説明

発振器およびその発振方法、送信装置およびその送信方法、並びに、受信装置およびその受信方法

【課題】筐体内に発生する発振を制御して有効に利用することができるようにする。
【解決手段】基準クロック生成部101は、電子機器の筐体内に設けられている。増幅器112は、共振器111から供給される信号を増幅して送信アンテナ61aに出力する。共振器111には、受信アンテナ61bで受信された信号が入力される。受信アンテナ61bで受信された信号には、送信アンテナ61aから出力された信号が筐体で反射されたものが含まれるので、信号のループが発生し、基準クロック生成部101は、発振する。本発明は、例えば、筐体内に配置される送受信回路に適用できる。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、発振器およびその発振方法、送信装置およびその送信方法、並びに、受信装置およびその受信方法に関し、特に、筐体内に発生する発振を制御して有効に利用することができるようにする発振器およびその発振方法、送信装置およびその送信方法、並びに、受信装置およびその受信方法に関する。
【背景技術】
【0002】
2つの通信装置が正確にデータをやりとりするためには、通信装置どうしで同期をとる必要がある。より具体的には、受信器側で、キャリア同期とクロック同期を行う必要がある。
【0003】
キャリア同期とは、送信器と受信器のキャリア信号の周波数と位相の偏差をゼロにすることであり、クロック同期とは、シンボルデータに含まれる元シンボルのタイミングを抽出し、元シンボルを送信元のデータに再生(復号)することができるように同期をとることである。
【0004】
キャリア同期およびクロック同期は、調整器を用いて、受信した信号と安定な発振器との間で周波数および位相差を調整することで行うのが一般的であり、この調整器としては一般的にPLL回路が用いられる。また、発振器としては、水晶発振器、SAW(Surface Acoustic Wave)発振器などが用いられる。発振器内には、図1に示されるように、増幅器1と共振器2があり、それらがループを作るように接続されることにより、発振が起こる。
【0005】
ここで、増幅器1の増幅率をA(f)、入力および出力をIN1およびOUT1とし、共振器2の増幅率をb(f)、入力および出力をIN2およびOUT2とすると、増幅器1の出力OUT1と共振器2の出力OUT2は、それぞれ、式(1)と式(2)で表すことができる。
OUT1=A(f)×IN1 ・・・・・・(1)
OUT2=b(f)×IN2 ・・・・・・(2)
【0006】
共振器2の出力OUT2が、増幅器1の次の入力IN1となり、また、増幅器1の出力OUT1が共振器2の次の入力IN2となるので、式(1)と式(2)をまとめると、
OUT=A(f)×(IN+b(f)×OUT)
と書くことができ、これを整理すると、式(3)のように表すことができる。
【0007】
【数1】

