説明

病原体を検出するためのマイクロアレイ又はそれを含むキット

【課題】ヒト、家畜、家禽等の臨床検体や野外検体、食品、水等において、病原性を示すウイルス、細菌、真菌、古細菌、原虫、タンパク質毒素等の病原体を一括、簡単、網羅的に同時検出するためのマイクロアレイを提供する。
【解決手段】古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一株に由来する既知の核酸塩基配列(センス)又は相補的(アンチセンス)な塩基配列を有し、この塩基配列において互いに異なる少なくとも3個の群からなるプローブであって、その各プローブ長が50〜70merであり、Tmが70〜80℃であり、−3.0kcal/mol未満のヘアピンループ及び−3.0kcal/mol未満のセルフダイマーを避け、ホモロジーから推測される非特異性を確保するように設計されたプローブの群が担体上に固定化されている、病原体を検出するためのマイクロアレイ又はそれを含むキット。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、臨床検体、野外検体、食品その他の検体から、ウイルス、細菌、タンパク質毒素等の病原体を一括、簡単、網羅的に同時検出するためのマイクロアレイ、及びそのマイクロアレイを使用した病原体の検出方法に関する。
【背景技術】
【0002】
各種の感染症の診断にあたっては、感染症の臨床的診断とともに、迅速かつ正確な実験室検査が必要である。従来、培養増殖された病原体は主に生化学的手法を用いて判定されていた。このような検査手法は、時間と労力がかかるため、現在、病原体タンパク質に対する抗体を用いて検出する方法(例えばELISA)、及び病原体核酸をPCR(ポリメラーゼ・チェイン・リアクション)反応で増幅する手法(例えばリアルタイムPCR)が主流である。ウイルスゲノム等の病原体核酸をPCR反応で増幅して検出する方法は、特異性及び検出感度で優れている。
【0003】
しかし、PCR反応では病原体毎に特異的プライマーを設計しなければならず、標的が絞られていない場合や病原体が遺伝子突然変異を伴う場合、PCR反応の適用に困難を伴う。
【0004】
多種類の病原体が関わる感染症や特定不能な感染症の病原体検査では、複数の病原体核酸を一括して同定できることが望ましい。その手法として、マイクロアレイを用いた検出法がある。マイクロアレイは、数十から数十万遺伝子の標的核酸に対して相補的な核酸プローブ(PCR増幅産物やオリゴヌクレオチド)を固定化したスライドガラスに、蛍光色素等で標識した核酸試料を会合させ、目的遺伝子の有無を判別し、また、目的遺伝子を定量する方法である。従来から用いられるPCR反応を用いた検出試験では同時に行える検出数に限界があるので、1検体から同時多検出試験を行えるプラットフォームとしてのマイクロアレイは、病原体核酸検出法として有望である。現在、目的別に多種多様な核酸プローブを固定化したマイクロアレイ及びそれを含むキットが市販されている。
【0005】
発売当初は高価であったマイクロアレイは、近年、非常に安価に製造できるようになり、通常の臨床検査レベルでの普及に現実味を帯びてきた。今後の本格的な普及を前に、ヒト、家畜、家禽等に対して病原性のウイルス、細菌、真菌、原虫等を1回の検査で一括、簡単、網羅的に同時検出可能なマイクロアレイの開発が期待される。
【0006】
微生物の検出を目的としたオリゴヌクレオチドプローブを利用した例として、短時間で多数の種類のレジオネラ属細菌を一種類のプローブで特異的に高精度に検出可能な技術が知られている(特許文献1)。これらをはじめとする既存のプローブを用いた検出方法では、ゲノム上の保存領域の塩基配列を使用することが多い。例えば細菌を含む原核生物のrRNAがコードされているゲノム上の配列(rDNA)は、多岐にわたる種間で塩基配列の保存性が高く、プライマー設計、及びPCR反応による多種間の当該遺伝子増幅が容易である。更に、rDNAは各々菌特有の塩基多型が見られる。上記2つの理由から、菌種判定に利用されやすい。
【0007】
しかし、多種間保存性が高い塩基配列をプローブとして用いた場合、例えば大腸菌と赤痢菌のように2種間rDNA相同性が99.3%ある場合に、両者を区別できないことがあるという問題がある。
【0008】
rDNA以外の塩基配列をプローブとして採用する方法として、担体面上に固定化された互いにGC含量の異なる複数の既知微生物由来染色体DNAと、検体中に未知微生物由来染色体DNAとを反応させ、生じたハイブリダイゼーション複合体を検出することを特徴とする微生物の同定方法、及びGC含量の異なる多数の既知微生物由来染色体DNAが同一面上に固定された担体を含んでなる、微生物固定用キットが知られている(特許文献2)。種や属間の大まかな相違を検出できる可能性はあるが、前述同様に相同性の高い種間の分別は困難になることが予想される。
【0009】
本発明者等は、食品中に含まれる多種類の病原体を同時に検出するためのマイクロアレイの開発を続け、マイクロアレイ用に好適な核酸増幅法を確立した(非特許文献1)。
【先行技術文献】
【特許文献】
【0010】
【特許文献1】特開2001−299396
【特許文献2】特開平10−191982
【非特許文献】
【0011】
【非特許文献1】Uda A, Tanabayashi K, Fujita O, Hotta A, Yamamoto Y, Yamada A. Comparison of whole genome amplification methods for detecting pathogenic bacterial genomic DNA using microarray. Jpn J Infect Dis.2007 60:355−61.
【発明の概要】
【発明が解決しようとする課題】
【0012】
本発明の目的は、上記知見をさらに発展させ、臨床検体、野外検体、その他の検体(食品、水等)において、ヒト、家畜、家禽に対して病原性を示すウイルス、細菌、真菌、古細菌、原虫、タンパク質毒素等を一括、簡単、網羅的に同時検出するためのマイクロアレイを提供することにある。
【課題を解決するための手段】
【0013】
