説明

磁場形成装置

【課題】ソレノイド型超電導コイルを用いる磁場発生装置において、十分な磁場強さ及び安定したコイル設置状態を確保しながら装置の高さ寸法を有効に削減する。
【解決手段】磁場利用空間Sを挟んで一方の側に、複数個のソレノイド型超電導コイル10をその磁場利用空間Sの半径方向に対して略直交する水平方向及び鉛直方向の双方に並ぶように複数個配列し、他方の側に前記一方の側に配列された各超電導コイル10と前記磁場利用空間Sを挟んで対向するように複数個の超電導コイル10を配列する。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン単結晶の引き上げや、水平強磁場下での物性実験等に使用される磁場形成装置に関するものである。
【背景技術】
【0002】
一般に、るつぼ内のシリコン融液から大口径シリコン単結晶を引き上げて成長させる工程においては、前記るつぼ内のシリコン融液の対流を抑制するために強磁場を印加する手法がよく用いられる。また、その磁場方向としては、前記シリコン単結晶の引上げ軸に対して直交する方向(水平方向)がよく用いられる。
【0003】
従来、強い水平磁場を形成する装置としては、その磁場利用空間を挟んで互いに対向する位置にそれぞれソレノイド型超電導コイルを配設したものが知られている。しかしながら、このような装置において十分な強さの磁場を形成するためには、超電導コイルの巻径を相当大きくしなければならず、このような超電導コイルの大径化は、装置全体の大型化、磁場発生効率の低下、漏れ磁場の増大といった不都合を招くことになる。
【0004】
そこで、このような不都合を解消する手段として、特許文献1には、図10(a)(b)に示すような装置が開示されている。この装置は、軸方向が鉛直方向を向く円筒状の磁場利用空間Sを中央に有するクライオスタット1において、その磁場利用空間Sを挟んで一方の側(同図(b)では左側)に3個のソレノイド型超電導コイルC1,C2,C3を周方向に並べて配列し、他方の側(同図(b)では右側)に、前記磁場利用空間Sを挟んで前記各ソレノイド型超電導コイルC1,C2,C3にそれぞれ対向するように3個のソレノイド型超電導コイルC1’,C2’,C3’を配列したものである。
【0005】
この装置によれば、磁場利用空間Sの両側にそれぞれ複数個の超電導コイルを配列しているため、相対向する超電導コイルを一対のみ配置するものに比べ、各コイルに要求される巻径を小さくすることができ、その分は磁場形成装置全体を小型化できる。
【特許文献1】特開2001−203106号公報
【発明の開示】
【発明が解決しようとする課題】
【0006】
前記の磁場形成装置では、その高さ寸法の削減が大きな課題となっている。特に、この磁場形成装置を前記のようなシリコン融液からの単結晶の引上げに利用する場合、当該装置の高さ寸法の削減は結晶製造効率の向上に大きく寄与することとなる。すなわち、当該シリコン融液の結晶化は磁場中心近傍の高さ位置で行われるため、当該位置を低く抑えるとその上方のシリコン引上げ空間をより広くとることが可能となり、その分製品結晶の長さを大きくとることが可能になるのである。
【0007】
この点において、前記図10(a)(b)に示される従来装置では、磁場利用空間Sの両側にそれぞれ複数個の超電導コイルを配列している分、一対の超電導コイルのみを対向配置するものよりも磁場発生効率は向上するものの、その向上度合いには限りがあり、十分な磁場強さを維持しながら装置の高さ寸法を削減するには限度がある。
【0008】
このような磁場強さの確保と必要高さ寸法の削減を両立する手段として、図11に示すような一対の鞍型コイルCsを対向配置することが考えられるが、当該鞍型コイルCsを超伝導コイルとして用いた場合、これに大電流を流して強磁場を発生させたときに安定した設置状態を保つことが難しいという欠点がある。すなわち、前記各鞍型コイルCsは、直線状をなす左右の垂直部と、円弧状をなす上下の鞍部とを合成した形状となっているので、当該鞍型コイルCsを超電導コイルに適用した場合、その強磁場発生に伴って作用する大きな電磁力に抗して超電導線材を静止状態に保つように固定するのが難しいという事情がある。もし、前記静止状態が崩れて線材が動くと、その摩擦熱等によってクエンチを招くおそれがある。
【0009】