【0008】
式(3)によれば、A(f)×b(f)=1であるとき発振が起きることを表し、図1の発振器は、そのような条件で発振している。
【0009】
ところで、今、図2に示されるような電子機器10の筐体11内において、無線通信が行われる例について考える。
【0010】
電子機器10の筐体11内には、モジュール基板12とモジュール基板13が装着されており、モジュール基板12には、送受信回路を有するLSI(Large Scale Integration)21が実装され、モジュール基板13には、送受信回路を有するLSI31および32が実装されている。
【0011】
モジュール基板12上のLSI21は、送信アンテナ21aから信号を送信し、受信アンテナ21bで信号を受信して内部に取り込む。モジュール基板13上のLSI31は、送受信アンテナ31aにより信号を送受信する。モジュール基板13上のLSI32も、送受信アンテナ32aにより信号を送受信する。
【0012】
ここで、LSI21の無線による信号の送受についてみると、図3に一点鎖線で示すような、LSI21自身が送信アンテナ21aから送出した信号が、電子機器10の筐体11で反射した後、受信アンテナ21bで受信されるという信号のループが発生する。
【0013】
この信号のループにより、図1に示した発振器と同様の構成が形成され、式(3)のA(f)×b(f)=1の条件が成立すると、モジュール基板2が発振することになる。発振した信号は、非常に強く安定な信号であり、電子機器10内の各部に所定の周波数の信号として配られることになる。
【0014】
従来、このように自然発生してしまう発振信号に対しては、電子機器10の筐体11全面を電波吸収体で覆うなどして、発振しないようにすることが対策として講じられていた(例えば、特許文献1参照)。
【0015】
【特許文献1】特開2004−220264号公報
【発明の開示】
【発明が解決しようとする課題】
【0016】
しかしながら、電波吸収体で覆うという対策は、発振を抑えることはできるものの、筐体のデザインが制限される、電波吸収体のためのコストが生ずるという問題があった。
【0017】
本発明は、このような状況に鑑みてなされたものであり、筐体内に発生する発振を制御して有効に利用することができるようにするものである。
【課題を解決するための手段】
【0018】
本発明の第1の側面の発振器は、所定の周波数帯で共振する共振手段と、前記共振手段で発振した信号を増幅する増幅手段と、前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナとを備える。
【0019】
前記アンテナから送信される信号の標的となる周波数と、前記共振手段と前記増幅手段に供給する電圧値とを対応付けたテーブルを記憶し、前記テーブルに基づいて、前記共振手段と前記増幅手段に供給する電圧値を制御する制御手段をさらに設けることができる。
【0020】
本発明の第1の側面の発振方法は、所定の周波数帯で共振する共振手段と、前記共振手段で発振した信号を増幅する増幅手段と、前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナとを備える発振器の発振方法であって、前記共振手段において、所定の周波数帯で共振させ、前記増幅手段において、前記共振手段で発振した信号を増幅させ、前記アンテナにおいて、増幅された信号を送信するとともに、その送信した信号を受信するステップを含む。
【0021】
本発明の第1の側面においては、所定の周波数帯で共振され、発振した信号が増幅され、増幅された信号が送信されるとともに、その送信した信号が受信される。
【0022】
本発明の第2の側面の送信装置は、発振器から供給されるクロック信号に基づいて、送信データを差動符号化する符号化手段と、前記符号化手段により符号化された送信データである符号化データを無線により送信する送信手段とを備える。
【0023】
前記発振器は、所定の周波数帯で共振する共振手段と、前記共振手段で発振した信号を増幅する増幅手段と、前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナとにより構成されるものであるようにすることができる。
【0024】
本発明の第2の側面の送信方法は、無線により送信データを送信する送信装置の送信方法であって、発振器から供給されるクロック信号に基づいて、前記送信データを差動符号化し、符号化された送信データである符号化データを無線により送信するステップを含む。
【0025】
本発明の第2の側面においては、発振器から供給されるクロック信号に基づいて、送信データが差動符号化され、符号化された送信データである符号化データが無線により送信される。
【0026】
本発明の第3の側面の受信装置は、受信データを含む受信信号を無線により受信する受信手段と、発振器が出力する発振信号に基づくキャリア信号と、前記受信信号との位相差を検出する位相差検出手段と、前記位相差検出手段により検出された位相差に基づいて、前記キャリア信号の位相同期をとる位相同期手段とを備える。
【0027】
前記位相差検出手段には、検出された位相差と、前記受信信号の送信元とを対応付けてテーブルとして記憶し、前記受信信号の送信元が前記テーブルに記憶されている場合には、前記受信信号との位相差を検出せずに、前記テーブルの位相差を前記位相同期手段に供給させることができる。
【0028】
前記発振器は、所定の周波数帯で共振する共振手段と、前記共振手段で発振した信号を増幅する増幅手段と、前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナとにより構成されるものであるようにすることができる。
【0029】
前記発振信号を逓倍することにより、前記キャリア信号を生成するキャリア信号生成手段をさらに設けることができる。
【0030】
前記受信信号は差動符号化により符号化されており、前記差動符号化に対応する復号を行う復号手段をさらに設けることができる。
【0031】
本発明の第3の側面の受信方法は、受信データを含む受信信号を無線により受信する受信手段と、発振器が出力する発振信号に基づくキャリア信号と、前記受信信号との位相差を検出する位相差検出手段と、前記位相差検出手段により検出された位相差に基づいて、前記キャリア信号の位相同期をとる位相同期手段とを備える受信装置の受信方法であって、前記発振信号に基づくキャリア信号と、前記受信信号との位相差を検出し、検出された位相差に基づいて、前記キャリア信号の位相同期をとるステップを含む。
【0032】
本発明の第3の側面においては、発振信号に基づくキャリア信号と、受信信号との位相差が検出され、検出された位相差に基づいて、キャリア信号の位相同期がとられる。
【発明の効果】
【0033】
本発明の第1の側面によれば、筐体内に発生する発振を制御して有効に利用することができる。
【0034】
本発明の第2の側面によれば、筐体内に送出されている基準クロック信号としての無線信号と演算データに対応する無線信号との混信を低減し、正確な通信を行うことができる。
【0035】
本発明の第3の側面によれば、キャリア信号の位相同期を簡単に行うことができる。
【発明を実施するための最良の形態】
【0036】
図4は、本発明を適用した電子機器の一実施の形態の構成例を示している。
【0037】
図4の電子機器50の筐体51内には、モジュール基板52とモジュール基板53が装着されており、モジュール基板52には、送受信回路を有するLSI(Large Scale Integration)61が実装され、モジュール基板53には、送受信回路を有するLSI71および72が実装されている。
【0038】
なお、電子機器50には、マイクロコンピュータ、メモリまたはハードディスクなどの蓄積メディア、その他の機械部品(電子部品)が搭載されているが、図示が省略されている。
【0039】
モジュール基板52上のLSI61は、送信アンテナ61aから無線信号を送信し、受信アンテナ61bで無線信号を受信して内部に取り込む。モジュール基板53上のLSI71は、送受信アンテナ71aにより無線信号を送受信する。モジュール基板53上のLSI72も、送受信アンテナ72aにより無線信号を送受信する。
【0040】
電子機器50の筐体51内では、図3を参照して説明したように、LSI61自身が送信アンテナ61aから送出した無線信号が、電子機器50の筐体51で反射した後、受信アンテナ61bで受信されるという信号のループが発生する。この信号のループにより、モジュール基板52は発振する。
【0041】
モジュール基板52は、電子機器50の筐体51内の信号のループによる発振を、標的の発振周波数となるように制御して、制御された所定の発振周波数の無線信号を送出する。即ち、モジュール基板52は、発振器として機能する。より具体的には、モジュール基板52のLSI61によって発振周波数が制御され、その制御された発振信号が送信アンテナ61aから無線により送出される。