本発明者は、多種多様な病原体を同時に一括検出するために、マイクロアレイへの応用を試みた。ゲノムプロジェクトが終了又は途中の古細菌30株、原虫9株、細菌422株、真菌59株、ウイルス672株の合計1192株の全長ゲノム配列並びにタンパク毒素等74遺伝子からマイクロアレイに最適なプローブを5万種類以上設計した。設計した全てのプローブのホモロジー検索(BLAST検索)を行い、各病原体に対する特異的検出に有効であると推測された38,986プローブを選定し、これらのプローブを搭載したマイクロアレイMicroarray for Multiple Detection of Pathogenic Agents(以下、MMPDAと略す)を開発した。MMPDAは、病原体検出用プローブの特異性の確認及び統計学的手法を用いた検出病原体の絞込みにおいて、予想を上回る成果を収めた。上記成果に基づいて、本発明者等は、病原体一株あたり4〜60種類(平均30種類)を超えるセンス及びアンチセンスオリゴDNAプローブをマイクロアレイに搭載させることで、遺伝子突然変異による一部未検出プローブの相互補完を行う事を可能であることを見出した。同時に、病原体由来の蛍光シグナル強度に対する統計学的有意差を求めることで高精度な病原体検出が可能であることも見出した。これらの知見をもとに、本発明者等は、以下の発明を完成させた。本発明は、古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一株に由来する既知の核酸塩基配列(センス)、又は相補的な配列(アンチセンス)を有し、該塩基配列において互いに異なる少なくとも3個の群からなるオリゴDNAプローブであって、その各プローブ長が50〜70merであり、Tm(melting temperature、融解温度)が70〜80℃であり、−3.0kcal/mol未満のヘアピンループ(hairpin loops)及び−3.0kcal/mol未満のセルフダイマー(self−dimer)を避け、ホモロジーから推測される特異性を確保するように設計された前記プローブの群が担体上に固定化されている、病原体を検出するためのマイクロアレイ又はそれを含むキットを提供する。ここで、キットとは、マイクロアレイの使用に必要な試薬及び/又は器具を含む。本明細書において、上記「オリゴDNAプローブ」は核酸プローブに含まれる。
【0014】
前記プローブは、多種間保存領域以外の場所、すなわち、多種間保存性が高い塩基配列以外の領域の塩基配列を含むことが好ましい。
【0015】
本発明は、古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一株に由来する既知の核酸塩基配列(センス)、又は相補的な配列(アンチセンス)を有し、該塩基配列において互いに異なる少なくとも3個の群からなるプローブであって、その各プローブ長が50〜70merであり、Tmが70〜80℃であり、−3.0kcal/mol未満のヘアピンループ(hairpin loops)及び−3.0kcal/mol未満のセルフダイマー(self−dimer)を避け、ホモロジーから推測される非特異性を確保するように設計された前記プローブの群が担体上に固定化されているマイクロアレイに、検体から取得した核酸をハイブリダイゼーションさせることを含む病原体の検出方法を提供する。
【0016】
前記検体を含むと思われる試料から抽出した核酸DNA及び/又はRNAを、そのまま或いは全ゲノム増幅(WGA:Whole Genome Amplification)後、制限酵素又は超音波で断片化処理、蛍光標識後、ハイブリダイゼーションさせることが好ましい。その後、マイクロアレイスキャン、各スポットの蛍光シグナル強度数値化、統計処理して、病原体を検出する。
【0017】
前記プローブは、アクセッションNo.毎に2〜30個のセンスプローブと同数のアンチセンスプローブが計4〜60個設計されており、アクセッションNo.毎に複数プローブの蛍光シグナル強度を解析することにより、病原体の遺伝子突然変異、及び機械的又は手技的誤差の影響を可能な限り排除することが好ましい。
【0018】
前記検出方法において、特に前記数値化されたスポットの蛍光シグナル強度は病原体株アクセッションNo.のセンス又はアンチセンス毎にまとめられ、各スポット群蛍光シグナル強度から算出される中央値がバックグランドと比較して明らかに高く、該蛍光シグナル強度のp値が0.001よりも小さい値であり、かつZ値が3.09より大きい値であるとき、有意に強い蛍光シグナル強度であるとし、サンプル中に病原体が含まれたと判定することを含む。
【0019】
本発明の検出方法は、特に、病原体が含まれる食品等の前記検体からDNA及びRNAの両核酸を含む核酸溶液を核酸抽出剤(SepaGene;Sankojunyaku Co.,Tokyo,Japan)等で抽出し、前記手法を用いて試験した場合に、DNA及びRNAの核酸種を問わず病原体の有無を判定することを含む。
【発明の効果】
【0020】
本発明のマイクロアレイによれば、インフルエンザウイルス、Q熱の原因菌(Coxiella burnetii)、大腸菌(Esherichia coli)、エルシニア(Yersinia enterocolitica)、野兎病菌(Francisella tularensis)等の病原体を漏れなく特異的に検出可能である。本発明のマイクロアレイは、例えばインフルエンザウイルスの同種の亜型(H1〜H16、N1〜N9等)を区別できる特異性と、同亜型内での変異は吸収できるほど寛容性という性質を兼ね備える。
【図面の簡単な説明】
【0021】
【図1】図1は、本発明のマイクロアレイを用いた病原体の検出方法の概要を示したモデル図である。
【発明を実施するための形態】
【0022】
(検出対象)
以下に、本発明のマイクロアレイの一実施の態様を詳述する。本発明のマイクロアレイには、古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一株に由来する既知の核酸塩基配列(センス)又は相補的な配列(アンチセンス)を有するオリゴDNAプローブがスポットされる。古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素は、その全部又は一部の核酸(DNA又はRNA)が含まれているものであればよく、病原体の種や属に関係なく用いることができる。マイクロアレイ製造の技術進歩とコスト低下により、マイクロアレイ上に1万個以上のプローブを固定することが極めて容易となった。したがって、本発明のマイクロアレイに搭載するプローブの数は、ヒトを含む動物に病原性の微生物等の核酸をできるだけ多く搭載することが好ましい。表8〜13には、実施例で使用した古細菌30株、原虫9株、細菌422株、真菌59株、ウイルス672株の合計1192株とタンパク質毒素74遺伝子の名称をそのアクセッションNo.とともに示す。好ましくは、本発明のマイクロアレイは、これらの少なくとも1割、より好ましくは少なくとも5割、さらに好ましくは少なくとも7割を搭載し、病原体検出判定に統計解析を活用する。
