明による異常検知・診断システム100受け取って、特徴抽出・選択・変換812、クラスタリング816、学習データ選択815を行い、多次元時系列のセンサデータ104に対して、多変量解析により識別部813にて、正常データから見て、はずれ値となる観測センサデータ、あるいはその合成値を統合部814に出力する。統合部814において異常あるいは、その予兆が検知されると、上述した診断、すなわち故障現象への寄与度(寄与度のみならず、その時間的集計である頻度としてパターン)と過去事例に基づく頻度パターンの照合動作などの診断を開始する。
【0056】
クラスタリング816では、運転状態などに応じて、モード別にいくつかのカテゴリにセンサデータを分ける。センサデータ以外に、イベントデータ(設備のON/OFF制御、各種アラーム、設備の定期検査・調整など)を用いて、その分析結果に基づき、学習データの選択や異常診断を行うこともある。イベントデータ811は、クラスタリング816への入力として、イベントデータ105に基づいてモード別にいくつかのカテゴリにデータを分けることもできる。イベントデータ105の分析と解釈は、分析部817にて行われる。
【0057】
さらには、識別部813において、複数の識別器を用いた識別を行い、結果を統合部814において統合することにより、よりロバストな異常検知も実現できる。異常の説明メッセージは、統合部814において出力される。
【0058】
図9に事例ベースに基づく異常検知処理を実行する異常検知・診断システム100の内部の構成を示す。この異常検知において、912は特徴抽出/選択/変換部で多次元時系列信号取得部103で取得された各種センサの信号104に基づく多次元時系列信号911を受けて処理する。913は識別器、914は統合処理部(グローバル異常測度)、915は主に正常事例からなる学習データ記憶部を示している。
【0059】
多次元時系列信号取得部911から入力された多次元時系列信号は、特徴抽出/選択/変換部12で次元が削減され、識別器913の複数の識別器913−1,913−2・・・913−nにより識別され、統合処理部(グローバル異常測度)914によりグローバル異常測度が判定される。学習データ記憶部915に記憶されている主に正常事例からなる学習データも複数の識別器913−1,913−2・・・913−nにより識別されて、グローバル異常測度の判定に用いられると共に、学習データ記憶部915に記憶されている主に正常事例からなる学習データ自体も取捨選択され、学習データ記憶部915での蓄積・更新が行われて精度の向上が図られる。
図9には、ユーザがパラメータを入力するに入力部123に表示される画面920も図示している。入力部123からユーザが入力するパラメータは、データサンプリング間隔1231、観測データ選択1232、異常判定しきい値1233などである。データサンプリング間隔1231は、例えば、何秒おきにデータを取得するかを指示するものである。
【0060】
観測データ選択1232は、センサ信号のどれをおもに使うかを指示するものである。異常判定しきい値1233は、算出した、モデルからの偏差・逸脱、はずれ値、乖離度、異常測度などと表現した、異常らしさの値を2値化するためのしきい値である。
【0061】
図9に示された識別器913はいくつかの識別器(913−1,913−2、・・・913−n)を準備し、統合処理部914でそれらの多数決をとる(統合)ことが可能である。即ち、異なる識別器群(913−1,913−2、・・・913−n)を用いたアンサンブル(集団)学習が適用できる。例えば、第一の識別器913−1は投影距離法、第二の識別器913−2は局所部分空間法、第三の識別器913−3は線形回帰法と言ったものである。事例データに基づくものならば、任意の識別器が適用可能である。
【0062】
図10は、識別器913における識別手法の例を示したものである。図10(a)に、投影距離法を示す。投影距離法は、モデルからの偏差を求めるものである。一般的には、各クラス(カテゴリ)のデータの自己相関行列を固有値分解して、固有ベクトルを基底として求める。値が大きい、上位何個かの固有値に対応する固有ベクトルを用いる。
【0063】
