説明

真空・圧空成形体

【課題】 耐薬品性、耐熱性に優れた厚肉、大型の成形品を得る。
【解決手段】 (A)〜(D)の要件を満たすポリエチレン系樹脂を用いて成形する。(A)密度が890kg/m以上980kg/m以下、(B)炭素数6以上の長鎖分岐数が1,000個の炭素原子当たり0.01個以上3個以下、(C)190℃で測定した溶融張力(MS190)(mN)と2.16kg荷重のMFR(g/10分、190℃)が、下記式(1) MS190>22×MFR−0.88 (1)を満たすと共に、160℃で測定した溶融張力(MS160)(mN)と2.16kg荷重のMFR(g/10分、190℃)が、下記式(2)を満たし、 MS160>110−110×log(MFR) (2)(D)示差走査型熱量計による昇温測定において得られる吸熱曲線のピークが一つである

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、特定のポリエチレン系樹脂よりなるシートを用いた大型の真空・圧空成形体に関する。さらに詳しくは、特定の溶融張力(MS)、メルトフローレート(MFR)および一つの吸熱曲線ピークを有するシートを熱成形してなる大型の真空・圧空成形体に関する。
【背景技術】
【0002】
冷蔵庫の内箱、大型部品トレー等に代表される大型の熱成形製品には、ポリスチレンやアクリロニトリル−ブタジエン−スチレン共重合体等のスチレン系樹脂よりなるシートが用いられている。しかしながら、耐薬品性に劣る等の物性面の問題、焼却時の黒煙発生等の環境面の問題等から、オレフィン系樹脂が有望視され、なかでも剛性と耐寒衝撃性のバランスに優れる高密度ポリエチレンへの代替が要望されている。
【0003】
ところが、従来の高密度ポリエチレンは、結晶性が比較的高いため、融点以下では結晶が融解しないために殆ど流動しないが、融点を超えると急激に粘度が減少し、著しい流動性を示す。従って、高密度ポリエチレンからなるシートを加熱し、真空・圧空成形等の熱成形を行う場合には、シートの溶融粘度を熱成形に適した状態に保持することが必要となり、このために分子量を大きくすることが必要であった。しかしながら、分子量の増大に伴って、押出機を使用してシートを製造する際に非常に大きなトルクが発生するため、押出し負荷が大きくなりすぎ、押出時の生産性を向上させることが困難であった。また、スチレン系樹脂と同等の剛性とするために無機フィラーを添加したシートにおいては、熱成形性が著しく劣っていた。特に、大型の成形体の熱成形においてシートを成形可能な温度まで加熱すると、加熱時にシートの垂れ下がり(ドローダウン量)が大きく、シートが下側のヒーターに接してしまうため、成形することができなかった(例えば、特許文献1参照)。
【0004】
本発明者等は、前記目的を達成すべく鋭意検討した結果、特定の溶融張力、メルトフローレートおよび一つの吸熱曲線ピークを有するポリエチレン系樹脂シートを用いて熱成形することにより、耐薬品性、耐熱性に優れたオレフィン系樹脂の大型の真空・圧空成形体が得られることを見いだし、本発明を完成した。
【0005】
【特許文献1】特開2000−127237公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
本発明の目的は、従来のポリエチレンの欠点であるシート成形時の負荷(押出トルク)と真空・圧空成形時のシートの垂れ下がりを改良した真空・圧空成形体を得ることに関する。
【課題を解決するための手段】
【0007】
本発明は、シート成形および真空・圧空成形が可能な下記(A)〜(D)の要件を満たすポリエチレン系樹脂からなることを特徴とする真空・圧空成形体に関するものである。
(A)密度が890kg/m以上980kg/m以下、
(B)炭素数6以上の長鎖分岐数が1,000個の炭素原子当たり0.01個以上3個以下、
(C)190℃で測定した溶融張力(MS190)(mN)と2.16kg荷重のMFR(g/10分、190℃)が、下記式(1)
MS190>22×MFR−0.88 (1)
を満たすと共に、160℃で測定した溶融張力(MS160)(mN)と2.16kg荷重のMFR(g/10分、190℃)が、下記式(2)を満たし、
MS160>110−110×log(MFR) (2)
(D)示差走査型熱量計による昇温測定において得られる吸熱曲線のピークが一つである
以下、本発明について詳細に説明する。
