説明

発光装置

【課題】発光層を塗布法によって形成する際に所定のインキを拭き取る工程が省略可能で、発光面積の大きい構成であって、さらに光の取り出し効率の高い直列接続型の有機EL素子を備える照明装置を提供する。
【解決手段】支持基板と、所定の配列方向に沿って支持基板上に設けられ、直列接続される複数の有機EL素子とを備える発光装置であって、各有機EL素子の発光層は、複数の有機EL素子に跨って、所定の配列方向に沿って延伸しており、一対の電極はそれぞれ、支持基板の厚み方向および配列方向のいずれにも垂直な幅方向に、発光層から突出するように延伸する延伸部を有し、一方の電極は、配列方向に隣り合う有機EL素子の他方の電極にまで延伸部から配列方向に延伸し、該他方の電極に接続される接続部をさらに有し、一対の電極のうちのいずれかは、光透過性を示す電極であり、該電極の屈折率が1.5〜1.8であることを特徴とする発光装置。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は発光装置およびその製造方法に関する。
【背景技術】
【0002】
有機エレクトロルミネッセンス素子(以下、「エレクトロルミネッセンス」を「EL」と記載することがある。)は、一対の電極(陽極および陰極)と、該電極間に設けられる発光層とを備える発光素子であり、この発光層の材料として有機物を用いている。有機EL素子に電圧を印加すると、陽極から正孔が注入されるとともに、陰極から電子が注入され、発光層においてこれら正孔と電子が結合することによって発光する。
【0003】
例えばこの有機EL素子を光源として利用した照明装置が現在検討されている。有機EL素子は、素子を構成する電極や発光層などの各層を大面積に形成することによって、大面積での発光を可能にすることができる。しかしながら素子の大面積化にともなって、駆動時に電極で生じる電圧降下が大きくなり、そのために素子の中央部が比較的暗くなるなど、輝度ムラが顕在化することがある。そこで輝度ムラを抑制しつつ所定の明るさを確保するために、利用者に輝度ムラが視認されない程度に大面積化した有機EL素子を複数個用いた照明装置が提案されている(例えば特許文献1参照)。
【0004】
図9は複数(図9では3個)の有機EL素子1が直列接続された発光装置2を模式的に示す図である。図9(1)は発光装置2の平面図であり、図9(2)は発光装置2の断面図である。複数の有機EL素子1は通常、有機EL素子1を駆動する駆動回路が形成された支持基板3上に設けられている。
【0005】
図9に示す発光装置2は3個の有機EL素子1を備える。これら3個の有機EL素子1は所定の配列方向Xに沿って支持基板3上に配置され、直列接続される。前述したように各有機EL素子1は一対の電極4,5と、該電極間に設けられる発光層6とを備える。以下、一対の電極4,5のうちの支持基板3寄りに配置される一方の電極を第1電極4と記載し、第1電極4よりも支持基板3から離間して配置される他方の電極を第2電極5と記載する。これら第1及び第2電極4,5のうちの一方の電極が陽極として機能し、他方の電極が陰極として機能する。なお素子特性および工程の簡易さなどを勘案して、第1及び第2電極4,5間には発光層6のみならず、発光層6とは異なる所定の層が設けられることもある。
【0006】
図9に示すように各有機EL素子1の第1電極4は、互いに配列方向Xに所定の間隔を開けて離散的に配置されるため、相互に物理的には接続されていない。同様に各有機EL素子1の第2電極5は、互いに配列方向Xに所定の間隔を開けて配置されるため、相互に物理的には接続されていない。このように第1電極4同士および第2電極5同士はそれぞれ互いに物理的には接続されていない。
【0007】
他方、配列方向Xに隣り合う有機EL素子1の第1電極4と、第2電極5とは物理的に接続されている。これによって複数の有機EL素子1は直列接続を構成する。具体的には第1電極4は、配列方向Xの一方(以下、「配列方向Xの一方」を「左方」といい、「配列方向Xの他方」を右方ということがある。)の端部(以下、左端部ということがある。)が、左方に隣り合う有機EL素子1の第2電極5の右方の端部(以下、右端部ということがある。)に重なる位置まで延伸するように形成され、左方に隣り合う有機EL素子1の第1電極4と物理的に接続されている。このように配列方向Xに隣り合う有機EL素子1の第1電極4と第2電極5とが物理的に接続されることにより、複数の有機EL素子1は直列接続を構成する。
【先行技術文献】
【特許文献】
【0008】
【特許文献1】特開2007−257855号公報
【発明の開示】
【発明が解決しようとする課題】
【0009】
有機物として低分子化合物を用いて発光層6を構成する場合、発光層6は通常蒸着法によって形成される。蒸着法では層のパターン形成が比較的容易なので例えば発光層6を第1電極4上にのみ選択的にパターン形成することが可能である。
【0010】
これに対して本発明者等は、工程の簡易さから塗布法を用いて発光層を形成することを検討している。具体的には発光層6となる材料を含むインキを所定の塗布法で塗布成膜し、これを固化することにより発光層6を形成することを検討している。
【0011】
以下塗布法を用いて図9に示す直列接続の複数の有機EL素子1を作製する工程を、図10を参照して説明する。図10は、図9に示す複数の有機EL素子1を形成する工程を模式的に示す断面図である。
【0012】
まず配列方向Xに所定の間隔をあけて離散的に3つの第1電極4を支持基板3上に形成する(図10(1)参照)。例えばまずスパッタ法によって導電性薄膜を形成し、さらにフォトリソグラフィーを用いてパターニングすることによって第1電極4を離散的に形成することができる。次に発光層6となる材料を含むインキを、所定の塗布法によって支持基板3上に塗布する(図10(2)参照)。一般的に塗布法は、意図する部位にのみ選択的にインキをパターン塗布することが難しく、複数の第1電極4間や第1電極4の左端部上などの不要な部位にもインキが塗布される。そのためインキを塗布した後に、不要な部位に塗布されたインキを除去する工程が必要となる(図10(3)参照)。例えばインキが可溶な溶剤を含むウエスや綿棒などを使って、不要な部位に塗布されたインキを剥ぎ取ることによってインキの除去を行うことができる。次に塗布成膜した塗布膜を加熱するなどして固化することにより発光層6を形成することができる。次に例えば蒸着法によって第2電極5をパターン形成する(図10(4)参照)。第2電極5は、右方に配置される有機EL素子1の第1電極4の左端部に重なる位置にまで形成される。これによって直列接続の複数の有機EL素子1が形成される。
【0013】
以上説明したように塗布法を用いて発光層6を形成する場合、一度塗布されたインキを除去する工程が必要となる。そのため工程数が増加するという問題がある。また発光層6は通常、大気雰囲気などに曝されることによって劣化するため、有機EL素子1を形成する工程において、発光層6が大気雰囲気などに曝される時間を短くすることが好ましく、インキを塗布した後は、発光層を覆う電極などを可及的速やかに形成する必要があるが、図10に示す方法ではインキを除去する工程を必要とするために、発光層6が大気雰囲気などに曝される時間が長くなり、発光層6が劣化するおそれがある。
【0014】
また第1電極4は、その材料によっては微細なパターンを形成可能な方法によって形成することができ、隣り合う第1電極4の間隔を極めて狭くすることは可能であるが、これに対して、一度塗布されたインキを除去する際に、隣り合う第1電極4の間隔程度に極狭い幅で塗布膜を剥ぎ取ることは一般的に困難なため、たとえ隣り合う第1電極4の間隔を極めて狭くしたとしても、第1電極4間の間隔よりも幅広にインキが除去されることになるので、インキを除去する工程に起因して、発光領域が制限されるという問題がある。
【0015】
また発光層から放射される光を外に出射するために、一対の電極のうちの一方の電極には光透過性を示すITO薄膜が通常用いられているが、ITO薄膜の表面で発生する光の反射などによって、光の多くが素子内部に閉じ込められることになるという問題がある。
【0016】
従って本発明の目的は、発光層を塗布法によって形成する際に所定のインキを拭き取る工程が省略可能で、発光面積の大きい構成であり、さらに光の取り出し効率の高い直列接続型の有機EL素子を備える照明装置を提供することである。
【課題を解決するための手段】
【0017】
本発明は、支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であって、
各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、
前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延伸しており、
前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のいずれにも垂直な幅方向に、発光層から突出するように延伸する延伸部を有し、
前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延伸部から前記配列方向に延伸し、該他方の電極に接続される接続部をさらに有し、
前記一対の電極のうちのいずれかは、光透過性を示す電極であり、該電極を構成する材料の屈折率が1.5〜1.8であることを特徴とする発光装置に関する。
【0018】
本発明は、前記電極に接して設けられる補助電極をさらに有し、
該補助電極は、当該補助電極に接する電極よりもシート抵抗が低いことを特徴とする発光装置に関する。
【0019】
本発明は、前記補助電極は、前記一対の電極のうちでシート抵抗が高い方の電極に接して設けられることを特徴とする2記載の発光装置に関する。
【0020】
本発明は、前記一対の電極のうちでシート抵抗が低い方の電極のみが、前記接続部を有することを特徴とする発光装置に関する。
【0021】
本発明は、前記延伸部は、前記厚み方向一方から見て、前記幅方向の一方に発光層から突出するように延伸する第1延伸部と、前記幅方向の他方に発光層から突出するように延伸する第2延伸部とを含むことを特徴とする発光装置に関する。
【0022】
本発明は、前記光透過性を示す電極は、電極膜本体と、該電極膜本体に分散された導電性ワイヤとを含むことを特徴とする発光装置に関する。
【0023】