【0023】
(核酸プローブの設計条件)
上記病原体の塩基配列に基づく核酸プローブの設計には、汎用のソフトウエア、例えばArray Designer(Premier Biosoft International,Palo Alto,CA)を用いることができる。核酸プローブの設計条件の一つとして、プローブ長は50〜70merであり、好ましくは55〜65merである。プローブ長が50merより短いと、特異性と検出能力の低下を招き、誤認識の可能性を生じる。逆に、70merより長いと、目的外の標識核酸のクロスハイブリダイゼーションにより非特異反応の増大し、結果的に検出シグナルが非特異シグナルと判別できなくなる可能性を生じる。
【0024】
核酸プローブのTmは、70〜80℃である。Tmが70℃より低いと、GC含量が極度に低くなり、プローブの性能低下及び標的特異性の低下を生じる。また、高いGC含量ゲノムを持つ病原体のプローブ作成に困難が伴う。逆に、80℃より高い場合、標的特異性の低下と、低いGC含量ゲノムを持つ病原体プローブの作成が困難である。
【0025】
核酸プローブのエネルギーが−3.0kcal/mol未満のヘアピンループ及びエネルギーが−3.0kcal/mol未満のセルフダイマーを避ける。
【0026】
核酸プローブは、クロスホモロジーもまた避ける。ホモロジーから推測される非特異性を確保するために、設計した全てのマイクロアレイプローブをBLAST検索にて他のバクテリアとホモロジーが低いことを確認することが好ましい。
【0027】
(核酸プローブ数)
古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一株の核酸配列から、互いに異なるプローブを少なくとも3個、好ましくは少なくとも20個、特に好ましくは少なくとも30個設計して、それを担体上にスポットする。さらに、塩基配列の比較的短いウイルス及びタンパク質毒素では、少なくとも3個として、塩基配列の比較的長い古細菌、原虫、細菌、及び真菌では、少なくとも20個、好ましくは少なくとも30個とすることもできる。マイクロアレイは、製造工程及び作業工程で生じた視認できない傷、洗浄不足による塩類析出による結晶残存、作業中に付着した塵等はレーザーを乱反射させ誤った強い蛍光シグナルを引き起こすことがある。病原体核酸をマイクロアレイで同定検出するためには、強い蛍光シグナルを発するスポットのみで同定することは不可能である。そこで、菌、ウイルス等の病原体株(同じアクセッションNo.)あたり上記複数のプローブを搭載させ、エラー耐性を高める。また、アクセッションNo.毎に多数のプローブを搭載することにより、変異しやすい病原体をハイブリダイゼーションさせた時の検出漏れを防ぐことができる。さらに、複数のプローブは、例えばインフルエンザウイルスの同種の亜型(H1〜H16、N1〜N9等)を区別できる特異性と、亜型内での変異を吸収できるほど寛容性という相反する性質を付与するのに役立つ。
【0028】
前記核酸プローブは、アクセッションNo.毎に2〜30個のセンスプローブと同数のアンチセンスプローブが計4〜60個設計されることがより好ましい。アクセッションNo.毎に上記複数のプローブの蛍光シグナル強度を解析することで、病原体の遺伝子突然変異、及び機械的又は手技的誤差の影響を、可能な限り排除することができる。
【0029】
前記核酸プローブは、多種間ゲノム保存領域以外の塩基配列を含むことが好ましい。この多種間ゲノム保存領域以外の場所の塩基配列を含むことによって、進化的に近縁種のもの同士をより確実に区別可能となる。
【0030】
(核酸プローブ)
上記で設計された核酸プローブは、市販品、市販の微生物や採種した微生物から常法により抽出したもの、あるいは合成したものでよい。これらのいずれかを担体に固定化する。プローブ用に抽出された核酸が二本鎖の場合、公知の加熱変性、アルカリ変性法により一本鎖にされる。一本鎖は、RNA又はDNAのセンス(+)鎖、アンチセンス(−)鎖のいずれでもよい。また、固定化するプローブ用は光リソグラフ法やIn situ合成法を用いて担体上でプローブを直接合成してもよい。
【0031】
(担体)
上記核酸プローブを固定化するための担体は、汎用のものを特に制限なく使用可能である。担体の材質は、例えばガラス、ポリスチレン、ポリ塩化ビニル、ポリプロピレン、アクリル樹脂、ナイロン、ニトロセルロース、ポリフッ化ビニリデン、ポリメチルメタクリレート、シリコーン、金属等が挙げられる。担体をカチオン性化合物、アニオン性化合物、ダイヤモンド、アミノシラン、ポリリジン等でコートし、あるいはアミノ基、カルボキシル基、カルボジイミド基、イソシアネート基等で修飾することにより、プローブの固定を強化することも可能である。担体の形態は、例えば板状、フィルム状、膜状、円柱状等である。担体の大きさは、検出機器に対応して適宜決定される。また、プローブを担体に固定する際、プローブ5’末端あるいは3’末端の固定方向を問わない。
【0032】
(固定化方法)
上記担体へのプローブの固定化方法は、当業分野で公知の方法でよく、物理吸着、化学吸着、市販のスタンピングマシンを用いる固定化方法等が挙げられる。
【0033】
(コントロール)
増幅反応及びハイブリダイゼーションの確認のためのポジティブコントロール及び非特異的ハイブリダイゼーション有無の確認のためのネガティブコントロールとなる核酸もまた担体上にスポットすることが好ましい。
【0034】
