説明

Fターム[5J081AA02]の内容

LC分布定数、CR発振器 (9,854) | 発振回路の種類 (659) | 集中定数型 (453) | LC型 (362)

Fターム[5J081AA02]の下位に属するFターム

Fターム[5J081AA02]に分類される特許

1 - 20 / 280


【課題】発振回路内で構成要素を接続するオプションコンダクタの使用を可能とする技術の提供。
【解決手段】発振回路200は、第1の伝導層内でルーティングコンダクタを介して相互結合されるトランジスタを含む。発振回路はまた、第2の伝導層内に、バラクタ203〜206、コンデンサ221〜226、及びオプションコンダクタ207、208,212〜216も含む。オプションコンダクタは、トランジスタのうちの1つとコンデンサまたはバラクタとの間の接続の少なくとも一部を形成する。上記発振回路は、第1の伝導層内のルーティングコンダクタを介して前記複数の第1のトランジスタのうちの1つに結合されるインダクタと、該インダクタの第1の部分を形成する、前記第2の伝導層内の第2のオプションコンダクタとをさらに備え得る。 (もっと読む)


【課題】起動時の異常発振を抑えるとともに負荷の大きさによらず電源電圧の低電圧化が可能な発振回路、発振器、電子機器及び発振回路の起動方法を提供すること。
【解決手段】発振回路1は、共振子(水晶振動子10)と、共振子の一端から他端への帰還経路を有する増幅回路20と、電圧供給回路30と、を含む。電圧供給回路30は、電源電圧Vccが入力される時定数回路(抵抗32とコンデンサー34によるRC積分回路)を有し、電源電圧Vccが入力されてから時定数回路の時定数に応じて立ち上がるとともに増幅回路20の負荷によらず一定電圧となる駆動電圧Vを発生させ、駆動電圧Vを増幅回路20に供給する。 (もっと読む)


【課題】発振周波数遠方の雑音を低減することが可能なディジタル制御発振装置、ならびに高周波信号処理装置を提供する。
【解決手段】例えば、複数の単位容量ユニットCIU[1]〜CIU[k]を用いて分数容量を実現する。CIU[1]では、容量素子CFXp[1],CFXm[1]の一端がそれぞれ発振出力ノードOscP,OscMに接続される。一方、CIU[2]〜CIU[k]では、容量素子CFXp([2]〜[k]),CFXm([2]〜[k])の一端が固定電圧V6に接続される。CIU[1]〜CIU[k]の一方の容量素子の他端は共通接続され(SWFD)、他方の容量素子の他端も共通接続される(SWFS)。そして、CIU[1]〜CIU[k]内の各スイッチ(SWF1〜SWF3)のオン・オフは共通に制御される。 (もっと読む)


【課題】DNLの低減を実現可能なディジタル制御発振装置を提供する。
【解決手段】例えば、発振出力ノードOscP,OscM間に並列に結合されるアンプ回路ブロックAMPBK、コイル素子LP,LM、複数の単位容量ユニットCIU等を備え、各CIUは、容量素子CIp,CImと、当該CIp,CImを発振周波数の設定パラメータとして寄与させるか否かを選択するスイッチSWIを備える。ここで、SWIは、デコーダ回路DECからのオン・オフ制御線BIT_CIによって駆動され、当該BIT_CIは、シールド部GSによってOscP,OscMとの間でシールドされる。 (もっと読む)


【課題】位相雑音および出力が改善された電圧制御発振器および関連システムを提供する。
【解決手段】電圧制御発振器は、第1の可変静電容量素子(120)と、第2の可変静電容量素子(122)と、可変静電容量素子(120、122)間に結合され、出力ノード(104)において、発振信号の振動周波数において可変静電容量素子(120、122)の間にインダクタンスを提供する誘導素子(132)とを含む。第1の可変静電容量素子(120)は第1の制御電圧ノード(110)および出力ノード(104)の間に結合され、第2の可変静電容量素子(122)は第1の制御電圧ノード(110)に結合され、第2の誘導素子(134)は第2の可変静電容量素子(122)および第2の制御電圧ノード(112)の間に結合される。 (もっと読む)


【課題】複数の端子のうち一部の端子が使用されない場合においても好適に動作可能な発振器を提供する。
【解決手段】発振器1は、振動素子14と、振動素子14に電圧を印加して発振信号Outを生成する発振回路27と、発振回路27の出力部27aに接続されることにより発振信号Outを出力可能な端子5(Out1)及び端子5(Out2)と、出力部27aと外部機器(回路基板53を含む)との端子5(Out2)を介した導通状態の変化に応じた発振回路27の周波数の変化を補償する接続補償回路37とを有する。 (もっと読む)