未知パターンq(最新の観測パターン)が入力されると、部分空間への正射影の長さ、或いは部分空間への投影距離を求める。多次元時系列信号では、基本的に正常部を対象とするため、未知パターンq(最新の観測パターン)から正常クラスまでの距離を求めて、これを偏差(残差)とする。そして、偏差が大きいと、はずれ値と判断する。
【0064】
このような部分空間法では、異常値が若干混ざっていても、次元削減し、部分空間にした時点で、その影響が緩和される。これは部分空間法適用のメリットである。正常クラスは、設備の運転パターンなどを踏まえ、まえもって複数クラスに分けておく。ここには、イベント情報を使ってもよいし、図8のクラスタリング処理部816にて実行してもよい。
【0065】
なお、投影距離法では、各クラスの重心を原点とする。各クラスの共分散行列にKL展開を適用して得られた固有ベクトルを基底として用いる。いろいろな部分空間法が立案されているが、距離尺度を有するものならば、はずれ度合いが算出可能である。なお、密度の場合も、その大小により、はずれ度合いを判断可能である。投影距離法は、正射影の長さを求めることから、類似度尺度である。
【0066】
このように、部分空間にて距離や類似度を計算し、はずれ度合いを評価することになる。投影距離法などの部分空間法は、距離に基づく識別器のため、異常データが利用できる場合の学習法として、辞書パターンを更新するベクトル量子化や距離関数を学習するメトリック学習を使うことができる。
【0067】
図10(b)に、識別器913における識別手法の別の例を示す。局所部分空間法と呼ばれる方法である。未知パターンq(最新の観測パターン)に近いk個の多次元時系列信号を求め、各クラスの最近傍パターンが原点となるような線形多様体を生成し、その線形多様体への投影距離が最小となるクラスに未知パターンを分類する。局所部分空間法も部分空間法の一種である。kは、パラメータである。異常検知では、未知パターンq(最新の観測パターン)から正常クラスまでの距離を求めて、これを偏差(残差)とする。
【0068】
この手法では、例えば、k個の多次元時系列信号を用いて形成される部分空間への、未知パターンq(最新の観測パターン)からの正射影した点を推定値として算出することもできる。
【0069】
また、k個の多次元時系列信号を、未知パターンq(最新の観測パターン)に近い順に並べ替え、その距離に反比例した重み付けを行って、各信号の推定値を算出することもできる。投影距離法などでも、同様に推定値を算出できる。
【0070】
パラメータkは、通常は1種類に定めるが、パラメータkをいくつか変えて実行すると、類似度に応じて対象データを選択することになり、それらの結果から総合的な判断となるため、一層効果的である。
【0071】
さらには、図11(a)に示すように、局所部分空間法におけるkの値として、観測データごとに適切な値とすべく、観測データからの距離が所定範囲内にある学習データを選択し、しかも学習データを最低個数から選択個数まで順次増やして投影距離が最小になるものを選んでもよい。
【0072】
これは、投影距離法にも適用できる。具体的手順は、下記の通りである。
1.観測データと学習データの距離を算出し、昇順に並替え。
2.距離 d<th かつ 個数k以下となる学習データを選択。
3.j=1〜k個の範囲で投影距離を算出し、最小値を出力。
【0073】
ここで、しきい値thは、距離の頻度分布から、実験的に定める。図11(b)の分布が、観測データから見た、学習データの距離の頻度分布を表している。この例では、設備のON,OFFに応じて、学習データの距離の頻度分布が双峰的になっている。二つの山の谷が、設備のONからOFFへ、または逆のOFFからONへの過渡期を表している。
【0074】
この考えは、レンジサーチと呼ばれる概念であり、これを学習データ選択に応用したと考える。特許文献1および2に開示されている方法にも、このレンジサーチ形の学習データ選択の概念は適用可能である。なお、局所部分空間法では、異常値が若干混ざっていても、局所部分空間にした時点で、その影響が大きく緩和される。
【0075】
なお、図示していないが、LAC(Local Average classifier)法と呼ぶ識別では、k近傍データの重心を局所部分空間と定義する。そして、未知パターンq(最新の観測パターン)から重心までの距離を求めて、これを偏差(残差)とする。