【0042】
モジュール基板53のLSI71または72は、送信アンテナ61aから無線により送出された発振信号を、送受信アンテナ71aまたは72aで受信し、それを基準クロックとして所定の処理を行う。
【0043】
なお、所定の発振周波数に制御された基準クロック信号としての発振信号は、有線によりLSI71やLSI72に対して供給してもよく、その例については、図9乃至図11を参照して後述する。
【0044】
図5は、LSI61のうち、発振器としての機能を実行する基準クロック生成部101の構成例を示すブロック図である。
【0045】
基準クロック生成部101は、共振器111、増幅器112、および制御器113により構成されている。
【0046】
共振器111は、可変容量コンデンサCと配線インダクタLにより構成され、所定の周波数帯域で共振する。増幅器112は、共振器111から供給される発振信号を増幅してアンテナ61aに出力する。
【0047】
制御器113は、送信アンテナ61aから送信される発振信号の周波数(発振周波数)が、所定の周波数となるように、共振器111の可変容量コンデンサCと増幅器112に供給する電圧の値(電圧値)を制御する。より具体的には、制御器113は、標的の周波数および信号強度と可変容量コンデンサCおよび増幅器112への供給電圧値とを対応付けたルックアップテーブルを内部に記憶しており、そのルックアップテーブルを参照することにより、可変容量コンデンサCと増幅器112に供給する電圧値を制御する。
【0048】
増幅器112から出力された増幅後の発振信号は、送信アンテナ61aから送信される。一方、共振器111には、受信アンテナ61bで受信された信号が入力される。受信アンテナ61bで受信された信号には、送信アンテナ61aから出力された信号が筐体51で反射されたものが含まれるので、図3を参照して説明した信号のループが発生する。
【0049】
そこで、送信アンテナ61aから出力され、筐体51で反射されて受信アンテナ61bで受信された信号を明示するとともに、図5に示すブロック図を変形すると、図6のように表すことができる。図6の構成は、図1を参照して説明した共振器の構成そのものであるので、LSI61自身が送信アンテナ61aから送出した無線信号が、電子機器50の筐体51で反射した後、受信アンテナ61bで受信されるという信号のループにより、モジュール基板52が発振することがわかる。制御器113は、この信号のループにより発生する安定で位相雑音の低い発振信号の周波数を制御する。
【0050】
図7は、制御器113が内部に記憶するルックアップテーブルの例を示している。
【0051】
制御器113は、図7に示されるように、標的とする周波数および信号強度(電力値)と、可変容量コンデンサCおよび増幅器112に供給する電圧値(設定電圧値)とを対応付けて記憶している。この値は、可変容量コンデンサCおよび増幅器112に対してどれくらいの電圧値を供給すると、どれだけの周波数および信号強度の信号を発振するかを、例えば、電子機器50の製品出荷前などに事前に測定することにより決定される。
【0052】
また、図7に示されるようなテーブルとして記憶せずに、可変容量コンデンサCへの供給電圧を増減すれば、発振信号の周波数および信号強度がどのように変化し、増幅器112への供給電圧を増減すれば、発振信号の周波数および信号強度がどのように変化するか、というような変化の傾向として制御情報を記憶し、現在の発振信号の周波数および信号強度に対する変化の方向に応じて、アナログ的に制御を行うようにしてもよい。また、両者の併用でもよい。
【0053】
なお、ルックアップテーブルとして記憶される値は、電子機器50の筐体51の形状と、送信アンテナ61aおよび受信アンテナ61bの共振周波数により決定されるものであり、電子機器50ごとに一意に決定される。従って、図7に示したように、ルックアップテーブルとして制御電圧値を記憶させた場合には、ルックアップテーブルの値を、電子機器50の識別情報または暗号の鍵として利用することができる。
【0054】
次に、図8のフローチャートを参照して、基準クロック生成部101の発振制御処理について説明する。この処理は、例えば、電子機器50の電源が投入されたときに開始される。
【0055】
初めに、ステップS1において、制御器113は、無線信号が発生していないかを判定する。ステップS1で、無線信号が発生していない、即ち、発振していないと判定された場合、ステップS2乃至S4の処理が実行され、一方、ステップS1で、無線信号が発生していると判定された場合、ステップS2乃至S4の処理がスキップされ、処理はステップS5に進む。
【0056】
電子機器50の電源が投入されると、それにより発振が自然発生的に起きるが、万が一に発振が起きない場合を想定して、いわば強制的に可変容量コンデンサCおよび増幅器112に電圧値を供給し、発振を起こさせる処理として、ステップS2乃至S4の処理が設けられている。無線信号が発生しているか否かは、無線信号の信号強度を測定することにより確認することができる。
【0057】
ステップS2において、制御器113は、乱数を発生し、ステップS3において、乱数によって決定される電圧値を可変容量コンデンサCおよび増幅器112に供給する。
【0058】
ステップS4において、制御器113は、無線信号が発生しているかを判定し、まだ無線信号が発生していない、即ち発振が起きていないと判定された場合には、処理をステップS2に戻す。一方、ステップS4で、発振が起きていると判定された場合、処理はステップS5に進む。
【0059】
ステップS5において、制御器113は、発振している無線信号の周波数と信号強度を測定する。
【0060】
ステップS6において、制御器113は、ステップS5で測定された周波数と信号強度が標的の周波数および信号強度であるかを判定し、標的の周波数および信号強度であると判定された場合、処理をステップS9に進める。
【0061】
一方、ステップS6で、ステップS5で測定された周波数と信号強度が標的の周波数および信号強度ではないと判定された場合、処理はステップS7に進み、制御器113は、共振器111の可変容量コンデンサCおよび増幅器112に供給する電圧値を調整する。即ち、制御器113は、標的の周波数および信号強度となるような可変容量コンデンサCおよび増幅器112に供給する電圧値をルックアップテーブルを参照して決定し、可変容量コンデンサCおよび増幅器112に供給する。
【0062】
次に、ステップS8において、制御器113は、発振している無線信号の周波数と信号強度を測定し、測定された周波数と信号強度が標的の周波数および信号強度であるかを判定する。そして、ステップS8で、測定された周波数と信号強度が標的の周波数および信号強度であると判定されるまで、ステップS7およびS8の処理が繰り返し実行される。
【0063】
ステップS8で、測定された周波数と信号強度が標的の周波数および信号強度であると判定された場合、処理はステップS9に進み、制御器113は、電子機器50の電源がオフされたかを判定する。
【0064】
ステップS9で、電子機器50の電源がオフされていないと判定された場合、処理はステップS8に戻り、一方、ステップS9で、電子機器50の電源がオフされたと判定された場合、処理は終了する。
【0065】
即ち、電子機器50の電源がオフされるまでは、ステップS8における、発振している信号の周波数と信号強度を測定し、測定された周波数と信号強度が標的の周波数および信号強度であるかを判定し、測定された無線信号の周波数と信号強度が標的の周波数および信号強度から外れた場合には、ステップS7の処理により、標的の周波数および信号強度となるように可変容量コンデンサCおよび増幅器112に供給する電圧値を調整する処理が繰り返し実行される。
【0066】
従って、LSI61の基準クロック生成部101が行う発振制御処理によれば、電子機器50の電源の投入により、いわば自然発生する無線信号を標的の周波数および信号強度となるように制御し、送信アンテナ61aから出力することができる。他のLSI71および72は、送信アンテナ61aから出力された発振信号を基準クロックとして利用する。
【0067】
次に、電子機器のその他の実施の形態であって、周波数および信号強度を制御した基準クロック信号をLSI71および72に有線で供給するようにした場合の実施の形態について説明する。
【0068】
図9は、電子機器のその他の実施の形態であって、基準クロック信号を有線で供給するようにした場合の、電子機器50の構成例を示している。なお、図4と対応する部分については同一の符号を付してあり、その説明は省略する。
【0069】
図9の電子機器50では、モジュール基板52のLSI61と、モジュール基板53のLSI71および72との間が、基準クロック信号を伝送する信号線81で接続されている以外は、図4と同様である。
【0070】
図10は、他のLSIに、有線で基準クロック信号を供給する場合の、基準クロック生成部101の構成例を示すブロック図である。