本発明は、このような事情に鑑み、ソレノイド型超電導コイルを用いながら、十分な磁場強さを確保しつつ装置の高さ寸法を有効に削減することを目的とする。
【課題を解決するための手段】
【0010】
本発明者等は、前記課題を解決すべく検討を重ねた結果、ソレノイド型超電導コイルを水平方向だけでなく鉛直方向すなわち磁場利用空間の軸方向と平行な方向にも複数個配列することにより、従来の装置よりも却って、十分な磁場強さを保ちながら超電導コイル配置のための必要高さ寸法を削減できることを見出した。
【0011】
本発明は、このような観点からなされたものであり、中心軸が鉛直方向を向く磁場利用空間の周囲に複数個のソレノイド型超電導コイルが、その中心軸が略水平方向を向く姿勢で配列され、これらの超電導コイルの通電により前記磁場利用空間にその軸方向と直交する磁場が形成される磁場形成装置において、前記磁場利用空間を挟んで一方の側に複数個のソレノイド型超電導コイルが前記磁場利用空間の半径方向に対して略直交する水平方向及び鉛直方向の双方に並ぶように複数個配列され、他方の側に前記一方の側に配列された各超電導コイルと前記磁場利用空間を挟んで対向するように複数個の超電導コイルが配列されているものである。
【0012】
この構成によれば、安定した設置を容易に行うことができるソレノイド型超電導コイルを用いながら、当該ソレノイド型超電導コイルを前記磁場利用空間の半径方向に対して略直交する水平方向だけでなく鉛直方向にも複数個配列することにより、従来装置と同様の磁場強度を確保しながら装置の高さ寸法を削減することができる。
【0013】
その具体的なコイル配置としては、例えば、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の半径方向と直交する平面状のコイル配列領域が軸方向及び半径方向の双方に直交する周方向に並ぶ複数箇所に設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列されているものが好適である。この構成によれば、各コイル配設領域において複数個の超電導コイルを平面状に配列することによりその設置を容易にしながら、十分な磁場強度の確保及び装置高さ寸法の削減を図ることができる。
【0014】
具体的に、前記各コイル配設領域に当該コイル配設領域と平行なコイル支持部材が配設され、各コイル支持部材に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列された状態で固定される構成とすれば、各コイルを適所に容易に配置することができるとともに、その位置に安定した状態で保持することができる。
【0015】
その配列例としては、前記磁場利用空間を挟んでその両側に互いに対向する3つのコイル配列領域が設定され、各コイル配列領域上に6個のソレノイド型超電導コイルが水平方向に3個、鉛直方向に2個並ぶように配列されているものが、好適である。
【0016】
また、別のコイル配置態様として、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の中心軸と同軸の円筒面状のコイル配列領域が設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが当該コイル配設領域の周方向及び鉛直方向の双方に並ぶように配列されているものでもよい。この構成によれば、前記磁場利用空間の中心軸からの各コイルの距離(半径方向の距離)を統一することにより、コイルの配置スペースの直径を縮減することができる。
【発明の効果】
【0017】
以上のように、本発明によれば、ソレノイド型超電導コイルを前記磁場利用空間の半径方向に対して略直交する水平方向だけでなく鉛直方向にも複数個配列することにより、従来装置と同様の磁場強度を確保しながら装置の高さ寸法を削減することができる効果がある。
【発明を実施するための最良の形態】
【0018】
本発明の好ましい実施の形態を図1〜図3に基づいて説明する。
【0019】
この実施の形態に係る装置は、前記図10(a)(b)に示した装置と同様、図1に示すように、軸方向が鉛直方向を向く円筒状の磁場利用空間Sを中央に有するクライオスタット1に設けられる。
【0020】