本発明は、支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であり、
各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、
前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延伸しており、
前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のそれぞれに垂直な幅方向に、発光層から突出するように延伸する延伸部を有し、
前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延伸部から前記配列方向に延伸し、該他方の電極に接続される接続部をさらに有し、
前記一対の電極のうちのいずれかは、光透過性を示す電極である発光装置の製造方法であって、
前記発光層となる材料を含むインキを、前記複数の有機エレクトロルミネッセンス素子に跨って前記所定の配列方向に沿って連続的に塗布し、塗布した塗膜を固化することにより発光層を形成する工程と、
前記光透過性を示す電極となる材料を含む塗布液を塗布成膜し、さらにこれを固化することにより、屈折率が1.5〜1.8の光透過性を示す電極を形成する工程と、
一対の電極のうち、前記光透過性を示す電極とは異なる電極を形成する工程とを含むことを特徴とする発光装置の製造方法に関する。
【0024】
本発明は、前記インキを塗布する方法が、キャップコート法、スリットコート法、スプレーコート法または印刷法であることを特徴とする発光装置の製造方法に関する。
【発明の効果】
【0025】
本発明によれば、前記発光層は、複数の有機EL素子に跨って、前記所定の配列方向に沿って延伸しているので、配列方向に沿って連続的にインキを塗布可能な塗布法によって発光層を形成することができ、このような塗布法であってもインキを拭き取る工程を省略することができる。また支持基板の厚み方向の一方から見て発光層が形成される領域とは異なる領域において、隣り合う有機EL素子の一方の電極と他方の電極とが接続されるので、複数の有機EL素子に跨って配列方向に延伸する発光層が設けられていても、直列接続の有機EL素子を構成することができる。さらに複数の電極間や電極上に形成される発光層の剥ぎ取りに起因して発光領域が制限されることがないために、隣り合う有機EL素子間の距離を可能な限り狭くすることができ、発光面積を大きくすることができる。さらに光透過性を示す電極の屈折率が1.5〜1.8であるため、この電極表面で発生する光の反射などを抑制することができ、光の取り出し効率を向上することができる。
【図面の簡単な説明】
【0026】
【図1】本発明の第1実施形態の発光装置11を示す平面図である。
【図2】発光装置11の製造工程を説明するための図である。
【図3】発光装置11の製造工程を説明するための図である。
【図4】キャップコーターシステム21を模式的に示す図である。
【図5】第2実施形態の発光装置31を模式的に示す図である。
【図6】第3実施形態の発光装置41を模式的に示す図である。
【図7】第4実施形態の発光装置51を模式的に示す図である。
【図8】第5実施形態の発光装置61を示す図である。
【図9】複数の有機EL素子1が直列接続された発光装置2を模式的に示す図である。
【図10】図10は発光装置2の製造工程を説明するための図である。
【発明を実施するための形態】
【0027】
1) 発光装置の構成
以下図面を参照して発光装置の構成についてまず説明する。本実施形態の発光装置は例えば照明装置、液晶表示装置およびスキャナ等の光源に用いられる。図1は本発明の第1実施形態の発光装置11を示す平面図である。発光装置11は、支持基板12と、所定の配列方向Xに沿って支持基板12上に設けられ、直列接続される複数の有機EL素子13とを備える。所定の配列方向Xは支持基板12の厚み方向Zに垂直な方向に設定される。すなわち配列方向Xは支持基板12の主面に平行に設定される。本実施形態では図1に示すように複数の有機EL素子13は所定の直線に沿って配列されているが、所定の曲線に沿って配列されていてもよい。なお所定の曲線に沿って複数の有機EL素子13が配列されている場合、配列方向Xは前記所定の曲線の接線方向に相当する。なお支持基板12は可撓性のものでもよく、可撓性の支持基板を用いた場合には、配列方向Xは該支持基板の主面に沿った方向に設定される。
【0028】
支持基板12上に設けられる有機EL素子13の個数は設計に応じて適宜設定される。以下第1実施形態では3個の有機EL素子13が設けられた発光装置11について説明する。
【0029】
各有機EL素子13はそれぞれ光透過性を示す電極を有する一対の電極14,15と、該電極14,15間に設けられる発光層16とを備える。一対の電極14,15のうちのいずれか一方の電極が有機EL素子13の陽極として機能し、いずれか他方の電極が有機EL素子13の陰極として機能する。以下一対の電極14,15のうちで支持基板12側に配置される一方の電極を第1電極14と記載し、該第1電極14よりも支持基板12から離間して配置される他方の電極を第2電極15と記載することがある。
【0030】
第1及び第2電極14,15間には1層以上の所定の層が設けられる。第1及び第2電極14,15間には、この1層以上の所定の層として少なくとも発光層16が設けられる。
【0031】
発光層16は複数の有機EL素子13に跨って配列方向Xに沿って延伸している。本実施形態では直列接続される複数の有機EL素子13において、配列方向Xの一端(図1では左端)に設けられる有機EL素子13の発光層16から、配列方向Xの他端(図1では右端)に設けられる有機EL素子13の発光層16まで、配列方向Xに沿って延伸する発光層が連続して一体的に形成されている。発光層とは異なる所定の層が第1及び第2電極14,15間に設けられる場合、この所定の層は、複数の有機EL素子13に跨って配列方向Xに沿って延伸していてもよく、また有機EL素子13ごとに離間するように形成されていてもよい。なお発光層とは異なる所定の層が塗布法によって形成される場合には、この発光層とは異なる所定の層は、発光層と同様に、複数の有機EL素子13に跨って配列方向Xに沿って延伸していることが好ましい。
【0032】
第1及び第2電極14,15(一対の電極)はそれぞれ、支持基板12の厚み方向Z一方から見て(以下、「平面視で」ということがある。)、前記支持基板の厚み方向Z及び前記配列方向Xのそれぞれに垂直な幅方向Yに、発光層16から突出するように延伸する延伸部17,18を有する。第1電極14の延伸部17は第1電極14に一体的に形成されている。第2電極15の延伸部18は第2電極15に一体的に形成されている。各有機EL素子13を構成する第1電極14と第2電極15(一対の電極)とは、有機EL素子13ごとには互いに接触するようには構成されておらず、平面視で第1電極14の延伸部17と第2電極15の延伸部18とは重ならないように配置されている。本実施形態では第1電極14の延伸部17は、第1電極14において、第2電極15と対向する部分の左方の端部(以下、左端部ということがある)から幅方向Yに延伸する。第2電極15の延伸部18は、第2電極15において、第1電極14との対向部の右方の端部(以下、右端部ということがある)から幅方向Yに延伸している。そのため第1電極14の延伸部17と第2電極15の延伸部18とは平面視で異なる位置に配置され、互いに重ならずに、電気的に絶縁されている。
【0033】
第1及び第2電極14,15(一対の電極)の一方の電極は接続部を有する。該接続部は、配列方向Xに隣り合う有機EL素子の他方の電極にまで延伸部から配列方向Xに延伸し、該他方の電極に接続される。なお接続部は、第1及び第2電極14,15(一対の電極のうち)の一方の電極のみに限らず、第1及び第2電極14,15(一対の電極のうち)の他方の電極も有していてもよい。すなわち第1及び第2電極14,15(一対の電極のうち)の他方の電極も、配列方向Xに隣り合う有機EL素子の一方の電極にまで延伸部から配列方向Xに延伸し、該一方の電極に接続される接続部を有していてもよい。
【0034】
本実施形態では第1及び第2電極14,15(一対の電極)の一方の電極に相当する第1電極14が接続部19を有する。すなわち第1電極14は、左方に配置される有機EL素子の第2電極15(他方の電極)の延伸部18にまで、第1電極14の延伸部17から左方に延伸する接続部19を備える。このように第1電極14の接続部19は、左方に配置される有機EL素子の第2電極15(他方の電極)の延伸部18と平面視で重なり、この重なる部分で直接的に第2電極15(他方の電極)と接続される。
【0035】
平面視で、発光層16から幅方向Yに延伸する延伸部は、幅方向Yの一方または他方に設けられるが、幅方向Yの両方に設けられることが好ましい。すなわち延伸部17,18は、平面視で、前記幅方向の一方に発光層から突出するように延伸する第1延伸部17a,18aと、幅方向Yの他方に発光層16から突出するように延伸する第2延伸部17b,18bとを含むことが好ましい。平面視で発光層16から幅方向Yの両方に延伸する延伸部17,18を備えることにより、隣り合う有機EL素子13の第1電極14と第2電極15とが幅方向Yの両方の端部で接続されることになる。
【0036】
さらに直列接続を構成する複数の有機EL素子13のうちで、最も左方に配置される有機EL素子13の第1電極14と、最も右方に配置される有機EL素子13の第2電極とは、電力供給部(不図示)に電気的につながる配線にそれぞれ接続される。これによって直列接続を構成する複数の有機EL素子13に電力供給部から電力が供給され、各有機EL素子が発光する。
【0037】
各有機EL素子13は接続部から給電される。本実施形態では平面視で発光層16から幅方向Yの両方に延伸する延伸部17,18を備えることにより、各有機EL素子13は幅方向Yの両方の端部から給電される。有機EL素子13は、給電される部位から離間するほど、電圧降下のために輝度が低下する。本実施形態では延伸部17,18から幅方向Yに離間するほど、すなわち幅方向Yの中央部ほど電圧低下のために輝度が低下するが、各有機EL素子13は幅方向Yの両方の端部から給電されるため、幅方向Yの一方の端部から給電される素子構成に比べると電圧降下の影響を抑制することができ、ひいては輝度ムラを抑制することができる。
【0038】
以下支持基板12および有機EL素子13の構成についてさらに詳細に説明する。
【0039】