【0008】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂の密度は、JIS K6922−1(1997)に準拠して密度勾配管法で測定した値として、890kg/m以上980kg/m以下である。密度が890kg/m未満の場合は低密度成分を多く含むため、成形体表面にべとつきが生じ問題となる。
【0009】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂の直鎖状ポリエチレン換算の重量平均分子量(M)は、10,000以上1,000,000以下であり、好ましくは20,000以上700,000以下であり、さらに好ましくは25,000以上300,000以下である。Mが10,000未満の場合は溶融張力が小さくなりすぎてドローダウンが激しく真空・圧空成形できない。また、1,000,000を越えると溶融粘度が高くなりすぎてシート成形時の押出負荷が大きいために問題がある。
【0010】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂の190℃、2.16kg荷重におけるMFRは、0.005〜10g/10分、好ましくは0.05〜5g/10分である。0.005g/10分未満の場合は溶融粘度が高すぎてシート成形時の押出負荷が大きい。10g/10分を超えると溶融張力が小さくなりすぎてドローダウンが激しく、真空・圧空成形できない。
【0011】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂の長鎖分岐数は、1,000個の炭素原子当たり0.01個以上3個以下である。0.01個未満では真空・圧空成形を行うことが著しく困難になるため、真空・圧空成形体を得られない恐れがある。また、3個を超えると製品強度に劣る真空・圧空成形体となる恐れがある。なお、長鎖分岐数とは、13C−NMR測定で検出されるヘキシル基以上(炭素数6以上)の分岐の数である。
【0012】
本発明で得られる真空・圧空成形体を構成するポリエチレン系樹脂の190℃で測定した溶融張力(MS190)(mN)と2.16kg荷重のMFR(g/10分、190℃)は、下記式(1)
MS190>22×MFR−0.88 (1)
で示される関係にあり、好ましくは下記式(1)’
MS190>30×MFR−0.88 (1)’
で示される関係にあり、さらに好ましくは下記式(1)”
MS190>5+30×MFR−0.88 (1)”
で示される関係にある。(1)式を満たさない場合は溶融張力が小さいため、シート成形および真空・圧空成形を行うことが著しく困難になり、真空・圧空成形体を得られない恐れがある。
【0013】
また、本発明の真空・圧空成形体を構成するポリエチレン系樹脂の160℃で測定した溶融張力(MS160)(mN)と2.16kg荷重のMFR(g/10分、190℃)は、下記式(2)
MS160>110−110×log(MFR) (2)
で示される関係にあり、好ましくは下記式(2)’
MS160>130−110×log(MFR) (2)’
で示される関係にあり、さらに好ましくは下記式(2)”
MS160>150−110×log(MFR) (2)”
で示される関係にある。(2)式を満たさない場合、シート成形および真空・圧空成形を行うことが著しく困難になるため、目的とする真空・圧空成形体を得られない恐れがある。
【0014】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂は、示差走査型熱量計(DSC)による昇温測定において得られる吸熱曲線のピークが一つであることを特徴とし、これによって得られる真空・圧空成形体は弾性率の温度依存性が小さく、かつ、耐熱性に優れる。吸熱曲線は、アルミニウム製のパンに5〜10mgのサンプルを挿填し、DSCにて昇温することによって得られる。なお、昇温測定は、予め230℃で3分間放置した後、10℃/分で−10℃まで降温し、その後、10℃/分の昇温速度で150℃まで昇温することにより行われる。