このクライオスタット1は、ドーナツ板状の天板2及び底板3と、その径方向内側及び外側にそれぞれ配される内筒4及び外筒5とを有し、これら両筒4,5の上下端が前記天板2,3に気密状態で接合され、前記内筒4の内側空間が前記磁場利用空間Sとされている。この磁場利用空間Sは、鉛直方向の両側に開放されたものであってもよいし、その上下いずれかの端縁が前記天板2または底板3で塞がれているものであってもよい。また、この磁場利用空間Sの軸方向は正確に鉛直方向と合致していなくてもよく、その用途によっては若干傾いていてもよい。
【0021】
このクライオスタット1において、前記両筒4,5に挟まれる空間が冷却空間とされており、この冷却空間内に本発明に係る磁場形成装置が導入される。この磁場形成装置は、公知の冷却手段、例えば液体ヘリウム等の冷媒中の浸漬、あるいは、小型GM冷凍機やパルスチューブによって超電導状態になるまで冷却される。
【0022】
前記磁場形成装置は複数のソレノイド型超電導コイル(以下、単に「超電導コイル」と称する。)10が配列されることにより構成される。具体的には、前記磁場利用空間Sを挟んで一方の側に中央及びその左右の3つのコイル配設領域R1,R2,R3が設定され、これらのコイル配設領域R1,R2,R3にそれぞれ対向する(周方向に180°離間する)ように他方の側に3つのコイル配設領域R1′,R2′,R3′が設定されており、これらのコイル配設領域にそれぞれ前記超電導コイル10が複数個配列されている。
【0023】
前記各超伝導コイル10は、例えばステンレス鋼からなる巻枠に適当な超電導線材(例えばNbSn線材)を巻き付けることにより構成されている。
【0024】
前記各コイル配設領域は、それぞれ、前記磁場利用空間Sの半径方向(図2に示す中心軸X1,X2,X3の方向)と直交する平面状をなし、中央のコイル配設領域R1,R1′の中心軸(法線軸)X1に対して、その左側のコイル配設領域R2,R2′の中心軸X2及び右側のコイル配設領域R3,R3′の中心軸X3が前記磁場利用空間Sの周方向にそれぞれ所定の配置角度α(≦60°)で振り分けられている。
【0025】
前記各コイル配設領域においては、その平面上で図3に示すように計6個の超電導コイル10が水平方向(図3の左右方向)に3個、鉛直方向(図3の上下方向)に2個並ぶように配列されている。図3に示すように、各超電導コイル10は外径D、内径dをもつ円環体状(ドーナツ状)をなし、その中心軸が略水平方向を向く姿勢で配列されており、これら超電導コイル10同士の間には電気的に絶縁された状態で水平方向及び鉛直方向にそれぞれ所定の隙間δ1,δ2(図3)が確保されている。各コイル配設領域における超電導コイル10の巻線の向きは統一されており、これらの超電導コイル10を同時に通電することによって各コイル軸に平行な磁界が形成されるようになっている。
【0026】
なお、前記各超電導コイル10は共通の電源に対して相互直列に接続されていてもよいし、並列に接続されていてもよい。あるいは各領域ごとに専用の電源を与えるようにしてもよい。
【0027】
このような磁場発生装置によれば、鉛直方向に複数の超電導コイル10を配列しているものの、十分な磁場を形成するために必要とされる各超電導コイル10のコイル径を縮減できる結果として、鉛直方向について単一の超電導コイルのみを配する従来装置(例えば前記図10(a)(b)に示す装置)に比べ、これと同じ強さの磁場を形成するために必要な装置高さ寸法を削減することが可能となる。すなわち、従来のように鉛直方向について単一の大径コイルを設置する場合、その磁界はコイル形状に従うが、コイル設置隙間が大きく、これにより磁場発生効率が低下し、装置高さは大きくなる。これに対し、図3に示すように複数の小径コイルを縦横に配列した場合、コイル間の隙間を小さくできるため、磁場発生効率が高くなり、装置高さを縮減することができる。
【0028】
なお、本発明において、各超電導コイル10の具体的な個数や配置、形状は図示のものに限られず、適宜設定可能である。
【0029】
例えば、図4(a)(b)に示すように、磁場利用空間Sを挟んでその両側(同図(b)では上側及び下側)に、当該磁場利用空間Sの中心軸と同軸の円筒面状のコイル配列領域Rs,Rs′を設定し、各コイル配列領域Rs,Rs′上に複数個のソレノイド型超電導コイルが当該コイル配設領域の周方向及び鉛直方向の双方に並ぶ(図例では周方向に9個、鉛直方向に2個並ぶ)ように配列してもよい。