以下に、設計したマイクロアレイプローブを、スライドガラスへスポットする手順の一例を示す。まず、5’アミノ化されたオリゴDNAを、GeneSlide(Toyokohan Co.,Tokyo,Japan)上に、スポッティングマシンでスポットする。ポジションコントロールとして、Cy3及びCy5で標識済オリゴDNAを10μMの濃度でスポットする。スポットされたスライドは、80℃で1時間固定化処理した後、0.5%SDSを含む2×SSC溶液で洗浄する。洗浄後のスライドを、0.5%SDSを含む2×SSC沸騰溶液で10分間処理した後、DWでリンスし、遠心乾燥する。
【0035】
(キット)
上記で得られるマイクロアレイは、マイクロアレイの使用に必要な試薬及び/又は器具を含むキットとしてもよい。同梱する試薬の例としては、核酸抽出溶液、マイクロアレイ−サンプル核酸ハイブリダイゼーション溶液、洗浄溶液、核酸標識物質、ハイブリダイゼーションコントロール用標識済核酸が挙げられる。
【0036】
(検体の由来)
以下に、本発明のマイクロアレイを用いた病原体の検出方法を説明する。本発明のマイクロアレイでは、特にインフルエンザウイルス、Q熱の原因菌、大腸菌、エルシニア、及び野兎病菌等の病原体の検知に有効である。したがって、本発明のマイクロアレイにかける検体の出所は、水、清涼飲料水、井戸水、地下水等の飲料、食品、ヒトを含む動物の体液(血液、血清、血漿、髄液、胃液、胆汁等)、尿・糞、たん・膿等の生体由来試料、培養済み病原体等が挙げられる。
【0037】
(核酸の抽出)
上記検体を本発明のマイクロアレイのプローブで検査するに際し、上記検体から病原体の核酸(DNA及び/又はRNA)を抽出する必要がある。前記検体からDNA及びRNAの両核酸を含む核酸溶液を核酸抽出剤で抽出し、DNA及びRNAの核酸種を問わず病原体の有無を判定してもよい。核酸を抽出する方法は、公知の方法を用いることができる。培養したバクテリアからのDNA抽出は、例えばDNA Isolation Kit for Cells and Tissue(Roche,Mannheim,Germany)、SepaGene(Sanko−junyaku,Tokyo)等の市販のキットが使用できる。
【0038】
(核酸の増幅)
マイクロアレイを用いた標的遺伝子の検出には、大量の核酸(例えば1μg以上)が要求される。ほとんどの場合、検体核酸を50μg以上用意することは容易であるが、抽出した核酸が微量の場合は、図1に示すように、何らかの遺伝子増幅法で増殖させる必要がある。本発明のマイクロアレイは、病原体一株のゲノム上に分散する少なくとも3領域の互いに異なるプローブを搭載するので、ハイブリダイゼーションにかける核酸の増幅もまた、全ゲノムの増幅、すなわち、WGA法を採用することが好ましい。WGA法の具体例としては、Phi29 DNAポリメラーゼを用いた増幅法、OmniPlex WGA法、DOP−PCR(degenerate oligonucleotide primer−PCR)等が挙げられる。特に、Phi29 DNAポリメラーゼを用いた増幅法及びOmniplex WGAがゲノムDNAを均一に増幅する点で好ましい。OmniPlex WGA法による増幅産物は、標的遺伝子に対する蛍光シグナル強度及びシグナルの均一性に優れる点でも好ましい。
【0039】
OmniPlex WGA法を用いた増幅には、市販のGenomePlex Whole Genome Amplification Kit(Sigma,Poole,UK)を使用可能である。鋳型DNAとして、10ng程度のゲノムDNAにFragmentation Bufferを添加し、95℃で4分間の断片化処理を行った後、急冷する。Library Preparation Buffer及びLibrary Stabilization Bufferを添加した後、95℃で2分間サンプルDNAを更に変性させる。変性したDNAサンプルに、Library Preparation Enzymeを添加し、16℃で20分間、24℃で20分間、37℃で20分間、75℃で5分間インキュベートする。インキュベート後のサンプルに、12.5ユニットのTakara ExTaqを含むAmplification Master Mixを更に添加し、95℃3分、14サイクル(95℃15秒、65℃5分)で鋳型DNAを増幅する。
【0040】
Phi29 DNAポリメラーゼを用いた増幅には、市販のGenomiPhi DNA Amplification Kit(GE Healthcare,Piscataway,NJ)を使用可能である。鋳型DNAとして、例えばE.coli株(10ng)のゲノムDNA溶液1μlを、キットに添付されていたサンプル溶液9μlへ添加し、95℃で5分間熱処理を行った後、氷上で5分間静置する。熱変性処理を行ったサンプルにPhi29 DNAポリメラーゼを含む溶液を10μl添加し、30℃で2〜20時間増幅した後、65℃で10分間、ポリメラーゼの変性処理を行う。増幅後のサンプルは、使用するまで低温(例えば−30℃)で保存する。
【0041】
微量のウイルスRNAは、逆転写酵素でDNAを増殖させる。ウイルスRNAがすでに多量に存在する場合は、QIAamp Viral RNA Mini Kit(Qiagen,Valencia,CA)等でゲノムRNAを精製する。
【0042】
なお、本発明のマイクロアレイにかける核酸は、菌等を培養して増殖させ、コロニーを形成した菌等から、熱水抽出法、酵素溶菌―SDS処理、フェノール・クロロホルム法等を用いてゲノムDNAやRNAを抽出したものでもよい。
【0043】
(核酸の断片化)
未処理のゲノム核酸やPhi29 DNAポリメラーゼ等を用いた増幅産物は、通常、100bp〜10kbpの断片長のものが得られる。そこで、標識化前に、RsaI、AluI等の制限酵素や超音波処理で断片化する。なお、増幅産物が0.5kbp程度以下であれば、断片化処理を行わなくてもよい。
【0044】
(標識化)