【0076】
図9に示した、識別器13における識別手法の例は、プログラムとして提供される。なお、単に、1クラス識別の問題と考えれば、1クラスサポートベクターマシンなどの識別器も適用可能である。この場合、高次空間に写像する、radial basis functionなどのカーネル化が使えることになる。
【0077】
1クラスサポートベクターマシンでは、原点に近い側が、はずれ値、即ち異常になる。ただし、サポートベクターマシンは、特徴量の次元は大きくても対応できるが、学習データ数が増えると計算量が膨大となるという欠点もある。
【0078】
このため、MIRU2007(画像の認識・理解シンポジウム、Meeting on Image Recognition and Understanding 2007)にて発表されている、「IS−2−10 加藤丈和,野口真身,和田俊和(和歌山大),酒井薫,前田俊二(日立);パターンの近接性に基づく1クラス識別器」などの手法も適用可能であり、この場合、学習データ数が増えても、計算量は膨大なものとならないというメリットがある。
【0079】
このように、低次元モデルで多次元時系列信号を表現することにより、複雑な状態を分解でき、簡単なモデルで表現できるため、現象を理解しやすいという利点がある。また、モデルを設定するため、特許文献1および2に開示されている方法のように完全に、データを完備する必要はない。
【0080】
図12は、図8にて使われる多次元時系列センサ信号取得部103で取得した多次元時系列信号であるセンサデータ1〜N:104の次元を削減する特徴変換1200の例を示したものである。主成分分析1201以外にも、独立成分分析1202、非負行列因子分解1203、潜在構造射影1204、正準相関分析1205など、いくつかの手法が適用可能である。図12に、方式図1210と機能1220を併せて示した。
【0081】
主成分分析1201は、PCAと呼ばれ、M次元の多次元時系列信号を、次元数rのr次元多次元時系列信号に線形変換し、ばらつき最大となる軸を生成するものである。KL変換でも構わない。次元数rは、主成分分析により求めた固有値を降順に並べ、大きい方から加算した固有値を全固有値の和で割り算した累積寄与率なる値に基づいて決める。
【0082】
独立成分分析1202は、ICA(Independent Component Analysis)と呼ばれ、非ガウス分布を顕在化する手法として効果がある。非負行列因子分解は、NMF((Non-negative Matrix Factorization)と呼ばれ、行列で与えられるセンサ信号を、非負の成分に分解する。
【0083】
機能1220の欄で教師なしとしたものは、本実施例のように、異常事例が少なく、活用できない場合に、有効な変換手法である。ここでは、線形変換の例を示した。非線形の変換も適用可能である。
【0084】
上述した特徴変換は、標準偏差で正規化する正準化なども含め、学習データと観測データを並べて同時に実施する。このようにすれば、学習データと観測データを同列に扱うことができる。
【0085】
図13は、残差パターンによる異常発生の予兆検知技術の説明図である。図13は、残差パターンの類似度算出の手法を示している。図13は、局所部分空間法により求めた各観測データの正常重心に対応し、各時点でのセンサ信号Aとセンサ信号Bとセンサ信号Cの正常重心からの偏差が空間内の軌跡として表現されている。正確には、各軸は主要な主成分を表している。
【0086】
図13では、時刻t−1、時刻t、時刻t+1を経過する観測データの残差系列が矢印のついた点線で示されている。観測データ及び異常事例それぞれの類似度は、それぞれの偏差の内積(A・B)を算出して推定することができる。また、内積(A・B)を大きさ(ノルム)で割って、角度θで類似度を推定することも可能である。観測データの残差パターンに対して類似度を求め、その軌跡により、発生すると予測される異常を推測する。
【0087】