【0030】
また、要求される磁場が強い場合には、前記超電導コイル10を鉛直方向に3個以上配列するようにしてもよいし、水平方向の配列個数も適宜設定可能である。また、コイル配設領域の総数も適宜増減可能である。
【0031】
各超電導コイル10の形状は図示のような円環体状(ドーナツ状)が一般的であるが、その中心軸と平行な方向から見た形状を縦長または横長の楕円形あるいはその他の閉曲線形状としてもよい。いずれの場合も、コイルの全周にわたって巻線張力が作用することにより、ワイヤムーブメント(超電導線材の微小な動き)が有効に抑制されることになる。電磁力が大きくて巻線張力のみではワイヤムーブメントを抑えられない場合には、周知の手段、例えばコイルの外周に別のバインド線を巻いたり、エポキシ樹脂やワックスからなる含浸材を含浸させたりする手段を用いてワイヤムーブメントを規制すればよい。
【0032】
各超電導コイル10を所定位置に保持するための具体的な手段については、種々設定が可能である。例として、前記図2に示す配列でコイル配設領域の配置角度αが60°に設定された場合に好適なコイル支持構造を図5(a)(b)に示す。
【0033】
同図(a)に示すコイル支持枠14は、計6個の平板部11,12,13,11′,12′,13′が平面視正六角形状となるように相互接合された六角筒状をなし、前記各平板部11,12,13,11′,12′,13′の外側面上に計6個(水平方向3個、垂直方向2個)の超電導コイル10が配列され、同図(b)に示すボルト16により前記各平板部に固定されている。つまり、前記各平板部11,12,13,11′,12′,13′は、それぞれ、前記図2(a)(b)に示したコイル配設領域R1,R2,R3,R1′,R2′,R3′と平行なコイル支持部材を構成している。
【0034】
なお、前記コイル支持枠14や前記ボルト16の材質としては、SUS316等のステンレス鋼、純アルミニウム、アルミニウム合金等を用いることが可能である。また、ボルト16以外の固定手段としては、例えば溶接が好適であり、また接着剤による固定も可能である。
【0035】
図6は、前記図5に示すコイル支持枠14に保持されて液体ヘリウム温度で運転される各超電導コイル10を冷媒式のクライオスタット1内に導入した例を示したものである。
【0036】
同図に示すクライオスタット1は、中空ドーナツ状の真空槽30を有し、この真空槽30の内部に液体窒素槽32、輻射シールド板33、及び液体ヘリウム槽34が収容されている。前記液体窒素槽32は、中空ドーナツ状をなし、その内部に液体窒素が収容されている。前記液体ヘリウム槽34は前記液体窒素槽32の径方向内側に配置され、この液体ヘリウム槽34を上側及び下側並びに径方向内側から覆うように前記輻射シールド板33が配置されている。
【0037】
前記液体ヘリウム槽34には、冷媒として液体ヘリウム36が収容され、この液体ヘリウム36内に前記コイル支持枠14及びこのコイル支持枠14に保持された多数の超電導コイル10が浸漬されている。前記コイル支持枠14は、その各平板部11,12,13,11′,12′,13′が立直する姿勢で、クライオスタット1により囲まれる磁場利用空間Sの中心軸と同軸となる位置に配置され、その下端部が前記液体ヘリウム槽34の底壁に固定されている。これにより、前記各超電導コイル10は、前記各平板部11,12,13,11′,12′,13′にそれぞれ平行なコイル配列領域上に水平方向及び鉛直方向の双方に並ぶように配列され、かつ保持された状態となっている。そして、これらの超電導コイル10が通電されることにより、前記磁場利用空間Sに図6に示すような水平方向の磁束線38をもつ強磁場が形成されることになる。
【0038】
なお、図例では全平板部11,12,13,11′,12′,13′が相互つながって単一のコイル支持枠14を構成するものとなっているが、これらの平板部は相互独立して個別に配置されるものであってもよい。
【実施例1】
【0039】
図7に示すような比較例装置(鉛直方向について超電導コイルのコイルが単数である装置)と、前記図1〜図3に示すような本発明装置の双方において、磁場中心で0.4Tの磁束密度を発生させるためのコイル設計及びその配置設計を行った。その諸元を下記の表1(比較例)と表2(本実施例1)に示す。
【0040】
【表1】