検体中の核酸をハイブリダイゼーション後に検出するために、断片化した核酸を標識物質で標識する。標識物質は、Cy3、Cy5、ローダミン、フルオレセイン、フルオレセインイソチオシアネート(FITC)、ダンシル、フルオレスカミン、クマリン、ナフチルアミン、ユウロピウム等の蛍光色素;ジゴキシン、ジゴキシゲニン、ビオチン、ペニシリン、トリニトロフェニル、ジニトロフェニル等のハプテン;ビオチン/ストレプトアビジンアルカリフォスファターゼ等の化学発色系;アルカリホスファターゼ、西洋わさびパーオキシダーゼ、マイクロパーオキシダーゼ、グルコースオキシダーゼ、β−ガラクトシダーゼ、グルコース−6−リン酸脱水素酵素、リンゴ酸脱水素酵素、ルシフェラーゼ等の酵素;32P、35S、99mTc、131I、125I、14C、3H等の放射性同位元素;ルシフェリン、イソルミノール、ルミノール、ビス(2,4,6−トリフロロフェニル)オキザレーロ等の発光物質;フェノール、ナフトール、アントラセン等の紫外吸収物質;並びに4−アミノ−2,2,6,6−テトラメチルピペリジン−1−オキシル、3−アミノ−2,2,5,5−テトラメチルピロリジン−1−オキシル、2,6−ジ−t−ブチル−α−(3,5−ジ−t−ブチル−4−オキソ−2,5−シクロヘキサジエン−1−イリデン)−p−トリルオキシル等のスピン標識化剤が挙げられる。これらの標識物質を含む市販のキット、例えば蛍光色素としてUlysis Alexa Fluor 660 Nucleic Acid Labeling Kit(Molecular Probes,Inc.,Eugene,OR)を用いてよい。
【0045】
(変性)
上記で抽出及び増幅させた核酸は、公知の加熱変性させ、ハイブリダイゼーションバッファーに溶解される。具体的には、標識化したサンプルをエタノール沈殿してハイブリダイゼーション溶液に溶解する。標識化サンプルを95℃で3分間、氷上で3分間静置し変性処理を行い、以下に示すようにマイクロアレイにハイブリダイゼーションさせる。
【0046】
(ハイブリダイゼーション)
上記で標識した検体核酸をマイクロアレイとハイブリダイゼーションさせるには、ハイブリダイゼーション溶液をガスケットスライド上に拡げ、マイクロアレイスライドと張り合わせ、Hybridization Oven(Agilent)等で加熱する。Th(hybridization temperature、ハイブリダイゼーション温度)は好ましくは50℃近辺の温度である。50℃より高過ぎると、感度が下がり、逆に、50℃より低過ぎると非特異吸着によるノイズが増える可能性がある。ハイブリダイゼーションの時間は、通常、1〜24時間である。
【0047】
ハイブリダイゼーション後のスライドは、バッファーで洗浄し、非特異的に結合した検体標識核酸を除去する。これを2〜3回繰り返した後、DWでリンスする。なお、洗浄時の温度は、十分な感度を保つ温度で行うのが好ましく、通常、Th温度かそれよりも低く(例えば50℃)設定される。
【0048】
(解析)
ハイブリダイゼーション後の検出は、標識物質に応じて公知の方法により行うことができる。蛍光物質の場合は蛍光スキャナーにより光量を測定する。放射性元素の場合は放射能カウンター、バイオイメージアナライザー等で測定する。酵素の場合は公知の方法で酵素活性を測定する。抗原、抗体で標識した場合は、標識した抗原又は抗体と特異的に反応する抗体又は抗原を用いて抗原抗体反応させ、反応生成物を公知の方法により測定する。
【0049】
以下に、蛍光色素を使用した場合を説明する。遠心乾燥したマイクロアレイスライドを、色素に応じて例えば赤色レーザー(Cy5検出用)や緑色レーザー(Cy3検出用)に当て、スキャナーで読み込む。得られた画像ファイルを、例えばScanArray Express software(Perkin Elmer)、Agilent DNAマイクロアレイスキャナ等で取得したスキャンイメージからスポット毎の蛍光シグナル強度を算出し、病原体株毎の蛍光シグナル強度の中央値、平均値、p値、及びZ値を算出する。
【0050】
本発明のマイクロアレイに搭載されたプローブは特異性が高く、検体に含まれる病原体に該当するスポットのみが高い蛍光シグナルを発するため、平均値や中央値のみでも標的サンプルの検出が充分に可能である。しかし、臨床サンプル、野外サンプル等のように雑多な核酸が含まれている検体では、該当するスポット以外にも非特異的に蛍光を発するスポットが出現する可能性がある。そこで、これらのサンプルで想定病原体が偶然検出されたのか否かを検証するためには、p値及びZ値を算出して統計学的な裏付けとする。
【0051】
「標的スポット群」及び、「全スポットから標的スポットを除いた群」を形成するシグナル蛍光シグナル強度の分散状態に統計学的有意差が観察されるかを見極めるため、有意水準(α)=0.001(すなわち、0.1%の確率で偶然有意差があると判定される水準)でp値を算出する。算出されたp値は、帰無仮説(すなわち、母集団の分散状態に差は無いと言う仮説)が棄却可能か、つまり対立仮説(すなわち、母集団の分散状態に差は有ると言う仮説)が成立するかを検証する。Z値は、同様の水準である限界値=3.09に設定し、帰無仮説(母集団の平均値が等しい)が棄却できるか、つまり対立仮説(母集団の平均値が等しくない)が成立するかを検証する。p値が0.001よりも小さい値であるとき、Z値が3.09より大きい値であったとき、帰無仮説が棄却できる。
【実施例】
【0052】
本発明のマイクロアレイの作成とその使用を、実施例を用いて詳細に説明する。しかし、本発明は、以下の実施例に限定されるものではない。
〔実施例1〕
(マイクロアレイプローブの設計と作成)
ゲノムプロジェクトが終了又は進行中の古細菌30株、原虫9株、細菌422株、真菌59株、ウイルス672株の合計1192株、タンパク毒素等74遺伝子の全長ゲノム配列又は一部の塩基配列をDDBJ(DNA Data Bank of Japan)又はNCBI(National Center for Biotechnology Information)から入手した。上記遺伝子のアクセッションNo.を表8〜13に示す。
【0053】
上記塩基配列を、Array Designer(Premier Biosoft International,Palo Alto,CA)へ読み込み、アクセッションNo.ごとに10〜500種類のセンス鎖マイクロアレイプローブを設計した。プローブの設計条件は、プローブ長60mer、Tm 75℃±5.0℃とし、ヘアピンループ(<−3.0kcal/mol)及びセルフダイマー(<−3.0kcal/mol)、並びにクロスホモロジーを極力回避した。
【0054】