【0071】
図10においても、上述した図5と対応する部分については同一の符号を付してあり、その説明は適宜省略する。図10の基準クロック生成部101においては、分周器114が新たに設けられている点を除いては、図5と同様に構成されている。
【0072】
無線で送信する場合の発振信号の周波数は有線の信号線の通過帯域よりも高い場合があるので、図10の基準クロック生成部101では、信号線81の通過帯域の周波数に変換するための分周器114が設けられている。増幅器112で増幅された発振信号は、送信アンテナ61aとともに分周器114にも供給される。分周器114は、増幅器112から供給される所定の周波数の発振信号を、より低い周波数の信号に変換して信号線81に出力する。
【0073】
図11は、他のLSIに有線で基準クロック信号を供給する場合の発振制御処理のフローチャートを示している。
【0074】
図11のステップS21乃至S28の処理は、図8のステップS1乃至S8の処理とそれぞれ同様であるので、説明は省略する。
【0075】
ステップS28で、測定された周波数と信号強度が標的の周波数および信号強度であると判定された場合、処理はステップS29に進み、分周器114は、発振信号の有線による供給を開始する。即ち、分周器114は、増幅器112から供給される所定の周波数の発振信号を、より低い周波数の信号に変換した信号を出力する。分周器114が信号出力を開始するか否かの制御は、例えば、制御器113により行うことができる。
【0076】
ステップS30において、制御器113は、電子機器50の電源がオフされたかを判定し、電子機器50の電源がオフされていないと判定された場合、処理をステップS28に戻す。一方、ステップS30で、電子機器50の電源がオフされたと判定された場合、処理は終了する。
【0077】
次に、図12および図13を参照して、上述した発振制御処理を用いて、実際に筐体内で発生する信号のループを制御した例について説明する。
【0078】
図12は、電子機器50の筐体51内に発生した信号のループによって発振した発振信号のスペクトル分布を示している。図12の横軸は周波数を表し、縦軸は信号強度(電力値)を表す。
【0079】
図12によれば、LSI61自身が送信アンテナ61aから送出した無線信号が、電子機器50の筐体51で反射した後、受信アンテナ61bで受信されるという信号のループにより、5.29GHzにおいて7.23dBmの信号強度を有する安定な発振信号が得られていることが分かる。
【0080】
そして、図13は、図12の発振信号を、発振制御処理により、5.425GHzを標的の周波数として制御した後のスペクトル分布を示している。
【0081】
図13によれば、信号強度が大で安定な周波数(発振周波数)は、ほぼ5.425GHzとなっており、発振制御処理により標的の周波数である5.425GHzに制御されていることが確認できる。
【0082】
以上のように、LSI61自身が送信アンテナ61aから送出した無線信号が、電子機器50の筐体51で反射した後、受信アンテナ61bで受信されるという信号のループにより生ずる信号を制御することにより、LSI61を発振器として機能させることができるので、代わりに、電子機器50内の水晶発振器やSAW発振器の数を減らすことが可能となる。即ち、電子機器50の筐体51内に発生する発振を制御して有効に利用することができる。
【0083】
次に、以上のようにしてLSI61から供給される基準クロック信号(発振信号)を利用して無線通信を行うLSI71およびLSI72の処理について説明する。
【0084】
基準クロック信号は、無線または有線のどちらで供給される場合であっても、供給される側のLSI71およびLSI72が受信した時点では、供給する側のLSI61が出力したものと位相がずれたものとなる。また、供給される側どうしのLSI71とLSI72とでも位相がずれる。
【0085】
図14は、有線により基準クロック信号が供給される場合に、LSI61が出力した基準クロック信号と、LSI71およびLSI72が受信する基準クロック信号とに生ずる位相のずれを概念的に示した図である。
【0086】
図14に示されるように位相がずれる原因としては、例えば、有線で供給する場合には、配線(伝送)による遅延であり、無線で供給する場合には、伝播するパスの違いがある。
【0087】
従って、LSI71およびLSI72が正確に無線通信を行うためには、基準クロック信号のLSI61との位相ずれを解消する必要があり、以下では、それを実現する構成について説明する。
【0088】
なお、基準クロック信号は、無線または有線のどちらで供給されてもよいが、以下では、有線により供給されるものとして説明する。また、LSI71および72は同様の構成を有するので、LSI71についてのみ説明する。
【0089】
図15は、LSI71の構成例を示すブロック図である。
【0090】
LSI71は、分周器211、注入同期発振部212、入出力I/F(Inter Face)213、信号処理部214、および通信部215により構成されている。また、通信部215は、送信部221および受信部222からなり、送信部221は、少なくとも変調部231を有し、受信部222は、少なくとも復調部241および同期部242を有する。
【0091】
LSI71は、発振器としてのLSI61から供給される発振信号(基準クロック信号)からメインクロック信号と、キャリア信号を生成し、メインクロック信号に基づいて内部の信号処理を行い、キャリア信号に基づき無線信号を送受信する。
【0092】
ここで、LSI61の基準クロック生成部101は、上述した発振制御処理により、基準クロック信号のj/i倍がメインクロック信号の周波数(メインクロック周波数)となり、基準クロック信号の周波数のn/m倍がキャリア信号の周波数(キャリア周波数)となるように周波数を制御し、出力しているものとする。
【0093】
なお、キャリア周波数をメインクロックのj/i倍となるように選定したり、発振周波数がキャリア周波数と同一となるように選定してもよい。キャリア周波数をメインクロックのj/i倍となるようにした場合、デジタル信号処理におけるクロック同期を簡略化でき、クロックの位相設定を容易にすることができる。
【0094】
分周器211は、基準クロック信号として信号線81を介してLSI61から供給される発振信号をj/i倍の分周比で分周してメインクロック信号を生成し、信号処理部214に供給する。
【0095】
注入同期発振部212は、信号線81を介してLSI61から供給される基準クロック信号を注入信号として、基準クロック信号に周波数が同期した周波数同期信号を、注入同期法により生成する。さらに、注入同期発振部212は、周波数同期信号をn/m逓倍することにより、キャリア周波数fcのキャリア信号を生成し、変調部231および同期部242に供給する。
【0096】
入出力I/F213は、モジュール基板53上の他のチップなどと有線によりやりとりするためのデータおよび制御信号を入出力する。入出力I/F213は、入力されたデータおよび制御信号を信号処理部214に供給し、信号処理部214から供給されたデータをモジュール基板53上の他のチップなどに出力する。この制御信号は、例えば、信号処理の内容や通信の送受信先を表す信号である。
【0097】
信号処理部214は、入力されたデータに対して、デジタルフィルタ処理や信号の置き換え処理などの所定の信号処理を行う。例えば、入力されるデータが音声または映像データである場合、信号処理部214は、所定の信号処理として、入力された音声または映像データのエンコード処理またはデコード処理を行うことができる。入力されるデータは、入出力I/F213を介して有線で入力されるものでも、通信部215を介して無線で入力されるものでもよく、データを出力する場合もまた、入出力I/F213を介して有線で出力しても、通信部215を介して無線で出力してもよい。
【0098】
また、信号処理部214は、入出力I/F213から供給された制御信号を、必要に応じて、注入同期発振部212および通信部215へ供給する。制御信号は、通信部215を介して無線により供給されても良い。なお、図14において、信号処理部214から注入同期発振部212および通信部215への制御信号の図示は省略されている。
【0099】
変調部231は、信号処理部214から供給される送信データを所定の変調方式で変調する。また、変調部231は、変調後のベースバンド信号をキャリア周波数にアップコンバートした無線信号に変換して送受信アンテナ71aに供給する。
【0100】
復調部241は、キャリア信号を乗算することにより、送受信アンテナ71aからの無線信号をベースバンド信号にダウンコンバートした後、変調部231の変調方式に対応する復調方式により復調し、その結果得られる受信データを信号処理部214に供給する。
【0101】