【0015】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂は、ゲル・パーミエーション・クロマトグラフィー(GPC)/固有粘度計によって評価した収縮因子(g’値)が0.1以上0.9未満、さらには0.1以上0.7以下であることが好ましく、これによってポリエチレン系樹脂を真空・圧空成形する際のドローダウンが小さくなるため、大型の真空・圧空成形体の加工が可能となる。本発明における収縮因子(g’値)とは、長鎖分岐の程度を表すパラメータであり、重量平均分子量(M)の3倍の絶対分子量における本ポリエチレン系樹脂の固有粘度と、分岐が全くない高密度ポリエチレン(以下、HDPEと略す)の同じ分子量における固有粘度との比である。また、このg’値とGPC/光散乱計によって評価した収縮因子(g値)との間には、好ましくは式(3)、さらに好ましくは式(3)’で示される関係があり、これによって真空・圧空成形体の歩留まりはさらに低減する。なお、g値はMの3倍の絶対分子量における本ポリエチレン系樹脂の慣性半径の二乗平均と、分岐が全くないHDPEの同じ分子量における慣性半径の二乗平均との比である。
【0016】
0.2<log(g’)/log(g)<1.3 (3)
0.5<log(g’)/log(g)<1.0 (3)’
さらに、Mの3倍の絶対分子量におけるg値(g3M)とMの1倍の絶対分子量におけるg値(g)の間には、式(4)、好ましくは式(4)’、さらに好ましくは式(4)”で示される関係があることが、ドローダウンを小さくするために望ましい。
【0017】
0<g3M/g≦1 (4)
0<g3M/g≦0.9 (4)’
0<g3M/g≦0.8 (4)”
本発明の真空・圧空成形体を構成するポリエチレン系樹脂は、エチレンを重合することによって得られる末端にビニル基を有するエチレン重合体、またはエチレンと炭素数3以上のオレフィンを共重合することによって得られる末端にビニル基を有するエチレン共重合体であり、
(E)Mが2,000以上であり、
(F)M/Mが2以上5以下である
マクロモノマーの存在下に、エチレンおよび任意に炭素数3以上のオレフィンを重合することによって得られたものであることが望ましい。マクロモノマーとは、末端にビニル基を有するオレフィン重合体であり、好ましくはエチレンを重合することによって得られる末端にビニル基を有するエチレン重合体、またはエチレンと炭素数3以上のオレフィンを共重合することによって得られる末端にビニル基を有するエチレン共重合体であり、さらに好ましくは炭素数3以上のオレフィンに由来する分岐以外の分岐のうち、長鎖分岐(すなわち、13C−NMR測定で検出されるヘキシル基以上の分岐)が、主鎖メチレン炭素1,000個当たり0.01個未満である、末端にビニル基を有する直鎖状エチレン重合体または直鎖状エチレン共重合体である。
【0018】
炭素数3以上のオレフィンとしては、プロピレン、1−ブテン、1−ヘキセン、1−オクテン、4−メチル−1−ペンテン、3−メチル−1−ブテンもしくはビニルシクロアルカン等のα−オレフィン、ノルボルネンもしくはノルボルナジエン等の環状オレフィン、ブタジエンもしくは1,4−ヘキサジエン等のジエンまたはスチレンを例示することができる。また、これらのオレフィンを2種類以上混合して用いることもできる。
【0019】
マクロモノマーとして、末端にビニル基を有するエチレン重合体または末端にビニル基を有するエチレン共重合体を用いる場合、その直鎖状ポリエチレン換算の数平均分子量(M)は、2,000以上であり、好ましくは5,000以上であり、さらに好ましくは10,000以上である。直鎖状ポリエチレン換算の重量平均分子量(M)は、4,000以上であり、好ましくは10,000以上であり、さらに好ましくは15,000より大きい。また、重量平均分子量(M)とMの比(M/M)は、2以上5以下であり、好ましくは2以上4以下であり、さらに好ましくは2以上3.5以下である。下記一般式(5)
Z=[X/(X+Y)]×2 (5)
(ここで、Xはマクロモノマーの主鎖メチレン炭素1,000個当たりのビニル末端数であり、Yはマクロモノマーの主鎖メチレン炭素1,000個当たりの飽和末端数である。)
で表されるビニル末端数と飽和末端数の比(Z)は0.25以上1以下であり、好ましくは0.50以上1以下である。XおよびYは、H−NMR、13C−NMRまたはFT−IR等で求められる。例えば、13C−NMRにおいて、ビニル末端は114ppm、139ppm、飽和末端は32.3ppm、22.9ppm、14.1ppmのピークにより、その存在および量が確認できる。
【0020】