前述したように第1及び第2電極4,5間には発光層6のみならず、発光層6とは異なる所定の層がさらに設けられることがある。陰極と発光層との間に設けられる層としては、電子注入層、電子輸送層、正孔ブロック層などを挙げることができる。陰極と発光層との間に電子注入層と電子輸送層の両方の層が設けられる場合、陰極に接する層を電子注入層といい、この電子注入層を除く層を電子輸送層という。
【0040】
電子注入層は陰極からの電子注入効率を改善する機能を有する。電子輸送層は陰極側の表面に接する層からの電子注入を改善する機能を有する。正孔ブロック層は正孔の輸送を堰き止める機能を有する。なお電子注入層及び/又は電子輸送層が正孔の輸送を堰き止める機能を有する場合には、これらの層が正孔ブロック層を兼ねることがある。
【0041】
陽極と発光層との間に設けられる層としては、正孔注入層、正孔輸送層、電子ブロック層などを挙げることができる。陽極と発光層との間に、正孔注入層と正孔輸送層との両方の層が設けられる場合、陽極に接する層を正孔注入層といい、この正孔注入層を除く層を正孔輸送層という。
【0042】
正孔注入層は陽極からの正孔注入効率を改善する機能を有する。正孔輸送層は陽極側の表面に接する層からの正孔注入を改善する機能を有する。電子ブロック層は電子の輸送を堰き止める機能を有する。なお正孔注入層及び/又は正孔輸送層が電子の輸送を堰き止める機能を有する場合には、これらの層が電子ブロック層を兼ねることがある。
【0043】
なお電子注入層および正孔注入層を総称して電荷注入層ということがあり、電子輸送層および正孔輸送層を総称して電荷輸送層ということがある。
【0044】
本実施形態の有機EL素子のとりうる層構成の一例を以下に示す。
a)陽極/発光層/陰極
b)陽極/正孔注入層/発光層/陰極
c)陽極/正孔注入層/発光層/電子注入層/陰極
d)陽極/正孔注入層/発光層/電子輸送層/陰極
e)陽極/正孔注入層/発光層/電子輸送層/電子注入層/陰極
f)陽極/正孔輸送層/発光層/陰極
g)陽極/正孔輸送層/発光層/電子注入層/陰極
h)陽極/正孔輸送層/発光層/電子輸送層/陰極
i)陽極/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
j)陽極/正孔注入層/正孔輸送層/発光層/陰極
k)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
l)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/陰極
m)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
n)陽極/発光層/電子注入層/陰極
o)陽極/発光層/電子輸送層/陰極
p)陽極/発光層/電子輸送層/電子注入層/陰極
(ここで、記号「/」は、記号「/」を挟む各層が隣接して積層されていることを示す。以下同じ。)
本実施形態の有機EL素子は2層以上の発光層を有していてもよい。上記a)〜p)の層構成のうちのいずれか1つにおいて、陽極と陰極とに挟持された積層体を「構成単位A」とすると、2層の発光層を有する有機EL素子の構成として、下記q)に示す層構成を挙げることができる。なお2つある(構成単位A)の層構成は互いに同じでも、異なっていてもよい。
q)陽極/(構成単位A)/電荷発生層/(構成単位A)/陰極
また「(構成単位A)/電荷発生層」を「構成単位B」とすると、3層以上の発光層を有する有機EL素子の構成として、下記r)に示す層構成を挙げることができる。
r)陽極/(構成単位B)x/(構成単位A)/陰極
なお記号「x」は2以上の整数を表し、(構成単位B)xは、構成単位Bがx段積層された積層体を表す。また複数ある(構成単位B)の層構成は同じでもそれぞれ異なっていてもよい。
【0045】
ここで電荷発生層とは電界を印加することにより正孔と電子を発生する層である。電荷発生層としては例えば酸化バナジウム、インジウムスズ酸化物(Indium Tin Oxide:略称ITO)、酸化モリブデンなどから成る薄膜を挙げることができる。
【0046】
なお有機EL素子は、素子を気密に封止するための封止膜および封止板などの封止部材で覆われていてもよい。
【0047】
有機EL素子は、例としてあげたa)〜r)の層構成において、左側の層から順に支持基板上に積層されるか、または右側の層から順に支持基板上に積層される。なお例としてあげたa)〜r)の層構成において、左側の層から順に支持基板上に積層される場合、すなわち陽極から順に支持基板上に積層される場合、第1電極14が陽極に相当し、第2電極15が陰極に相当する。逆に、例としてあげたa)〜r)の層構成において、右側の層から順に支持基板上に積層される場合、すなわち陰極から順に支持基板上に積層される場合、第1電極14が陰極に相当し、第2電極15が陽極に相当する。
【0048】
発光装置は、有機EL素子から放射される光が支持基板を通して外に光を出射する構成のものと、逆に、支持基板とは反対側から外に光を出射する構成のものとがある。前者の構成の有機EL素子をボトムエミッション型の有機EL素子といい、後者の構成の有機EL素子をトップエミッション型の有機EL素子という。
【0049】
ボトムエミッション型の有機EL素子では第1電極14を通して光が出射するため、第1電極14が光透過性を示す電極によって構成され、第2電極は通常光を反射する電極によって構成される。また逆にトップエミッション型の有機EL素子では第2電極を通して光が出射するため、第2電極15が光透過性を示す電極によって構成され、第1電極14は通常光を反射する電極によって構成される。
【0050】
<支持基板>
支持基板は有機EL素子を製造する工程において化学的に変化しないものが好適に用いられ、例えばガラス、プラスチック、高分子フィルム、およびシリコン板、並びにこれらを積層したものなどが用いられる。なお有機EL素子を駆動する駆動回路が予め形成されている駆動用基板を支持基板として用いてもよい。支持基板を通して光が出射する構成のボトムエミッション型の有機EL素子を支持基板に搭載する場合、支持基板には光透過性を示す基板が用いられる。
【0051】
<一対の電極>
一対の電極のうちの一方は陽極として機能し、他方の電極は陰極として機能する。また一対の電極のいずれかは光透過性を示す電極(以下、光透過性電極ということがある。)であり、屈折率が1.5〜1.8である。
【0052】
光透過性電極は、電気伝導度および光透過率の高いものが好適に用いられる。この光透過性電極を陽極として用いる場合には、発光層へ正孔注入が容易なものが好ましく、また光透過性電極を陰極として用いる場合には仕事関数が小さく、発光層への電子注入が容易なものが好適に用いられる。
【0053】
光透過性電極は、電極膜本体と、該電極膜本体に分散された導電性ワイヤとを含むことが好ましい。このような光透過性電極は例えば塗布法によって形成することができる。
【0054】
電極膜本体は、可視光領域の光の透過率が高いものが好適に用いられ、樹脂や無機ポリマー、無機−有機ハイブリッド化合物などを含んで構成される。電極膜本体としては、導電性を有する樹脂が好適に用いられる。このように導電性ワイヤに加えて、導電性を有する電極膜本体を用いることによって、電気抵抗を下げることができる。電極の膜厚は、電気抵抗および可視光の透過率などによって適宜設定され、例えば、0.02μm〜2μmであり、好ましくは0.02〜1μmであるである。
【0055】
導電性ワイヤの径は、小さい方が好ましく、例えば400nm以下であり、200nm以下であることが好ましく、100nm以下であることがさらに好ましい。電極膜本体に配置される導電性ワイヤは、当該電極を通る光を回折または散乱するので、ヘイズ値を高めるとともに、光の透過率を低下させるが、可視光の波長程度または可視光の波長よりも小さい径の導電性ワイヤを用いることによって、可視光に対するヘイズ値を低く抑えるとともに、光の透過率の低下を抑制することができる。また導電性ワイヤの径は、小さすぎると抵抗が高くなるので、その径は10nm以上が好ましい。
【0056】
電極膜本体中に配置される導電性ワイヤは、1本でも複数本でもよく、電極膜本体中において網目構造を形成していることが好ましい。例えば電極膜本体中において、1つまたは複数の導電性ワイヤは、電極膜本体の全体にわたって複雑に絡み合って配置され、網目構造を形成していることが好ましい。例えば1本の導電性ワイヤが複雑に絡み合ったり、複数本の導電性ワイヤが互いに接触し合って配置されたりする構造が、2次元的または3次元的に広がって網目構造を形成していればよい。この網目構造を形成する導電性ワイヤによって光透過性電極の体積抵抗率を下げることができる。
【0057】
導電性ワイヤは、例えば曲線状でも、針状でもよく、さらには管状であってもよい。曲線状、針状の導電体が互いに接触し合って網目構造を形成することによって、体積抵抗率の低い電極を実現することができる。
【0058】
(導電性ワイヤ)
導電性ワイヤの材料としては、電気抵抗の低い金属またはカーボンナノチューブがあげられ、例えば、Ag、Au、Cu、Alおよびこれらの合金などを挙げることができる。導電性ワイヤは、例えばN.R.Jana, L.Gearheart and C.J.Murphyによる方法(Chm.Commun.,2001, p617-p618)や、C.Ducamp-Sanguesa, R.Herrera-Urbina, and M.Figlarz等による方法(J. Solid State Chem.,Vol.100, 1992, p272〜p280)によって製造することができる。例えばアミノ基含有高分子系分散剤(アイ・シー・アイ・ジャパン社製、商品名「ソルスパース24000SC」)で表面を保護した銀ナノワイヤー(長軸平均長さ1μm、短軸平均長さ10nm)を用いることができる。
【0059】
またカーボンナノチューブとしては、単層カーボンナノチューブ、二層カーボンナノチューブ、多層カーボンナノチューブ、及びロープ状カーボンナノチューブなどをあげることができ、導電性の高いものが好ましい。
【0060】
導電性を有する導電性ワイヤを電極膜本体に分散させた構成の光透過性電極を形成する方法としては、例えば導電性ワイヤを樹脂に練り込むことによって、導電性ワイヤを樹脂に分散させる方法、導電性ワイヤと、樹脂とを分散媒に分散させた分散液を所定の塗布法によって成膜化する方法、および導電性ワイヤを樹脂から成る膜の表面にコーティングし、導電体を膜中に分散させる方法などを挙げることができる。なお分散液には必要に応じて界面活性剤や酸化防止剤などの各種添加剤を加えてもよい。樹脂の種類は、屈折率、透光率および電気抵抗などの電極に求められる特性に応じて適宜選ばれる。