同期部242には、注入同期発振部212からキャリア信号が供給されるが、そのキャリア信号は、送受信アンテナ71aで受信する無線信号(キャリア信号)と比較して、周波数は一致するものの、位相はずれたものとなっている。そこで、同期部242は、注入同期発振部212から供給されるキャリア信号と無線信号との位相差をなくし、復調部241が同期検波できるようにする。
【0102】
図16は、LSI71の全体の処理の流れについて説明するフローチャートである。
【0103】
初めにステップS51において、信号処理部214は、入力データが有線から入力されるか否かを判定する。例えば、信号処理部214は、入出力I/F213を介して入力される制御信号により、入力データが有線から入力されるか否かを判定する。
【0104】
ステップS51で、入力データが有線から入力されると判定された場合、信号処理部214は、ステップS52において、入出力I/F213を介して入力データを取得する。一方、ステップS51で、入力データが無線から入力されると判定された場合、信号処理部214は、ステップS53において、受信部222を介して入力データを取得する。
【0105】
そして、ステップS54において、信号処理部214は、取得した入力データに基づいて、所定の信号処理を行う。
【0106】
所定の信号処理終了後、ステップS55において、信号処理部214は、処理後のデータ(出力データ)を無線で出力するか否かを判定する。信号処理部214は、例えば、出力データの内容によって無線で出力するか否かを判定しても良いし、また例えば、制御信号によって無線で出力するか否かを判定しても良い。
【0107】
ステップS55で、無線で出力すると判定された場合、ステップS56において、信号処理部214は、送信部221に出力データを供給する。一方、ステップS55で、有線で出力すると判定された場合、ステップS57において、信号処理部214は、入出力I/F213に出力データを供給する。
【0108】
ステップS58において、出力データが供給された送信部221または入出力I/F213は、有線または無線により出力データを送信して、処理を終了する。
【0109】
以上のように、LSI71は、入力データに対して所定の信号処理を実行し、その処理結果を、有線または無線により他のLSIなどに送信することができる。LSI71やLSI72の信号処理部214にどのような処理を行わせるかは、モジュール基板53が実現できるアプリケーションと対応する。従って、例えば、ユーザは、モジュール基板53を取り外し、他のアプリケーションに対応したモジュール基板を電子機器50に装着することで、ユーザ所望の信号処理を電子機器50で実行させるように構成することができる。これは、例えば、従来、特開2003−264808号公報に記載の、信号処理部を有さず、単に無線通信部のみからなる通信装置では実現できない。
【0110】
次に、LSI71の各部の詳細な構成について説明する。
【0111】
図17は、注入信号としての基準クロック信号に基づいてキャリア周波数fcのキャリア信号を生成する注入同期発振部212の詳細な構成例を示すブロック図である。
【0112】
注入同期発振部212は、注入同期発振器311および逓倍回路部312により構成されている。
【0113】
注入同期発振器311は、注入信号として入力される基準クロック信号に対して周波数が同期した信号である周波数同期信号を生成し、逓倍回路部312に供給する。逓倍回路部312は、注入同期発振器311から供給される周波数同期信号をn/m倍に逓倍し、その結果得られるキャリア周波数fcのキャリア信号を変調部231および同期部242に供給する。
【0114】
図18は、送信部221のなかの変調部231の構成例を示すブロック図である。
【0115】
変調部231は、差動符号生成部321と乗算器322により構成されている。
【0116】
差動符号生成部321は、信号処理部214から供給される送信データを差動符号に変換し、乗算器322に供給する。乗算器322は、差動符号生成部321からの差動符号化データに対してキャリア信号を乗算することにより、ベースバンド信号をアップコンバートした無線信号を生成し、送受信アンテナ71aに供給する。
【0117】
図19を参照して、差動符号生成部321による差動符号化と、その復号について説明する。
【0118】
差動符号生成部321は、所定の送信したい符号化前のビット値(以下、送信ビット値と称する)と、その1つ前の送信ビット値を符号化した符号化ビット値とが同じ値であれば“0”を、違う値であれば“1”を、所定の送信ビット値に対応する符号化ビット値とする。
【0119】
例えば、図19に示される送信ビット値0(b)の符号化ビット値については、送信ビット値0(b)と、その1つ前の送信ビット値1(a)を符号化した符号化ビット値1(a)'とが異なるので、送信ビット値0(b)の符号化ビット値は1(b)'となる。また例えば、送信ビット値1(c)の符号化ビット値については、送信ビット値1(c)と、その1つ前の送信ビット値0(b)を符号化した符号化ビット値1(b)'とが同一であるので、送信ビット値1(c)の符号化ビット値は0(c)'となる。
【0120】
一方、復調部241における復号では、復号対象である受信したビット値(以下、受信ビット値と称する)と、その1つ前の受信ビット値とが同じ値であれば“0”を、違う値であれば“1”を、受信ビット値に対応する復号ビット値とする。
【0121】
例えば、図19に示される受信ビット値1(f)の復号ビット値については、受信ビット値1(f)と、その1つ前の受信ビット値1(e)とが同じなので、受信ビット値1(f)の復号ビット値は0(f)'となる。また例えば、受信ビット値0(g)の復号ビット値については、受信ビット値0(g)と、その1つ前の受信ビット値1(f)とが異なるので、受信ビット値1(g)の復号ビット値は1(g)'となる。
【0122】
図20は、復調部241の構成例を示すブロック図である。
【0123】
復調部241は、乗算器331と復号部332により構成されている。
【0124】
乗算器331は、送受信アンテナ71aからの受信信号と、同期部242からのキャリア信号を乗算することにより、受信信号をベースバンド信号にダウンコンバートして受信データ(図19の受信ビット列)を生成し、復号部332に供給する。復号部332は、メインクロック信号に基づいて、図19を参照して説明した差動符号化に対応する復号を行い、復号後のデータを信号処理部214に供給する。
【0125】
図19を参照して説明した復号を行うため、復号部332は、図21に示すように、遅延部341と比較部342により構成することができる。
【0126】
遅延部341は、入力される受信ビット値を1ビット分に相当する時間(1ビット時間)だけ遅延させ、比較部342に供給する。比較部342は、入力される受信ビット値と、遅延部341から供給される1ビット時間前の受信ビット値とを比較し、それらが同じ値であれば“0”を、違う値であれば“1”を、復号ビット値として出力する。
【0127】
筐体51内においては、LSI61が基準クロック信号としての無線信号を送出されているが、基準クロック信号としての無線信号と、信号処理部214で利用される演算データに対応する無線信号との混信が懸念されるが、位相同期をとり、かつ、1ビット前の信号を利用して符号化および復号するという差動符号化および復号を採用することにより、混信を低減し、正確な通信を行うことができる。即ち、通信品質を改善することができる。
【0128】
図22は、同期部242の詳細な構成例を示すブロック図である。
【0129】
同期部242は、遅延検出部351および位相同期部352により構成されている。
【0130】
遅延検出部351には、信号処理部214から制御信号が供給されるとともに、復調部241からキャリア周波数の受信信号(キャリア信号)が供給される。また、遅延検出部351には、注入同期発振部212からのキャリア信号も供給される。信号処理部214から供給される制御信号は、復調部241が受信して同期部242に供給した受信信号を送信してきた送信元のLSIを表している。
【0131】
遅延検出部351は、信号処理部214で処理される演算データを、制御信号が表す送信元のLSIから、無線信号により初めて受信する場合、注入同期発振部212から供給されたキャリア信号と、無線により送信され、復調部241から供給されたキャリア周波数の無線信号である送信キャリア信号との位相差(遅延時間)を検出し、位相同期部352に供給する。また、遅延検出部351は、検出した位相差を送信元のLSIと対応付けて、内部の位相遅延テーブルに記憶させる。
【0132】
一方、制御信号が表す送信元のLSIから、以前にも演算データを無線により受信したことがある場合には、既にその送信元に対応する位相差が位相遅延テーブルに記憶されているので、遅延検出部351は、位相差の検出は行わず、位相遅延テーブルから、制御信号が表す送信元のLSIの位相差を取得し、位相同期部352に供給する。
【0133】