本発明におけるマクロモノマーの製造方法に関して特に限定はないが、マクロモノマーとして末端にビニル基を有するエチレン重合体または末端にビニル基を有するエチレン共重合体を製造する場合は、例えば周期表第3族、第4族、第5族および第6族から選ばれる遷移金属を含有するメタロセン化合物を主成分として含む触媒を用いてエチレンを重合する方法を用いることができる。助触媒としては、有機アルミニウム化合物、プロトン酸塩、ルイス酸塩、金属塩、ルイス酸および粘土鉱物等が挙げられる。
【0021】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂は、例えば周期表第3族、第4族、第5族および第6族から選ばれる遷移金属を含有するメタロセン化合物を主成分として含む触媒を用いて、マクロモノマーの存在下に、エチレンおよび任意に炭素数3以上のオレフィンを重合することによって得られる。また、マクロモノマーの製造と同様に、助触媒を用いることができる。
【0022】
重合温度は、−70〜300℃、好ましくは0〜250℃、さらに好ましくは20〜150℃の範囲である。エチレン分圧は、0.001〜300MPa、好ましくは0.005〜50MPa、さらに好ましくは0.01〜10MPaの範囲である。また、重合系内に分子量調節剤として水素を存在させても良い。
【0023】
本発明において、マクロモノマーの存在下に、エチレンと炭素数3以上のオレフィンを重合する場合、エチレン/炭素数3以上のオレフィン(モル比)は、1〜200、好ましくは3〜100、さらに好ましくは5〜50の供給割合を用いることができる。
【0024】
本発明の真空・圧空成形体を構成するポリエチレン系樹脂は、無添加、または、必要に応じて酸化防止剤、耐候安定剤、帯電防止剤、滑剤、ブロッキング防止剤、有機・無機顔料等、通常ポリオレフィンに使用される添加剤を添加しても構わない。樹脂中に上記の添加剤を混合する方法は特に制限されるものではないが、例えば、重合後のペレット造粒工程で直接添加する方法、また、予め高濃度のマスターバッチを作製し、これを成形時にドライブレンドする方法等が挙げられる。
【0025】
本発明に用いられるポリエチレン系樹脂には、剛性を付与する目的で無機フィラーを添加しても良い。無機フィラーとしては、タルク、炭酸カルシウム、チタン酸カリウムウィスカー、マイカおよびガラス繊維等が例示できる。これらの単独使用は勿論のこと2種以上の無機フィラーを併用することもできる。該無機フィラーの平均粒径は15〜0.5μmが好ましく、平均粒径が大きすぎると耐衝撃性が低下し、逆に小さすぎると無機フィラー粒子同士が凝集し易くなり、得られる成形体の外観の悪化や耐衝撃性の低下を招きやすい。
【0026】
本発明の真空・圧空成形体の製造方法は、特に限定されるものではないが、シートの製造方法としては、上記のポリエチレン系樹脂を用い、公知の成形方法(押出成法形、カレンダー成形法)により製造する方法が例示できる。該公知公用の成形方法の中でも生産性の点で、押出成形法が好ましい。具体的には、押出機、Tダイ、冷却ロール、ガイドロール、引き取りロール、トリミングカッター、マスキング、定尺切断カッター、スタッカー等の工程をもつ装置(Tダイシート成形機)を用いたTダイ法がさらに好ましい。
【0027】
押出温度は、得られるシートの外観、成形性の点から100〜300℃が好ましく、さらに好ましくは150〜250℃である。押出温度が180℃以上であれば樹脂が十分に溶融され、得られるシートの表面が鮫肌状にならず良好な外観となり、280℃以下であれば熱によるオレフィン系樹脂組成物の熱劣化が起き難く、シートの溶融張力が保持されて良好な成形体が得られる。
【0028】
冷却ロール温度は、外観に優れるシートが得られることから5〜100℃が好ましい。冷却ロール温度が5℃以上であれば、冷却ロールが結露しないことによりシート表面に斑点状の模様ができず良好な外観が得られ、また100℃以下であればシートを十分に冷却することができ、表面が固化することで良好な外観が得られる。
【0029】
シートを成形する速度は、生産性に優れることから0.1〜100m/分である。該速度が0.1m/分以上であれば、厚みが均一なシートが得られ不良率が少なく、100m/分以下であればシートを十分に冷却できる。成形されるシートの肉厚は通常0.5〜3mm程度であるが、大型成形品でかつ深絞りされる製品には、さらに肉厚のシートが用いられる場合がある。
【0030】