【課題】負荷条件の変化に対しても安定に動作するVCOを提供する。
【解決手段】第1のトランジスタ40aを含む第1のバッファ段と、第2のトランジスタ40bを含む第2のバッファ段とを備え、カスケード接続されたエミッタフォロワバッファ回路として配置されている。トランジスタ40aおよび40bは、VCOコア21を出力から隔離する共通のエミッタ/ソースフォロワ回路に設けられている。したがって結合バッファ段42の両方のバッファ段すなわちトランジスタ40aおよび40bは、同一の電流を分担する。また、これらバッファ段はVCOコア21にACカップリング、逆隔離は直列結合された2つの固有のベース/エミッタ接合キャパシタンスによって決定されるため、キャパシタンスが半分に減少し、これによって、トランジスタ40aおよび40bのサイズが等しければ、2倍の逆隔離が得られる。 (もっと読む)


【課題】回路規模の増大を抑制しつつ、VCOの発振周波数を広い範囲で変化させることができるPLL回路及びその制御方法を提供すること。
【解決手段】本発明にかかるPLL回路1は、VCO11と、制御ロジック14と、位相比較器13と、を備える。VCO11は、両端の電位差に応じて容量値が変化する可変容量素子を有し、電位差に応じた発振周波数の出力信号を出力する。制御ロジック14は、可変容量素子の一端に所定の電圧を印加した状態で、基準信号と出力信号との周波数差に基づいて、当該可変容量素子の他端に印加する制御電圧Vtcを決定する。位相比較器13は、可変容量素子の他端の電圧を制御ロジック14により決定された制御電圧Vtcに固定した状態で、基準信号と出力信号との位相差に基づいて、可変容量素子の一端に印加する制御電圧Vtaを決定する。 (もっと読む)


【課題】回路規模を小型化する注入同期発振器を得る。
【解決手段】発振周波数foの注入同期信号を発生する基準発振器1と、注入同期信号を検波し、注入同期信号の高周波電力に応じた直流電圧を発生すると共に発振周波数foの高調波を発生する検波回路2とを備え、検波回路2は、注入同期信号の高周波電力に応じた直流電圧および発振周波数foの高調波を、発振器3を構成するFET8のドレインに供給するので、FET8に注入同期信号を注入する回路と、FET8に直流バイアスを印加するバイアス回路とを検波回路2で共用することができ、注入同期発振器の回路規模を小型化することができる。
また、発振周波数foの高調波をFET8のドレインに供給するので、注入同期発振器として同期を容易にすることができる。 (もっと読む)


【課題】 位相雑音を軽減すると共に、起動時の発振の成長を妨げず、温度や経時変化の影響を受けにくくして安定した出力を得ることができる発振回路を提供する。
【解決手段】 水晶振動子X1の一端が発振用トランジスタTr1のベースに接続されると共に他端が接地され、直列接続のコンデンサCb1,Cb2が水晶振動子X1に並列に接続されたコルピッツ発振回路において、発振用トランジスタTr1のベースの前段に、水晶振動子X1の発振周波数を狭帯域化するフィルタXfを挿入した発振回路であり、また、フィルタXfの前段にバッファ用トランジスタTr2を備えた発振回路である。 (もっと読む)


【課題】良好な位相雑音特性を有し、かつ広帯域な発振周波数範囲を有する電圧制御発振器を提供することを目的とする。
【解決手段】本発明に係る電圧制御発振器1は、電源と、少なくとも3つのポート10a〜10dを備えるインダクタ11と、少なくとも3つのポートから選択される異なるポート対にそれぞれ接続される少なくとも2つの負性抵抗回路12及び14と、を有し、インダクタは、少なくとも2つの負性抵抗回路に接続されるポート対の間でそれぞれインダクタとして動作可能であることを特徴とする。 (もっと読む)


【課題】安定発振、コンパクトなパッケージを実現したSHF帯に好適な高周波発振器を提供する。
【解決手段】低誘電率、低損失の基板材料として水晶板等の耐熱材を最小限の厚さとした基板を主基板2とし、一次実装する能動素子7とIDT3やデスクリート部品8などを主基板2の表裏にそれぞれ配置し、貫通電極6で両面側の間を接続することで配線長を最短とした。LTCCなどの従来の本体基板に代えて薄い水晶等を要部構成部品を実装する主基板とすることにより、薄型化と小型化を実現した。外力・応力に対する脆弱性を、主面側の保護カバーに加えて裏面にも補強カバーを設け、あるいはモールド構造とすることで補強した。 (もっと読む)


【課題】位相誤差を補償しながら設定可能な位相オフセットで多相信号を生成するための方法等を提供する。
【解決手段】一実施形態において、回路は、第1の周波数及び第1の位相を有する第1の周期信号を生成する第1のLC型電圧制御発振器(LCVCO)と、第2の周波数及び第2の位相を有する第2の周期信号を生成する第2のLCVCOとを有し、第2の位相は、90度オフセットで第1の位相に対してオフセットされる。 (もっと読む)