例えば、図23上側に示すように、LSI71とLSI72との位相差がaaa[μsec]と検出され、LSI71とLSI73との位相差がbbb[μsec]と検出され、LSI71とLSI74との位相差が−ccc[μsec]と検出された場合、図23下側に示されるように、LSI72とaaa[μsec]、LSI73とbbb[μsec]、LSI74と−ccc[μsec]がそれぞれ対応付けられた位相遅延テーブルが生成される。遅延時間の符号は遅延方向を表す。
【0134】
なお、位相差の検出は、キャリア信号ではなく、キャリア信号を分周した信号、位相同期用のプリアンプル信号、位相同期用に生成した信号で検出するようにしてもよい。
【0135】
一方、位相同期部352は、注入同期発振部212から供給されるキャリア信号に対して、遅延検出部351から供給される遅延時間だけ位相をずらすことにより、送信元のLSIと位相の同期がとれたキャリア信号を復調部241に供給する。位相同期部352は、例えば、位相器または遅延器により構成することができる。
【0136】
なお、同期部242により調整される位相のずれは、LSI61から供給される基準クロック信号(発振信号)の位相ずれに起因するものであるので、同じ基準クロック信号が入力される分周器211においても位相ずれを調整する必要がある。従って、上述した分周器211の説明では言及しなかったが、分周器211も、同期部242の構成を有し、基準クロック信号に対して位相遅延テーブルを用いた位相の調整を行った後、j/i倍の分周比で分周してメインクロック信号を生成する。
【0137】
次に、図24のフローチャートを参照して、通信部215による送受信処理について説明する。
【0138】
初めに、ステップS51において、通信部215は、現在の通信モードが送信モードであるか否かを判定する。現在の通信モードが送信モードであるか、または、受信モードであるかは、例えば、信号処理部214からの制御信号により設定されるようにしてもよいし、通信部215が定期的に送信モードと受信モードを切り替えるようにしてもよい。即ち、送信モードと受信モードの切り替えはどのように行われても構わない。
【0139】
ステップS51で、現在の通信モードが送信モードであると判定された場合には、ステップS52乃至S56の送信処理が実行される。送信処理では、例えば、無線LAN (Local Area Network) で採用されているCSMA/CA(Carrier Sense Multiple Access with Collision Avoidance)方式と同様の方式により送信が行われる。
【0140】
図25は、CSMA/CA方式の概念図である。
【0141】
CSMA/CA方式では、無線通信機能を有する各LSIは、キャリア周波数帯のセンシングを行う(キャリアセンスを行う)。そして、他のLSIが送信中である場合には、所定時間、送信処理を待機するように制御される。待機時間は、さらに、IFS(Inter Frame Space) 時間と、乱数により決定されるランダムな時間であるバックオフ時間の合計時間となる。待機時間が経過すると、再びキャリアセンスが行われ、他のLSIが送信していなければ、自身が送信する。
【0142】
なお、他のLSIが送信中であり、復調部241内のLNA (Low Noise Amplifier)が飽和すると認識した場合には、一旦、受信モードに変更するように制御することもできる。
【0143】
CSMA/CA方式において、データは、フレーム単位で送信される。データの送信単位であるフレームは、図26に示されるように、有意情報ID、広帯域データ、および、パケット信号の終わりを表すエンドマークで構成される。
【0144】
有意情報IDは、例えば、広帯域データの処理される順番、フレーム(フィールド)番号、プリアンブル信号、広帯域信号の信号処理を信号処理部214が行った結果得られた副次的な狭帯域データ、または、音声信号とすることができる。また、広帯域データは、例えば、映像信号などとすることができる。なお、有意情報IDとしてプリアンブル信号を格納する場合には、受信側において位相遅延テーブルを用いることにより、遅延時間が即座に分かるので、格納されるプリアンブル信号は、通常の無線通信における場合よりも短くすることができる。
【0145】
通信部215の送信部221も、以上のような方式によりデータを送信する。
【0146】
図24に戻り、以上のCSMA/CA方式と同様に行われるステップS52乃至S56の送信処理について説明する。
【0147】
ステップS52において、通信部215は、キャリアセンスを行い、ステップS53において、他のLSIが送信を行っていないかを判定する。
【0148】
ステップS53で、他のLSIが送信を行っていると判定された場合、処理はステップS54に進み、通信部215は、IFS(Inter Frame Space) 時間を含む所定時間待機する。
【0149】
一方、ステップS53で、他のLSIが送信を行っていないと判定された場合、処理はステップS55に進み、通信部215は、送信データを送信する。より具体的には、差動符号生成部321は、信号処理部214から供給される送信データを差動符号化することにより差動符号化データに変換し、乗算器322に供給する。乗算器322は、差動符号生成部321からの差動符号化データに対してキャリア信号を乗算することにより、ベースバンド信号をアップコンバートした無線信号を送受信アンテナ71aに供給する。
【0150】
ステップS56において、通信部215は、全ての送信データを送信したかを判定し、全ての送信データを送信していないと判定した場合、処理をステップS55に戻す。これにより、全ての送信データが送信されたと判定されるまで送信データの送信が繰り返される。そして、ステップS56で、全ての送信データを送信したと判定された場合、処理は終了する。
【0151】
一方、ステップS51で、現在の通信モードが受信モードであると判定された場合、処理はステップS57に進み、無線信号を受信したかを判定する。ステップS57で、無線信号を受信していないと判定された場合、処理は終了する。
【0152】
一方、ステップS57で、無線信号を受信したと判定された場合、ステップS58において、同期部242の遅延検出部351は、制御信号が表す送信元のLSIに基づいて、送信元のLSIに変更があったかを判定する。
【0153】
ステップS58で、送信元のLSIに変更がないと判定された場合、処理はステップS63に進む。
【0154】
一方、ステップS58で、送信元のLSIに変更があったと判定された場合、処理はステップS59に進み、遅延検出部351は、送信元のデータが位相遅延テーブルにあるか、即ち、送信元のLSIの遅延時間が位相遅延テーブルに記憶されているかを判定する。
【0155】
ステップS59で、送信元のLSIの遅延時間が位相遅延テーブルに記憶されていると判定された場合、処理はステップS62に進む。
【0156】
一方、ステップS59で、送信元のLSIの遅延時間が位相遅延テーブルに記憶されていないと判定された場合、処理はステップS60に進み、遅延検出部351は、送信キャリア信号との位相差を検出する。即ち、遅延検出部351は、注入同期発振部212から供給されたキャリア信号と、復調部241から供給された送信キャリア信号との位相差(遅延時間)を検出する。
【0157】
ステップS61において、遅延検出部351は、検出した位相差を位相同期部352に供給するとともに、検出した位相差を送信元と対応付けて、内部の位相遅延テーブルに記憶させる。
【0158】
ステップS59またはステップS61の処理後、ステップS62において、位相同期部352は、注入同期発振部212から供給されるキャリア信号の位相を、遅延検出部351から供給される遅延時間だけずらすことにより、送信元のLSIと位相の同期がとれたキャリア信号を復調部241に供給する。位相同期部352は、遅延検出部351から供給された遅延時間を、新たな遅延時間が供給されるまで保持し、その保持している遅延時間で注入同期発振部212から供給されるキャリア信号の位相をずらす処理を継続する。
【0159】
ステップS63において、復号部332は、受信信号の復号を行う。具体的には、乗算器331が、位相同期部352から供給される位相同期のとれたキャリア信号を、送受信アンテナ71aからの受信信号と乗算することにより、受信信号ベースバンド信号に変換し、復号部332が、メインクロック信号に基づいて差動符号化に対応する復号を行い、復号後のデータを信号処理部214に供給する。
【0160】
ステップS64において、受信部222は、受信終了を検出したかを判定し、受信終了を検出していないと判定した場合、処理をステップS63に戻す。これにより、受信終了が検出されるまでデータの受信および復号が継続される。
【0161】
一方、ステップS64で、受信終了を検出したと判定された場合、処理は終了する。
【0162】