本発明に用いるシートは、単層のみでなく、熱成形して得られる成形体の表面の光沢、接着剤、印刷インキ、ウレタン樹脂等の他樹脂等との接着性などを改良する目的で、本発明の樹脂組成物以外の樹脂との多層シートとしても差し支えない。
【0031】
本発明の真空・圧空成形体は、前述のシートを熱成形した成形体である。熱成形の方法としては、真空成形法、圧空成形法やこれらの応用として、フリードローイング成形法、プラグアンドリッジ成形法、リッジ成形法、マッチモールド成形法、ストレート成形法、ドレープ成形法、リバースドロー成形法、エアースリップ成形法、プラグアシスト成形法、プラグアシストリバースドロー成形法、スナップバック成形法等やこれらを組み合わせた方法等を適用することができる。
【発明の効果】
【0032】
本発明のポリエチレン系樹脂を使用することで、耐薬品性、耐熱性に優れた厚肉、大型の成形品が得られる。
【実施例】
【0033】
以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
【0034】
変性ヘクトライトの調製、マクロモノマー製造用触媒の調製、マクロモノマーの製造、ポリエチレンの製造および溶媒精製は、全て不活性ガス雰囲気下で行った。変性ヘクトライトの調製、マクロモノマー製造用触媒の調製、マクロモノマーの製造、ポリエチレンの製造に用いた溶媒等は、全て予め公知の方法で精製、乾燥、脱酸素を行ったものを用いた。ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド、ジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリドは公知の方法により合成、同定したものを用いた。トリイソブチルアルミニウムのヘキサン溶液(0.714M)は東ソー・ファインケム(株)製を用いた。
【0035】
さらに、実施例および比較例におけるポリエチレン系樹脂の諸物性は、以下に示す方法により測定した。
【0036】
〜分子量および分子量分布〜
重量平均分子量(M)および数平均分子量(M)は、ゲル・パーミエーション・クロマトグラフィー(GPC)によって測定した。GPC装置としては東ソー(株)製 HLC−8121GPC/HTを用い、カラムとしては東ソー(株)製 TSKgel GMHhr−H(20)HTを用い、カラム温度を140℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は1.0mg/mLの濃度で調製し、0.3mL注入して測定した。分子量の検量線は、分子量既知のポリスチレン試料を用いて校正されている。なお、MおよびMは直鎖状ポリエチレン換算の値として求めた。
【0037】
〜収縮因子(g’値)〜
収縮因子(g’値)は、GPCによって分別したポリエチレン系樹脂の[η]を測定する手法で求めたMの3倍の絶対分子量における[η]を、分岐が全くないHDPEの同一分子量における[η]で除した値である。GPC装置としては東ソー(株)製 HLC−8121GPC/HTを用い、カラムとしては東ソー(株)製 TSKgel GMHhr−H(20)HTを用い、カラム温度を145℃に設定し、溶離液として1,2,4−トリクロロベンゼンを用いて測定した。測定試料は2.0mg/mLの濃度で調製し、0.3mL注入して測定した。粘度計は、Viscotek社製 キャピラリー差圧粘度計210R+を用いた。
【0038】
〜収縮因子(g値)〜
収縮因子(g値)は、GPCによって分別したポリエチレン系樹脂を、光散乱によって慣性半径を測定する手法で求めた。本発明の真空・圧空成形体に用いるポリエチレン系樹脂のMの3倍の絶対分子量における慣性半径の二乗平均を、分岐が全くないHDPEの同一分子量における慣性半径の二乗平均で除した値である。光散乱検出器としては、Wyatt Technology社製 多角度光散乱検出器DAWV EOSを用い、690nmの波長で、29.5°、33.3°、39.0°、44.8°、50.7°、57.5°、64.4°、72.3°、81.1°、90.0°、98.9°、107.7°、116.6°、125.4°、133.2°、140.0°、145.8°の検出角度で測定した。
【0039】
〜Z値〜