具体的には、図13には、異常事例Aの偏差1301、異常事例Bの偏差1302が示されている。矢印のついた点線で示されている時刻t−1、時刻t、時刻t+1を含む観測データの偏差系列パターンを見ると、時刻tでは異常事例Bに近いが、その軌跡からは、異常事例Bではなく、異常事例Aの発生を予測することができる。該当するものが過去の異常異例になければ、新規な異常と判定することもできる。また、図13に示した空間を、頂点が原点に一致する円錐状の区間で分け、この区間により、異常を識別することもできる。
【0088】
異常事例を予測するために、異常事例が発生するまでの偏差(残差)時系列の軌跡データをデータベース化しておき、観測データの偏差(残差)時系列パターンと軌跡データベースに蓄積された軌跡データの時系列パターンの類似度を算出して異常発生の予兆を検知することができる。
【0089】
このような軌跡を、GUI(Graphical User Interface)にてユーザに表示すると、異常の発生状況が視覚的に表現でき、対策などにも反映しやすい。
【0090】
総合的な残差のみを時間的経緯を無視して追跡していると、異常現象を理解しづらいが、残差ベクトルの時間経緯を追えると、現象が手に取るように分かる。理論的には、複合事象の各事象のベクトル加算演算を行うことにより、複合事象の異常発生の予兆を検知することができ、残差ベクトルが、的確に異常を表現することが分かる。過去の異常事例A,Bなどの軌跡が既知としてデータベースにあれば、これらと照合して、異常の種類を特定(診断)できる。
【0091】
また、図13を、一定の時間ウィンドウ内で残差ベクトルの発生として眺めれば、それを頻度として表現することもできる。頻度として扱うことができれば、図7に示したような形態の頻度分布情報を取得でき、これを現象のキーワードの出現頻度として扱うことができる。すなわち、診断に使うことができる。図13の残差ベクトルを頻度として扱うには、図13の各軸を一定幅に区切り、各立方体の区間に入るかどうかで、頻度分布を作成できる。図13では、3次元、通常は多次元の頻度分布になるが、縦一列に並べるなどして1次元化(ベクトル化)することが可能であり、通常の頻度分布、頻度パターンとして扱うことができる。
【0092】
図14に、本発明の異常検知・診断システム100のハードウェア構成を示す。本システムは、プロセッサ120、データベース121、表示部122及び入力部123を備えて構成される。異常検知を実行するプロセッサ120に、対象とするエンジンなどのセンサデータ104を入力し、欠損値の修復などを行って、データベースDB121に格納する。プロセッサ120は、取得した観測センサデータ104、学習データからなるデータベースDB121のDBデータを用いて、異常検知を行う。表示部122では、各種表示を行い、異常信号の有無を出力する。トレンドを表示することも可能とする。イベントの解釈結果も表示可能とする。さらに、プロセッサ120は、保守履歴情報などが格納されているデータベースDB121をアクセスし、キーワードを抽出・検索し、診断モデルを生成することにより、異常診断を行い、その診断結果を表示部122にて表示する。
【0093】
診断結果は、図4(b)に示した診断モデルを含む。即ち、現象診断の結果、現象分類の結果、診断モデルなどを表示するものである。また、図5、図6、図7に示した各種情報も表示する。特に、図7(b)に示した頻度ヒストグラムは、図7(a)の頻度パターンを可視化するものとして重要な表示ファクタである。設備のおかれた状況、異常発生の状況、保守の状況、部品交換にいたる状況、過去の事例などを表す「文脈」として、その一部を、選択表示する。これらは、項目のマージなどの観点で編集可能である。
【0094】
上記ハードウェアとは別に、これに搭載するプログラムを、メディア媒体やオンラインサービスにより顧客に提供することもできる。
【0095】
データベースDB121は、熟練エンジニアらがDBを操作できる。特に、異常事例や対策事例を教示でき、格納できる。(1)学習データ(正常)、(2)異常データ、(3)対策内容が、格納される。データベースDB121を、熟練エンジニアらが手を加えられる構造にすることにより、洗練された、有用なデータベースができあがることになる。また、データ操作は、学習データ(個々のデータや重心位置など)を、アラームの発生や部品交換に伴い、自動的に移動させることにより行う。また、取得データを自動的に追加することも可能である。異常データがあれば、データの移動に、一般化ベクトル量子化などの手法も適用できる。