【0041】
【表2】

【0042】
なお、前記比較例装置は、図7に示すように、磁場利用空間Sを挟んで一方の側(同図左側)に中央及びその左右の3つの超電導コイル20,22,24が配置され、他方の側に前記超電導コイル20,22,24とそれぞれ対向するように3つの超電導コイル20′,22′,24′が配置されたものであり、これらの超電導コイル20,22,24,20′,22′,24のレイアウトは、図1〜図3に示される本発明装置での各コイル配設領域R1,R2,R3,R1′,R2′,R3′のレイアウトに近似するものである。
【0043】
また、前記比較例装置及び本発明装置における各超電導コイルは、ステンレス鋼製の巻枠にNbSn製の超電導線材を巻付けることにより構成されている。
【0044】
前記表1と表2とを対照すると、本実施例1の効果はきわめて明らかである。すなわち、前記比較例装置での超電導コイルの巻線外径Dは694mmであり、少なくともこれと同等の装置高さ寸法が要求されるのに対し、本実施例1の装置での各超電導コイル10の巻線外径Dは268mmであり、かつ、鉛直方向のコイル間距離(隙間)δ2は1mmであるため、必要な高さ寸法は268mm×2+1mm=537mmに収まる。従って、本実施例では前記比較例に比して高さ寸法を694mm−537mm=110mmも削減することが期待できる。
【0045】
また、図8は、前記比較例装置(同図上段)及び本実施例装置(同図下段)における磁場分布をシミュレーション解析したヒストグラムを示しているが、両図を比較して明らかなように、本発明の適用により装置の高さ寸法を抑えながらも磁場の均一度は前記比較例以上のレベルに保つことができる。
【実施例2】
【0046】
前記実施例1と同様に、前記図4に示すような本発明装置において、磁場中心で0.4Tの磁束密度を発生させるためのコイル設計及びその配置設計を行った。その諸元を下記表3(本実施例2)に示す。
【0047】
【表3】