ビニル末端、飽和末端などのマクロモノマーの末端構造は、日本電子(株)製 JNM−ECA400型核磁気共鳴装置を用いて、13C−NMRによって測定した。溶媒はテトラクロロエタン−dである。ビニル末端数は、主鎖メチレン炭素(化学シフト:30ppm)1,000個当たりの個数として114ppm、139ppmのピークの平均値から求めた。また、飽和末端数は、同様に32.3ppm、22.9ppm、14.1ppmのピークの平均値から求めた。このビニル末端数(X)と飽和末端数(Y)から、Z=[X/(X+Y)]×2を求めた。
【0040】
〜密度〜
密度は、JIS K6922−1(1997)に準拠して密度勾配管法で測定した。
【0041】
〜MFR〜
MFRは、JIS K6922−1(1997)に準拠して190℃、2.16kg荷重で測定した。
【0042】
〜長鎖分岐数〜
ポリエチレン系樹脂の長鎖分岐数は、日本電子(株)製 JNM−GSX270型核磁気共鳴装置を用いて、13C−NMRによって測定した。
【0043】
〜溶融張力(MS)〜
溶融張力(MS)の測定に用いたポリエチレン系樹脂は、予め耐熱安定剤としてイルガノックス1010TM(チバスペシャリティケミカルズ社製)1,500ppm、イルガフォス168TM(チバスペシャリティケミカルズ社製)1,500ppmを添加し、インターナルミキサー(東洋精機製作所製、商品名:ラボプラストミル)を用いて、窒素気流下、190℃、回転数30rpmで3分間混練したものを用いた。溶融張力(MS)は、バレル直径9.55mmの毛管粘度計(東洋精機製作所、商品名:キャピログラフ)に、長さ(L)が8mm、直径(D)が2.095mm、流入角が90°のダイを装着し測定した。MSは、温度を160℃または190℃に設定し、ピストン降下速度を10mm/分、延伸比を47に設定し、引き取りに必要な荷重(mN)をMSとした。
【0044】
〜吸熱ピークの数〜
DSC(パーキンエルマー社製、商品名:DSC−7)を用いて測定を行なった。5〜10mgのポリエチレン系樹脂をアルミニウムパンに挿填し、DSCに設置した後、80℃/分の昇温速度で230℃まで昇温し、230℃で3分間放置する。その後、10℃/分の降温速度で−10℃まで冷却し、再度10℃/分の昇温速度で−10℃から150℃まで昇温する手順で昇温/降温操作を行い、2回目の昇温時に観測される吸熱曲線のピーク数を評価した。
【0045】
〜シート成形性の評価〜
スクリュー径50mmφ、ダイ幅300mmのシート成形機(田辺プラスチック社製)を用いて、樹脂温度160℃、スクリュー回転数30rpm、引き取りロール表面温度50℃、引き取り速度1m/分にて厚み1mmのシートを成形した。
【0046】
成形されたシートの表面状態を目視にて観察し、以下の基準により外観の評価を行った。
【0047】
○:光沢が有り、平滑
×:光沢が無く、シート表面に凹凸がある
〜真空成形性の評価〜
真空・圧空成形機(浅野製作所社製)を用いて、サイズ320×200mm、厚み1.0mmのシートを用い、表面温度150℃にてドローダウン量を測定した。
【0048】
実施例1
[変性ヘクトライトの調製]
水60mLにエタノール60mLと37%濃塩酸2.0mLを加えた後、得られた溶液にN,N−ジメチルベヘニルアミン 7.78g(0.022mol)を添加し、60℃に加熱することによって、N,N−ジメチルベヘニルアミン塩酸塩溶液を調製した。この溶液にヘクトライト20gを加えた。この懸濁液を60℃で3時間撹拌し、上澄液を除去した後、60℃の水1Lで洗浄した。その後、60℃、10−3torrで24時間乾燥し、ジェットミルで粉砕することによって、平均粒径5.2μmの変性ヘクトライトを得た。元素分析の結果、変性ヘクトライト1g当たりのイオン量は0.85mmolであった。
【0049】
[マクロモノマー製造用触媒の調製]
上記変性ヘクトライト8.0gをヘキサン29mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)46mLを添加し、室温で1時間攪拌することにより、変性ヘクトライトとトリイソブチルアルミニウムの接触生成物を得た。一方、ジメチルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド111.5mg(320μmol)をトルエンに溶解させたものを添加し、室温で一晩攪拌することにより、触媒スラリー(100g/L)を得た。
【0050】
[マクロモノマーの製造]