総計5万を超える全てのセンス鎖プローブ候補をProbeMower(Symplus,Tokyo,Japan)を用いてホモロジー検索(BLAST検索)を行い、十分な特異性を持つ19,493種類のセンス鎖プローブを選定した。更に、そのアンチセンス鎖プローブとの合計38,986種類のプローブ(アクセッションNo.あたり平均30個)をマイクロアレイに搭載させた。ハイブリダイゼーションダイゼージョンの外部評価用に別途400種類のコントロールスポットを10連でマイクロアレイスライドにプリントした。全てのマイクロアレイスライドを、44,000プローブ×4アレイ/スライドのレイアウトで作成した。
【0055】
(ウイルス及びバクテリアからの核酸抽出)
上記で作成したマイクロアレイにハイブリダイゼーションさせる核酸を、以下の手順で準備した。インフルエンザウイルスの3種類の株(PR8、WSN、及びA/duck/Hyogo/35/01(H5N1))については、QIAamp Viral RNA Mini Kit(Qiagen,Valencia,CA)を用いて、ゲノムRNAを精製した。ゲノムRNAは、それぞれ、超音波処理にて断片化した。断片を標識し、後述のハイブリダイゼーションに供した。
【0056】
Escherichia coli K12 ER2925株を、New England BioLabs(NEB,Beverly,MA)から入手し、Luria−Bertani(LB)培地にて37℃で一晩培養した。次いで、E.coliからのDNA抽出を、DNA Isolation Kit for Cells and Tissue(Roche,Mannheim,Germany)で行った。
【0057】
Coxiella burnetii Ohio、Francisella tularensis subsp. tularensis SCHU、及びYersinia enterocolitica Pa 177(O9:B2)のゲノムDNAは、国立感染症研究所獣医科学部所有の核酸抽出溶液を使用した。
【0058】
(微量バクテリア由来ゲノムDNAの増幅)
Phi29 DNAポリメラーゼを用いた増幅に、illustra GenomiPhi V2キット(GE Healthcare,Piscataway,NJ)を使用した。鋳型DNAとして、10ngのCoxiella burnetii、Francisella tularensis、及びYersinia enterocoliticの核酸を用いた。1μlのサンプDNA溶液を、前記キットに添付されたサンプル溶液9μlへ添加し、95℃で5分間熱処理を行った後、氷上で5分間静置した。熱変性処理を行ったサンプルにPhi29 DNAポリメラーゼを含む反応溶液を10μl添加し、30℃で2時間増幅した後、65℃で10分間ポリメラーゼの熱変性処理を行った。増幅後のサンプルは、使用するまで−30℃で保存した。
【0059】
(断片化)
未処理のゲノムDNAやPhi29 DNAポリメラーゼを用いて増幅した上記産物やゲノムRNAは、Bioruptor(Cosmo Bio,Tokyo,Japan)で250W、30秒インターバルで30分間、超音波断片化処理した。
(熱変性)
【0060】
断片化処理を行った核酸サンプルを、熱変性処理後、Ulysis Alexa Fluor 546 Nucleic Acid Labeling キット(Molecular Probes,Inc.,Eugene,OR)を用いて80℃で15分間、標識化処理した。標識化処理を行ったサンプルは、公知のエタノール沈澱法、又はDNAの場合NucleoSpin ExtractII (MACHEREY−NAGEL,USA)で、RNAの場合Rneasy mini kit(Qiagen)で精製した。
【0061】
サンプルは、100μlのハイブリダイゼーションバッファー(終濃度:核酸、6×SSC,5×Denhardt’s solution,50mM sodium phosphate,0.5%SDS,20%formamide,5%Skim milk,50μg/ml Yeast tRNA)に調整し、95℃で3分間熱処理を行い、2分間氷上で静置し、使用するまで50℃で保温した。
【0062】
(ハイブリダイゼーション)
100μlのハイブリダイゼーションサンプル溶液を、ガスケットスライド(Agilent)上に拡げ、マイクロアレイスライドと張り合わせホルダーにセットした。ハイブリダイゼーションは、Hybridization Oven(Agilent)を用いて50℃、毎分10回転で一晩行った。
【0063】
ハイブリダイゼーション後のスライドは、0.5%SDSを含む2×SSCで50℃、5分間1回、1×SSCで50℃、5分間2回洗浄した。さらに、ミリQ水でリンスし、遠心乾燥したスライドを、Agilent Scaner(Agilent)を用いて、100%出力の緑色レーザー(Alexa546及びCy3検出用)、100%PMT、解像度5μm、ダイナミックレンジOFFの設定でスキャンした。得られた画像ファイルから、Feature Extraction(Agilent)を用いて各スポットの蛍光シグナル強度を数値化した。
【0064】
(解析)
Feature Extraction(Agilnet)によって出力されたデータテキストファイルを、Gene Array Utility(GAU;Symplus,Tokyo,Japan)に読み込み、各種解析を行った。
【0065】
データテキストファイルに含まれる38,986病原体検出プローブ由来スポットの62項目のデータ中から、アクセッションNo.、プローブ名、遺伝子名、及びシグナル蛍光シグナル強度の4項目を抽出した。
【0066】
抽出したデータは、アクセッションNo.毎にまとめ、さらにセンス又はアンチセンス鎖に細分し「群」とした。一群内のシグナル平均値及び中央値を算出し、シグナル蛍光シグナル強度中央値の高い順に該当候補として順位を付けた。
【0067】
(インフルエンザウイルスゲノムのMMPDA解析結果)
インフルエンザウイルスA/Puerto Rico/8/34株(H1N1)のMMPDA解析結果を表1Aに示す。そして、最も強いシグナルとして検出されたInfluenza A virus N1 neuraminidase(NA)gene(アクセッションNo.AY122326)の塩基配列(60mer、7領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表1Bに列記する。ここで、sはセンス鎖を意味する。
【0068】
【表1A】