【0061】
また光透過性電極における導電性ワイヤの重量割合は、電極の電気抵抗、ヘイズ値および透光率などに影響するので、光透過性電極に求められる特性に応じて適宜設定される。
【0062】
光透過性電極は、例えば導電性ワイヤを分散媒に分散させた分散液を、所定の塗布法によって塗布成膜し、この膜をさらに硬化することによって得られる。
【0063】
分散液は、導電性ワイヤと樹脂とを分散媒に分散させることによって調製される。分散媒としては、たとえば樹脂を溶解または分散するものであればよく、クロロホルム、塩化メチレン、ジクロロエタン等の塩素系溶媒、テトラヒドロフラン等のエーテル系溶媒、トルエン、キシレン等の芳香族炭化水素系溶媒、アセトン、メチルエチルケトン等のケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテート等のエステル系溶媒を挙げることができる。
【0064】
なおカーボンナノチューブは分散媒中において凝集することがあり、カーボンナノチューブが凝集した状態の分散液を用いて形成した光透過性電極は透光率が低下するおそれがある。そのため線状導電体としてカーボンナノチューブを用いる場合には、このカーボンナノチューブを均一に分散することができる分散媒を用いることが特に好ましく、このような分散媒としてはたとえば、ギ酸、酢酸等のカルボン酸化合物;プロピレンオキサイド、1,2−エポキシブタン、(cis、trans)2,3−エポキシブタン等のエポキシ化合物;n−プロピルアミン、iso−プロピルアミン、N−エチルメチルアミン、n−ブチルアミン、sec−ブチルアミン、iso−ブチルアミン、tert−ブチルアミン、n−アミルアミン、tert−アミルアミン、イソアミルアミン、ヘキシルアミン等の1級アミン化合物;ジエチルアミン、N−メチルプロピルアミン、N−メチルイソプロピルアミン、N−エチルイソプロピルアミン、N−メチルブチルアミン、2−メチルブチルアミン、N−メチル−tert−ブチルアミン、ジイソプロピルアミン、ジプロピルアミン、N−エチルブチルアミン、N−メチルペンチルアミン、N−tert−ブチルイソプロピルアミン、N−プロピルブチルアミン等の2級アミン化合物;N,N−ジエチルメチルアミン、1,2−ジメチルプロピルアミン、1,3−ジメチルブチルアミン、3,3−ジメチルブチルアミン、トリエチルアミン、N−メチルジイソプロピルアミン、N,N−ジイソプロピルエチルアミン、N−イソプロピル−N−メチル−tert−ブチルアミン、トリイソプロピルアミン、ジメチルホルムアミド(DMF)、ジエチルホルムアミド、ジメチルアセトアミド(DMAc)、N−メチルピロリドン(NMP)等の3級アミン化合物があげられ、N−メチルピロリドン(NMP)が好ましい。
【0065】
また前述したように分散液に界面活性剤をさらに添加してもよく、このような界面活性剤としては、多価アルコールと脂肪酸エステル系、若しくはポリオキシエチレン系のポリオキシエチレン系の界面活性剤、または両者の系を併せ持つ非イオン性界面活性をあげることができ、ポリオキシエチレン系の非イオン性界面活性が好ましい。ポリオキシエチレン系界面活性剤の例としては、脂肪酸のポリオキシエチレン・エーテル、高級アルコールのポリオキシエチレン・エーテル、アルキル・フェノール・ポリオキシエチレン・エーテル、ソルビタン・エステルのポリオキシニチレン・エーテル、ヒマシ油のポリオキシエチレン・エーテル、ポリオキシ・プロピレンのポリオキシエチレン・エーテル、脂肪酸のアルキロールアマイドなどがあげられる。多価アルコールと脂肪酸エステル系界面活性剤の例としては、モノグリセライト型界面活性剤、ソルビトール型界面活性剤、ソルタビン型界面活性剤、シュガーエステル型界面活性剤があげられる。
【0066】
カーボンナノチューブはたとえば超音波処理を行いながら分散液に分散させることで、分散液に均一に分散することができる。たとえば前述した界面活性剤を添加することによって、カーボンナノチューブが分散液中で分散した後に凝集することを防ぐことができ、分散液中での分散状態を維持することができる。
【0067】
また樹脂としては例えば低密度または高密度のポリエチレン、エチレン−プロピレン共重合体、エチレン−ブテン共重合体、エチレン−ヘキセン共重合体、エチレン−オクテン共重合体、エチレン−ノルボルネン共重合体、エチレン−ドモン共重合体、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−メチルメタクリレート共重合体、アイオノマー樹脂などのポリオレフィン系樹脂;ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル系樹脂;ナイロン−6、ナイロン−6,6、メタキシレンジアミン−アジピン酸縮重合体;ポリメチルメタクリルイミドなどのアミド系樹脂;ポリメチルメタクリレートなどのアクリル系樹脂;ポリスチレン、スチレン−アクリロニトリル共重合体、スチレン−アクリロニトリル−ブタジエン共重合体、ポリアクリロニトリルなどのスチレン−アクリロニトリル系樹脂;トリ酢酸セルロース、ジ酢酸セルロースなどの疎水化セルロース系樹脂;ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのハロゲン含有樹脂;ポリビニルアルコール、エチレン−ビニルアルコール共重合体、セルロース誘導体などの水素結合性樹脂;ポリカーボネート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリメチレンオキシド樹脂、ポリアリレート樹脂、液晶樹脂などのエンジニアリングプラスチック系樹脂などが挙げられる。
【0068】
樹脂としては導電性を有する樹脂が好適に用いられ、導電性を有する樹脂としては例えばポリアニリン、ポリチオフェンの誘導体などが挙げられる。例えば屈折率が1.7のポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(スタルク社製、商品名「BaytronP」)を用いることができる。
【0069】
光透過性電極の屈折率は電極膜本体の屈折率によって主に決まる。この電極膜本体の屈折率は例えば、用いる樹脂の種類によって主に決まるので、用いる樹脂を選択することによって、意図する屈折率を示す光透過性電極を容易に得ることができる。例えば光透過性電極が支持基板に接して設けられる場合、光透過性電極と支持基板との屈折率差は小さい方が好ましく、例えば屈折率の差の絶対値は0.4未満が好ましく、光透過性電極の屈折率としては1.8以下が好ましい。光透過性電極の屈折率は、電極膜本体に用いる樹脂の種類を適宜選択することによって所期の値に設定することができるため、支持基板との屈折率の関係を上述の範囲内に設定することができる。
【0070】
なおフォトレジストに用いられる感光性材料および光硬化性モノマーに、導電性ワイヤを分散させた分散液を用いれば、塗布法およびフォトリソグラフィーによって所定のパターン形状を有する電極を容易に形成することができる。例えば分散液としてトリメチロールプロパントリアクリレート(新中村化学社製、商品名「NKエステル−TMPT」)および重合開始剤(日本チバ・ガイギー社製、商品名「イルガキュア907」)などを用いることができる。
【0071】
導電性ワイヤを分散した分散液の塗布方法としては、ディッピング法、バーコータによるコーティング法、スピンコーターによるコーティング法、ドクターブレード法、噴霧塗布法、スクリーンメッシュ印刷法、刷毛塗り、吹き付け、ロールコーティングなどを挙げることができる。なお熱硬化性樹脂や光硬化性樹脂を用いる場合には、分散液を塗布した後に、加熱または光照射によって塗膜を硬化させることができる。
【0072】
光透過性を示す電極には通常ITOが使われている。ITOの屈折率は、2程度であり、ガラス基板の屈折率は、1.5程度であり、ITOに接する部分(たとえば発光層)の屈折率は、1.7程度なので、電極としてITOを用いた場合には、屈折率の低いガラス基板と発光層との間に、屈折率の高いITOが挟まれた構造を有機EL素子は有することになる。そのため発光層から放射される光の一部が全反射などによってITOで反射され、光を効率的に外に出射させることができないことがある。しかしながら上述のような屈折率の低い光透過性電極を用いることによって、電極での反射を抑制することができ、光を効率的に外に出射させることができる。
【0073】
なお第1電極14よりも支持基板12から離間して配置される他方の第2電極15に光透過性電極を適用してもよい。通常は封止基板や封止膜が第2電極15上には設けられるが、この第2電極15に屈折率の高いITOなどを適用した場合には上述と同様の理由から、全反射などによって光が外に出射するのが阻害されるところ、第2電極15に屈折率が1.5〜1.8の光透過性電極を用いることにより、電極での反射を抑制することができ、光を効率的に外に出射させることができる。
【0074】
(実験例)
以下、電極膜本体と、該電極膜本体に分散された導電性ワイヤとを含む光透過性電極の具体的な実験例を説明する。
【0075】
(実験例1)
導電性ワイヤとして、アミノ基含有高分子系分散剤(アイ・シー・アイ・ジャパン社製、商品名「ソルスパース24000SC」)で表面を保護した銀ナノワイヤー(長軸平均長さ1μm、短軸平均長さ10nm)を用いる。この銀ナノワイヤーのトルエン分散液2g(銀ナノワイヤー1.0g含有)と、光硬化性モノマーであるトリメチロールプロパントリアクリレート(新中村化学製 NKエステル−TMPT)0.25gとを混合し、さらに重合開始剤イルガキュア907(日本チバ・ガイギー社製)0.0025gを添加する。この混合溶液を、厚さ0.7mmのガラス基板に塗布し、ホットプレート上において110℃で20分加熱して溶媒を除去し、さらにUVランプで光照射(6000mW/cm2)することによって硬化して、膜厚が150nmの一方の電極を得る。光硬化樹脂の屈折率は1.5であり、得られる一方の電極の屈折率も1.5となる。
【0076】
(実験例2)