【0096】
また、図13にて説明した過去の異常事例A、Bなどの軌跡を、データベースDB121に格納し、これらと照合して、異常の種類を特定(診断)する。この場合、軌跡をN次元空間内のデータとして表現し、格納する。プロセッサ120によるデータの処理や表示部122で表示するデータの指示は、入力部123で行う。
【0097】
図15に、異常検知、及び異常検知後の診断を示す。図15(a)において、時系列データ取得部103から送られてくる設備1501からの時系列信号(センサ信号)104から、プロセッサ120の内部で信号処理して時系列信号の特徴抽出・分類1524を実行することにより、異常を検知する。設備1501は、1台のみとは限らない。複数台の設備を対象にしてもよい。同時に、各設備の保守のイベント105(アラームや作業実績など。具体的には、設備の起動、停止、運転条件設定、各種故障情報、各種警告情報、定期点検情報、設置温度などの運転環境、運転累積時間、部品交換情報、調整情報、清掃情報など)などの付帯情報を取り込み、異常を高感度に検知する。
【0098】
図15(a)において、時系列信号104の特徴抽出・分類1524に示した時系列データの波形1525が、観測信号を表し、本実施例にて検知した異常を、丸印1526で予兆として示している。この予兆は、異常測度が定めたしきい値以上になり(あるいは、設定した回数以上、異常測度がしきい値を超えれば)、異常ありと判定されたものである。この例では、設備停止に至る前に、異常予兆を検知でき、しかるべき対策が実施できる。
【0099】
図15(b)に示すように、異常予知・診断システム100のプロセッサ120における予兆検知部1530により早期に予兆として発見できれば、故障となって稼動停止となる前に、何らかの対策がうてることになる。そして、部分空間法などにより予兆検知し1531、イベント列照合なども加えて総合的に予兆かどうか判断し1532、この予兆に基づき、図4にて示した方法にて異常診断部1540で異常診断を行い、故障候補の部品の特定やいつ当該部品が故障停止に至るかなどを推測する。そして、必要な部品の手配を、必要なタイミングで行う。
【0100】
異常診断部1540は、予兆を内包しているセンサを特定する現象診断部1541と、故障を引き起こす可能性のあるパーツを特定する原因診断部1542に分けると考えやすい。予兆検知部1530では、異常診断部1540に対して、異常の有無という信号のほか、特徴量に関する情報を出力する。異常診断部1540は、これらの情報をもとにデータベース121に記憶してある情報を用いて現象診断部1541で現象診断を行う。また、現象を分類する。このような現象が、図4にて示した方法に基づき、原因診断部1542においてデータベース121に記憶してある情報を用いて調整箇所の特定や交換すべき部品の特定としての原因診断が行われる。
【0101】
図16に、得られた、各センサ信号の異常への影響度の情報から、各センサ信号のネットワークを作成した例を示す。基本的な温度1601、圧力1602、モータなどの回転数1603、電力1604などのセンサ信号に関して、異常への影響度の割合に基づき、センサ信号間に重みを付与できる。これらの関係も、キーワードとして、図4の診断モデルで活用される。
【0102】
こういった関連性ネットワークができると、設計者が意図しない信号間の連動性、共起性、相関性などが明示でき、異常の診断時にも有用である。ネットワークの生成は、各センサ信号の異常への影響度のほか、相関、類似度、距離、因果関係、位相の進み/遅れなどの尺度で、これを生成することができる。
<対象設備のモデル;選択されたセンサ信号のネットワーク>