【0069】
【表1B】

【0070】
表1AのインフルエンザウイルスA/Puerto Rico/8/34(H1N1)株のサンプルでは、期待したどおり、サンプルと同亜型(H1N1)のインフルエンザウイルスA/Marton/43(H1N1)NA株が最も強いシグナルとして検出された。検出された7スポット由来の核酸プローブの塩基配列は、表1Bに示すとおり、アクセッションNo.AY122326(全長1411bp)の配列全般にわたって設計されたプローブである。これらの7つのスポットは、p=2.62e−13、Z=3.19であり、統計学的にも帰無仮説が十分に棄却できる水準であった。
【0071】
このサンプルで2番目に強いシグナルを発していたのは、(A/New York/32/2003(H3N2)NAであったが、蛍光シグナルの強さは1番目の候補と比較して5割の水準であった。さらに、このシグナルのp値に有意差が確認できるものの、Z値に有意差が確認できるレベルでなかった。よって、H1N1型インフルエンザウイルスを特異的に検出できたと考える。
【0072】
AY122326を検出する核酸プローブ7個と検体のH1N1型インフルエンザウイルスは、塩基の違いに由来すると思われる蛍光シグナル強度のバラつきも検出された。
【0073】
他のインフルエンザウイルスA/WSN/33(H1N1)株のゲノムRNAのMMPDA解析結果を表2Aに示す。そして、最も強いシグナルとして検出されたInfluenza A virus N1 neuraminidase(NA)gene(アクセッションNo.AY122326)の塩基配列(60mer、7領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表2Bに列記する。ここで、sはセンス鎖を意味する。
【0074】
【表2A】

【0075】
【表2B】

【0076】
表2Aに示すとおり、検体と同亜型のH1N1型インフルエンザウイルスが特異性と信頼性をもって検出された。
【0077】
さらに他のインフルエンザウイルスA/duck/Hyogo/35/01(H5N1)株のゲノムRNAのMMPDA解析結果を表3Aに示す。そして、最も強いシグナルとして検出されたInfluenza A virus H5N1 neuraminidase(NA)gene(アクセッションNo.AB166864)の塩基配列(60mer、11領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表3Bに列記する。ここで、sはセンス鎖を意味する。
【0078】
【表3A】

【0079】
【表3B】

【0080】
表3Aに示すとおり、検体中に含まれるH5N1型のNA遺伝子が特異性と信頼性をもって検出できた。検出された11スポットの塩基配列は、表3Bに示すとおり、アクセッションNo.AB166864(全長1350bp)の配列全般にわたって設計されたプローブである。
【0081】
(バクテリアゲノムのMMDPA解析結果)
4種類のバクテリアからゲノムDNAを精製、増幅、断片化、標識化したものとのハイブリダイゼーション結果を、以下に示す。
【0082】
〔Q熱原因菌ゲノムのMMDPA解析結果〕
Coxiella burnetii Ohioのハイブリダイゼーション結果を表4Aに示す。そして、最も強いシグナルとして検出されたCoxiella burnetii RSA 493,complete genome(アクセッションNo.AE016828)の塩基配列(60mer、30領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表4Bに列記する。ここで、sはセンス鎖を意味する。
【0083】
【表4A】

【0084】
【表4B】

【0085】
表4において、p値及びZ値は、同種のCoxiella burnetii RSA 493(アクセッションNo.AE016828)が最も高い値を示した。検出されたプローブは、表4Aに示すとおり、AE016828(1995281bp)のゲノム全般にわたって設計されたものである。検体に含まれるCoxiella burnetiiは、Coxiella burnetii RSA 493(アクセッションNo.AE016828)を標的にして設計されたプローブに非常に近いと考えられた。二番目の強度を示したものは、Coxiella burnetii RSA 493のアンチセンス鎖であった。3番目に高い蛍光シグナル強度を示したものは、Cercopithecine herpesvirus16である。それはCoxiella burnetiiの4割程度の蛍光シグナル強度であり、p値及びZ値で帰無仮説が棄却できない水準であった。よって、Coxiella burnetii Ohioを含む検体に対して、同種のCoxiella burnetii RSA 493により特異的に検出できたといえる。
【0086】
〔大腸菌ゲノムのMMDPA解析結果〕
Esherichia coli K12ゲノムDNAを同様に解析した結果を表5Aに示す。この結果、最も強いシグナルとして検出されたEscherichia coli W3110 DNA,complete genome(アクセッションNo.AC_000091)の塩基配列(60mer、17領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表5Bに列記する。ここで、sはセンス鎖を意味する。
【0087】
【表5A】

【0088】
【表5B】

【0089】
表5Aにおいて、Escherichia coliが、最も高い蛍光シグナルを発していた。検出に用いた17スポットは、表5Bに示すとおり、ゲノムの全般にわたって設計されたものである。病原体検出候補の3番目〜12番目に含まれる蛍光シグナル強度中央値が高かった多くのShigella属(赤痢菌)は、Escherichia属(大腸菌)との遺伝子相同性が非常に高いため、本来、塩基配列で分別する事は困難である。しかし、表5に示した結果では、Escherichia coliのシグナルがShigella属よりも高い候補順位を付けられたことから、Escherichia coliを特異的に同定できたと考えられる。
【0090】
〔エルシニアゲノムのMMDPA解析結果〕
Yersinia enterocolitica Pa 177(O9:B2)ゲノムを検体とした時の解析結果を表6Aに示す。そして、最も強いシグナルとして検出されたYersinia enterocolitica subsp. enterocolitica 8081 complete genome(アクセッションNo.AM286415)の塩基配列(60mer、21領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表6Bに列記する。ここで、aはアンチセンス鎖を意味する。
【0091】
【表6A】