10Lオートクレーブに、ヘキサン6,000mLとトリイソブチルアルミニウムのヘキサン溶液(0.714mol/L)12mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、上記触媒スラリー3mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始53分後に、内温を50℃まで降温してオートクレーブの内圧を0.1MPaまで脱圧した後、オートクレーブに窒素を0.6MPaになるまで導入して脱圧した。この操作を5回繰り返した。このオートクレーブから抜き出したマクロモノマーのMは9,600、M/Mは2.30であり、13C−NMRによりマクロモノマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)はZ=0.57であった。また、13C−NMRにおいてメチル分岐が1,000炭素原子当たり0.52個、エチル分岐が1,000炭素原子当たり1.22個検出された。さらに、13C−NMRにおいて長鎖分岐は検出されなかった。
【0051】
[ポリエチレンの製造]
上記で製造したマクロモノマーが含まれる10Lオートクレーブに、トリイソブチルアルミニウムのヘキサン溶液(0.714mol/L)1.4mLとジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド 7μmolを導入し、オートクレーブの内温を60℃に昇温後、30分間攪拌した。続いてオートクレーブの内温を90℃に昇温後、エチレン/水素混合ガス(水素2,000ppm)を分圧が0.3MPaになるまで導入して重合を開始した。重合中、分圧が0.3MPaに保たれるようにエチレン/水素混合ガスを連続的に導入した。また、重合温度を90℃に制御した。重合開始173分後に、オートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、875gのポリマーが得られた。得られたポリエチレンのMFRは5.0g/10分、密度は960kg/m、Mは9.6×10、M/Mは6.6、長鎖分岐数は0.03個/1,000炭素、示差走査型熱量計による昇温測定において得られる吸熱曲線のピークが一つであった。その他の物性を表1〜3に示す。
【0052】
シート成形性評価結果を表4に、真空成形性評価結果を表5にまとめた。
【0053】
実施例2
[変性ヘクトライトの調製]
水60mLにエタノール60mLと37%濃塩酸2.0mLを加えた後、得られた溶液にN,N−ジメチルオクタデシルアミン 6.55g(0.022mol)を添加し、60℃に加熱することによって、N,N−ジメチルオクタデシルアミン塩酸塩溶液を調製した。この溶液にヘクトライト20gを加えた。この懸濁液を60℃で3時間撹拌し、上澄液を除去した後、60℃の水1Lで洗浄した。その後、60℃、10−3torrで24時間乾燥し、ジェットミルで粉砕することによって、平均粒径5.2μmの変性ヘクトライトを得た。元素分析の結果、変性ヘクトライト1g当たりのイオン量は0.85mmolであった。
【0054】
[マクロモノマー製造用触媒の調製]
上記変性ヘクトライト8.0gをヘキサン29mLに懸濁させ、トリイソブチルアルミニウムのヘキサン溶液(0.714M)46mLを添加し、室温で1時間攪拌することにより、変性ヘクトライトとトリイソブチルアルミニウムの接触生成物を得た。一方、ジフェニルシランジイルビス(シクロペンタジエニル)ジルコニウムジクロリド151mg(320μmol)をトルエンに溶解させたものを添加し、室温で一晩攪拌することにより、触媒スラリー(100g/L)を得た。
【0055】
[マクロモノマーの製造]
10Lオートクレーブに、ヘキサン6,000mLとトリイソブチルアルミニウムのヘキサン溶液(0.714mol/L)5.0mLを導入し、オートクレーブの内温を85℃に昇温した。このオートクレーブに、上記触媒スラリー0.88mLを添加し、エチレンを分圧が1.2MPaになるまで導入して重合を開始した。重合中、分圧が1.2MPaに保たれるようにエチレンを連続的に導入した。また、重合温度を85℃に制御した。重合開始90分後に、内温を50℃まで降温してオートクレーブの内圧を0.1MPaまで脱圧した後、オートクレーブに窒素を0.6MPaになるまで導入して脱圧した。この操作を5回繰り返した。オートクレーブから抜き出したこのマクロモノマーのM=14,400、M/M=3.02であり、13C−NMRによりマクロモノマーの末端構造を解析したところ、ビニル末端数と飽和末端数の比(Z)はZ=0.65であった。また、13C−NMRにおいてメチル分岐が1,000炭素原子当たり0.41個、エチル分岐が1,000炭素原子当たり0.96個検出された。さらに、13C−NMRにおいて長鎖分岐は検出されなかった。