【課題】発振開始時の立ち上がりを迅速に行うとともに、増幅素子に流れるバイアス電流を適正化すること。
【解決手段】準ミリ波帯域またはミリ波帯域を発振周波数帯域とする帰還型発振装置1において、入力端子から入力された信号を出力端子から出力する増幅素子(HEMT10)と、増幅素子の出力端子から入力端子に信号を帰還するための帰還回路(帰還回路40)と、増幅素子の出力端子と電源の間に挿入され、持続発振時に増幅素子に流れるバイアス電流を制限する抵抗素子(抵抗素子35)と、を有する。 (もっと読む)


【課題】ばらつき条件(温度、電源電圧、経年変化等)下の安定動作を補償しかつ低ゲインの電圧−周波数特性を実現できる位相同期回路を提供する。
【解決手段】バラクタアレイを有するVCO101と、VCO101の特性をモニターするモニター回路102と、モニター結果に応じてバラクタアレイに供給するオフセット量を切り替えるオフセット発生回路103とを備える。ばらつき条件下のVCOの特性をモニターした結果からバラクタアレイのオフセット量を調整することで、位相同期回路の動作不良を防ぐ。 (もっと読む)


【課題】電圧制御発振器の制御利得を発振周波数に対して比較的一定に維持し、位相ノイズを低減したプログラマブルバラクタ装置を提供する。
【解決手段】プログラマブルバラクタ装置100は、複数のデジタルバラクタビットB0、B1、B2によって制御される複数のバイナリ重み付けバラクタ104,106,108を含み得る。プログラマブルバラクタ装置は、複数のバイナリ重み付けバラクタと、プログラマブルバラクタ装置の実効容量を低減するために複数のバイナリ重み付けバラクタの1つまたはそれ以上を選択的にディセーブルとする制御とを含み得る。プログラマブルバラクタ装置の実効容量を変化させる方法は、複数のバイナリ重み付けバラクタを設けることと、プログラマブルバラクタ装置の実効容量を低減するために複数のバイナリ重み付けバラクタの1つまたはそれ以上を選択的にディセーブルとすることとを含み得る。 (もっと読む)


【課題】 位相雑音を劣化させずに2倍波の出力電力を増加できる高周波発振器を得る。
【解決手段】 第1から第3の端子を有する能動素子と、前記第1と第2の端子にそれぞれ接続され、所要の周波数において誘導性となる第1と第2のリアクタンス回路と、前記第3の端子に接続され、前記所要の周波数において容量性となる第3のリアクタンス回路と、前記能動素子の前記第3の端子と前記第3のリアクタンス回路の間に並列に接続され、前記所要の周波数の2倍の周波数においてインピーダンスがショートとなる第4のリアクタンス回路と、前記能動素子の前記第3の端子と前記第3のリアクタンス回路の間に並列に接続され、前記所要の周波数におけるリアクタンスが、前記所要の周波数における前記第4のリアクタンス回路のリアクタンスと絶対値が等しく符号が逆となる第5のリアクタンス回路と、を備える。 (もっと読む)


【課題】周波数変換利得の変動が少ない発振器のためのLC共振回路、それを用いた発振器及び情報機器を提供する。
【解決手段】発振器のLC共振回路が、インダクタL1、第1の微調容量と第1の容量バンクからなる並列回路と、第2の微調容量と第2の容量バンクの直列容量とを含む。発振器の周波数変換利得は、第1の容量バンクの容量値が大きくなるに従い低下する第1の微調容量による発振器の周波数変換利得と、第2の容量バンクの容量値が大きくなるに従い増大する第2の微調容量による周波数変換利得の和となる。 (もっと読む)


【課題】発振器の出力端子間に直接寄生する容量Cparaの大きさが無視できない場合でも温度特性を補償する発振器及び発振器を内蔵する半導体集積回路装置を提供する。
【解決手段】インダクタンス素子Lと、容量素子Cと、増幅器30と、をそれぞれ第1の端子と第2の端子との間に並列に接続し、インダクタンス素子と容量素子とによって生じる共振を増幅器によって増幅し、第1の端子と第2の端子とから出力する発振器であって、第1の端子と第2の端子との間にインダクタンス素子の寄生抵抗Rより抵抗値の大きな第1の抵抗素子Rcが第1の端子と第2の端子との間に容量素子と直列に接続されている。 (もっと読む)


【課題】低消費電力でキャリブレーションができる回路装置及び電子機器等を提供すること。
【解決手段】回路装置は、無線による送信処理を行う送信回路100と、送信回路100を制御する制御部110とを含む。制御部110は、第1の送信期間では、送信回路100のキャリブレーションパラメーターCLPとして、第1のキャリブレーションパラメーターCLP1を設定し、送信回路100は、第1の送信期間では、第1のキャリブレーションパラメーターCLP1に基づく第1の送信処理を行う。制御部110は、第2の送信期間では、キャリブレーションパラメーターCLPとして、第1の送信処理での送信状態の検出結果に基づいて更新された第2のキャリブレーションパラメーターCLP2を設定し、送信回路100は、第2の送信期間では、第2のキャリブレーションパラメーターCLP2に基づく第2の送信処理を行う。 (もっと読む)


1 - 20 / 280