上述した例では、ステップS58において、送信元のLSIに変更がないと判定された場合には、送信キャリア信号との位相差を検出しないようにしたが、送信元のLSIに変更がないと判定された場合であっても、送信キャリア信号との位相差を検出し、位相遅延テーブルに記憶されている遅延時間と一致するかを確認し、一致していない場合には、そのデータを更新するようにしてもよい。
【0163】
以上のように、受信モードにおいて、位相遅延テーブルを用いた通信確立を行うことで、PLLを用いた場合よりも高速に同期引き込みを行うことができ、また、簡単に同期をとることができる。
【0164】
位相同期部352は、遅延検出部351から供給された遅延時間を、新たな遅延時間が供給されるまで保持するので、送信元のLSIに変更がない場合には、位相遅延テーブルを参照しなくてもよいため、位相遅延テーブルの参照回数を少なくでき、高速に同期を確立することができる。
【0165】
従来、キャリア同期(同期検波の場合)やクロック同期を行う場合には、伝送する信号内にパイロット信号を挿入して、それを基準に周波数偏差を推定するなどの手法が採用されている。
【0166】
しかしながら、精度良く周波数偏差を求めるためには、パイロット信号のビット数を増加させる必要があり、ビット数を増加させると同期にかかる時間が長くなるという問題が発生する。また、ビット数を増加させることで、いわゆるオーバヘッドと呼ばれる、実際に伝送するデータとは無関係のデータが付加されるため、通信伝送効率が低下するとともに、オーバヘッドの信号処理の為に通信トラフィックが混雑するという問題もある。広帯域な信号を高速に伝送するほど、信号のオーバヘッド量は増加するので、現実的な使用を考えるとオーバヘッドを削減するのが望ましい。
【0167】
例えば、特開平10−322171には、受信信号を復調する復調回路から周波数偏差情報およびビットエラー情報を得て、受信信号の周波数偏差を推定し、補正を出力するAFCコントローラとPLL回路を用いて送受信間での同期を確立させ、信号を精度良く抽出する処理を行うことが開示されているが、この手法では、通信の度に信号のやりとりを行う必要があるので、通信効率や消費電力、通信トラフィックの低減には貢献していない。
【0168】
これに対して、LSI71の送受信処理では、新たな遅延時間が供給されるまで、それまでの遅延時間を保持するので、通信の度のプリアンブルデータ長を短くしたり、回数を削減することができるので、パケットのオーバヘッドが削減し、その分、実データ(広帯域データ)を受信することができるため、高速なデータ通信が可能となる。
【0169】
筐体51内での無線通信には、マルチパスによる干渉が生じるが、差動符号化とそれに対応する復号を採用することにより、C/N(Carrier/Noise)比が低い場合であっても、良好な通信品質を確保することができる。
【0170】
従来の無線通信で必要とされていたキャリア再生やクロック再生などの回路と比較すると通信部215は簡単な構成で実現できるので、開発コストおよび開発工数の削減、LSIの小電力化に貢献することができる。
【0171】
上述した例では、位相遅延テーブルは受信処理のみで使用する例について説明したが、この位相遅延テーブルを送信時に使用することも可能である。例えば、送信部221が送信先ごとに遅延時間を変更して送信することにより、送信側において送信先を選択して送信することができる。
【0172】
上述した送受信処理は、自律分散的なシステムでより効果を発揮するが、ホストとなる1つのLSIが存在し、そのホストとなるLSIが各LSIに順番にポーリングして送信可能か問い合わせるというような集中制御的なシステムでも勿論利用可能である。
【0173】
LSI71が、その内部で処理を行うために必要な基準クロック信号は、筐体51内の無線信号のループにより発生されたものであるため、仮に悪意の第三者が、筐体51内の無線信号の盗聴目的などのために、筐体51を開放した場合には、基準クロック信号の供給が止まり、それによりLSI71内部の処理が停止する。したがって、筐体51内の無線信号のループを用いた基準クロック信号の利用には、電子機器50の筐体51内でやりとりされているデータの盗聴を防止するという効果も奏する。
【0174】
さらには、より積極的な盗聴防衛策として、基準クロック信号の供給停止をトリガとして、通信部215の電源をオフさせる、LSI71の電源をオフさせる、または、電子機器50の電源をオフさせるなどの処理を行うようにすることもできる。
【0175】
上述した例では、電子機器50が直方体の形状を有する筐体の例について説明したが、筐体の形状は、直方体に限定されず、図27に示されるような球状の筐体371、図28に示されるような半球状の筐体372などであってもよい。即ち、筐体の形状は、発振器の発振周波数に最適な形状を適宜選択することができる。
【0176】
また、図29に示されるように、発振周波数に関係しない周波数帯の信号(電子機器で発生する電磁雑音)を吸収する目的として、電波吸収体401を、電子機器50内に設けるようにすることができる。この場合、電波吸収体401を設置する電子機器50内の位置は、吸収効果がより大となるような最適な位置とすることができる。
【0177】
また、上述した例では、発振器としてのLSI61が無線信号を送信するアンテナと受信するアンテナを別々に設けていたが、図30に示されるように、一方向素子であるサーキュレータ411を介することにより、1つの送受信アンテナ412でも、所定の発振周波数の発振信号を生成することが可能である。即ち、発振信号を送受信するアンテナは、送信と受信が別体(別個)または一体のどちらであってもよい。
【0178】
なお、筐体内のどの位置にアンテナを置いて発振させるかによって、発振信号の信号強度が変動するので、最初の実施の形態のように送信アンテナと受信アンテナを分離して設けた場合の方が、送信アンテナと受信アンテナの両方を使って信号強度がより高くなるような配置を選定することができる。
【0179】
本明細書において、フローチャートに記述されたステップは、記載された順序に沿って時系列的に行われる処理はもちろん、必ずしも時系列的に処理されなくとも、並列的あるいは個別に実行される処理をも含むものである。
【0180】
本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
【図面の簡単な説明】
【0181】
【図1】発振器の構成を説明する図である。
【図2】従来の電子機器を説明する図である。
【図3】筐体内の信号のループを説明する図である。
【図4】本発明を適用した電子機器の一実施の形態の構成例を示す斜視図である。
【図5】基準クロック生成部の構成例を示すブロック図である。
【図6】筐体内の信号のループを説明する図である。
【図7】制御器が内部に記憶するルックアップテーブルの例を示す図である。
【図8】発振制御処理を説明するフローチャートである。
【図9】本発明を適用した電子機器のその他の実施の形態の構成例を示す斜視図である。
【図10】基準クロック生成部のその他の構成例を示すブロック図である。
【図11】その他の発振制御処理を説明するフローチャートである。
【図12】筐体内に発生する発振信号を制御した例について説明する図である。
【図13】筐体内に発生する発振信号を制御した例について説明する図である。
【図14】供給される信号の位相のずれを概念的に示した図である。
【図15】LSIの構成例を示すブロック図である。
【図16】全体の処理の流れについて説明するフローチャートである。
【図17】注入同期発振部の詳細な構成例を示すブロック図である。
【図18】変調部の構成例を示すブロック図である。
【図19】差動符号化とその復号について説明する図である。
【図20】復調部の構成例を示すブロック図である。
【図21】復号部の構成例を示すブロック図である。
【図22】同期部の詳細な構成例を示すブロック図である。
【図23】位相遅延テーブルの例を示す図である。
【図24】送受信処理を説明するフローチャートである。
【図25】CSMA/CA方式の概念図である。
【図26】送信フレームの構成例を示す図である。
【図27】筐体のその他の形状例について説明する図である。
【図28】筐体のその他の形状例について説明する図である。
【図29】本発明を適用した電子機器のさらにその他の実施の形態の構成例を示す斜視図である。
【図30】その他のアンテナ構成例について説明する図である。
【符号の説明】
【0182】
50 電子機器, 51 筐体, 61 LSI, 61a 送信アンテナ, 61b 受信アンテナ, 71 LSI, 71a 送受信アンテナ, 72 LSI, 72a 送受信アンテナ, 101 基準クロック生成部, 111 共振器, 112 増幅器, 113 制御器, 215 通信部, 221 送信部, 222 受信部, 231 変調部, 241 復調部, 242 同期部, 312 逓倍回路部, 321 差動符号生成部, 332 復号部, 351 遅延検出部, 352 位相同期部