図17に異常検知、原因診断の部分に関して、さらにその構成を示す。図17において、複数のセンサからデータを取得するセンサデータ取得部1701(図1の時系列データ取得部103に相当)、ほぼ正常データからなる学習データ1704、学習データをモデル化するモデル生成部1702、観測データとモデル化した学習データの類似度により観測データの異常の有無を検知する異常検知部1703、各信号の影響度を評価するセンサ信号の影響度評価部1705、各センサ信号の関連性を表すネットワーク図を作成するセンサ信号ネットワーク生成部1706、異常事例、各センサ信号の影響度、選択結果などからなる関連データベース1707、設備の設計情報からなら設計情報データベース1708、原因診断部1709、診断結果を格納する関連データベース1710、および入出力部1711からなる。これらの処理を通して得られたキーワードも、図4の診断モデルで活用される。言い換えれば、これらの処理は、キーワード生成部としてみることも可能である。
【0103】
設計情報データベースには、設計情報以外の情報も含み、エンジンを例にとると、年式、モデル、部品表(BOM)、過去の保守情報(オンコール内容、異常発生時のセンサ信号データ、調整日時、撮像画像データ、異音情報、交換部品情報など)、稼動状況情報、輸送・据付時の検査データなどを含む。
【産業上の利用可能性】
【0104】
本発明は、プラント、設備の異常検知として利用することが出来る。
【符号の説明】
【0105】
100・・・異常予知・診断システム 103・・・多次元時系列信号取得部
120・・・プロセッサ 121・・・データベース部 122・・・表示部
123・・・入力部。

【特許請求の範囲】
【請求項1】
プラント又は設備の異常或いはその予兆を検知し、前記プラント又は設備を診断する異常検知・診断方法であって、
複数のセンサから取得したデータを対象に前記プラント又は設備の異常を検知し、前記プラント又は設備の保守履歴情報からキーワードを抽出し、該抽出したキーワードを用いて前記プラント又は設備の診断モデルを生成し、この該生成した診断モデルを用いて前記プラント又は設備の診断を行うことを特徴とする異常検知・診断方法。
【請求項2】
前記保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報の内の何れかを含み、前記保守履歴情報から定めたキーワードの出現頻度を算出して出現頻度のパターンを得、該得た出現頻度のパターンを診断モデルとし、該診断モデルの出現頻度のパターンと新たに検知した前記プラント又は設備の異常に関するキーワードとの類似度を用いて、前記プラント又は設備の診断を行うことを特徴とする請求項1に記載の異常検知・診断方法。
【請求項3】
前記複数のセンサから取得したデータを対象にセンサ間の関係を表現する現象診断を行い、または現象を分類し、この結果表れるキーワードの出現頻度を算出し、該算出したキーワードの出現頻度と前記診断モデルにおけるキーワードの出現頻度のパターンとの類似度を算出し、該算出した類似度を用いて前記プラント又は設備の診断を行うことを特徴とする請求項1又は2に記載の異常検知・診断方法。
【請求項4】
前記複数のセンサからデータを取得し、ほぼ正常データからなる学習データをモデル化し、モデル化した学習データを用いて取得データの異常測度をベクトルとして算出し、この異常測度ベクトルの時間経過に伴う軌跡に基づいて、異常を検知することを特徴とする請求項1乃至3の何れかに記載の異常検知・診断方法。
【請求項5】
プラントまたは設備の異常或いはその予兆を検知し、前記プラント又は設備を診断する異常検知・診断システムであって、
複数のセンサから取得したデータを対象に前記プラント又は設備の異常を検知する異常検知部と、前記プラント又は設備の保守履歴情報を蓄積したデータベース部と、該データベース部に蓄積された前記プラント又は設備の保守履歴情報から抽出したキーワードを用いて前記プラント又は設備の診断モデルを生成する診断モデル生成部と、新規に検知した異常に対して前記診断モデルと照合して前記プラント又は設備の診断を行う診断部とを備えたことを特徴とする異常検知・診断システム。
【請求項6】
前記データベース部に蓄積する保守履歴情報は、オンコールデータ、作業報告書、調整・交換部品コード、画像情報、音情報の内の何れかを含み、前記診断モデル生成部は前記保守履歴情報から定めたキーワードの出現頻度を算出して出現頻度のパターンを得てこれを診断モデルとし、前記診断部は前記新規に検知した異常に対して出現頻度のパターンの類似度を用いて設備の診断を行うことを特徴とする請求項5に記載の異常検知・診断システム。
【請求項7】