導電性ワイヤとして、アミノ基含有高分子系分散剤(アイ・シー・アイ・ジャパン社製、商品名「ソルスパース24000SC」)で表面を保護した銀ナノワイヤー(長軸平均長さ1μm、短軸平均長さ10nm)を用いる。この銀ナノワイヤーのトルエン分散液2g(銀ナノワイヤー1.0g含有)と、ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(スタルク社製、BaytronP)2.5gとを混合する。この混合溶液を、厚さ0.7mmのガラス基板に塗布し、ホットプレート上において200℃で20分加熱し、溶媒を除去することにより膜厚が150nmの一方の電極を得る。BaytronPの屈折率は1.7であり、得られる透明導電膜の屈折率も1.7となる。
【0077】
(実験例3)
導電性ワイヤとして、アミノ基含有高分子系分散剤(アイ・シー・アイ・ジャパン社製、商品名「ソルスパース24000SC」)で表面を保護した銀ナノワイヤー(長軸平均長さ1μm、短軸平均長さ10nm)を用いる。ポリ(エチレンジオキシチオフェン)/ポリスチレンスルホン酸の溶液(スタルク社製、BaytronP)2.5gに、ジメチルスルホキシド0.125gを混合した混合液と、前記銀ナノワイヤーのトルエン分散液2g(銀ナノワイヤー1.0g含有)とを混合する。この混合溶液を、0.7mm厚のガラス基板に塗布し、ホットプレート上において200℃で20分加熱し、溶媒を除去することにより膜厚が150nmの導電膜を得る。BaytronPの屈折率は1.7であり、得られる透明導電膜の屈折率も1.7となる。
【0078】
一対の電極のいずれかは光透過性を示す電極であり、この光透過性を示す電極とは異なるもう1つの電極は通常不透明な電極である。この不透明な電極は光を反射する電極であることが好ましい。
【0079】
不透明な電極の材料としては、例えばアルカリ金属、アルカリ土類金属、遷移金属、周期表の13族金属、および仕事関数の高い金属などを用いることができ、例えばリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、アルミニウム、スカンジウム、バナジウム、亜鉛、イットリウム、インジウム、セリウム、サマリウム、ユーロピウム、テルビウム、イッテルビウム、アルミニウム、金、白金、銀などの金属、前記金属のうちの2種以上の合金、前記金属のうちの1種以上と、銅、マンガン、チタン、コバルト、ニッケル、タングステン、錫のうちの1種以上との合金、またはグラファイト若しくはグラファイト層間化合物などが用いられる。合金の例としては、マグネシウム−銀合金、マグネシウム−インジウム合金、マグネシウム−アルミニウム合金、インジウム−銀合金、リチウム−アルミニウム合金、リチウム−マグネシウム合金、リチウム−インジウム合金、カルシウム−アルミニウム合金などを挙げることができる。またITO薄膜が発光層側に配置されるようにして、ITO薄膜と、導電性および反射率の高い金属薄膜とを積層した積層体を、不透明な電極として用いてもよい。
【0080】
一対の電極の膜厚はそれぞれ、導電性および光透過性などの電極としての特性を考慮して適宜設定され、例えば1nm〜1μm程度であり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0081】
<正孔注入層>
正孔注入層を構成する正孔注入材料としては、酸化バナジウム、酸化モリブデン、酸化ルテニウムおよび酸化アルミニウムなどの金属酸化物や、フェニルアミン系、スターバースト型アミン系、フタロシアニン系、アモルファスカーボン、ポリアニリンおよびポリチオフェン誘導体などを挙げることができる。
【0082】
正孔注入層の成膜方法としては、例えば正孔注入材料を含む溶液からの成膜を挙げることができる。例えば所定の塗布法によって正孔注入材料を含む溶液を塗布成膜し、さらにこれを固化することによって正孔注入層を形成することができる。
【0083】
溶液からの成膜に用いられる溶媒としては、クロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒、および水を挙げることができる。
【0084】
正孔注入層の膜厚は、求められる特性および工程の簡易さなどを考慮して適宜設定され、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0085】
<正孔輸送層>
正孔輸送層を構成する正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体、ピラゾリン誘導体、アリールアミン誘導体、スチルベン誘導体、トリフェニルジアミン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリピロール若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、又はポリ(2,5−チエニレンビニレン)若しくはその誘導体などを挙げることができる。
【0086】
これらの中で正孔輸送材料としては、ポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミン化合物基を有するポリシロキサン誘導体、ポリアニリン若しくはその誘導体、ポリチオフェン若しくはその誘導体、ポリアリールアミン若しくはその誘導体、ポリ(p−フェニレンビニレン)若しくはその誘導体、又はポリ(2,5−チエニレンビニレン)若しくはその誘導体などの高分子正孔輸送材料が好ましく、さらに好ましくはポリビニルカルバゾール若しくはその誘導体、ポリシラン若しくはその誘導体、側鎖若しくは主鎖に芳香族アミンを有するポリシロキサン誘導体である。低分子の正孔輸送材料の場合には、高分子バインダーに分散させて用いることが好ましい。
【0087】
正孔輸送層の成膜方法としては、例えば正孔輸送材料を含む溶液からの成膜を挙げることができる。例えば所定の塗布法によって正孔輸送材料を含む溶液を塗布成膜し、さらにこれを固化することによって正孔輸送層を形成することができる。低分子の正孔輸送材料では、高分子バインダーをさらに混合した溶液を用いて成膜してもよい。
【0088】
溶液からの成膜に用いられる溶媒としては、例えばクロロホルム、塩化メチレン、ジクロロエタンなどの塩素系溶媒、テトラヒドロフランなどのエーテル系溶媒、トルエン、キシレンなどの芳香族炭化水素系溶媒、アセトン、メチルエチルケトンなどのケトン系溶媒、酢酸エチル、酢酸ブチル、エチルセルソルブアセテートなどのエステル系溶媒などを挙げることができる。
【0089】
混合する高分子バインダーとしては、電荷輸送を極度に阻害しないものが好ましく、また可視光に対する吸収の弱いものが好適に用いられ、例えばポリカーボネート、ポリアクリレート、ポリメチルアクリレート、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル、ポリシロキサンなどを挙げることができる。
【0090】
正孔輸送層の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0091】
<発光層>
発光層は、通常、主として蛍光及び/又はりん光を発光する有機物、または該有機物とこれを補助するドーパントとから形成される。例えば発光効率の向上や、発光波長を変化させるためにドーパントは加えられる。なお発光層に含まれる有機物は、低分子化合物でも高分子化合物でもよい。低分子化合物よりも溶媒への溶解性が一般的に高い高分子化合物は塗布法に好適に用いられるため、発光層は高分子化合物を含むことが好ましく、高分子化合物としてポリスチレン換算の数平均分子量が10〜10の化合物を含むことが好ましい。発光層を構成する発光材料としては、例えば以下の色素系材料、金属錯体系材料、高分子系材料、ドーパント材料を挙げることができる。
【0092】
(色素系材料)
色素系材料としては、例えば、シクロペンダミン誘導体、テトラフェニルブタジエン誘導体化合物、トリフェニルアミン誘導体、オキサジアゾール誘導体、ピラゾロキノリン誘導体、ジスチリルベンゼン誘導体、ジスチリルアリーレン誘導体、ピロール誘導体、チオフェン環化合物、ピリジン環化合物、ペリノン誘導体、ペリレン誘導体、オリゴチオフェン誘導体、オキサジアゾールダイマー、ピラゾリンダイマー、キナクリドン誘導体、クマリン誘導体などを挙げることができる。
【0093】
(金属錯体系材料)
金属錯体系材料としては、例えばTb、Eu、Dyなどの希土類金属、またはAl、Zn、Be、Ir、Ptなどを中心金属に有し、オキサジアゾール、チアジアゾール、フェニルピリジン、フェニルベンゾイミダゾール、キノリン構造などを配位子に有する金属錯体を挙げることができ、例えばイリジウム錯体、白金錯体などの三重項励起状態からの発光を有する金属錯体、アルミニウムキノリノール錯体、ベンゾキノリノールベリリウム錯体、ベンゾオキサゾリル亜鉛錯体、ベンゾチアゾール亜鉛錯体、アゾメチル亜鉛錯体、ポルフィリン亜鉛錯体、フェナントロリンユーロピウム錯体などを挙げることができる。
【0094】
(高分子系材料)
高分子系材料としては、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリパラフェニレン誘導体、ポリシラン誘導体、ポリアセチレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、上記色素系材料や金属錯体系発光材料を高分子化したものなどを挙げることができる。
【0095】
上記発光性材料のうち、青色に発光する材料としては、ジスチリルアリーレン誘導体、オキサジアゾール誘導体、およびそれらの重合体、ポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリビニルカルバゾール誘導体、ポリパラフェニレン誘導体やポリフルオレン誘導体などが好ましい。
【0096】
また、緑色に発光する材料としては、キナクリドン誘導体、クマリン誘導体、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリフルオレン誘導体などが好ましい。
【0097】
また、赤色に発光する材料としては、クマリン誘導体、チオフェン環化合物、およびそれらの重合体、ポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などを挙げることができる。なかでも高分子材料のポリパラフェニレンビニレン誘導体、ポリチオフェン誘導体、ポリフルオレン誘導体などが好ましい。
(ドーパント材料)