【特許請求の範囲】
【請求項1】
所定の周波数帯で共振する共振手段と、
前記共振手段で発振した信号を増幅する増幅手段と、
前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナと
を備える発振器。
【請求項2】
前記アンテナから送信される信号の標的となる周波数と、前記共振手段と前記増幅手段に供給する電圧値とを対応付けたテーブルを記憶し、前記テーブルに基づいて、前記共振手段と前記増幅手段に供給する電圧値を制御する制御手段をさらに備える
請求項1に記載の発振器。
【請求項3】
所定の周波数帯で共振する共振手段と、前記共振手段で発振した信号を増幅する増幅手段と、前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナとを備える発振器の発振方法であって、
前記共振手段において、所定の周波数帯で共振させ、
前記増幅手段において、前記共振手段で発振した信号を増幅させ、
前記アンテナにおいて、増幅された信号を送信するとともに、その送信した信号を受信する
ステップを含む発振方法。
【請求項4】
発振器から供給されるクロック信号に基づいて、送信データを差動符号化する符号化手段と、
前記符号化手段により符号化された送信データである符号化データを無線により送信する送信手段と
を備える送信装置。
【請求項5】
前記発振器は、
所定の周波数帯で共振する共振手段と、
前記共振手段で発振した信号を増幅する増幅手段と、
前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナと
により構成されるものである
請求項4に記載の送信装置。
【請求項6】
無線により送信データを送信する送信装置の送信方法であって、
発振器から供給されるクロック信号に基づいて、前記送信データを差動符号化し、
符号化された送信データである符号化データを無線により送信する
ステップを含む送信方法。
【請求項7】
受信データを含む受信信号を無線により受信する受信手段と、
発振器が出力する発振信号に基づくキャリア信号と、前記受信信号との位相差を検出する位相差検出手段と、
前記位相差検出手段により検出された位相差に基づいて、前記キャリア信号の位相同期をとる位相同期手段と
を備える受信装置。
【請求項8】
前記位相差検出手段は、検出された位相差と、前記受信信号の送信元とを対応付けてテーブルとして記憶し、前記受信信号の送信元が前記テーブルに記憶されている場合には、前記受信信号との位相差を検出せずに、前記テーブルの位相差を前記位相同期手段に供給する
請求項7に記載の受信装置。
【請求項9】
前記発振信号を逓倍することにより、前記キャリア信号を生成するキャリア信号生成手段をさらに備える
請求項8に記載の受信装置。
【請求項10】
前記発振器は、
所定の周波数帯で共振する共振手段と、
前記共振手段で発振した信号を増幅する増幅手段と、
前記増幅手段により増幅された信号を送信するとともに、その送信した信号を受信するアンテナであって、送信と受信が別体または一体とされるアンテナと
により構成されるものである
請求項9に記載の受信装置。
【請求項11】
前記受信信号は差動符号化により符号化されており、
前記差動符号化に対応する復号を行う復号手段をさらに備える
請求項10に記載の受信装置。
【請求項12】
受信データを含む受信信号を無線により受信する受信手段と、発振器が出力する発振信号に基づくキャリア信号と、前記受信信号との位相差を検出する位相差検出手段と、前記位相差検出手段により検出された位相差に基づいて、前記キャリア信号の位相同期をとる位相同期手段とを備える受信装置の受信方法であって、
前記発振信号に基づくキャリア信号と、前記受信信号との位相差を検出し、
検出された位相差に基づいて、前記キャリア信号の位相同期をとる
ステップを含む受信方法。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate

【図12】
image rotate

【図13】
image rotate

【図14】
image rotate

【図15】
image rotate

【図16】
image rotate

【図17】
image rotate

【図18】
image rotate

【図19】
image rotate

【図20】
image rotate

【図21】
image rotate

【図22】
image rotate

【図23】
image rotate

【図24】
image rotate

【図25】
image rotate

【図26】
image rotate

【図27】
image rotate

【図28】
image rotate

【図29】
image rotate

【図30】
image rotate


【公開番号】特開2009−218863(P2009−218863A)
【公開日】平成21年9月24日(2009.9.24)
【国際特許分類】
【出願番号】特願2008−60534(P2008−60534)
【出願日】平成20年3月11日(2008.3.11)
【出願人】(000002185)ソニー株式会社 (34,172)
【Fターム(参考)】