【0056】
[ポリエチレンの製造]
上記で製造したマクロモノマーが含まれる10Lオートクレーブに、トリイソブチルアルミニウムのヘキサン溶液(0.714mol/L)1.4mLとジフェニルメチレン(1−シクロペンタジエニル)(2,7−ジ−t−ブチル−9−フルオレニル)ジルコニウムジクロリド 7μmolを導入し、オートクレーブの内温を60℃に昇温後、30分間攪拌した。続いてオートクレーブの内温を90℃に昇温後、エチレン/水素混合ガス(水素1,000ppm)を分圧が0.3MPaになるまで導入して重合を開始した。重合中、分圧が0.3MPaに保たれるようにエチレン/水素混合ガスを連続的に導入した。また、重合温度を90℃に制御した。重合開始230分後に、オートクレーブの内圧を脱圧した後、内容物を吸引ろ過した。乾燥後、1,008gのポリマーが得られた。得られたポリエチレンのMFRは0.3g/10分、密度は955kg/m、Mは13.1×10、M/Mは5.7、長鎖分岐数は0.03個/1,000炭素、示差走査型熱量計による昇温測定において得られる吸熱曲線のピークが一つであった。その他の物性を表1〜3に示す。
【0057】
シート成形性評価結果を表4に、真空成形性評価結果を表5にまとめた。
【0058】
比較例1
市販の高密度ポリエチレン(日本ポリエチレン(株)製 ノバテックHD HJ362N、MFR=5.0g/10分、密度963kg/m)を用いて実施例1と同じ方法でシートを成形し、シート成形性評価結果を表4に、真空成形性評価結果を表5にまとめた。
【0059】
比較例2
市販の高密度ポリエチレン(日本ポリエチレン(株)製 RS1000、MFR=0.1g/10分、密度953kg/m)を用いて実施例1と同じ方法でシートを成形し、シート成形性評価結果を表4に、真空成形性評価結果を表5にまとめた。
【0060】
【表1】

【0061】
【表2】

【0062】
【表3】

【0063】
【表4】

【0064】
【表5】


【特許請求の範囲】
【請求項1】
(A)〜(D)の要件を満たすポリエチレン系樹脂からなることを特徴とする真空・圧空成形体。
(A)密度が890kg/m以上980kg/m以下、
(B)炭素数6以上の長鎖分岐数が1,000個の炭素原子当たり0.01個以上3個以下、
(C)190℃で測定した溶融張力(MS190)(mN)と2.16kg荷重のMFR(g/10分、190℃)が、下記式(1)
MS190>22×MFR−0.88 (1)
を満たすと共に、160℃で測定した溶融張力(MS160)(mN)と2.16kg荷重のMFR(g/10分、190℃)が、下記式(2)を満たし、
MS160>110−110×log(MFR) (2)
(D)示差走査型熱量計による昇温測定において得られる吸熱曲線のピークが一つである
【請求項2】
エチレンを重合することによって得られる末端にビニル基を有するエチレン重合体、またはエチレンと炭素数3以上のオレフィンを共重合することによって得られる末端にビニル基を有するエチレン共重合体であり、
(E)Mが2,000以上であり、
(F)M/Mが2以上5以下である
マクロモノマーの存在下に、エチレンおよび任意に炭素数3以上のオレフィンを重合することにより得られる請求項1に記載のポリエチレン系樹脂を用いることを特徴とする真空・圧空成形体。
【請求項3】
(A’)密度が940kg/m以上980kg/m以下であるポリエチレン系樹脂を用いることを特徴とする請求項1または2に記載の真空・圧空成形体。
【請求項4】
請求項1〜3のいずれかに記載のポリエチレン系樹脂からなる重量が500g以上である大型真空・圧空成形体。

【公開番号】特開2006−297834(P2006−297834A)
【公開日】平成18年11月2日(2006.11.2)
【国際特許分類】
【出願番号】特願2005−125591(P2005−125591)
【出願日】平成17年4月22日(2005.4.22)
【出願人】(000003300)東ソー株式会社 (1,901)
【Fターム(参考)】