ドーパント材料としては、例えばペリレン誘導体、クマリン誘導体、ルブレン誘導体、キナクリドン誘導体、スクアリウム誘導体、ポルフィリン誘導体、スチリル系色素、テトラセン誘導体、ピラゾロン誘導体、デカシクレン、フェノキサゾンなどを挙げることができる。なお、このような発光層の厚さは、通常約2nm〜200nmである。
【0098】
発光層は、例えば溶液からの成膜によって形成される。例えば発光材料を含む溶液を所定の塗布法によって塗布し、さらにこれを固化することによって発光層は形成される。溶液からの成膜に用いる溶媒としては、前述の溶液から正孔注入層を成膜する際に用いられる溶媒と同様の溶媒を挙げることができる。
【0099】
<電子輸送層>
電子輸送層を構成する電子輸送材料としては、オキサジアゾール誘導体、アントラキノジメタン若しくはその誘導体、ベンゾキノン若しくはその誘導体、ナフトキノン若しくはその誘導体、アントラキノン若しくはその誘導体、テトラシアノアントラキノジメタン若しくはその誘導体、フルオレノン誘導体、ジフェニルジシアノエチレン若しくはその誘導体、ジフェノキノン誘導体、又は8−ヒドロキシキノリン若しくはその誘導体の金属錯体、ポリキノリン若しくはその誘導体、ポリキノキサリン若しくはその誘導体、ポリフルオレン若しくはその誘導体などを挙げることができる。
【0100】
電子輸送層の成膜法としては、例えば蒸着法および溶液からの成膜法などをあげることができる。なお溶液から成膜する場合には高分子バインダーを併用してもよい。
【0101】
電子輸送層の膜厚は、要求される特性および工程の簡易さなどを考慮して適宜設定され、例えば1nm〜1μmであり、好ましくは2nm〜500nmであり、さらに好ましくは5nm〜200nmである。
【0102】
<電子注入層>
電子注入層を構成する材料としては、アルカリ金属、アルカリ土類金属、アルカリ金属およびアルカリ土類金属のうちの1種類以上を含む合金、アルカリ金属若しくはアルカリ土類金属の酸化物、ハロゲン化物、炭酸化物、またはこれらの物質の混合物などを挙げることができる。アルカリ金属、アルカリ金属の酸化物、ハロゲン化物、および炭酸化物の例としては、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、酸化リチウム、フッ化リチウム、酸化ナトリウム、フッ化ナトリウム、酸化カリウム、フッ化カリウム、酸化ルビジウム、フッ化ルビジウム、酸化セシウム、フッ化セシウム、炭酸リチウムなどを挙げることができる。また、アルカリ土類金属、アルカリ土類金属の酸化物、ハロゲン化物、炭酸化物の例としては、マグネシウム、カルシウム、バリウム、ストロンチウム、酸化マグネシウム、フッ化マグネシウム、酸化カルシウム、フッ化カルシウム、酸化バリウム、フッ化バリウム、酸化ストロンチウム、フッ化ストロンチウム、炭酸マグネシウムなどを挙げることができる。電子注入層は、2層以上を積層した積層体で構成されてもよく、例えばLiF/Caなどを挙げることができる。電子注入層は、蒸着法、スパッタリング法、印刷法などにより形成される。電子注入層の膜厚としては、1nm〜1μm程度が好ましい。
【0103】
2) 発光装置の製造方法
本実施形態の発光装置の製造方法は、支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であり、各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延伸しており、前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向に垂直な幅方向に、発光層から突出するように延伸する延伸部を有し、前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延伸部から前記配列方向に延伸し、該他方の電極に接続される接続部をさらに有し、前記一対の電極のうちのいずれかは、光透過性を示す電極である発光装置の製造方法であって、前記発光層となる材料を含むインキを、前記複数の有機エレクトロルミネッセンス素子に跨って前記所定の配列方向に沿って連続的に塗布し、塗布した塗膜を固化することにより発光層を形成する工程と、前記光透過性を示す電極となる材料を含む塗布液を塗布し、さらにこれを固化することにより、屈折率が1.5〜1.8の光透過性を示す電極を形成する工程と、一対の電極のうち、光透過性を示す電極とは異なる電極を形成する工程とを含む。
【0104】
以下図2〜図4を参照して発光装置を製造する方法を説明する。
まず支持基板12を用意する。本工程では有機EL素子13を駆動する駆動回路(不図示)が予め形成されている支持基板12を用意することが好ましい。
【0105】
次に第1電極14を支持基板12上にパターン形成する(図2参照)。第1電極14が光透過性を示す電極に相当する場合、本工程では、前記光透過性を示す電極となる材料を含む塗布液を塗布し、さらにこれを固化することにより、屈折率が1.5〜1.8の光透過性を示す電極を形成する。光透過性を示す電極となる材料含む塗布液とは、前述したように、例えば導電性ワイヤと樹脂とを分散媒に分散させた塗布液である。塗布液が光硬化性樹脂を含む場合、例えば支持基板12上の全面に塗布液を塗布し、所定の部位を露光し、現像することにより、第1電極14をパターン形成することができる。また例えば凸版印刷法など所定の印刷法を用いることによって、塗布液をパターン塗布し、これを固化することによって、第1電極14をパターン形成してもよい。さらには塗布液を全面に塗布し、これを固化した後に、フォトレジストをこの上にさらに塗布し、フォトリソグラフィー法を用いてパターンを形成することによって第1電極14をパターン形成してもよい。塗布した塗布膜の固化は例えば加熱または光照射によって行うことができる。
【0106】
なお他の実施形態として第2電極15が光透過性を示す電極に相当する場合、第1電極14は、例えばスパッタリング法または蒸着法によって、前述した不透明な電極の材料からなる導電体膜を支持基板12上に成膜し、次にフォトリソグラフィーを用いて導電体膜を所定の形状にパターニングすることによって、第1電極14をパターン形成することができる。またフォトリソグラフィ工程を行うことなく、マスク蒸着法などによって所定の部位にのみ第1電極14をパターン形成してもよい。
【0107】
次に発光層16を形成する(図3参照)。上述した発光層となる材料を含むインキを、複数の有機EL素子13に跨って配列方向Xに沿って連続的に塗布し、塗布した塗膜を固化することにより発光層を形成する。
【0108】
なお前述したように第1電極14と発光層16との間に発光層16とは異なる所定の層を設けることがある。発光層とは異なる所定の層を塗布法によって形成する場合には、以下で説明する発光層を形成する方法と同じ方法によって、発光層とは異なる所定の層を形成することが好ましい。すなわち発光層とは異なる所定の層となる材料を含むインキを、複数の有機EL素子13に跨って配列方向Xに沿って連続的に塗布し、塗布した塗膜を固化することにより発光層とは異なる所定の層を形成することが好ましい。なお発光層とは異なる所定の層を蒸着法などの乾式法で形成する場合には、発光層とは異なる所定の層を第1電極14上にのみ選択的に形成してもよい。
【0109】
インキを塗布する方法としては、キャップコート法、スリットコート法、スプレーコート法、印刷法、インクジェット法、ノズルプリンティング法などをあげることができ、これらのなかでも大面積を効率的に塗布することが可能なキャップコート法、スリットコート法、スプレーコート法および印刷法が好ましい。
【0110】
以下図4を参照して、塗布法の一例としてキャップコート法によって発光層となる材料を含むインキを塗布する方法について説明する。図4は、発光層を形成するために用いられるキャップコーターシステム21を模式的に示す図である。以下では、実施の一例として「陽極/発光層/陰極」から成る有機EL素子の製造方法について説明する。例えば陽極、発光層および陰極が支持基板上にこの順で積層される素子構造の有機EL素子では、陽極としての第1電極が成膜された基板(以下、被塗布体という場合がある)に発光層が成膜される。以下本明細書において「上方」および「下方」は、それぞれ「鉛直方向の上方」および「鉛直方向の下方」を意味する。また以下のキャップコーターシステム21の説明におけるノズル23などの構成については、インキを塗布する際の配置を前提にして説明する。
【0111】
キャップコーターシステム21は、主に定盤22、ノズル23、およびタンク24を備える。定盤22は、第1電極14が形成された支持基板12を被塗布体29として保持する。被塗布体29の保持方法としては真空吸着を挙げることができる。定盤22は、被塗布体29のインキが塗布される被塗布面を下方に配置して、被塗布体29を吸着保持する。定盤22は、図示しない電動機および油圧機などの変位駆動手段によって水平方向に往復運動する。なお定盤22の移動する方向は塗布方向に相当し、本実施形態では配列方向Xに一致する。
【0112】
ノズル23は、インキが吐出するスリット状吐出口を備える。スリット状吐出口の短手方向は配列方向Xに一致し、その長手方向は幅方向Yに一致する。すなわちノズル23には幅方向Yに延伸する開口が形成されている。スリット状吐出口の短手方向の幅は、インキの性状および塗布膜の厚みなどに応じて適宜設定される。キャップコート法では毛管現象を利用するので、スリット状吐出口の短手方向の幅は通常0.01mm〜1mm程度である。またスリット状吐出口の長手方向の幅は、発光層の幅方向Yの幅と略一致する値に設定される。
【0113】
スリット状吐出口の下方には、インキが充填されるマニホールドが形成されている。ノズル23には、ノズル23上端のスリット状吐出口からマニホールドまで連通するスリット25が形成されている。マニホールドにはタンク24からインキが供給され、マニホールドに供給されたインキは、さらにスリット25を通ってスリット状吐出口から吐出される。
【0114】
ノズル23は、鉛直方向に変位可能に支持され、電動機および油圧機などの変位駆動手段によって鉛直方向に変位駆動される。
【0115】