複数のセンサから取得したデータを対象にセンサ間の関係を表現し、または現象を分類する現象診断部を更に有し、前記診断部は前記現象診断部を通して表れるキーワードの出現頻度を算出して該出現頻度のパターンとの類似度を算出し、該算出した類似度を用いて前記プラント又は設備の診断を行うことを特徴とする請求項5又は6に記載の異常検知・診断システム。
【請求項8】
前記診断モデル生成部は、複数のセンサからデータを取得してほぼ正常データからなる学習データをモデル化し、前記診断部は前記モデル化した学習データを用いて取得データの異常測度をベクトルとして算出し、この異常測度ベクトルの時間経過に伴う軌跡に基づいて、異常を検知することを特徴とする請求項5乃至7の何れかに記載の異常検知・診断システム。
【請求項9】
プラント又は設備の異常或いはその予兆を早期に検知し、診断する異常検知・診断プログラムであって、
複数のセンサから取得したデータを対象に異常を検知する処理ステップと、保守履歴情報から取得したキーワードの出現頻度を用いて診断モデルを生成する処理ステップと、該診断モデルを生成する処理ステップで生成した診断モデルを用いて前記プラント又は設備の診断を行う診断処理ステップとを含むことを特徴とする異常検知・診断プログラム。
【請求項10】
前記異常を検知する処理ステップにおいて複数のセンサから取得したデータを対象に異常を検知し、前記診断モデルを生成する処理ステップにおいて保守履歴情報から取得したキーワードの出現頻度を用いて診断モデルを生成し、前記診断処理ステップにおいて前記生成した診断モデルを用いて設備の診断を行う際に異常検知や現象診断を通してパターン或いはキーワードを抽出し、該抽出したパターン或いはキーワードを診断に用いることを特徴とする請求項9に記載の異常検知・診断プログラム。
【請求項11】
作業報告書、交換部品情報などからなる保守履歴情報を格納したデータベースと、設備に付加した多次元センサから得られる信号情報を用いて部分空間法などの識別器によって異常或いはその予兆を検知する検知手段と、交換部品や調整などに着目したキーワードの頻度パターンに基づいて診断を行う診断手段とを備え、異常予兆検知とそれをトリガーにした診断を実施することを特徴とする企業資産管理・設備資産管理システム。
【請求項12】
検知した異常やその予兆を現象に分類する現象分類手段を更に備え、異常予兆検知とそれをトリガーにした診断を実施することを特徴とする請求項11記載の企業資産管理・設備資産管理システム。
【請求項13】
検知した異常やその予兆を現象に分類する現象分類手段は、現象を編集可能としたことを特徴とする請求項12記載の企業資産管理・設備資産管理システム。
【請求項14】
前記キーワードの頻度パターンの各項目を編集可能としたことを特徴とする請求項11乃至13の何れかに記載の企業資産管理・設備資産管理システム。
【請求項15】
前記キーワードの頻度パターンを、設備および保守作業の文脈として、表示・編集可能としたことを特徴とする請求項11乃至14の何れかに記載の企業資産管理・設備資産管理システム。
【請求項16】
前記キーワードの頻度パターンの各項目は、時間によりグルーピング、または選択可能としたことを特徴とする請求項11乃至15の何れかに記載の企業資産管理・設備資産管理システム。
【請求項17】
前記キーワードは、システムにおいて定められた言葉、記号、コードや、異常検知などの処理にて出力された記号であることを特徴とする請求項11乃至16の何れかに記載の企業資産管理・設備資産管理システム。
【請求項18】
前記キーワードの出現頻度をパターンとして記録し、これを活用することにより、保守履歴情報が再利用可能であることを特徴とする請求項11乃至17の何れかに記載の企業資産管理・設備資産管理システム。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate


【公開番号】特開2011−227706(P2011−227706A)
【公開日】平成23年11月10日(2011.11.10)
【国際特許分類】
【出願番号】特願2010−96873(P2010−96873)
【出願日】平成22年4月20日(2010.4.20)
【出願人】(000005108)株式会社日立製作所 (27,607)
【Fターム(参考)】