【0092】
【表6B】

【0093】
表6Aにおいて、最も蛍光シグナル強度の高いスポットenterocolitica subsp.enterocolitica 8081 complete genomeであった。検出に用いたプローブの位置は、表6Bに示すとおり、ゲノムの全領域に渡っていた。よって、本発明のマイクロアレイにより検体に含まれる病原体を特異的に同定できたと考える。
【0094】
〔野兎病菌ゲノムのMMDPA解析結果〕
Francisella tularensis subsp. tularensis SCHU核酸抽出物の検査結果を表7Aに示す。最も強いシグナルとして検出されたFrancisella tularensis subsp. tularensis WY96−3418, complete genome(アクセッションNo.CP000608)の塩基配列(60mer、29領域)を、アクセッションNo.と5‘末端側出発位置との組み合わせとして表7Bに列記する。ここで、aはアンチセンス鎖を意味する。
【0095】
【表7A】

【0096】
【表7B】

【0097】
表7Aにおいて、候補順位1−7までFrancisella tularensis subsp. tularensis由来のアクセッションNo.がランキングされ、他病原体の蛍光シグナル強度と比較して強い蛍光シグナル強度と有意差が検出された。この結果からも、Francisella tularensisが特異的に検出可能であることが示された。
【0098】
(実施例に用いた古細菌30株)
【表8】

【0099】
(実施例に用いた原虫9株)
【表9】

【0100】
(実施例に用いた細菌)
【表10A】

【0101】
【表10B】

【0102】
【表10C】

【0103】
【表10D】

【0104】
【表10E】

【0105】
【表10F】

【0106】
【表10G】

【0107】
【表10H】

【0108】
【表10I】

【0109】
【表10J】

【0110】
【表10K】

【0111】
【表10L】

【0112】
(実施例に用いたウイルス)
【表11A】

【0113】
【表11B】

【0114】
【表11C】

【0115】
【表11D】

【0116】
【表11E】

【0117】
【表11F】

【0118】
【表11G】

【0119】
【表11H】

【0120】
【表11I】

【0121】
【表11J】

【0122】
【表11K】

【0123】
【表11L】

【0124】
【表11M】

【0125】
【表11N】

【0126】
【表11O】

【0127】
【表11P】

【0128】
【表11Q】

【0129】
【表11R】

【0130】
【表11S】

【0131】
(実施例に用いた真菌59株)
【表12A】

【0132】
【表12B】

【0133】
(実施例に用いたタンパク毒素等74遺伝子)
【表13A】

【0134】
【表13B】

【0135】
【表13C】

【産業上の利用可能性】
【0136】
本発明のマイクロアレイは、病原体同定不能な臨床検体から、病原体、その他の微生物やウイルスを一括、簡単、網羅的に同時検出するのに有用である。また、野外検体、食品、家畜から、病原体、その他の微生物やウイルスを一括、簡単、網羅的に同時検出するのに有用である。

【特許請求の範囲】
【請求項1】
古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一株に由来する既知の核酸塩基配列(センス)又は相補的(アンチセンス)な塩基配列を有し、該塩基配列において互いに異なる少なくとも3個の群からなるオリゴDNAプローブであって、その各プローブ長が50〜70merであり、Tmが70〜80℃であり、−3.0kcal/mol未満のヘアピンループ及び−3.0kcal/mol未満のセルフダイマーを避け、ホモロジーから推測される非特異性を確保するように設計された前記プローブの群が担体上に固定化されている、病原体を検出するためのマイクロアレイ又はそれを含むキット。
【請求項2】
前記プローブは、多種間保存領域以外の場所を含むことを特徴とする、請求項1に記載の病原体を検出するためのマイクロアレイ又はそれを含むキット。
【請求項3】
古細菌、原虫、細菌、真菌、ウイルス、及びタンパク質毒素から選ばれる少なくとも一種に由来する既知の核酸塩基配列に相補的な配列を有し、該塩基配列において互いに異なる少なくとも3個の群からなるオリゴDNAプローブであって、その各プローブ長が50〜70merであり、Tmが70〜80℃であり、−3.0kcal/mol未満のヘアピンループ及び−3.0kcal/mol未満のセルフダイマーを避け、ホモロジーから推測される非特異性を確保するように設計された前記プローブの群が担体上に固定化されているマイクロアレイに、検体から取得した核酸をハイブリダイゼーションさせることを含む病原体の検出方法。
【請求項4】
前記検体や含むと思われる試料から抽出した核酸DNA及び/又はRNAをそのまま或いは全ゲノム増幅後、断片化処理、蛍光標識処理、及びハイブリダイゼーションさせることを特徴とする、請求項3に記載の病原体の検出方法。
【請求項5】
前記プローブは、アクセッションNo.毎に2〜30個のセンスプローブと同数のアンチセンスプローブが計4〜60個設計されており、アクセッションNo.毎に複数プローブの蛍光シグナル強度を解析することにより、病原体の遺伝子突然変異、及び機械的又は手技的誤差の影響を可能な限り排除したことを特徴とする、請求項3又は4に記載の病原体の検出方法。
【請求項6】
前記ハイブリダイゼーションで検出されたスポットの蛍光シグナル強度はアクセッションNo.毎に一群を形成させ、その群の蛍光シグナル強度から算出される中央値がバックグランドと比較して明らかに高く、該蛍光シグナル強度のp値が0.001よりも小さい値であるとき、かつZ値が3.09より大きい値であるとき、統計的有意であると判定することを特徴とする、請求項3〜5のいずれかに記載の病原体の検出方法。
【請求項7】
前記検体からDNA及びRNAの両核酸を含む核酸溶液を核酸抽出剤で抽出し、DNA及びRNAの核酸種を問わず病原体の有無を判定することを含む、請求項3〜6のいずれかに記載の病原体の検出方法。

【図1】
image rotate


【公開番号】特開2010−178687(P2010−178687A)
【公開日】平成22年8月19日(2010.8.19)
【国際特許分類】
【出願番号】特願2009−25818(P2009−25818)
【出願日】平成21年2月6日(2009.2.6)
【新規性喪失の例外の表示】特許法第30条第1項適用申請有り 平成20年8月11日 国立国会図書館に文書「厚生労働科学研究費補助金 食品の安心・安全確保推進研究事業 食肉における家畜・家禽のウイルス疾病に関する研究 平成19年度 総括・分担研究報告書 平成20年3月」をもって受け入れ
【出願人】(803000056)財団法人ヒューマンサイエンス振興財団 (341)
【Fターム(参考)】