タンク24はインキ27を収容する。タンク24に収容されるインキ27は被塗布体29に塗布されるインキ27であり、本実施形態では発光層となる有機材料を含む液体である。ノズル23のマニホールドとタンク24とはインキ供給管26を介して連通している。すなわちタンク24に収容されるインキ27は、インキ供給管26を通してマニホールドに供給され、さらにはスリット25およびスリット状吐出口を介して被塗布体29に塗布される。タンク24は、鉛直方向に変位可能に支持され、電動機および油圧機などの変位駆動手段によって鉛直方向に変位駆動される。タンク24には、インキ27の液面を検出する液面センサー28が設置されている。この液面センサー28によって、インキ27の液面の鉛直方向の高さが検出される。液面センサー28は、例えば光学式センサーや超音波振動式センサーによって実現される。
【0116】
インキ供給管26を介してタンク24からスリット状吐出口に供給されるインキ27は、タンク24内の液面の高さに応じて生じる圧力(静圧)と、スリット状吐出口で生じる毛管現象による力とに応じてスリット状吐出口から押出される。塗布液に加わる静圧の大きさは、タンク24内の液面位置とノズル23内の液面位置との相対差によって決まる。この相対差は、タンク24の上下方向の位置を調整することにより調整することができるので、スリット状吐出口から押出される塗布液の量は、タンク24の上下方向の位置を調整することにより制御することができる。
【0117】
キャップコーターシステム21は、マイクロコンピュータなどによって実現される制御部をさらに備える。この制御部が前述した変位駆動手段などを制御する。制御部が変位駆動手段を制御することで、ノズル23およびタンク24の鉛直方向の位置、および定盤22の配列方向Xの変位が制御される。インキ27を塗布すると、インキ27が消費されるためにタンク24内のインキ27の液面が経時的に下降するが、液面センサー28の検出結果に基づいて制御部が変位駆動手段を制御し、タンク24の鉛直方向の位置を調整することにより、スリット状吐出口から押出されるインキ27の高さを制御することができる。
【0118】
以上説明したキャップコーターシステム21がインキを塗布する動作について説明する。
【0119】
(塗布工程)
ノズル23から吐出されるインキが被塗布体29に接液した状態で、ノズル23と被塗布体29とを所定の配列方向Xに相対移動する。
【0120】
具体的にはまずタンク24に収容されるインキの液面がノズル23の上端よりも高くなるようにタンク24を上昇させ、スリット状吐出口からインキが吐出した状態にするとともに、被塗布体29にノズル23の上端が近接するようにノズル23を上昇させ、スリット状吐出口から吐出されるインキを被塗布体29に接液する。
【0121】
次にインキが被塗布体29に接液した状態を保ったまま、被塗布体29を保持する定盤22を配列方向Xの他方(図4では右方)に移動させる。被塗布体29を保持する定盤22を所定の距離だけ移動させると、定盤22の移動を停止する。これによってスリット状吐出口の長手方向の幅と略同じ幅を有する塗布膜が被塗布体29の表面に形成される。なお本実施形態では幅方向Yの一方に設定される第1電極14の第1延伸部17aと、幅方向Yの他方に設定される第1電極14の第2延伸部17bとの間の領域にインキが塗布されるように、ノズル23および定盤22の変位が制御される。
【0122】
インキを塗布する際のノズル23と被塗布体29との間隔は、例えば0.05mm〜0.3mm程度に設定される。なお本実施形態では被塗布体29を移動させることによってインキを塗布するが、被塗布体29ではなくノズル23を配列方向Xの一方(図4では左方)に移動させてもよく、またノズル23と被塗布体29の両方を移動させてもよい。
【0123】
その後ノズル23を下方に移動させてノズル23と被塗布体29とを離間させ、塗布膜を固化する。例えば重合性化合物を用いて発光層を形成する場合には光照射または加熱によって発光層を固化することができる。またインキに含まれる溶媒を除去することによって塗布膜を固化することもでき、この場合は加熱処理または所定の時間被塗布体を放置することにより塗布膜を固化することができる。これにより発光層16が形成される。
【0124】
なお前述したように第2電極15と発光層16との間に発光層とは異なる所定の層を設けることがある。発光層とは異なる所定の層を塗布法によって形成する場合には、上述した発光層を形成する方法と同じ方法によって、発光層とは異なる所定の層を発光層上に形成することが好ましい。すなわち発光層とは異なる所定の層となる材料を含むインキを、複数の有機EL素子13に跨って配列方向Xに沿って連続的に塗布し、塗布した塗膜を固化することにより発光層とは異なる所定の層を形成することが好ましい。なお発光層とは異なる所定の層を蒸着法などの乾式法で形成する場合には、発光層とは異なる所定の層を平面視で第1電極14上にのみ選択的に形成してもよい。
【0125】
次に第2電極15を形成する。例えばマスク蒸着法によって、第2電極15を設けるべき部位にのみ、前述した陽極または陰極となる材料を選択的に成膜し、発光層16上に第2電極15をパターン形成することができる。なお他の実施形態として第2電極15が光透過性を示す電極に相当する場合、第1電極14が光透過性を示す電極に相当する場合として説明した方法を用いて、光透過性を示す電極を形成することにより、第2電極15をパターン形成することができる。
【0126】
以上説明した発光装置11は、平面視で発光層16が形成される領域から幅方向Yに突出した領域において、隣り合う有機EL素子13の第1電極14と第2電極15とが接続されることにより隣り合う有機EL素子13が直列接続されるので、隣り合う有機EL素子13の第1電極14と第2電極15とを有機EL素子13間の領域において接続する必要がない。そのため隣り合う有機EL素子13間の領域に発光層などが形成されていてもよく、これによって塗布法で発光層を形成する際に、隣り合う有機EL素子13間の領域に形成される発光層を除去する工程を省略することができる。従って微細なパターン塗布が比較的不得手なキャップコート法などの塗布法であっても、直列接続される複数の有機EL素子13を簡便に作製することができる。
【0127】
また塗布法で発光層を形成する際に、隣り合う有機EL素子13間の領域に形成される発光層を除去する工程を省略することができるため、発光層の剥ぎ取りに起因して発光領域が制限されることがない。そのため、隣り合う有機EL素子間の距離を可能な限り狭くすることができ、発光面積を大きくすることができる。
【0128】
さらに光透過性を示す電極の屈折率が1.5〜1.8であるため、前述したように、電極での反射を抑制することができ、光を効率的に外に出射させることができる。
【0129】
図5は本発明の第2実施形態の発光装置31を模式的に示す図である。本実施形態の発光装置31は前述の第1実施形態の発光装置11とは第1及び第2電極14,15の形状のみが異なるので、第1及び第2電極14,15についてのみ説明し、第1実施形態と対応する部分については同一の参照符号を付して、重複する説明を省略する。
【0130】
本実施形態では第1電極14に加えて、第2電極15も接続部32を有する。すなわち第2電極15は、配列方向Xに隣り合う有機EL素子の第1電極14にまで延伸部から配列方向Xに延伸し、該第1電極15に接続される接続部32を有する。
【0131】
従って配列方向Xに隣り合う一対の有機EL素子13において、右方に配置される有機EL素子13の第1電極14の延伸部17から接続部19が左方に延伸するとともに、左方に配置される有機EL素子13の第2電極15の延伸部18から接続部32が右方に延伸し、これら第1電極14の接続部19と、第2電極15の接続部32とが重なることによって隣り合う一対の有機EL素子13の第1電極14と第2電極15とが接続される。
【0132】
図6は本発明の第3実施形態の発光装置41を模式的に示す図である。本実施形態の発光装置41は前述の第1実施形態の発光装置11とは第1及び第2電極14,15の形状のみが異なるので、第1及び第2電極14,15についてのみ説明し、第1実施形態と対応する部分については同一の参照符号を付して、重複する説明を省略する。
【0133】
本実施形態では第1電極14が接続部19を有さず、逆に第2電極15が接続部42を有する。すなわち第2電極15は、配列方向Xに隣り合う有機EL素子の第1電極14にまで延伸部から配列方向Xに延伸し、該第1電極15に接続される接続部42を有する。
【0134】
図1に示す第1実施形態の発光装置11では、第1電極14のみが接続部19を有し、逆に図6に示す第3実施形態の発光装置41では、第2電極15のみが接続部42を有する。第1及び第2電極14,15のうちのいずれか一方のみが接続部を有する場合、いずれの電極が接続部を有するかは設計に応じて適宜選択すればよいが、第1及び第2電極14,15(一対の電極)のうちでシート抵抗が低い方の電極のみが接続部を有することが好ましい。すなわち第2電極15のシート抵抗よりも第1電極14のシート抵抗が低い場合、図1に示す第1実施形態の発光装置11のように第1電極14のみが接続部19を有することが好ましい。逆に第1電極14のシート抵抗よりも第2電極15のシート抵抗が低い場合、図6に示す第3実施形態の発光装置41のように第2電極15のみが接続部42を有することが好ましい。
【0135】
第1及び第2電極14,15のうちのいずれかは、発光層16から放射される光を外に出射するために光透過性を示す電極によって構成される。光透過性を示す電極は一般的に、不透明な電極に比べてシート抵抗が高い。そのため第1及び第2電極14,15のうちの光透過性を示す電極の方が通常はシート抵抗が高い。従って光透過性を示す電極ではない他方の電極のみが接続部を有することが通常は好ましい。
【0136】
発光装置を駆動する際には導電体によって構成される接続部にも電圧降下が発生するが、シート抵抗が低い部材によって構成される電極にのみ接続部を設けることによって、接続部で発生する電圧降下を抑制することができ、ひいては消費電力を低減することができる。
【0137】
図7は本発明の第4実施形態の発光装置51を模式的に示す図である。本実施形態の発光装置51は、電極に接して設けられる補助電極をさらに有する。本実施形態の発光装置51は前述の各実施形態の発光装置とは補助電極の有無のみが異なるので、補助電極についてのみ説明し、前述した各実施形態と対応する部分については同一の参照符号を付して、重複する説明を省略する。図7では補助電極を示す領域にハッチングを施している。
【0138】
補助電極は第1及び第2電極14,15(一対の電極)のうちの少なくとも一方の電極に接して設けられる。例えば第1電極14と第2電極15とに補助電極が接して設けられる場合には、第1電極14に接して設けられる補助電極と、第2電極に接して設けられる補助電極との2つの補助電極が設けられる。