【0048】
この表3と前記表1とを対照しても、本実施例2の効果はきわめて明らかである。すなわち、前記比較例装置での超電導コイルの巻線外径Dは694mmであり、少なくともこれと同等の装置高さ寸法が要求されるのに対し、本実施例2の装置では前記実施例1と同様に各超電導コイル10の巻線外径Dは268mmであり、かつ、鉛直方向のコイル間距離(隙間)δ2は1mmであるため、必要な高さ寸法は268mm×2+1mm=537mmに収まる。従って、前記実施例1と同様に前記比較例に比して高さ寸法を694mm−537mm=110mmも削減することが期待できる。
【0049】
また、図9は、前記図8と同様に本実施例2の装置における磁場分布をシミュレーション解析したヒストグラムを示しているが、この図9と前記図8の上段図を比較して明らかなように、本発明の適用により装置の高さ寸法を抑えながらも磁場の均一度は前記比較例以上のレベルに保つことができる。
【図面の簡単な説明】
【0050】
【図1】本発明の実施の形態に係る磁場形成装置が導入されるクライオスタットの概略斜視図である。
【図2】(a)は前記磁場形成装置における超電導コイルの配列を示す斜視図、(b)はその平面図である。
【図3】前記磁場形成装置の各コイル配設領域における超電導コイルの配列を示す正面図である。
【図4】(a)は図2とは別の実施の形態に係る磁場形成装置における超電導コイルの配列を示す斜視図、(b)はその平面図である。
【図5】図2に示される配列で各超電導コイルを支持するためのコイル支持枠を示す斜視図である。
【図6】前記コイル支持枠及びこのコイル支持枠に支持される各超電導コイルがクライオスタットに導入された例を示す断面正面図である。
【図7】比較例での各超電導コイルの配置を示す平面図である。
【図8】前記比較例及び本発明の実施例1の装置により形成される磁場の分布を示すヒストグラムである。
【図9】本発明の実施例2の装置により形成される磁場の分布を示すヒストグラムである。
【図10】(a)は従来の磁場形成装置におけるコイルの配置例を示す斜視図、(b)はその平面図である。
【図11】鞍型コイルの例を示す斜視図である。
【符号の説明】
【0051】
R1,R2,R3,Rs,R1′,R2′,R3′,Rs′ コイル配設領域
S 磁場利用空間
X1〜X3 中心軸
α コイル配設領域の配置角度
θ コイルの配置角度
1 クライオスタット
10 ソレノイド型超電導コイル
11,12,13,11′,12′,13′ 平板部(コイル支持部材)
14 コイル支持枠

【特許請求の範囲】
【請求項1】
中心軸が鉛直方向を向く磁場利用空間の周囲に、複数個のソレノイド型超電導コイルが、その中心軸が略水平方向を向く姿勢で配列され、これらの超電導コイルの通電により前記磁場利用空間にその軸方向と直交する磁場が形成される磁場形成装置において、前記磁場利用空間を挟んで一方の側に複数個のソレノイド型超電導コイルが前記磁場利用空間の半径方向に対して略直交する水平方向及び鉛直方向の双方に並ぶように複数個配列され、他方の側に前記一方の側に配列された各超電導コイルと前記磁場利用空間を挟んで対向するように複数個の超電導コイルが配列されていることを特徴とする磁場形成装置。
【請求項2】
請求項1記載の磁場形成装置において、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の半径方向と直交する平面状のコイル配列領域が軸方向及び半径方向の双方に直交する周方向に並ぶ複数箇所に設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列されていることを特徴とする磁場形成装置。
【請求項3】
請求項2記載の磁場形成装置において、前記磁場利用空間を挟んでその両側に互いに対向する3つのコイル配列領域が設定され、各コイル配列領域上に6個のソレノイド型超電導コイルが水平方向に3個、鉛直方向に2個並ぶように配列されていることを特徴とする磁場形成装置。
【請求項4】
請求項2または3記載の磁場形成装置において、前記各コイル配設領域に当該コイル配設領域と平行なコイル支持部材が配設され、各コイル支持部材に複数個のソレノイド型超電導コイルが水平方向及び鉛直方向の双方に並ぶように配列された状態で固定されていることを特徴とする磁場形成装置。
【請求項5】
請求項1記載の磁場形成装置において、前記磁場利用空間を挟んでその両側に、当該磁場利用空間の中心軸と同軸の円筒面状のコイル配列領域が設定され、各コイル配列領域上に複数個のソレノイド型超電導コイルが当該コイル配設領域の周方向及び鉛直方向の双方に並ぶように配列されていることを特徴とする磁場形成装置。

【図1】
image rotate

【図2】
image rotate

【図3】
image rotate

【図4】
image rotate

【図5】
image rotate

【図6】
image rotate

【図7】
image rotate

【図8】
image rotate

【図9】
image rotate

【図10】
image rotate

【図11】
image rotate