【0139】
補助電極は、当該補助電極に接する電極よりもシート抵抗が低い部材によって構成される。補助電極52は、第1及び第2電極14,15(一対の電極)のうちでシート抵抗が高い方の電極に接して設けられることが好ましい。前述したように第1及び第2電極14,15のうちのいずれかは、発光層16から放射される光を外に出射するために光透過性を示す電極によって構成される。そして光透過性を示す電極の方が不透明な電極よりも通常はシート抵抗が高い。そのため通常は第1及び第2電極14,15のうちの光透過性を示す電極に補助電極52が接して設けられることが好ましい。図7に示す本実施の形態の発光装置51では、光透過性を示す電極として設けられる第1電極14に接して補助電極52が設けられる。
【0140】
補助電極52は当該補助電極52が接する電極よりもシート抵抗が低いため、通常は不透明である。光が透過する方の電極に不透明な補助電極52を接して設ける場合、この補助電極52が光を遮ることがある。そのため補助電極52は平面視で、発光層16が原理的に発光しない領域に設けられることが好ましい。
【0141】
発光層16は、平面視で第1電極14と第2電極15とが対向する領域(以下、対向領域ということがある。)で原理的に発光可能である。そのため原理的に発光しない領域とは、平面視で第1電極14と第2電極15との対向領域を除く領域に相当する。したがって補助電極52は平面視で第1電極14と第2電極15との対向領域を除く領域に設けられることが好ましい。
【0142】
なお発光量および電圧降下などを勘案して、補助電極を平面視で第1電極14と第2電極15との対向領域に形成してもよく、例えば対向領域の周縁と、対向領域とに補助電極を形成してもよい。平面視で例えば対向領域に格子状またはストライプ状の線状に補助電極を形成し、これら対向領域に形成される補助電極と、対向領域の周縁に形成される補助電極とを接続してもよい。
【0143】
補助電極の材料としては、電気伝導率の高い材料が好適に用いられ、Al、Ag、Cu、Au、Wなどをあげることができる。また補助電極にはAl−Nd、Ag−Pd−Cuなどの合金を用いてもよい。補助電極の厚みは求められるシート抵抗などによって適宜設定され、例えば50nm〜2000nmである。補助電極は単層によって構成されていてもよく、また複数の層が積層された積層体であってもよい。例えば所定の機能を発揮する層を、電気伝導率の高い材料からなる薄膜に積層してもよい。所定の機能とは、例えば支持基板12(ガラス基板等)や第1電極14との密着性の向上させる機能、および表面を酸素や水分から保護する機能などであり、例えばMo、Mo−NbおよびCrなどから成る薄膜で、電気伝導率の高い材料からなる薄膜を挟持した構成の積層体を補助電極として用いることができる。
【0144】
なお前述した各実施形態では複数の有機EL素子によって1つの直列接続が構成された発光装置を示しているが、複数の有機EL素子によって複数の直列接続が構成された発光装置であっても本発明を好適に適用することができる。また直列接続と並列接続とを併用して構成された発光装置であっても本発明を好適に適用することができる。
【0145】
図8は本発明の第5実施形態の発光装置61を示す図である。本実施形態の発光装置61は、2列の直列接続を並列接続した構成の発光装置である。各直列接続は、3個の有機EL素子が直列接続されて構成される。2列の直列接続は、一端同士および他端同士が電気的に接続され、並列接続される。
【0146】
複数の有機EL素子によって1つの直列接続が構成された発光装置では、有機EL素子の数が増加するほど、素子を駆動する駆動源の電圧が高くなるが、並列接続を併用することによって、駆動源に要求される供給電圧を適度に抑制することができる。
【実施例】
【0147】
(作製例1)
図8に示す構成と同じ構成の発光装置を作製する。
【0148】
有機EL素子の構成は以下の通りである。
【0149】
支持基板/陽極/正孔注入層/インターレイヤー/発光層/電子注入層/陰極
まず前述した実験例1〜3と同様にして、導電性ワイヤを含む混合溶液を用意する。この混合溶液を、所定のパターンが形成された凸版印刷版を用いて図8に示す所定のパターンで支持基板上にパターン印刷する。さらに実験例1〜3と同様にして、塗布した膜を加熱し、紫外線を照射することによって陽極を形成する。
【0150】
陽極が形成された支持基板上に正孔注入層、インターレイヤー、発光層をそれぞれ順次塗布法により形成する。正孔注入層、インターレイヤー、発光層の形状は平面視で略長方形であり、74.0mm×71.2mmとする。正孔注入層、インターレイヤー、発光層の膜厚はそれぞれ6nm、2nm、6nmとする。
【0151】
次に電子注入層として蒸着法によりBaを5nm堆積し、さらに陰極として蒸着法によりAlを100nm堆積する。
【0152】
有機EL素子の発光領域は平面視で66.0mm×10.4mmの略長方形とする。
【0153】
(作製例2)
作製例2では、補助電極を陽極上に形成すること以外は作製例1と同様に発光装置を作製する。作製例2の構成は、補助電極を設けること以外は作製例1の構成と同じなので、補助電極についてのみ説明する。
【0154】
補助電極は陽極上に作製する。補助電極は陽極上において、陽極と陰極とが対向する領域を除く領域に形成する。陽極側から順に、Mo、Al−Nd、Moを蒸着法によってそれぞれ50nm、800nm、50nmずつ堆積する。すなわち3層構造(Mo/Al−Nd/Mo)の補助電極をITO薄膜上に作製する。
【0155】
このように補助電極を積層することによってシート抵抗を低減することができる。
【符号の説明】
【0156】
1 有機EL素子
2 発光装置
3 支持基板
4 第1電極
5 第2電極
6 発光層
11 発光装置
12 支持基板
13 有機EL素子
14 第1電極
15 第2電極
16 発光層
17,18 延伸部
19 接続部
21 キャップコーターシステム
22 定盤
23 ノズル
24 タンク
25 スリット
26 インキ供給管
27 インキ
28 液面センサー
29 被塗布体
31 発光装置
32 接続部
41 発光装置
42 接続部
51 発光装置
52 補助電極
61 発光装置

【特許請求の範囲】
【請求項1】
支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であって、
各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、
前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延伸しており、
前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のいずれにも垂直な幅方向に、発光層から突出するように延伸する延伸部を有し、
前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延伸部から前記配列方向に延伸し、該他方の電極に接続される接続部をさらに有し、
前記一対の電極のうちのいずれかは、光透過性を示す電極であり、該電極を構成する材料の屈折率が1.5〜1.8であることを特徴とする発光装置。
【請求項2】
前記電極に接して設けられる補助電極をさらに有し、
該補助電極は、当該補助電極に接する電極よりもシート抵抗が低いことを特徴とする請求項1記載の発光装置。
【請求項3】
前記補助電極は、前記一対の電極のうちでシート抵抗が高い方の電極に接して設けられることを特徴とする2記載の発光装置。
【請求項4】
前記一対の電極のうちでシート抵抗が低い方の電極のみが、前記接続部を有することを特徴とする請求項1〜3のうちのいずれか1つに記載の発光装置。
【請求項5】
前記延伸部は、前記厚み方向一方から見て、前記幅方向の一方に発光層から突出するように延伸する第1延伸部と、前記幅方向の他方に発光層から突出するように延伸する第2延伸部とを含むことを特徴とする請求項1〜4のいずれか1つに記載の発光装置。
【請求項6】
前記光透過性を示す電極は、電極膜本体と、該電極膜本体に分散された導電性ワイヤとを含むことを特徴とする請求項1〜5のいずれか1つに記載の発光装置。
【請求項7】
支持基板と、所定の配列方向に沿って前記支持基板上に設けられ、直列接続される複数の有機エレクトロルミネッセンス素子とを備える発光装置であり、
各有機エレクトロルミネッセンス素子はそれぞれ、一対の電極と、該電極間に設けられる発光層とを備え、
前記発光層は、前記複数の有機エレクトロルミネッセンス素子に跨って、前記所定の配列方向に沿って延伸しており、
前記一対の電極はそれぞれ、前記支持基板の厚み方向一方から見て、前記支持基板の厚み方向および前記配列方向のそれぞれに垂直な幅方向に、発光層から突出するように延伸する延伸部を有し、
前記一対の電極のうちの一方の電極は、前記配列方向に隣り合う有機エレクトロルミネッセンス素子の他方の電極にまで前記延伸部から前記配列方向に延伸し、該他方の電極に接続される接続部をさらに有し、
前記一対の電極のうちのいずれかは、光透過性を示す電極である発光装置の製造方法であって、
前記発光層となる材料を含むインキを、前記複数の有機エレクトロルミネッセンス素子に跨って前記所定の配列方向に沿って連続的に塗布し、塗布した塗膜を固化することにより発光層を形成する工程と、
前記光透過性を示す電極となる材料を含む塗布液を塗布成膜し、さらにこれを固化することにより、屈折率が1.5〜1.8の光透過性を示す電極を形成する工程と、
一対の電極のうち、前記光透過性を示す電極とは異なる電極を形成する工程とを含むことを特徴とする発光装置の製造方法。
【請求項8】
前記インキを塗布する方法が、キャップコート法、スリットコート法、スプレーコート法または印刷法であることを特徴とする請求項7記載の発光装置の製造方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate


【公開番号】特開2011−29539(P2011−29539A)
【公開日】平成23年2月10日(2011.2.10)
【国際特許分類】
【出願番号】特願2009−176325(P2009−176325)
【出願日】平成21年7月29日(2009.7.29)
【出願人】(000002093)住友化学株式会社 (8,981)
【Fターム(参考)】